Bail early from svm_enable_nmi_window() for SEV-ES guests without trying
to enable single-step of the guest, as single-stepping an SEV-ES guest is
impossible and the guest is responsible for *telling* KVM when it is ready
for an new NMI to be injected.
Functionally, setting TF and RF in svm->vmcb->save.rflags is benign as the
field is ignored by hardware, but it's all kinds of confusing.
Signed-off-by: Alexey Kardashevskiy <aik@amd.com>
Link: https://lore.kernel.org/r/20230615063757.3039121-10-aik@amd.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Immediately mark NMIs as unmasked in response to #VMGEXIT(NMI complete)
instead of setting awaiting_iret_completion and waiting until the *next*
VM-Exit to unmask NMIs. The whole point of "NMI complete" is that the
guest is responsible for telling the hypervisor when it's safe to inject
an NMI, i.e. there's no need to wait. And because there's no IRET to
single-step, the next VM-Exit could be a long time coming, i.e. KVM could
incorrectly hold an NMI pending for far longer than what is required and
expected.
Opportunistically fix a stale reference to HF_IRET_MASK.
Fixes: 916b54a768 ("KVM: x86: Move HF_NMI_MASK and HF_IRET_MASK into "struct vcpu_svm"")
Fixes: 4444dfe405 ("KVM: SVM: Add NMI support for an SEV-ES guest")
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20230615063757.3039121-9-aik@amd.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Disable #DB for SEV-ES guests when DebugSwap is enabled. There is no point
in such intercept as KVM does not allow guest debug for SEV-ES guests.
Signed-off-by: Alexey Kardashevskiy <aik@amd.com>
Link: https://lore.kernel.org/r/20230615063757.3039121-8-aik@amd.com
[sean: add comment as to why KVM disables #DB intercept iff DebugSwap=1]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add support for "DebugSwap for SEV-ES guests", which provides support
for swapping DR[0-3] and DR[0-3]_ADDR_MASK on VMRUN and VMEXIT, i.e.
allows KVM to expose debug capabilities to SEV-ES guests. Without
DebugSwap support, the CPU doesn't save/load most _guest_ debug
registers (except DR6/7), and KVM cannot manually context switch guest
DRs due the VMSA being encrypted.
Enable DebugSwap if and only if the CPU also supports NoNestedDataBp,
which causes the CPU to ignore nested #DBs, i.e. #DBs that occur when
vectoring a #DB. Without NoNestedDataBp, a malicious guest can DoS
the host by putting the CPU into an infinite loop of vectoring #DBs
(see https://bugzilla.redhat.com/show_bug.cgi?id=1278496)
Set the features bit in sev_es_sync_vmsa() which is the last point
when VMSA is not encrypted yet as sev_(es_)init_vmcb() (where the most
init happens) is called not only when VCPU is initialised but also on
intrahost migration when VMSA is encrypted.
Eliminate DR7 intercepts as KVM can't modify guest DR7, and intercepting
DR7 would completely defeat the purpose of enabling DebugSwap.
Make X86_FEATURE_DEBUG_SWAP appear in /proc/cpuinfo (by not adding "") to
let the operator know if the VM can debug.
Signed-off-by: Alexey Kardashevskiy <aik@amd.com>
Link: https://lore.kernel.org/r/20230615063757.3039121-7-aik@amd.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Currently SVM setup is done sequentially in
init_vmcb() -> sev_init_vmcb() -> sev_es_init_vmcb()
and tries keeping SVM/SEV/SEV-ES bits separated. One of the exceptions
is DR intercepts which is for SEV-ES before sev_es_init_vmcb() runs.
Move the SEV-ES intercept setup to sev_es_init_vmcb(). From now on
set_dr_intercepts()/clr_dr_intercepts() handle SVM/SEV only.
No functional change intended.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Alexey Kardashevskiy <aik@amd.com>
Reviewed-by: Santosh Shukla <santosh.shukla@amd.com>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20230615063757.3039121-6-aik@amd.com
[sean: drop comment about intercepting DR7]
Signed-off-by: Sean Christopherson <seanjc@google.com>
SVM/SEV enable debug registers intercepts to skip swapping DRs
on entering/exiting the guest. When the guest is in control of
debug registers (vcpu->guest_debug == 0), there is an optimisation to
reduce the number of context switches: intercepts are cleared and
the KVM_DEBUGREG_WONT_EXIT flag is set to tell KVM to do swapping
on guest enter/exit.
The same code also executes for SEV-ES, however it has no effect as
- it always takes (vcpu->guest_debug == 0) branch;
- KVM_DEBUGREG_WONT_EXIT is set but DR7 intercept is not cleared;
- vcpu_enter_guest() writes DRs but VMRUN for SEV-ES swaps them
with the values from _encrypted_ VMSA.
Be explicit about SEV-ES not supporting debug:
- return right away from dr_interception() and skip unnecessary processing;
- return an error right away from the KVM_SEV_LAUNCH_UPDATE_VMSA handler
if debugging was already enabled.
KVM_SET_GUEST_DEBUG are failing already after KVM_SEV_LAUNCH_UPDATE_VMSA
is finished due to vcpu->arch.guest_state_protected set to true.
Add WARN_ON to kvm_x86::sync_dirty_debug_regs() (saves guest DRs on
guest exit) to signify that SEV-ES won't hit that path.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Alexey Kardashevskiy <aik@amd.com>
Link: https://lore.kernel.org/r/20230615063757.3039121-5-aik@amd.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Rewrite the comment(s) in sev_es_prepare_switch_to_guest() to explain the
swap types employed by the CPU for SEV-ES guests, i.e. to explain why KVM
needs to save a seemingly random subset of host state, and to provide a
decoder for the APM's Type-A/B/C terminology.
Signed-off-by: Alexey Kardashevskiy <aik@amd.com>
Link: https://lore.kernel.org/r/20230615063757.3039121-4-aik@amd.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Currently SVM setup is done sequentially in
init_vmcb() -> sev_init_vmcb() -> sev_es_init_vmcb() and tries
keeping SVM/SEV/SEV-ES bits separated. One of the exceptions
is #GP intercept which init_vmcb() skips setting for SEV guests and
then sev_es_init_vmcb() needlessly clears it.
Remove the SEV check from init_vmcb(). Clear the #GP intercept in
sev_init_vmcb(). SEV-ES will use the SEV setting.
No functional change intended.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Alexey Kardashevskiy <aik@amd.com>
Reviewed-by: Carlos Bilbao <carlos.bilbao@amd.com>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Santosh Shukla <santosh.shukla@amd.com>
Link: https://lore.kernel.org/r/20230615063757.3039121-3-aik@amd.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Static functions set_dr_intercepts() and clr_dr_intercepts() are only
called from SVM so move them to .c.
No functional change intended.
Signed-off-by: Alexey Kardashevskiy <aik@amd.com>
Reviewed-by: Carlos Bilbao <carlos.bilbao@amd.com>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Santosh Shukla <santosh.shukla@amd.com>
Link: https://lore.kernel.org/r/20230615063757.3039121-2-aik@amd.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add the option to flush IBPB only on VMEXIT in order to protect from
malicious guests but one otherwise trusts the software that runs on the
hypervisor.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Gather Data Sampling (GDS) is a transient execution attack using
gather instructions from the AVX2 and AVX512 extensions. This attack
allows malicious code to infer data that was previously stored in
vector registers. Systems that are not vulnerable to GDS will set the
GDS_NO bit of the IA32_ARCH_CAPABILITIES MSR. This is useful for VM
guests that may think they are on vulnerable systems that are, in
fact, not affected. Guests that are running on affected hosts where
the mitigation is enabled are protected as if they were running
on an unaffected system.
On all hosts that are not affected or that are mitigated, set the
GDS_NO bit.
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
* Eager page splitting optimization for dirty logging, optionally
allowing for a VM to avoid the cost of hugepage splitting in the stage-2
fault path.
* Arm FF-A proxy for pKVM, allowing a pKVM host to safely interact with
services that live in the Secure world. pKVM intervenes on FF-A calls
to guarantee the host doesn't misuse memory donated to the hyp or a
pKVM guest.
* Support for running the split hypervisor with VHE enabled, known as
'hVHE' mode. This is extremely useful for testing the split
hypervisor on VHE-only systems, and paves the way for new use cases
that depend on having two TTBRs available at EL2.
* Generalized framework for configurable ID registers from userspace.
KVM/arm64 currently prevents arbitrary CPU feature set configuration
from userspace, but the intent is to relax this limitation and allow
userspace to select a feature set consistent with the CPU.
* Enable the use of Branch Target Identification (FEAT_BTI) in the
hypervisor.
* Use a separate set of pointer authentication keys for the hypervisor
when running in protected mode, as the host is untrusted at runtime.
* Ensure timer IRQs are consistently released in the init failure
paths.
* Avoid trapping CTR_EL0 on systems with Enhanced Virtualization Traps
(FEAT_EVT), as it is a register commonly read from userspace.
* Erratum workaround for the upcoming AmpereOne part, which has broken
hardware A/D state management.
RISC-V:
* Redirect AMO load/store misaligned traps to KVM guest
* Trap-n-emulate AIA in-kernel irqchip for KVM guest
* Svnapot support for KVM Guest
s390:
* New uvdevice secret API
* CMM selftest and fixes
* fix racy access to target CPU for diag 9c
x86:
* Fix missing/incorrect #GP checks on ENCLS
* Use standard mmu_notifier hooks for handling APIC access page
* Drop now unnecessary TR/TSS load after VM-Exit on AMD
* Print more descriptive information about the status of SEV and SEV-ES during
module load
* Add a test for splitting and reconstituting hugepages during and after
dirty logging
* Add support for CPU pinning in demand paging test
* Add support for AMD PerfMonV2, with a variety of cleanups and minor fixes
included along the way
* Add a "nx_huge_pages=never" option to effectively avoid creating NX hugepage
recovery threads (because nx_huge_pages=off can be toggled at runtime)
* Move handling of PAT out of MTRR code and dedup SVM+VMX code
* Fix output of PIC poll command emulation when there's an interrupt
* Add a maintainer's handbook to document KVM x86 processes, preferred coding
style, testing expectations, etc.
* Misc cleanups, fixes and comments
Generic:
* Miscellaneous bugfixes and cleanups
Selftests:
* Generate dependency files so that partial rebuilds work as expected
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmSgHrIUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroORcAf+KkBlXwQMf+Q0Hy6Mfe0OtkKmh0Ae
6HJ6dsuMfOHhWv5kgukh+qvuGUGzHq+gpVKmZg2yP3h3cLHOLUAYMCDm+rjXyjsk
F4DbnJLfxq43Pe9PHRKFxxSecRcRYCNox0GD5UYL4PLKcH0FyfQrV+HVBK+GI8L3
FDzUcyJkR12Lcj1qf++7fsbzfOshL0AJPmidQCoc6wkLJpUEr/nYUqlI1Kx3YNuQ
LKmxFHS4l4/O/px3GKNDrLWDbrVlwciGIa3GZLS52PZdW3mAqT+cqcPcYK6SW71P
m1vE80VbNELX5q3YSRoOXtedoZ3Pk97LEmz/xQAsJ/jri0Z5Syk0Ok0m/Q==
=AMXp
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"ARM64:
- Eager page splitting optimization for dirty logging, optionally
allowing for a VM to avoid the cost of hugepage splitting in the
stage-2 fault path.
- Arm FF-A proxy for pKVM, allowing a pKVM host to safely interact
with services that live in the Secure world. pKVM intervenes on
FF-A calls to guarantee the host doesn't misuse memory donated to
the hyp or a pKVM guest.
- Support for running the split hypervisor with VHE enabled, known as
'hVHE' mode. This is extremely useful for testing the split
hypervisor on VHE-only systems, and paves the way for new use cases
that depend on having two TTBRs available at EL2.
- Generalized framework for configurable ID registers from userspace.
KVM/arm64 currently prevents arbitrary CPU feature set
configuration from userspace, but the intent is to relax this
limitation and allow userspace to select a feature set consistent
with the CPU.
- Enable the use of Branch Target Identification (FEAT_BTI) in the
hypervisor.
- Use a separate set of pointer authentication keys for the
hypervisor when running in protected mode, as the host is untrusted
at runtime.
- Ensure timer IRQs are consistently released in the init failure
paths.
- Avoid trapping CTR_EL0 on systems with Enhanced Virtualization
Traps (FEAT_EVT), as it is a register commonly read from userspace.
- Erratum workaround for the upcoming AmpereOne part, which has
broken hardware A/D state management.
RISC-V:
- Redirect AMO load/store misaligned traps to KVM guest
- Trap-n-emulate AIA in-kernel irqchip for KVM guest
- Svnapot support for KVM Guest
s390:
- New uvdevice secret API
- CMM selftest and fixes
- fix racy access to target CPU for diag 9c
x86:
- Fix missing/incorrect #GP checks on ENCLS
- Use standard mmu_notifier hooks for handling APIC access page
- Drop now unnecessary TR/TSS load after VM-Exit on AMD
- Print more descriptive information about the status of SEV and
SEV-ES during module load
- Add a test for splitting and reconstituting hugepages during and
after dirty logging
- Add support for CPU pinning in demand paging test
- Add support for AMD PerfMonV2, with a variety of cleanups and minor
fixes included along the way
- Add a "nx_huge_pages=never" option to effectively avoid creating NX
hugepage recovery threads (because nx_huge_pages=off can be toggled
at runtime)
- Move handling of PAT out of MTRR code and dedup SVM+VMX code
- Fix output of PIC poll command emulation when there's an interrupt
- Add a maintainer's handbook to document KVM x86 processes,
preferred coding style, testing expectations, etc.
- Misc cleanups, fixes and comments
Generic:
- Miscellaneous bugfixes and cleanups
Selftests:
- Generate dependency files so that partial rebuilds work as
expected"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (153 commits)
Documentation/process: Add a maintainer handbook for KVM x86
Documentation/process: Add a label for the tip tree handbook's coding style
KVM: arm64: Fix misuse of KVM_ARM_VCPU_POWER_OFF bit index
RISC-V: KVM: Remove unneeded semicolon
RISC-V: KVM: Allow Svnapot extension for Guest/VM
riscv: kvm: define vcpu_sbi_ext_pmu in header
RISC-V: KVM: Expose IMSIC registers as attributes of AIA irqchip
RISC-V: KVM: Add in-kernel virtualization of AIA IMSIC
RISC-V: KVM: Expose APLIC registers as attributes of AIA irqchip
RISC-V: KVM: Add in-kernel emulation of AIA APLIC
RISC-V: KVM: Implement device interface for AIA irqchip
RISC-V: KVM: Skeletal in-kernel AIA irqchip support
RISC-V: KVM: Set kvm_riscv_aia_nr_hgei to zero
RISC-V: KVM: Add APLIC related defines
RISC-V: KVM: Add IMSIC related defines
RISC-V: KVM: Implement guest external interrupt line management
KVM: x86: Remove PRIx* definitions as they are solely for user space
s390/uv: Update query for secret-UVCs
s390/uv: replace scnprintf with sysfs_emit
s390/uvdevice: Add 'Lock Secret Store' UVC
...
- Drop manual TR/TSS load after VM-Exit now that KVM uses VMLOAD for host state
- Fix a not-yet-problematic missing call to trace_kvm_exit() for VM-Exits that
are handled in the fastpath
- Print more descriptive information about the status of SEV and SEV-ES during
module load
- Assert that misc_cg_set_capacity() doesn't fail to avoid should-be-impossible
memory leaks
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmSaK5ESHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5ApAQAJSlzFh6Cg6OzlKqsrXDTTrNuP7Yu5Pe
tCQm9uppab++TyBz00GCoaUjqXJY1j1riStbl0j1yGJ69Ocjrqj58IGGeoj4NKgt
Dsiwgs0IWCshe7noVcYQeC4FInrNiFOog7Zog7uDyJmtHprZHorcJ9rmsBXMmedw
OSrzoxyhVwbtbPmgMfEP+xw4wccXVioci4EOySqI0GI9QrQ+cfdafs8irxxeLG7v
IY1qG3fwNmGp2uHdb3lG48TUbggWzKG5o1RC+fwwN132Y2fepxjcAeZ25gNms3lz
Q1fm7vPNkGRqelqg7x+z9B10D6uJc0hngZPe6Hs8C7y1+hvTjXwmx81WXsQxM7RM
rhhbp1o1C0xKSLzFciaZyW4lQW4cw5wxGRNoIenpHUe48bK9wjTYxez2MiQwfbNJ
Dt9RAaBVF/UdNBZu2wtA3czgHwOHKSqUOwO2N2iBW62KgRzITQe9r9VtVikslbQD
/nAq7PJOGz8JuJXkDWI0nLYEW6pInzsiXB21CPQrYR8XOQnnWglzmMTL/KxPeVYg
pBHJUf6U7AdhjHMkPp2Yc1eQTNspDzRfZBGFZz1YS103JpmUIs97W0phHru/ONKh
1cBv2N9ZrOJhuL1LAxaLp9OSvR+UQP/mMdCAEjvUTpEbmqbtEAqWMkTTwIEdIi74
PcaJfv7GsYJV
=rcFn
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-svm-6.5' of https://github.com/kvm-x86/linux into HEAD
KVM SVM changes for 6.5:
- Drop manual TR/TSS load after VM-Exit now that KVM uses VMLOAD for host state
- Fix a not-yet-problematic missing call to trace_kvm_exit() for VM-Exits that
are handled in the fastpath
- Print more descriptive information about the status of SEV and SEV-ES during
module load
- Assert that misc_cg_set_capacity() doesn't fail to avoid should-be-impossible
memory leaks
- Add support for AMD PerfMonV2, with a variety of cleanups and minor fixes
included along the way
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmSaHFgSHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5twMP/15ZJFqZVigVQoATJeeR9tWUuyJe95xM
lyfnTel91Sg8XOamdwBGi7jLpaDgj34Jm0cfM7/4LbJk2/taeaCLYmJd5w9FXvaw
EkytQGO85hVNe2XuY+h+XxSIxpflKxgFuUnOwcDk2QbKgASzNSG/mJ9ZBx8PNVXD
FnyOqpbbYDFspWWvUOAI/RkHnr/dALjXJsSUMvuh3nz5e1NTyubjCAZg+/bse2nR
s8FrcSh4B0Lg0h4r2fdJ4sAiM/qWhcCIhq5svyTAcUG0T4rMS40LrosJOw3wkBRM
dyZYXy6GEENeCFJPhenF1mTE1embFyZp89PV/FCNRZXODbnM4kheJFT9gucAjlKi
ZafRcutrkYIVf4lZCMofDfQGLX/GCEJnwUPKyGygIsPoDRrdR7OLrFycON5bxocr
9NBNG+2teQFbnt5irB/bBGojtIZtu3OEylkuRjQUQ3lJYQ5r6LddarI9acIu1SHt
4rRfh8QN5qmMvVblaQzggOr6BPtmPr8QqMEMFncaUMCsV/82hRAEfvj2rifGFJNo
Axz1ajMfirxyM45WzredUkzzsbphiiegPBELCLRZfHmaEhJ8P7t7wvri0bXt9YdI
vjSfX+6ulOgDC+xAazE0gEJO4Uh5+g3Y+1e0fr43ltWzUOWdCQskzD3LE9DkqIXj
KAaCuHYbYpIZ
=MwqV
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-pmu-6.5' of https://github.com/kvm-x86/linux into HEAD
KVM x86/pmu changes for 6.5:
- Add support for AMD PerfMonV2, with a variety of cleanups and minor fixes
included along the way
- Add back a comment about the subtle side effect of try_cmpxchg64() in
tdp_mmu_set_spte_atomic()
- Add an assertion in __kvm_mmu_invalidate_addr() to verify that the target
KVM MMU is the current MMU
- Add a "never" option to effectively avoid creating NX hugepage recovery
threads
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmSaGrgSHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5KG0P/iFP2w0PAUQgIgbWeOWiIh1ZXq9JjjX+
GAjii1deMFzuEjOWTzWUY2FDE7Mzea5hsVoOmLY7kb9jwYwPJDhaKlaQbNLYgFAr
uJqGg8ZMRIbXGBhX98Z4qrUzqKwjgKDzswu/Fg6xZOhVLKNoIkV/YwVo3b1dZ8+e
ecctLJFtmV/xa7cFyOTnB9rDgUuBXc2jB7+7eza6+oFlhO/S1VB2XPBq+IT3KoPO
F40YQW05ortC8IaFHHkJSRTfVM8v+2WDzrwpJUtyalDAie4hhy08svCEX2cXEeYX
qWgjzPzQLM6AcFhb491M1BjFiEYuh5qhvETK+1PiIXTTq+xaIDb1HSM9BexkSVBR
scHt8RdamPq3noqZQgMEIzVHp5L3k72oy1iP0k2uIzirMW9v+M3MWLsQuDV+CaLU
+EYQozWNEcDO7b/gpYsGWG9Me11GibqIJeyLJFU7HwAmACBiRyy6RD+RS7NMGzHB
9HT6TkSbPc1+cLJ5npCFwZBkj+vwjPs3lEjVQkiGZtavt1nWHfE8ASdv+hNwnJg/
Xz+PVdKh6g0A3mUqxz/ZuDTp3Hfz3jL1roYFGIAUXAjaebih0MUc/CYf84VvoqIq
IymI37EoK9CnMszQGJBc2IeB+Bc8KptYCs+M0WYNQ7MPcLIJHKpIzFPosRb2qyOj
/GEYFjfFwaPR
=FM8H
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-mmu-6.5' of https://github.com/kvm-x86/linux into HEAD
KVM x86/mmu changes for 6.5:
- Add back a comment about the subtle side effect of try_cmpxchg64() in
tdp_mmu_set_spte_atomic()
- Add an assertion in __kvm_mmu_invalidate_addr() to verify that the target
KVM MMU is the current MMU
- Add a "never" option to effectively avoid creating NX hugepage recovery
threads
- Move handling of PAT out of MTRR code and dedup SVM+VMX code
- Fix output of PIC poll command emulation when there's an interrupt
- Fix a longstanding bug in the reporting of the number of entries returned by
KVM_GET_CPUID2
- Add a maintainer's handbook to document KVM x86 processes, preferred coding
style, testing expectations, etc.
- Misc cleanups
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmSaGMMSHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5iDIP/0PwY3J5odTEUTnAyuDFPimd5PBt9k/O
B414wdpSKVgzq+0An4qM9mKRnklVIh2p8QqQTvDhcBUg3xb6CX9xZ4ery7hp/T5O
tr5bAXs2AYX6jpxvsopt+w+E9j6fvkJhcJCRU9im3QbrqwUE+ecyU5OHvmv2n/GO
syVZJbPOYuoLPKDjlSMrScE6fWEl9UOvHc5BK/vafTeyisMG3vv1BSmJj6GuiNNk
TS1RRIg//cOZghQyDfdXt0azTmakNZyNn35xnoX9x8SRmdRykyUjQeHmeqWxPDso
kiGO+CGancfS57S6ZtCkJjqEWZ1o/zKdOxr8MMf/3nJhv4kY7/5XtlVoACv5soW9
bZEmNiXIaSbvKNMwAlLJxHFbLa1sMdSCb345CIuMdt5QiWJ53ZiTyIAJX6+eL+Zf
8nkeekgPf5VUs6Zt0RdRPyvo+W7Vp9BtI87yDXm1nQKpbys2pt6CD3YB/oF4QViG
a5cyGoFuqRQbS3nmbshIlR7EanTuxbhLZKrNrFnolZ5e624h3Cnk2hVsfTznVGiX
vNHWM80phk1CWB9McErrZVkGfjlyVyBL13CBB2XF7Dl6PfF6/N22a9bOuTJD3tvk
PlNx4hvZm3esvvyGpjfbSajTKYE8O7rxiE1KrF0BpZ5IUl5WSiTr6XCy/yI/mIeM
hay2IWhPOF2z
=D0BH
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-misc-6.5' of https://github.com/kvm-x86/linux into HEAD
KVM x86 changes for 6.5:
* Move handling of PAT out of MTRR code and dedup SVM+VMX code
* Fix output of PIC poll command emulation when there's an interrupt
* Add a maintainer's handbook to document KVM x86 processes, preferred coding
style, testing expectations, etc.
* Misc cleanups
- Introduce cmpxchg128() -- aka. the demise of cmpxchg_double().
The cmpxchg128() family of functions is basically & functionally
the same as cmpxchg_double(), but with a saner interface: instead
of a 6-parameter horror that forced u128 - u64/u64-halves layout
details on the interface and exposed users to complexity,
fragility & bugs, use a natural 3-parameter interface with u128 types.
- Restructure the generated atomic headers, and add
kerneldoc comments for all of the generic atomic{,64,_long}_t
operations. Generated definitions are much cleaner now,
and come with documentation.
- Implement lock_set_cmp_fn() on lockdep, for defining an ordering
when taking multiple locks of the same type. This gets rid of
one use of lockdep_set_novalidate_class() in the bcache code.
- Fix raw_cpu_generic_try_cmpxchg() bug due to an unintended
variable shadowing generating garbage code on Clang on certain
ARM builds.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmSav3wRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1gDyxAAjCHQjpolrre7fRpyiTDwqzIKT27H04vQ
zrQVlVc42WBnn9pe8LthGy43/RvYvqlZvLoLONA4fMkuYriM6nSMsoZjeUmE+6Rs
QAElQC74P5YvEBOa67VNY3/M7sj22ftDe7ODtVV8OrnPjMk1sQNRvaK025Cs3yig
8MAI//hHGNmyVAp1dPYZMJNqxGCvluReLZ4SaUJFCMrg7YgUXgCBj/5Gi07TlKxn
sT8BFCssoEW/B9FXkh59B1t6FBCZoSy4XSZfsZe0uVAUJ4XDEOO+zBgaWFCedNQT
wP323ryBgMrkzUKA8j2/o5d3QnMA1GcBfHNNlvAl/fOfrxWXzDZnOEY26YcaLMa0
YIuRF/JNbPZlt6DCUVBUEvMPpfNYi18dFN0rat1a6xL2L4w+tm55y3mFtSsg76Ka
r7L2nWlRrAGXnuA+VEPqkqbSWRUSWOv5hT2Mcyb5BqqZRsxBETn6G8GVAzIO6j6v
giyfUdA8Z9wmMZ7NtB6usxe3p1lXtnZ/shCE7ZHXm6xstyZrSXaHgOSgAnB9DcuJ
7KpGIhhSODQSwC/h/J0KEpb9Pr/5jCWmXAQ2DWnZK6ndt1jUfFi8pfK58wm0AuAM
o9t8Mx3o8wZjbMdt6up9OIM1HyFiMx2BSaZK+8f/bWemHQ0xwez5g4k5O5AwVOaC
x9Nt+Tp0Ze4=
=DsYj
-----END PGP SIGNATURE-----
Merge tag 'locking-core-2023-06-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking updates from Ingo Molnar:
- Introduce cmpxchg128() -- aka. the demise of cmpxchg_double()
The cmpxchg128() family of functions is basically & functionally the
same as cmpxchg_double(), but with a saner interface.
Instead of a 6-parameter horror that forced u128 - u64/u64-halves
layout details on the interface and exposed users to complexity,
fragility & bugs, use a natural 3-parameter interface with u128
types.
- Restructure the generated atomic headers, and add kerneldoc comments
for all of the generic atomic{,64,_long}_t operations.
The generated definitions are much cleaner now, and come with
documentation.
- Implement lock_set_cmp_fn() on lockdep, for defining an ordering when
taking multiple locks of the same type.
This gets rid of one use of lockdep_set_novalidate_class() in the
bcache code.
- Fix raw_cpu_generic_try_cmpxchg() bug due to an unintended variable
shadowing generating garbage code on Clang on certain ARM builds.
* tag 'locking-core-2023-06-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (43 commits)
locking/atomic: scripts: fix ${atomic}_dec_if_positive() kerneldoc
percpu: Fix self-assignment of __old in raw_cpu_generic_try_cmpxchg()
locking/atomic: treewide: delete arch_atomic_*() kerneldoc
locking/atomic: docs: Add atomic operations to the driver basic API documentation
locking/atomic: scripts: generate kerneldoc comments
docs: scripts: kernel-doc: accept bitwise negation like ~@var
locking/atomic: scripts: simplify raw_atomic*() definitions
locking/atomic: scripts: simplify raw_atomic_long*() definitions
locking/atomic: scripts: split pfx/name/sfx/order
locking/atomic: scripts: restructure fallback ifdeffery
locking/atomic: scripts: build raw_atomic_long*() directly
locking/atomic: treewide: use raw_atomic*_<op>()
locking/atomic: scripts: add trivial raw_atomic*_<op>()
locking/atomic: scripts: factor out order template generation
locking/atomic: scripts: remove leftover "${mult}"
locking/atomic: scripts: remove bogus order parameter
locking/atomic: xtensa: add preprocessor symbols
locking/atomic: x86: add preprocessor symbols
locking/atomic: sparc: add preprocessor symbols
locking/atomic: sh: add preprocessor symbols
...
- Scheduler SMP load-balancer improvements:
- Avoid unnecessary migrations within SMT domains on hybrid systems.
Problem:
On hybrid CPU systems, (processors with a mixture of higher-frequency
SMT cores and lower-frequency non-SMT cores), under the old code
lower-priority CPUs pulled tasks from the higher-priority cores if
more than one SMT sibling was busy - resulting in many unnecessary
task migrations.
Solution:
The new code improves the load balancer to recognize SMT cores with more
than one busy sibling and allows lower-priority CPUs to pull tasks, which
avoids superfluous migrations and lets lower-priority cores inspect all SMT
siblings for the busiest queue.
- Implement the 'runnable boosting' feature in the EAS balancer: consider CPU
contention in frequency, EAS max util & load-balance busiest CPU selection.
This improves CPU utilization for certain workloads, while leaves other key
workloads unchanged.
- Scheduler infrastructure improvements:
- Rewrite the scheduler topology setup code by consolidating it
into the build_sched_topology() helper function and building
it dynamically on the fly.
- Resolve the local_clock() vs. noinstr complications by rewriting
the code: provide separate sched_clock_noinstr() and
local_clock_noinstr() functions to be used in instrumentation code,
and make sure it is all instrumentation-safe.
- Fixes:
- Fix a kthread_park() race with wait_woken()
- Fix misc wait_task_inactive() bugs unearthed by the -rt merge:
- Fix UP PREEMPT bug by unifying the SMP and UP implementations.
- Fix task_struct::saved_state handling.
- Fix various rq clock update bugs, unearthed by turning on the rq clock
debugging code.
- Fix the PSI WINDOW_MIN_US trigger limit, which was easy to trigger by
creating enough cgroups, by removing the warnign and restricting
window size triggers to PSI file write-permission or CAP_SYS_RESOURCE.
- Propagate SMT flags in the topology when removing degenerate domain
- Fix grub_reclaim() calculation bug in the deadline scheduler code
- Avoid resetting the min update period when it is unnecessary, in
psi_trigger_destroy().
- Don't balance a task to its current running CPU in load_balance(),
which was possible on certain NUMA topologies with overlapping
groups.
- Fix the sched-debug printing of rq->nr_uninterruptible
- Cleanups:
- Address various -Wmissing-prototype warnings, as a preparation
to (maybe) enable this warning in the future.
- Remove unused code
- Mark more functions __init
- Fix shadow-variable warnings
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmSatWQRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1j62xAAuGOx1LcDfRGC6WGQzp1zOdlsVQtnDvlS
qL58zYSHgizprpVQ3j87SBaG4CHCdvd2Bo36yW0lNZS4nd203qdq7fkrMb3hPP/w
egUQUzMegf5fF6BWldKeMjuHSt+twFQz/ZAKK8iSbAir6CHNAqbNst1oL0i/+Tyk
o33hBs1hT5tnbFb1NSVZkX4k+qT3LzTW4K2QgjjGtkScr6yHh2BdEVefyigWOjdo
9s02d00ll9a2r+F5txlN7Dnw6TN7rmTXGMOJU5bZvBE90/anNiAorMXHJdEKCyUR
u9+JtBdJWiCplGa/tSRcxT16ZW1VdtTnd9q66TDhXREd2UNDFqBEyg5Wl77K4Tlf
vKFajmj/to+cTbuv6m6TVR+zyXpdEpdL6F04P44U3qiJvDobBqeDNKHHIqpmbHXl
AXUXcPWTVAzXX1Ce5M+BeAgTBQ1T7C5tELILrTNQHJvO1s9VVBRFZ/l65Ps4vu7T
wIZ781IFuopk0zWqHovNvgKrJ7oFmOQQZFttQEe8n6nafkjI7u+IZ8FayiGaUMRr
4GawFGUCEdYh8z9qyslGKe8Q/Rphfk6hxMFRYUJpDmubQ0PkMeDjDGq77jDGl1PF
VqwSDEyOaBJs7Gqf/mem00JtzBmXhkhm1SEjggHMI2IQbr/eeBXoLQOn3CDapO/N
PiDbtX760ic=
=EWQA
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2023-06-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
"Scheduler SMP load-balancer improvements:
- Avoid unnecessary migrations within SMT domains on hybrid systems.
Problem:
On hybrid CPU systems, (processors with a mixture of
higher-frequency SMT cores and lower-frequency non-SMT cores),
under the old code lower-priority CPUs pulled tasks from the
higher-priority cores if more than one SMT sibling was busy -
resulting in many unnecessary task migrations.
Solution:
The new code improves the load balancer to recognize SMT cores
with more than one busy sibling and allows lower-priority CPUs
to pull tasks, which avoids superfluous migrations and lets
lower-priority cores inspect all SMT siblings for the busiest
queue.
- Implement the 'runnable boosting' feature in the EAS balancer:
consider CPU contention in frequency, EAS max util & load-balance
busiest CPU selection.
This improves CPU utilization for certain workloads, while leaves
other key workloads unchanged.
Scheduler infrastructure improvements:
- Rewrite the scheduler topology setup code by consolidating it into
the build_sched_topology() helper function and building it
dynamically on the fly.
- Resolve the local_clock() vs. noinstr complications by rewriting
the code: provide separate sched_clock_noinstr() and
local_clock_noinstr() functions to be used in instrumentation code,
and make sure it is all instrumentation-safe.
Fixes:
- Fix a kthread_park() race with wait_woken()
- Fix misc wait_task_inactive() bugs unearthed by the -rt merge:
- Fix UP PREEMPT bug by unifying the SMP and UP implementations
- Fix task_struct::saved_state handling
- Fix various rq clock update bugs, unearthed by turning on the rq
clock debugging code.
- Fix the PSI WINDOW_MIN_US trigger limit, which was easy to trigger
by creating enough cgroups, by removing the warnign and restricting
window size triggers to PSI file write-permission or
CAP_SYS_RESOURCE.
- Propagate SMT flags in the topology when removing degenerate domain
- Fix grub_reclaim() calculation bug in the deadline scheduler code
- Avoid resetting the min update period when it is unnecessary, in
psi_trigger_destroy().
- Don't balance a task to its current running CPU in load_balance(),
which was possible on certain NUMA topologies with overlapping
groups.
- Fix the sched-debug printing of rq->nr_uninterruptible
Cleanups:
- Address various -Wmissing-prototype warnings, as a preparation to
(maybe) enable this warning in the future.
- Remove unused code
- Mark more functions __init
- Fix shadow-variable warnings"
* tag 'sched-core-2023-06-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (50 commits)
sched/core: Avoid multiple calling update_rq_clock() in __cfsb_csd_unthrottle()
sched/core: Avoid double calling update_rq_clock() in __balance_push_cpu_stop()
sched/core: Fixed missing rq clock update before calling set_rq_offline()
sched/deadline: Update GRUB description in the documentation
sched/deadline: Fix bandwidth reclaim equation in GRUB
sched/wait: Fix a kthread_park race with wait_woken()
sched/topology: Mark set_sched_topology() __init
sched/fair: Rename variable cpu_util eff_util
arm64/arch_timer: Fix MMIO byteswap
sched/fair, cpufreq: Introduce 'runnable boosting'
sched/fair: Refactor CPU utilization functions
cpuidle: Use local_clock_noinstr()
sched/clock: Provide local_clock_noinstr()
x86/tsc: Provide sched_clock_noinstr()
clocksource: hyper-v: Provide noinstr sched_clock()
clocksource: hyper-v: Adjust hv_read_tsc_page_tsc() to avoid special casing U64_MAX
x86/vdso: Fix gettimeofday masking
math64: Always inline u128 version of mul_u64_u64_shr()
s390/time: Provide sched_clock_noinstr()
loongarch: Provide noinstr sched_clock_read()
...
WARN and continue if misc_cg_set_capacity() fails, as the only scenario
in which it can fail is if the specified resource is invalid, which should
never happen when CONFIG_KVM_AMD_SEV=y. Deliberately not bailing "fixes"
a theoretical bug where KVM would leak the ASID bitmaps on failure, which
again can't happen.
If the impossible should happen, the end result is effectively the same
with respect to SEV and SEV-ES (they are unusable), while continuing on
has the advantage of letting KVM load, i.e. userspace can still run
non-SEV guests.
Reported-by: Alexander Mikhalitsyn <aleksandr.mikhalitsyn@canonical.com>
Link: https://lore.kernel.org/r/20230607004449.1421131-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add a "never" option to the nx_huge_pages module param to allow userspace
to do a one-way hard disabling of the mitigation, and don't create the
per-VM recovery threads when the mitigation is hard disabled. Letting
userspace pinky swear that userspace doesn't want to enable NX mitigation
(without reloading KVM) allows certain use cases to avoid the latency
problems associated with spawning a kthread for each VM.
E.g. in FaaS use cases, the guest kernel is trusted and the host may
create 100+ VMs per logical CPU, which can result in 100ms+ latencies when
a burst of VMs is created.
Reported-by: Li RongQing <lirongqing@baidu.com>
Closes: https://lore.kernel.org/all/1679555884-32544-1-git-send-email-lirongqing@baidu.com
Cc: Yong He <zhuangel570@gmail.com>
Cc: Robert Hoo <robert.hoo.linux@gmail.com>
Cc: Kai Huang <kai.huang@intel.com>
Reviewed-by: Robert Hoo <robert.hoo.linux@gmail.com>
Acked-by: Kai Huang <kai.huang@intel.com>
Tested-by: Luiz Capitulino <luizcap@amazon.com>
Reviewed-by: Li RongQing <lirongqing@baidu.com>
Link: https://lore.kernel.org/r/20230602005859.784190-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Refresh comments about msrs_to_save, emulated_msrs, and msr_based_features
to remove stale references left behind by commit 2374b7310b (KVM:
x86/pmu: Use separate array for defining "PMU MSRs to save"), and to
better reflect the current reality, e.g. emulated_msrs is no longer just
for MSRs that are "kvm-specific".
Reported-by: Binbin Wu <binbin.wu@linux.intel.com>
Link: https://lore.kernel.org/r/20230607004636.1421424-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
CPUID leaf 0x80000022 i.e. ExtPerfMonAndDbg advertises some new
performance monitoring features for AMD processors.
Bit 0 of EAX indicates support for Performance Monitoring Version 2
(PerfMonV2) features. If found to be set during PMU initialization,
the EBX bits of the same CPUID function can be used to determine
the number of available PMCs for different PMU types.
Expose the relevant bits via KVM_GET_SUPPORTED_CPUID so that
guests can make use of the PerfMonV2 features.
Co-developed-by: Sandipan Das <sandipan.das@amd.com>
Signed-off-by: Sandipan Das <sandipan.das@amd.com>
Signed-off-by: Like Xu <likexu@tencent.com>
Link: https://lore.kernel.org/r/20230603011058.1038821-13-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
If AMD Performance Monitoring Version 2 (PerfMonV2) is detected by
the guest, it can use a new scheme to manage the Core PMCs using the
new global control and status registers.
In addition to benefiting from the PerfMonV2 functionality in the same
way as the host (higher precision), the guest also can reduce the number
of vm-exits by lowering the total number of MSRs accesses.
In terms of implementation details, amd_is_valid_msr() is resurrected
since three newly added MSRs could not be mapped to one vPMC.
The possibility of emulating PerfMonV2 on the mainframe has also
been eliminated for reasons of precision.
Co-developed-by: Sandipan Das <sandipan.das@amd.com>
Signed-off-by: Sandipan Das <sandipan.das@amd.com>
Signed-off-by: Like Xu <likexu@tencent.com>
[sean: drop "Based on the observed HW." comments]
Link: https://lore.kernel.org/r/20230603011058.1038821-12-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add a KVM-only leaf for AMD's PerfMonV2 to redirect the kernel's scattered
version to its architectural location, e.g. so that KVM can query guest
support via guest_cpuid_has().
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Like Xu <likexu@tencent.com>
[sean: massage changelog]
Link: https://lore.kernel.org/r/20230603011058.1038821-11-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Cap the number of general purpose counters enumerated on AMD to what KVM
actually supports, i.e. don't allow userspace to coerce KVM into thinking
there are more counters than actually exist, e.g. by enumerating
X86_FEATURE_PERFCTR_CORE in guest CPUID when its not supported.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Like Xu <likexu@tencent.com>
[sean: massage changelog]
Link: https://lore.kernel.org/r/20230603011058.1038821-10-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Enable and advertise PERFCTR_CORE if and only if the minimum number of
required counters are available, i.e. if perf says there are less than six
general purpose counters.
Opportunistically, use kvm_cpu_cap_check_and_set() instead of open coding
the check for host support.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Like Xu <likexu@tencent.com>
[sean: massage shortlog and changelog]
Link: https://lore.kernel.org/r/20230603011058.1038821-9-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Disable PMU support when running on AMD and perf reports fewer than four
general purpose counters. All AMD PMUs must define at least four counters
due to AMD's legacy architecture hardcoding the number of counters
without providing a way to enumerate the number of counters to software,
e.g. from AMD's APM:
The legacy architecture defines four performance counters (PerfCtrn)
and corresponding event-select registers (PerfEvtSeln).
Virtualizing fewer than four counters can lead to guest instability as
software expects four counters to be available. Rather than bleed AMD
details into the common code, just define a const unsigned int and
provide a convenient location to document why Intel and AMD have different
mins (in particular, AMD's lack of any way to enumerate less than four
counters to the guest).
Keep the minimum number of counters at Intel at one, even though old P6
and Core Solo/Duo processor effectively require a minimum of two counters.
KVM can, and more importantly has up until this point, supported a vPMU so
long as the CPU has at least one counter. Perf's support for P6/Core CPUs
does require two counters, but perf will happily chug along with a single
counter when running on a modern CPU.
Cc: Jim Mattson <jmattson@google.com>
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Like Xu <likexu@tencent.com>
[sean: set Intel min to '1', not '2']
Link: https://lore.kernel.org/r/20230603011058.1038821-8-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add an explicit !enable_pmu check as relying on kvm_pmu_cap to be
zeroed isn't obvious. Although when !enable_pmu, KVM will have
zero-padded kvm_pmu_cap to do subsequent CPUID leaf assignments.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Like Xu <likexu@tencent.com>
Link: https://lore.kernel.org/r/20230603011058.1038821-7-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Move the Intel PMU implementation of pmc_is_enabled() to common x86 code
as pmc_is_globally_enabled(), and drop AMD's implementation. AMD PMU
currently supports only v1, and thus not PERF_GLOBAL_CONTROL, thus the
semantics for AMD are unchanged. And when support for AMD PMU v2 comes
along, the common behavior will also Just Work.
Signed-off-by: Like Xu <likexu@tencent.com>
Co-developed-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20230603011058.1038821-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Move the handling of GLOBAL_CTRL, GLOBAL_STATUS, and GLOBAL_OVF_CTRL,
a.k.a. GLOBAL_STATUS_RESET, from Intel PMU code to generic x86 PMU code.
AMD PerfMonV2 defines three registers that have the same semantics as
Intel's variants, just with different names and indices. Conveniently,
since KVM virtualizes GLOBAL_CTRL on Intel only for PMU v2 and above, and
AMD's version shows up in v2, KVM can use common code for the existence
check as well.
Signed-off-by: Like Xu <likexu@tencent.com>
Co-developed-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20230603011058.1038821-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reject userspace writes to MSR_CORE_PERF_GLOBAL_STATUS that attempt to set
reserved bits. Allowing userspace to stuff reserved bits doesn't harm KVM
itself, but it's architecturally wrong and the guest can't clear the
unsupported bits, e.g. makes the guest's PMI handler very confused.
Signed-off-by: Like Xu <likexu@tencent.com>
[sean: rewrite changelog to avoid use of #GP, rebase on name change]
Link: https://lore.kernel.org/r/20230603011058.1038821-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Move reprogram_counters() out of Intel specific PMU code and into pmu.h so
that it can be used to implement AMD PMU v2 support.
No functional change intended.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Like Xu <likexu@tencent.com>
[sean: rewrite changelog]
Link: https://lore.kernel.org/r/20230603011058.1038821-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Rename global_ovf_ctrl_mask to global_status_mask to avoid confusion now
that Intel has renamed GLOBAL_OVF_CTRL to GLOBAL_STATUS_RESET in PMU v4.
GLOBAL_OVF_CTRL and GLOBAL_STATUS_RESET are the same MSR index, i.e. are
just different names for the same thing, but the SDM provides different
entries in the IA-32 Architectural MSRs table, which gets really confusing
when looking at PMU v4 definitions since it *looks* like GLOBAL_STATUS has
bits that don't exist in GLOBAL_OVF_CTRL, but in reality the bits are
simply defined in the GLOBAL_STATUS_RESET entry.
No functional change intended.
Cc: Like Xu <like.xu.linux@gmail.com>
Link: https://lore.kernel.org/r/20230603011058.1038821-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
As test_bit() returns bool, explicitly converting result to bool is
unnecessary. Get rid of '!!'.
No functional change intended.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Michal Luczaj <mhal@rbox.co>
Link: https://lore.kernel.org/r/20230605200158.118109-1-mhal@rbox.co
Signed-off-by: Sean Christopherson <seanjc@google.com>
Replace an #ifdef on CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS with a
cpu_feature_enabled() check on X86_FEATURE_PKU. The macro magic of
DISABLED_MASK_BIT_SET() means that cpu_feature_enabled() provides the
same end result (no code generated) when PKU is disabled by Kconfig.
No functional change intended.
Cc: Jon Kohler <jon@nutanix.com>
Reviewed-by: Jon Kohler <jon@nutanix.com>
Link: https://lore.kernel.org/r/20230602010550.785722-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Request an APIC-access page reload when the backing page is migrated (or
unmapped) if and only if vendor code actually plugs the backing pfn into
structures that reside outside of KVM's MMU. This avoids kicking all
vCPUs in the (hopefully infrequent) scenario where the backing page is
migrated/invalidated.
Unlike VMX's APICv, SVM's AVIC doesn't plug the backing pfn directly into
the VMCB and so doesn't need a hook to invalidate an out-of-MMU "mapping".
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Link: https://lore.kernel.org/r/20230602011518.787006-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Now that KVM honors past and in-progress mmu_notifier invalidations when
reloading the APIC-access page, use KVM's "standard" invalidation hooks
to trigger a reload and delete the one-off usage of invalidate_range().
Aside from eliminating one-off code in KVM, dropping KVM's use of
invalidate_range() will allow common mmu_notifier to redefine the API to
be more strictly focused on invalidating secondary TLBs that share the
primary MMU's page tables.
Suggested-by: Jason Gunthorpe <jgg@nvidia.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Reviewed-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Link: https://lore.kernel.org/r/20230602011518.787006-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Re-request an APIC-access page reload if there is a relevant mmu_notifier
invalidation in-progress when KVM retrieves the backing pfn, i.e. stall
vCPUs until the backing pfn for the APIC-access page is "officially"
stable. Relying on the primary MMU to not make changes after invoking
->invalidate_range() works, e.g. any additional changes to a PRESENT PTE
would also trigger an ->invalidate_range(), but using ->invalidate_range()
to fudge around KVM not honoring past and in-progress invalidations is a
bit hacky.
Honoring invalidations will allow using KVM's standard mmu_notifier hooks
to detect APIC-access page reloads, which will in turn allow removing
KVM's implementation of ->invalidate_range() (the APIC-access page case is
a true one-off).
Opportunistically add a comment to explain why doing nothing if a memslot
isn't found is functionally correct.
Suggested-by: Jason Gunthorpe <jgg@nvidia.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Reviewed-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Link: https://lore.kernel.org/r/20230602011518.787006-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Let's print available ASID ranges for SEV/SEV-ES guests.
This information can be useful for system administrator
to debug if SEV/SEV-ES fails to enable.
There are a few reasons.
SEV:
- NPT is disabled (module parameter)
- CPU lacks some features (sev, decodeassists)
- Maximum SEV ASID is 0
SEV-ES:
- mmio_caching is disabled (module parameter)
- CPU lacks sev_es feature
- Minimum SEV ASID value is 1 (can be adjusted in BIOS/UEFI)
Cc: Sean Christopherson <seanjc@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Stéphane Graber <stgraber@ubuntu.com>
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Alexander Mikhalitsyn <aleksandr.mikhalitsyn@canonical.com>
Link: https://lore.kernel.org/r/20230522161249.800829-3-aleksandr.mikhalitsyn@canonical.com
[sean: print '0' for min SEV-ES ASID if there are no available ASIDs]
Signed-off-by: Sean Christopherson <seanjc@google.com>
There is no VMENTER_L1D_FLUSH_NESTED_VM. It should be
ARCH_CAP_SKIP_VMENTRY_L1DFLUSH.
Signed-off-by: Chao Gao <chao.gao@intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20230524061634.54141-3-chao.gao@intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Currently hv_read_tsc_page_tsc() (ab)uses the (valid) time value of
U64_MAX as an error return. This breaks the clean wrap-around of the
clock.
Modify the function signature to return a boolean state and provide
another u64 pointer to store the actual time on success. This obviates
the need to steal one time value and restores the full counter width.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Michael Kelley <mikelley@microsoft.com> # Hyper-V
Link: https://lore.kernel.org/r/20230519102715.775630881@infradead.org
Now that we have raw_atomic*_<op>() definitions, there's no need to use
arch_atomic*_<op>() definitions outside of the low-level atomic
definitions.
Move treewide users of arch_atomic*_<op>() over to the equivalent
raw_atomic*_<op>().
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20230605070124.3741859-19-mark.rutland@arm.com
Bail from kvm_recalculate_phys_map() and disable the optimized map if the
target vCPU's x2APIC ID is out-of-bounds, i.e. if the vCPU was added
and/or enabled its local APIC after the map was allocated. This fixes an
out-of-bounds access bug in the !x2apic_format path where KVM would write
beyond the end of phys_map.
Check the x2APIC ID regardless of whether or not x2APIC is enabled,
as KVM's hardcodes x2APIC ID to be the vCPU ID, i.e. it can't change, and
the map allocation in kvm_recalculate_apic_map() doesn't check for x2APIC
being enabled, i.e. the check won't get false postivies.
Note, this also affects the x2apic_format path, which previously just
ignored the "x2apic_id > new->max_apic_id" case. That too is arguably a
bug fix, as ignoring the vCPU meant that KVM would not send interrupts to
the vCPU until the next map recalculation. In practice, that "bug" is
likely benign as a newly present vCPU/APIC would immediately trigger a
recalc. But, there's no functional downside to disabling the map, and
a future patch will gracefully handle the -E2BIG case by retrying instead
of simply disabling the optimized map.
Opportunistically add a sanity check on the xAPIC ID size, along with a
comment explaining why the xAPIC ID is guaranteed to be "good".
Reported-by: Michal Luczaj <mhal@rbox.co>
Fixes: 5b84b02917 ("KVM: x86: Honor architectural behavior for aliased 8-bit APIC IDs")
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20230602233250.1014316-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Move SVM's call to trace_kvm_exit() from the "slow" VM-Exit handler to
svm_vcpu_run() so that KVM traces fastpath VM-Exits that re-enter the
guest without bouncing through the slow path. This bug is benign in the
current code base as KVM doesn't currently support any such exits on SVM.
Fixes: a9ab13ff6e ("KVM: X86: Improve latency for single target IPI fastpath")
Link: https://lore.kernel.org/r/20230602011920.787844-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Increment vcpu->stat.exits when handling a fastpath VM-Exit without
going through any part of the "slow" path. Not bumping the exits stat
can result in wildly misleading exit counts, e.g. if the primary reason
the guest is exiting is to program the TSC deadline timer.
Fixes: 404d5d7bff ("KVM: X86: Introduce more exit_fastpath_completion enum values")
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20230602011920.787844-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
While testing Hyper-V enabled Windows Server 2019 guests on Zen4 hardware
I noticed that with vCPU count large enough (> 16) they sometimes froze at
boot.
With vCPU count of 64 they never booted successfully - suggesting some kind
of a race condition.
Since adding "vnmi=0" module parameter made these guests boot successfully
it was clear that the problem is most likely (v)NMI-related.
Running kvm-unit-tests quickly showed failing NMI-related tests cases, like
"multiple nmi" and "pending nmi" from apic-split, x2apic and xapic tests
and the NMI parts of eventinj test.
The issue was that once one NMI was being serviced no other NMI was allowed
to be set pending (NMI limit = 0), which was traced to
svm_is_vnmi_pending() wrongly testing for the "NMI blocked" flag rather
than for the "NMI pending" flag.
Fix this by testing for the right flag in svm_is_vnmi_pending().
Once this is done, the NMI-related kvm-unit-tests pass successfully and
the Windows guest no longer freezes at boot.
Fixes: fa4c027a79 ("KVM: x86: Add support for SVM's Virtual NMI")
Signed-off-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/be4ca192eb0c1e69a210db3009ca984e6a54ae69.1684495380.git.maciej.szmigiero@oracle.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Factor in the address space (non-SMM vs. SMM) of the target shadow page
when recovering potential NX huge pages, otherwise KVM will retrieve the
wrong memslot when zapping shadow pages that were created for SMM. The
bug most visibly manifests as a WARN on the memslot being non-NULL, but
the worst case scenario is that KVM could unaccount the shadow page
without ensuring KVM won't install a huge page, i.e. if the non-SMM slot
is being dirty logged, but the SMM slot is not.
------------[ cut here ]------------
WARNING: CPU: 1 PID: 3911 at arch/x86/kvm/mmu/mmu.c:7015
kvm_nx_huge_page_recovery_worker+0x38c/0x3d0 [kvm]
CPU: 1 PID: 3911 Comm: kvm-nx-lpage-re
RIP: 0010:kvm_nx_huge_page_recovery_worker+0x38c/0x3d0 [kvm]
RSP: 0018:ffff99b284f0be68 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffff99b284edd000 RCX: 0000000000000000
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
RBP: ffff9271397024e0 R08: 0000000000000000 R09: ffff927139702450
R10: 0000000000000000 R11: 0000000000000001 R12: ffff99b284f0be98
R13: 0000000000000000 R14: ffff9270991fcd80 R15: 0000000000000003
FS: 0000000000000000(0000) GS:ffff927f9f640000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f0aacad3ae0 CR3: 000000088fc2c005 CR4: 00000000003726e0
Call Trace:
<TASK>
__pfx_kvm_nx_huge_page_recovery_worker+0x10/0x10 [kvm]
kvm_vm_worker_thread+0x106/0x1c0 [kvm]
kthread+0xd9/0x100
ret_from_fork+0x2c/0x50
</TASK>
---[ end trace 0000000000000000 ]---
This bug was exposed by commit edbdb43fc9 ("KVM: x86: Preserve TDP MMU
roots until they are explicitly invalidated"), which allowed KVM to retain
SMM TDP MMU roots effectively indefinitely. Before commit edbdb43fc9,
KVM would zap all SMM TDP MMU roots and thus all SMM TDP MMU shadow pages
once all vCPUs exited SMM, which made the window where this bug (recovering
an SMM NX huge page) could be encountered quite tiny. To hit the bug, the
NX recovery thread would have to run while at least one vCPU was in SMM.
Most VMs typically only use SMM during boot, and so the problematic shadow
pages were gone by the time the NX recovery thread ran.
Now that KVM preserves TDP MMU roots until they are explicitly invalidated
(e.g. by a memslot deletion), the window to trigger the bug is effectively
never closed because most VMMs don't delete memslots after boot (except
for a handful of special scenarios).
Fixes: eb29860570 ("KVM: x86/mmu: Do not recover dirty-tracked NX Huge Pages")
Reported-by: Fabio Coatti <fabio.coatti@gmail.com>
Closes: https://lore.kernel.org/all/CADpTngX9LESCdHVu_2mQkNGena_Ng2CphWNwsRGSMxzDsTjU2A@mail.gmail.com
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20230602010137.784664-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Per Intel's SDM, unsupported ENCLS leafs result in a #GP, not a #UD.
SGX1 is a special snowflake as the SGX1 flag is used by the CPU as a
"soft" disable, e.g. if software disables machine check reporting, i.e.
having SGX but not SGX1 is effectively "SGX completely unsupported" and
and thus #UDs.
Fixes: 9798adbc04 ("KVM: VMX: Frame in ENCLS handler for SGX virtualization")
Cc: Binbin Wu <binbin.wu@linux.intel.com>
Cc: Kai Huang <kai.huang@intel.com>
Tested-by: Kai Huang <kai.huang@intel.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230405234556.696927-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Inject a #GP when emulating/forwarding a valid ENCLS leaf if the vCPU has
paging disabled, e.g. if KVM is intercepting ECREATE to enforce additional
restrictions. The pseudocode in the SDM lists all #GP triggers, including
CR0.PG=0, as being checked after the ENLCS-exiting checks, i.e. the
VM-Exit will occur before the CPU performs the CR0.PG check.
Fixes: 70210c044b ("KVM: VMX: Add SGX ENCLS[ECREATE] handler to enforce CPUID restrictions")
Cc: Binbin Wu <binbin.wu@linux.intel.com>
Cc: Kai Huang <kai.huang@intel.com>
Tested-by: Kai Huang <kai.huang@intel.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230405234556.696927-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Update cpuid->nent if and only if kvm_vcpu_ioctl_get_cpuid2() succeeds.
The sole caller copies @cpuid to userspace only on success, i.e. the
existing code effectively does nothing.
Arguably, KVM should report the number of entries when returning -E2BIG so
that userspace doesn't have to guess the size, but all other similar KVM
ioctls() don't report the size either, i.e. userspace is conditioned to
guess.
Suggested-by: Takahiro Itazuri <itazur@amazon.com>
Link: https://lore.kernel.org/all/20230410141820.57328-1-itazur@amazon.com
Link: https://lore.kernel.org/r/20230526210340.2799158-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
After commit 2de154f541 ("KVM: x86/pmu: Provide "error" semantics
for unsupported-but-known PMU MSRs"), the guest_cpuid_has(DS) check
is not necessary any more since if the guest supports X86_FEATURE_DS,
it never returns 1. And if the guest does not support this feature,
the set_msr handler will get false from kvm_pmu_is_valid_msr() before
reaching this point. Therefore, the check will not be true in all cases
and can be safely removed, which also simplifies the code and improves
its readability.
Signed-off-by: Jinrong Liang <cloudliang@tencent.com>
Link: https://lore.kernel.org/r/20230411130338.8592-1-cloudliang@tencent.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
According to the hardware manual, when the Poll command is issued, the
byte returned by the I/O read is 1 in Bit 7 when there is an interrupt,
and the highest priority binary code in Bits 2:0. The current pic
simulation code is not implemented strictly according to the above
expression.
Fix the implementation of pic_poll_read(), set Bit 7 when there is an
interrupt.
Signed-off-by: Jinliang Zheng <alexjlzheng@tencent.com>
Link: https://lore.kernel.org/r/20230419021924.1342184-1-alexjlzheng@tencent.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Move the common check-and-set handling of PAT MSR writes out of vendor
code and into kvm_set_msr_common(). This aligns writes with reads, which
are already handled in common code, i.e. makes the handling of reads and
writes symmetrical in common code.
Alternatively, the common handling in kvm_get_msr_common() could be moved
to vendor code, but duplicating code is generally undesirable (even though
the duplicatated code is trivial in this case), and guest writes to PAT
should be rare, i.e. the overhead of the extra function call is a
non-issue in practice.
Suggested-by: Kai Huang <kai.huang@intel.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230511233351.635053-9-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Make kvm_mtrr_valid() local to mtrr.c now that it's not used to check the
validity of a PAT MSR value.
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230511233351.635053-8-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Drop handling of MSR_IA32_CR_PAT from mtrr.c now that SVM and VMX handle
writes without bouncing through kvm_set_msr_common(). PAT isn't truly an
MTRR even though it affects memory types, and more importantly KVM enables
hardware virtualization of guest PAT (by NOT setting "ignore guest PAT")
when a guest has non-coherent DMA, i.e. KVM doesn't need to zap SPTEs when
the guest PAT changes.
The read path is and always has been trivial, i.e. burying it in the MTRR
code does more harm than good.
WARN and continue for the PAT case in kvm_set_msr_common(), as that code
is _currently_ reached if and only if KVM is buggy. Defer cleaning up the
lack of symmetry between the read and write paths to a future patch.
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230511233351.635053-7-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Use the MTRR macros to identify the ranges of possible MTRR MSRs instead
of bounding the ranges with a mismash of open coded values and unrelated
MSR indices. Carving out the gap for the machine check MSRs in particular
is confusing, as it's easy to incorrectly think the case statement handles
MCE MSRs instead of skipping them.
Drop the range-based funneling of MSRs between the end of the MCE MSRs
and MTRR_DEF_TYPE, i.e. 0x2A0-0x2FF, and instead handle MTTR_DEF_TYPE as
the one-off case that it is.
Extract PAT (0x277) as well in anticipation of dropping PAT "handling"
from the MTRR code.
Keep the range-based handling for the variable+fixed MTRRs even though
capturing unknown MSRs 0x214-0x24F is arguably "wrong". There is a gap in
the fixed MTRRs, 0x260-0x267, i.e. the MTRR code needs to filter out
unknown MSRs anyways, and using a single range generates marginally better
code for the big switch statement.
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230511233351.635053-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add a helper to dedup the logic for retrieving a variable MTRR range
structure given a variable MTRR MSR index.
No functional change intended.
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230511233351.635053-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add a helper to query whether a variable MTRR MSR is a base versus as mask
MSR. Replace the unnecessarily complex math with a simple check on bit 0;
base MSRs are even, mask MSRs are odd.
Link: https://lore.kernel.org/r/20230511233351.635053-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Use kvm_pat_valid() directly instead of bouncing through kvm_mtrr_valid().
The PAT is not an MTRR, and kvm_mtrr_valid() just redirects to
kvm_pat_valid(), i.e. is exempt from KVM's "zap SPTEs" logic that's
needed to honor guest MTRRs when the VM has a passthrough device with
non-coherent DMA (KVM does NOT set "ignore guest PAT" in this case, and so
enables hardware virtualization of the guest's PAT, i.e. doesn't need to
manually emulate the PAT memtype).
Signed-off-by: Ke Guo <guoke@uniontech.com>
[sean: massage changelog]
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230511233351.635053-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Open code setting "vcpu->arch.pat" in vmx_set_msr() instead of bouncing
through kvm_set_msr_common() to get to the same code in kvm_mtrr_set_msr().
This aligns VMX with SVM, avoids hiding a very simple operation behind a
relatively complicated function call (finding the PAT MSR case in
kvm_set_msr_common() is non-trivial), and most importantly, makes it clear
that not unwinding the VMCS updates if kvm_set_msr_common() isn't a bug
(because kvm_set_msr_common() can never fail for PAT).
Opportunistically set vcpu->arch.pat before updating the VMCS info so that
a future patch can move the common bits (back) into kvm_set_msr_common()
without a functional change.
Note, MSR_IA32_CR_PAT is 0x277, and is very subtly handled by
case 0x200 ... MSR_IA32_MC0_CTL2 - 1:
in kvm_set_msr_common().
Cc: Kai Huang <kai.huang@intel.com>
Signed-off-by: Wenyao Hai <haiwenyao@uniontech.com>
[sean: massage changelog, hoist setting vcpu->arch.pat up]
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230511233351.635053-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Use kvm_is_cr4_bit_set() to read guest CR4.UMIP when sanity checking that
a descriptor table VM-Exit occurs if and only if guest.CR4.UMIP=1. UMIP
can't be guest-owned, i.e. using kvm_read_cr4_bits() to decache guest-
owned bits isn't strictly necessary, but eliminating raw reads of
vcpu->arch.cr4 is desirable as it makes it easy to visually audit KVM for
correctness.
Opportunistically add a compile-time assertion that UMIP isn't guest-owned
as letting the guest own UMIP isn't compatible with emulation (or any CR4
bit that is emulated by KVM).
Opportunistically change the WARN_ON() to a ONCE variant. When the WARN
fires, it fires _a lot_, and spamming the kernel logs ends up doing more
harm than whatever led to KVM's unnecessary emulation.
Reported-by: Robert Hoo <robert.hu@intel.com>
Link: https://lore.kernel.org/all/20230310125718.1442088-4-robert.hu@intel.com
Link: https://lore.kernel.org/r/20230413231914.1482782-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Advertise UMIP as emulated if and only if the host doesn't natively
support UMIP, otherwise vmx_umip_emulated() is misleading when the host
_does_ support UMIP. Of the four users of vmx_umip_emulated(), two
already check for native support, and the logic in vmx_set_cpu_caps() is
relevant if and only if UMIP isn't natively supported as UMIP is set in
KVM's caps by kvm_set_cpu_caps() when UMIP is present in hardware.
That leaves KVM's stuffing of X86_CR4_UMIP into the default cr4_fixed1
value enumerated for nested VMX. In that case, checking for (lack of)
host support is actually a bug fix of sorts, as enumerating UMIP support
based solely on descriptor table exiting works only because KVM doesn't
sanity check MSR_IA32_VMX_CR4_FIXED1. E.g. if a (very theoretical) host
supported UMIP in hardware but didn't allow UMIP+VMX, KVM would advertise
UMIP but not actually emulate UMIP. Of course, KVM would explode long
before it could run a nested VM on said theoretical CPU, as KVM doesn't
modify host CR4 when enabling VMX, i.e. would load an "illegal" value into
vmcs.HOST_CR4.
Reported-by: Robert Hoo <robert.hu@intel.com>
Link: https://lore.kernel.org/all/20230310125718.1442088-2-robert.hu@intel.com
Link: https://lore.kernel.org/r/20230413231914.1482782-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Move the comment about keeping the hosts CR4.MCE loaded in hardware above
the code that actually modifies the hardware CR4 value.
No functional change indented.
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20230410125017.1305238-3-xiaoyao.li@intel.com
[sean: elaborate in changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Directly use vcpu->arch.cr4 is not recommended since it gets stale value
if the cr4 is not available.
Use kvm_read_cr4() instead to ensure correct value.
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20230410125017.1305238-2-xiaoyao.li@intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add assertion to track that "mmu == vcpu->arch.mmu" is always true in the
context of __kvm_mmu_invalidate_addr(). for_each_shadow_entry_using_root()
and kvm_sync_spte() operate on vcpu->arch.mmu, but the only reason that
doesn't cause explosions is because handle_invept() frees roots instead of
doing a manual invalidation. As of now, there are no major roadblocks
to switching INVEPT emulation over to use kvm_mmu_invalidate_addr().
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Like Xu <likexu@tencent.com>
Link: https://lore.kernel.org/r/20230523032947.60041-1-likexu@tencent.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Commit aee98a6838 ("KVM: x86/mmu: Use try_cmpxchg64 in
tdp_mmu_set_spte_atomic") removed the comment that iter->old_spte is
updated when different logical CPU modifies the page table entry.
Although this is what try_cmpxchg does implicitly, it won't hurt
if this fact is explicitly mentioned in a restored comment.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: David Matlack <dmatlack@google.com>
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Link: https://lore.kernel.org/r/20230425113932.3148-1-ubizjak@gmail.com
[sean: extend comment above try_cmpxchg64()]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add MSR_IA32_TSX_CTRL into msrs_to_save[] to explicitly tell userspace to
save/restore the register value during migration. Missing this may cause
userspace that relies on KVM ioctl(KVM_GET_MSR_INDEX_LIST) fail to port the
value to the target VM.
In addition, there is no need to add MSR_IA32_TSX_CTRL when
ARCH_CAP_TSX_CTRL_MSR is not supported in kvm_get_arch_capabilities(). So
add the checking in kvm_probe_msr_to_save().
Fixes: c11f83e062 ("KVM: vmx: implement MSR_IA32_TSX_CTRL disable RTM functionality")
Reported-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Mingwei Zhang <mizhang@google.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Message-Id: <20230509032348.1153070-1-mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop KVM's manipulation of guest's CPUID.0x12.1 ECX and EDX, i.e. the
allowed XFRM of SGX enclaves, now that KVM explicitly checks the guest's
allowed XCR0 when emulating ECREATE.
Note, this could theoretically break a setup where userspace advertises
a "bad" XFRM and relies on KVM to provide a sane CPUID model, but QEMU
is the only known user of KVM SGX, and QEMU explicitly sets the SGX CPUID
XFRM subleaf based on the guest's XCR0.
Reviewed-by: Kai Huang <kai.huang@intel.com>
Tested-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230503160838.3412617-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Explicitly check the vCPU's supported XCR0 when determining whether or not
the XFRM for ECREATE is valid. Checking CPUID works because KVM updates
guest CPUID.0x12.1 to restrict the leaf to a subset of the guest's allowed
XCR0, but that is rather subtle and KVM should not modify guest CPUID
except for modeling true runtime behavior (allowed XFRM is most definitely
not "runtime" behavior).
Reviewed-by: Kai Huang <kai.huang@intel.com>
Tested-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230503160838.3412617-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
result in the root being freed even though the root is completely valid and
can be reused as-is (with a TLB flush).
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmRP/3ESHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5J7kQAIg6v9UzM/qp7/d6C4laZLTWC2YlGhiI
1ZrfLU3/gQPYnnxv8GzLZ1CaXDhku2IIdyl2AQe8sUEmold45EapAW32rw2127j1
z4jW8x8dKYXUd1HGe823O0Rm+Ls6bGcXmHj8LaBCBIV6loBINeNfLXNllsO/yIcR
PmagzEqkNsMW3mvutdqb9mFP8p+mBzQu5qHlMEUb4WOXBmL06teHjR3qo7hi9Kl0
nM0ZvuvCLGvufoI0RESiq7mXPKBz3yvhFbkjrUgBKQ/rij2PMO8iyULsLfGY1iAI
m60aBfQPLJIH0NgvNHXkQOW59COYaY+I8udZqZZNr2uVb5A8J+/rQFSG/BP1Ccsw
mtJgZRD5WdplcAjYlZCcEgBmwjznjSOFGYaOrAp02dJlbPw2/Tjaj1GHMvMjEIME
KLvWTsN6xB9K0OhiXFvo1N4FCJbfi+PJPK0qVG7UttPnziCwYqAeIhGk4Kj6SHsX
P23HnDO8U/rCwRG2tuyZmbllpUXsX0q08wyGlp1UcKAbtD8PPGPyz8+I7YakKI97
RddIAh2qh5hwHON1xe35VSQ8X0OPOK1UnkiGTuBDdfldzxXK7OCfKKVQ6hsnpV6e
0a6nQc2Ni7/f5jThPo2cTaKz389ZpVE2j1DaTT8QXq5JuBcTzrNI6HImcJwPFTWP
+kUxewuRaaog
=pzJT
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-mmu-6.4-2' of https://github.com/kvm-x86/linux into HEAD
Fix a long-standing flaw in x86's TDP MMU where unloading roots on a vCPU can
result in the root being freed even though the root is completely valid and
can be reused as-is (with a TLB flush).
* More phys_to_virt conversions
* Improvement of AP management for VSIE (nested virtualization)
ARM64:
* Numerous fixes for the pathological lock inversion issue that
plagued KVM/arm64 since... forever.
* New framework allowing SMCCC-compliant hypercalls to be forwarded
to userspace, hopefully paving the way for some more features
being moved to VMMs rather than be implemented in the kernel.
* Large rework of the timer code to allow a VM-wide offset to be
applied to both virtual and physical counters as well as a
per-timer, per-vcpu offset that complements the global one.
This last part allows the NV timer code to be implemented on
top.
* A small set of fixes to make sure that we don't change anything
affecting the EL1&0 translation regime just after having having
taken an exception to EL2 until we have executed a DSB. This
ensures that speculative walks started in EL1&0 have completed.
* The usual selftest fixes and improvements.
KVM x86 changes for 6.4:
* Optimize CR0.WP toggling by avoiding an MMU reload when TDP is enabled,
and by giving the guest control of CR0.WP when EPT is enabled on VMX
(VMX-only because SVM doesn't support per-bit controls)
* Add CR0/CR4 helpers to query single bits, and clean up related code
where KVM was interpreting kvm_read_cr4_bits()'s "unsigned long" return
as a bool
* Move AMD_PSFD to cpufeatures.h and purge KVM's definition
* Avoid unnecessary writes+flushes when the guest is only adding new PTEs
* Overhaul .sync_page() and .invlpg() to utilize .sync_page()'s optimizations
when emulating invalidations
* Clean up the range-based flushing APIs
* Revamp the TDP MMU's reaping of Accessed/Dirty bits to clear a single
A/D bit using a LOCK AND instead of XCHG, and skip all of the "handle
changed SPTE" overhead associated with writing the entire entry
* Track the number of "tail" entries in a pte_list_desc to avoid having
to walk (potentially) all descriptors during insertion and deletion,
which gets quite expensive if the guest is spamming fork()
* Disallow virtualizing legacy LBRs if architectural LBRs are available,
the two are mutually exclusive in hardware
* Disallow writes to immutable feature MSRs (notably PERF_CAPABILITIES)
after KVM_RUN, similar to CPUID features
* Overhaul the vmx_pmu_caps selftest to better validate PERF_CAPABILITIES
* Apply PMU filters to emulated events and add test coverage to the
pmu_event_filter selftest
x86 AMD:
* Add support for virtual NMIs
* Fixes for edge cases related to virtual interrupts
x86 Intel:
* Don't advertise XTILE_CFG in KVM_GET_SUPPORTED_CPUID if XTILE_DATA is
not being reported due to userspace not opting in via prctl()
* Fix a bug in emulation of ENCLS in compatibility mode
* Allow emulation of NOP and PAUSE for L2
* AMX selftests improvements
* Misc cleanups
MIPS:
* Constify MIPS's internal callbacks (a leftover from the hardware enabling
rework that landed in 6.3)
Generic:
* Drop unnecessary casts from "void *" throughout kvm_main.c
* Tweak the layout of "struct kvm_mmu_memory_cache" to shrink the struct
size by 8 bytes on 64-bit kernels by utilizing a padding hole
Documentation:
* Fix goof introduced by the conversion to rST
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmRNExkUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroNyjwf+MkzDael9y9AsOZoqhEZ5OsfQYJ32
Im5ZVYsPRU2K5TuoWql6meIihgclCj1iIU32qYHa2F1WYt2rZ72rJp+HoY8b+TaI
WvF0pvNtqQyg3iEKUBKPA4xQ6mj7RpQBw86qqiCHmlfNt0zxluEGEPxH8xrWcfhC
huDQ+NUOdU7fmJ3rqGitCvkUbCuZNkw3aNPR8dhU8RAWrwRzP2hBOmdxIeo81WWY
XMEpJSijbGpXL9CvM0Jz9nOuMJwZwCCBGxg1vSQq0xTfLySNMxzvWZC2GFaBjucb
j0UOQ7yE0drIZDVhd3sdNslubXXU6FcSEzacGQb9aigMUon3Tem9SHi7Kw==
=S2Hq
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"s390:
- More phys_to_virt conversions
- Improvement of AP management for VSIE (nested virtualization)
ARM64:
- Numerous fixes for the pathological lock inversion issue that
plagued KVM/arm64 since... forever.
- New framework allowing SMCCC-compliant hypercalls to be forwarded
to userspace, hopefully paving the way for some more features being
moved to VMMs rather than be implemented in the kernel.
- Large rework of the timer code to allow a VM-wide offset to be
applied to both virtual and physical counters as well as a
per-timer, per-vcpu offset that complements the global one. This
last part allows the NV timer code to be implemented on top.
- A small set of fixes to make sure that we don't change anything
affecting the EL1&0 translation regime just after having having
taken an exception to EL2 until we have executed a DSB. This
ensures that speculative walks started in EL1&0 have completed.
- The usual selftest fixes and improvements.
x86:
- Optimize CR0.WP toggling by avoiding an MMU reload when TDP is
enabled, and by giving the guest control of CR0.WP when EPT is
enabled on VMX (VMX-only because SVM doesn't support per-bit
controls)
- Add CR0/CR4 helpers to query single bits, and clean up related code
where KVM was interpreting kvm_read_cr4_bits()'s "unsigned long"
return as a bool
- Move AMD_PSFD to cpufeatures.h and purge KVM's definition
- Avoid unnecessary writes+flushes when the guest is only adding new
PTEs
- Overhaul .sync_page() and .invlpg() to utilize .sync_page()'s
optimizations when emulating invalidations
- Clean up the range-based flushing APIs
- Revamp the TDP MMU's reaping of Accessed/Dirty bits to clear a
single A/D bit using a LOCK AND instead of XCHG, and skip all of
the "handle changed SPTE" overhead associated with writing the
entire entry
- Track the number of "tail" entries in a pte_list_desc to avoid
having to walk (potentially) all descriptors during insertion and
deletion, which gets quite expensive if the guest is spamming
fork()
- Disallow virtualizing legacy LBRs if architectural LBRs are
available, the two are mutually exclusive in hardware
- Disallow writes to immutable feature MSRs (notably
PERF_CAPABILITIES) after KVM_RUN, similar to CPUID features
- Overhaul the vmx_pmu_caps selftest to better validate
PERF_CAPABILITIES
- Apply PMU filters to emulated events and add test coverage to the
pmu_event_filter selftest
- AMD SVM:
- Add support for virtual NMIs
- Fixes for edge cases related to virtual interrupts
- Intel AMX:
- Don't advertise XTILE_CFG in KVM_GET_SUPPORTED_CPUID if
XTILE_DATA is not being reported due to userspace not opting in
via prctl()
- Fix a bug in emulation of ENCLS in compatibility mode
- Allow emulation of NOP and PAUSE for L2
- AMX selftests improvements
- Misc cleanups
MIPS:
- Constify MIPS's internal callbacks (a leftover from the hardware
enabling rework that landed in 6.3)
Generic:
- Drop unnecessary casts from "void *" throughout kvm_main.c
- Tweak the layout of "struct kvm_mmu_memory_cache" to shrink the
struct size by 8 bytes on 64-bit kernels by utilizing a padding
hole
Documentation:
- Fix goof introduced by the conversion to rST"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (211 commits)
KVM: s390: pci: fix virtual-physical confusion on module unload/load
KVM: s390: vsie: clarifications on setting the APCB
KVM: s390: interrupt: fix virtual-physical confusion for next alert GISA
KVM: arm64: Have kvm_psci_vcpu_on() use WRITE_ONCE() to update mp_state
KVM: arm64: Acquire mp_state_lock in kvm_arch_vcpu_ioctl_vcpu_init()
KVM: selftests: Test the PMU event "Instructions retired"
KVM: selftests: Copy full counter values from guest in PMU event filter test
KVM: selftests: Use error codes to signal errors in PMU event filter test
KVM: selftests: Print detailed info in PMU event filter asserts
KVM: selftests: Add helpers for PMC asserts in PMU event filter test
KVM: selftests: Add a common helper for the PMU event filter guest code
KVM: selftests: Fix spelling mistake "perrmited" -> "permitted"
KVM: arm64: vhe: Drop extra isb() on guest exit
KVM: arm64: vhe: Synchronise with page table walker on MMU update
KVM: arm64: pkvm: Document the side effects of kvm_flush_dcache_to_poc()
KVM: arm64: nvhe: Synchronise with page table walker on TLBI
KVM: arm64: Handle 32bit CNTPCTSS traps
KVM: arm64: nvhe: Synchronise with page table walker on vcpu run
KVM: arm64: vgic: Don't acquire its_lock before config_lock
KVM: selftests: Add test to verify KVM's supported XCR0
...
- Remove diagnostics and adjust config for CSD lock diagnostics
- Add a generic IPI-sending tracepoint, as currently there's no easy
way to instrument IPI origins: it's arch dependent and for some
major architectures it's not even consistently available.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmRK438RHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1jJ5Q/5AZ0HGpyqwdFK8GmGznyu5qjP5HwV9pPq
gZQScqSy4tZEeza4TFMi83CoXSg9uJ7GlYJqqQMKm78LGEPomnZtXXC7oWvTA9M5
M/jAvzytmvZloSCXV6kK7jzSejMHhag97J/BjTYhZYQpJ9T+hNC87XO6J6COsKr9
lPIYqkFrIkQNr6B0U11AQfFejRYP1ics2fnbnZL86G/zZAc6x8EveM3KgSer2iHl
KbrO+xcYyGY8Ef9P2F72HhEGFfM3WslpT1yzqR3sm4Y+fuMG0oW3qOQuMJx0ZhxT
AloterY0uo6gJwI0P9k/K4klWgz81Tf/zLb0eBAtY2uJV9Fo3YhPHuZC7jGPGAy3
JusW2yNYqc8erHVEMAKDUsl/1KN4TE2uKlkZy98wno+KOoMufK5MA2e2kPPqXvUi
Jk9RvFolnWUsexaPmCftti0OCv3YFiviVAJ/t0pchfmvvJA2da0VC9hzmEXpLJVF
25nBTV/1uAOrWvOpCyo3ElrC2CkQVkFmK5rXMDdvf6ib0Nid4vFcCkCSLVfu+ePB
11mi7QYro+CcnOug1K+yKogUDmsZgV/u1kUwgQzTIpZ05Kkb49gUiXw9L2RGcBJh
yoDoiI66KPR7PWQ2qBdQoXug4zfEEtWG0O9HNLB0FFRC3hu7I+HHyiUkBWs9jasK
PA5+V7HcQRk=
=Wp7f
-----END PGP SIGNATURE-----
Merge tag 'smp-core-2023-04-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull SMP cross-CPU function-call updates from Ingo Molnar:
- Remove diagnostics and adjust config for CSD lock diagnostics
- Add a generic IPI-sending tracepoint, as currently there's no easy
way to instrument IPI origins: it's arch dependent and for some major
architectures it's not even consistently available.
* tag 'smp-core-2023-04-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
trace,smp: Trace all smp_function_call*() invocations
trace: Add trace_ipi_send_cpu()
sched, smp: Trace smp callback causing an IPI
smp: reword smp call IPI comment
treewide: Trace IPIs sent via smp_send_reschedule()
irq_work: Trace self-IPIs sent via arch_irq_work_raise()
smp: Trace IPIs sent via arch_send_call_function_ipi_mask()
sched, smp: Trace IPIs sent via send_call_function_single_ipi()
trace: Add trace_ipi_send_cpumask()
kernel/smp: Make csdlock_debug= resettable
locking/csd_lock: Remove per-CPU data indirection from CSD lock debugging
locking/csd_lock: Remove added data from CSD lock debugging
locking/csd_lock: Add Kconfig option for csd_debug default
Preserve TDP MMU roots until they are explicitly invalidated by gifting
the TDP MMU itself a reference to a root when it is allocated. Keeping a
reference in the TDP MMU fixes a flaw where the TDP MMU exhibits terrible
performance, and can potentially even soft-hang a vCPU, if a vCPU
frequently unloads its roots, e.g. when KVM is emulating SMI+RSM.
When KVM emulates something that invalidates _all_ TLB entries, e.g. SMI
and RSM, KVM unloads all of the vCPUs roots (KVM keeps a small per-vCPU
cache of previous roots). Unloading roots is a simple way to ensure KVM
flushes and synchronizes all roots for the vCPU, as KVM flushes and syncs
when allocating a "new" root (from the vCPU's perspective).
In the shadow MMU, KVM keeps track of all shadow pages, roots included, in
a per-VM hash table. Unloading a shadow MMU root just wipes it from the
per-vCPU cache; the root is still tracked in the per-VM hash table. When
KVM loads a "new" root for the vCPU, KVM will find the old, unloaded root
in the per-VM hash table.
Unlike the shadow MMU, the TDP MMU doesn't track "inactive" roots in a
per-VM structure, where "active" in this case means a root is either
in-use or cached as a previous root by at least one vCPU. When a TDP MMU
root becomes inactive, i.e. the last vCPU reference to the root is put,
KVM immediately frees the root (asterisk on "immediately" as the actual
freeing may be done by a worker, but for all intents and purposes the root
is gone).
The TDP MMU behavior is especially problematic for 1-vCPU setups, as
unloading all roots effectively frees all roots. The issue is mitigated
to some degree in multi-vCPU setups as a different vCPU usually holds a
reference to an unloaded root and thus keeps the root alive, allowing the
vCPU to reuse its old root after unloading (with a flush+sync).
The TDP MMU flaw has been known for some time, as until very recently,
KVM's handling of CR0.WP also triggered unloading of all roots. The
CR0.WP toggling scenario was eventually addressed by not unloading roots
when _only_ CR0.WP is toggled, but such an approach doesn't Just Work
for emulating SMM as KVM must emulate a full TLB flush on entry and exit
to/from SMM. Given that the shadow MMU plays nice with unloading roots
at will, teaching the TDP MMU to do the same is far less complex than
modifying KVM to track which roots need to be flushed before reuse.
Note, preserving all possible TDP MMU roots is not a concern with respect
to memory consumption. Now that the role for direct MMUs doesn't include
information about the guest, e.g. CR0.PG, CR0.WP, CR4.SMEP, etc., there
are _at most_ six possible roots (where "guest_mode" here means L2):
1. 4-level !SMM !guest_mode
2. 4-level SMM !guest_mode
3. 5-level !SMM !guest_mode
4. 5-level SMM !guest_mode
5. 4-level !SMM guest_mode
6. 5-level !SMM guest_mode
And because each vCPU can track 4 valid roots, a VM can already have all
6 root combinations live at any given time. Not to mention that, in
practice, no sane VMM will advertise different guest.MAXPHYADDR values
across vCPUs, i.e. KVM won't ever use both 4-level and 5-level roots for
a single VM. Furthermore, the vast majority of modern hypervisors will
utilize EPT/NPT when available, thus the guest_mode=%true cases are also
unlikely to be utilized.
Reported-by: Jeremi Piotrowski <jpiotrowski@linux.microsoft.com>
Link: https://lore.kernel.org/all/959c5bce-beb5-b463-7158-33fc4a4f910c@linux.microsoft.com
Link: https://lkml.kernel.org/r/20220209170020.1775368-1-pbonzini%40redhat.com
Link: https://lore.kernel.org/all/20230322013731.102955-1-minipli@grsecurity.net
Link: https://lore.kernel.org/all/000000000000a0bc2b05f9dd7fab@google.com
Link: https://lore.kernel.org/all/000000000000eca0b905fa0f7756@google.com
Cc: Ben Gardon <bgardon@google.com>
Cc: David Matlack <dmatlack@google.com>
Cc: stable@vger.kernel.org
Tested-by: Jeremi Piotrowski <jpiotrowski@linux.microsoft.com>
Link: https://lore.kernel.org/r/20230426220323.3079789-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
- Fix a bug in emulation of ENCLS in compatibility mode
- Allow emulation of NOP and PAUSE for L2
- Misc cleanups
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmRGuYgSHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5kQUP/jV5Q8ZeVCzlf6ZCeAHnWX/Hahsv6i6H
ooNL8W6p8FI5xlYOWh8J02JpmLUrNWURCPqvr0oYLm4r1UlJ/OGjyuKB8d7SZ7z/
RaLN7tppMod527J+Qm3ptHQbTKAGHe4dEoiX46cuvTEcCxrsVykYltvfD1rNuSQA
VcaNJkkcHv/KuItUHLAuntCAiFvbD1gYNLfUAC7e0htGjLRLxg3+ugHEiFcJ3c6y
z4ged1toYLGD962jWSIgokFbivfUNZT25WlZjBliMa/E8+ckTAzmc67UJYvhNBOM
HyAHs0hp+XtSgfcCgNkI+WDrFXXgxa+QQcMFvRWacS3Hx6tgJoQ51FRMevmumn0O
zBPk3+BOquhknqb5NbmwRZoLExffo+86fFlDcgszzvV4Y/vBfp/XTsuJZCnaiMDZ
wdmJoF4mhRDtgt7yORltpjHqp3yRmLqMNUb3sxXLRA9D+edo9mr8SXujOnukmXoH
o/ZpEollTPUQ7od/uDIvDyosWvb65IbYwsKGdOanfBacVrxy5OPM38mPF7u9AyzD
Gn81H/OhwhpTSBAX7kLMGeK/QGkyIBEUM1levdmcAk0nKYQzHzsI7tMYfqwXuQSu
qKAcF+qtpOReWmb4KaJZ7c0HQIBQHOKQ6exXxnQJuLjnAHS0674NxMDkT5a1EGRL
Q9OPSTSYBMDC
=FOnk
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-vmx-6.4' of https://github.com/kvm-x86/linux into HEAD
KVM VMX changes for 6.4:
- Fix a bug in emulation of ENCLS in compatibility mode
- Allow emulation of NOP and PAUSE for L2
- Misc cleanups
- Add support for virtual NMIs
- Fixes for edge cases related to virtual interrupts
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmRGuLISHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5NOMQAKy1Od54yzQsIKyAZZJVfOEm7N5VLQgz
+jLilXgHd8dm/g0g/KVCDPFoZ/ut2Tf5Dn4WwyoPWOpgGsOyTwdDIJabf9rustkA
goZFcfUXz+P1nangTidrj6CFYgGmVS13Uu//H19X4bSzT+YifVevJ4QkRVElj9Mh
VBUeXppC/gMGBZ9tKEzl+AU3FwJ58cB88q4boovBFYiDdciv/fF86t02Lc+dCIX1
6hTcOAnjAcp3eJY0wPQJUAEScufDKcMf6tSrsB/yWXv9KB9ANXFNXry8/+lW/Ux/
oOUmUVdRXrrsRUqtYk9+KuMoIN7CL1SBV0RCm5ApqwqwnTVdHS+odHU3c2s7E/uU
QXIW4vwSne3W9Y4YApDgFjwDwmzY85dvblWlWBnR2LW2I3Or48xK+S8LpWG+lj6l
EDf7RzeqAipJ1qUq6qDYJlyg/YsyYlcoErtra423skg38HBWxQXdqkVIz3SYdKjA
0OcBQIRI28KzJDn1gU6P3Q0Wr/cKsx9EGy6+jWBhf4Yf3eHP7+3WUTrg/Up0q8ny
0j/+cbe5kBb6k2T9y2X6jm6TVbPV5FyMBOF/UxmqEbRLmxXjBe8tMnFwV+qN871I
gk5HTSIkX39GU9kNA3h5HoWjdNeRfhazKR9ZVrELVc1zjHnGLthXBPZbIAUsPPMx
vgM6jf8NwLXZ
=9xNX
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-svm-6.4' of https://github.com/kvm-x86/linux into HEAD
KVM SVM changes for 6.4:
- Add support for virtual NMIs
- Fixes for edge cases related to virtual interrupts
- Don't advertisze XTILE_CFG in KVM_GET_SUPPORTED_CPUID if XTILE_DATA is
not being reported due to userspace not opting in via prctl()
- Overhaul the AMX selftests to improve coverage and cleanup the test
- Misc cleanups
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmRGt50SHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5MskP/2PhSrdgHxCwfpqpdVe/q5OWwFuhn3wG
f5QKMpEBg4wJFeIE3eGJEaDlg776nWtWDNgUmqdjoZ8vyyadkPX9CV2Y2Hq0M7Tw
d0gKPjQrz2BavyDYoPNfs4pfshs4EvDTswBkhdAt8KTZhGZosJOywQIp61V3ePqr
1rDP6C4+CmwTRAK0f7egslyJ2pZXiUcvhITvzx8XhIAQh6nEK4gUZ/l3hLmg38kD
Af23kiLnP8lHUUx4BQtRAnTw0SZXJ8DcKtoFkzEH8mdj4g6EqXpxy48zuyZcqWVi
4XIFr+WECPsV5gdqWN9rMDqIG2ib+2heKDmcdUptcVuvr1ktv0reQybmgVck4CKX
fTAdu86/LBaQmIHwNHaNFPwdUby4QQZ8ajafPC62oc+B6N1lQg8bbCwnvO6KGlGl
FaQTnzaZq7ft4tfQRXOMu1AbLZLK7dIqJHHhxR3MkBkd4MAcZ1bVKkvlJLqsOKNw
TEsreXErY7AsegZK73Rn4IN/CJGBof5bZ2NIchmiN+0UfMsd9zGn66Als6oRNh4E
tRUhFONPIEmydy9UB50qe6b98ElB6R++opZbvkVW2hy8lMy3iJrCvUbOs1nx3wbn
cxvIuTfw/dAFf70S03/zudf7lYHs2wKV1rrIAebyTd4NnvWdVB8OaSHgZswMgVjb
UzzQfnQ+u9so
=BY10
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-selftests-6.4' of https://github.com/kvm-x86/linux into HEAD
KVM selftests, and an AMX/XCR0 bugfix, for 6.4:
- Don't advertise XTILE_CFG in KVM_GET_SUPPORTED_CPUID if XTILE_DATA is
not being reported due to userspace not opting in via prctl()
- Overhaul the AMX selftests to improve coverage and cleanup the test
- Misc cleanups
- Disallow virtualizing legacy LBRs if architectural LBRs are available,
the two are mutually exclusive in hardware
- Disallow writes to immutable feature MSRs (notably PERF_CAPABILITIES)
after KVM_RUN, and overhaul the vmx_pmu_caps selftest to better
validate PERF_CAPABILITIES
- Apply PMU filters to emulated events and add test coverage to the
pmu_event_filter selftest
- Misc cleanups and fixes
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmRGtd4SHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5Z9kP/i3WZ40hevvQvB/5cEpxxmxYDwCYnnjM
hiQgK5jT4SrMTmVjLgkNdI2PogQoS4CX+GC7lcA9bvse84hjuPvgOflb2B+p2UQi
Ytbr9g/tfKNIpnKIk9mcPcSObN9vm2Kgt7n28rtPrHWj89eQzgc66eijqdpKBLxA
c3crVR8krwYAQK0tmzHq1+H6hB369YbHAHyTTRRI/bNWnqKblnvUbt0NL2aBusa9
rNMaOdRtinLpy2dmuX/b3japRB8QTnlf7zpPIF4cBEhbYXy5woClZpf1D2fCA6Er
XFbEoYawMVd9UeJYbW4z5yErLT83eYoGp4U0eFXWp6fvh8nZlgCGvBKE9g4mmqwj
aSLaTR5eVN2qlw6jXVeg3unCo8Eyl36AwYwve2L6sFmBvZvNV5iz2eQ7rrOe4oE3
dnTUaLQ8I2SVg04MbYmCq5W+frTL/I7kqNpbccL1Z3R5WO4y5gz63mug6NfLIvhR
t45TAIaifxBfcXQsBZM3v2KUK/xQrD3AbJmFKh54L2CKqiGaNWsMLX+6NZ7LZWgf
8rEqsVkkQDgF7z8eXai4TR26nYfSX6g9gDqtOH73L87aJ7PJk5cRoDWQ1sWs1e/l
4HA/L0Bo/3pnKAa0ZWxJOixmzqY49gNQf3dj8gt3jk3y2ijbAivshiSpPBmIxn0u
QLeOf/LGvipl
=m18F
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-pmu-6.4' of https://github.com/kvm-x86/linux into HEAD
KVM x86 PMU changes for 6.4:
- Disallow virtualizing legacy LBRs if architectural LBRs are available,
the two are mutually exclusive in hardware
- Disallow writes to immutable feature MSRs (notably PERF_CAPABILITIES)
after KVM_RUN, and overhaul the vmx_pmu_caps selftest to better
validate PERF_CAPABILITIES
- Apply PMU filters to emulated events and add test coverage to the
pmu_event_filter selftest
- Misc cleanups and fixes
- Tweak FNAME(sync_spte) to avoid unnecessary writes+flushes when the
guest is only adding new PTEs
- Overhaul .sync_page() and .invlpg() to share the .sync_page()
implementation, i.e. utilize .sync_page()'s optimizations when emulating
invalidations
- Clean up the range-based flushing APIs
- Revamp the TDP MMU's reaping of Accessed/Dirty bits to clear a single
A/D bit using a LOCK AND instead of XCHG, and skip all of the "handle
changed SPTE" overhead associated with writing the entire entry
- Track the number of "tail" entries in a pte_list_desc to avoid having
to walk (potentially) all descriptors during insertion and deletion,
which gets quite expensive if the guest is spamming fork()
- Misc cleanups
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmRGsvASHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5XnoP/0D8rQmrA0xPHK81zYS1E71tsR/itO/T
CQMSB4PhEqvcRUaWOuhLBRUW+noWzaOkjkMYK2uoPTdtme7v9+Ar7EtfrWYHrBWD
IxHCAymo3a5dQPUc3Nb77u6HjRAOokPSqSz5jE4qAjlniW09feruro2Phi+BTme4
JjxTc/7Oh0Fu26+mK7mJHiw3fV1x3YznnnRPrKGrVQes5L6ozNICkUZ6nvuJUVMk
lTNHNQbG8PqJZnfWG7VIKRn1vdfXwEfnvyucGVEqFfPLkOXqJHyqMVmIOtvsH7C5
l8j36+lBZwtFh2jk2EsXOTb6sS7l1MSvyHLlbaJaqqffP+77Hf1n0fROur0k9Yse
jJJejJWxZ/SvjMt/bOA+4ybGafZH0lt20DsDWnat5GSQ1EVT1CInN2p8OY8pdecR
QOJBqnNUOykC7/Pyad+IxTxwrOSNCYh+5aYG8AdGquZvNUEwjffVJqrmxDvklY8Z
DTYwGKgNY7NsP/dV0WYYElsAuHiKwiDZL15KftiQebO1fPcZDpTzDo83/8UMfGxh
yegngcNX9Qi7lWtLkUMy8A99UvejM0QrS/Zt8v1zjlQ8PjreZLLBWsNpe0ufIMRk
31ZAC2OS4Koi3wZ54tA7Z1Kh11meGhAk5Ti7sNke0rDqB9UMmj6UKw121cSRvW7q
W6O4U3YeGpKx
=zb4u
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-mmu-6.4' of https://github.com/kvm-x86/linux into HEAD
KVM x86 MMU changes for 6.4:
- Tweak FNAME(sync_spte) to avoid unnecessary writes+flushes when the
guest is only adding new PTEs
- Overhaul .sync_page() and .invlpg() to share the .sync_page()
implementation, i.e. utilize .sync_page()'s optimizations when emulating
invalidations
- Clean up the range-based flushing APIs
- Revamp the TDP MMU's reaping of Accessed/Dirty bits to clear a single
A/D bit using a LOCK AND instead of XCHG, and skip all of the "handle
changed SPTE" overhead associated with writing the entire entry
- Track the number of "tail" entries in a pte_list_desc to avoid having
to walk (potentially) all descriptors during insertion and deletion,
which gets quite expensive if the guest is spamming fork()
- Misc cleanups
- Optimize CR0.WP toggling by avoiding an MMU reload when TDP is enabled,
and by giving the guest control of CR0.WP when EPT is enabled on VMX
(VMX-only because SVM doesn't support per-bit controls)
- Add CR0/CR4 helpers to query single bits, and clean up related code
where KVM was interpreting kvm_read_cr4_bits()'s "unsigned long" return
as a bool
- Move AMD_PSFD to cpufeatures.h and purge KVM's definition
- Misc cleanups
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmRGr2sSHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5b80P/2ayACpc7iV2DysXkrxOdn1JmMu9BeHd
3oMb7bydf79LMNAO+NKPqVjo74yZ/Lh8UyufJGgF3HnSCdumx5Iklyx6/2PUHu/I
8xT1H7VlIGQMcNy0G4hMus34ZcafJl4y+BXgMEqEErLcy3n598UvFGJ+C0/4lnux
2Gk7dLASHq/mVVKReBM/kD4RhCVy5Venz6zkk9KbwDLHAmfejVK5bSqDYAnO1WtV
IBWetxlVyMZCnfPV2drhzgNVwiHvYvCaMBW+cUk5cH8Z2r0VZVDERmc1D4/rd04t
xs9lMk6CdNU7REQfblA0xMgeO/dNAXq5Fs4FfcM8OTBZU32KKafPhgW1uj2Sv+9l
nbb1XxZ7C0EcBhKVbUD6zRl05vjHwxlRgoi0yWUqERthFKNXHV42JJgaNn4fxDYS
tOBKBNkM9z6tCGN2aZv6GwhsEyY2y7oLdbZUGK9/FM3mF1VBASms1BTwokJXTxCD
pkOpAGeN5hxOlC4/wl6iHJTrz9oaJUj5E5kMD1oK6oQJgnnfqH0kVTG/ui/OUtJg
8N3amYO/d7InFvuE0f9R6TqZVhTN2QefHmNJaEldsmYp1NMI8Ep8JIhQKRA2LZVE
CGRxyrPj5CESerAItAI6tshEre5W8aScEzhpmd6HgHmahhQJsCEj+3q/J8FPWLG/
iQ3GnggrklfU
=qj7D
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-misc-6.4' of https://github.com/kvm-x86/linux into HEAD
KVM x86 changes for 6.4:
- Optimize CR0.WP toggling by avoiding an MMU reload when TDP is enabled,
and by giving the guest control of CR0.WP when EPT is enabled on VMX
(VMX-only because SVM doesn't support per-bit controls)
- Add CR0/CR4 helpers to query single bits, and clean up related code
where KVM was interpreting kvm_read_cr4_bits()'s "unsigned long" return
as a bool
- Move AMD_PSFD to cpufeatures.h and purge KVM's definition
- Misc cleanups
- Numerous fixes for the pathological lock inversion issue that
plagued KVM/arm64 since... forever.
- New framework allowing SMCCC-compliant hypercalls to be forwarded
to userspace, hopefully paving the way for some more features
being moved to VMMs rather than be implemented in the kernel.
- Large rework of the timer code to allow a VM-wide offset to be
applied to both virtual and physical counters as well as a
per-timer, per-vcpu offset that complements the global one.
This last part allows the NV timer code to be implemented on
top.
- A small set of fixes to make sure that we don't change anything
affecting the EL1&0 translation regime just after having having
taken an exception to EL2 until we have executed a DSB. This
ensures that speculative walks started in EL1&0 have completed.
- The usual selftest fixes and improvements.
-----BEGIN PGP SIGNATURE-----
iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmRCZIwPHG1hekBrZXJu
ZWwub3JnAAoJECPQ0LrRPXpDoZ8P/ioXAdDbAE4hTuyD2YdKJ3IGWN3pg52Z7xc2
rBXXFrbK9+n9FEc3AVdHoGsRPDP0Ynl+apj+aB0Klr/Fl0KKqac+W0ARX9rn1mI1
HjeygFPaGnXjMUp0BjeSLS+g3b0gebELJ6R1QEe1/MIPb8Se7M1y3ZpMWdhe0PPL
vyzw3LZq2OAlLgWKZhAfhh03qdr2kqJxypYs6nMrcexfn8dXT78dsYKW1nXmqKcE
61Gg23MDPUoexYpUhm+ym5t8hltoI1di8faPmxEpaFzpSDyAg8V5vo6LiW9jn3cf
RX0Sikk1laiRAhVbbIFCKC148vFyKxum3scpKyb91Qc+sK1kmIcxvEqlc6SfG9je
+5ndZwAfXtW6SMSOyX8y5fXbee7M0sx3n3le9BNgwXfmLWg/GHXJ544dJgVIlf/e
0Z+8QnP1IUDfARR/b2FlW7A7XLzNHQzO379ekcAdUptbGwlS9CrW6SJ83QR7K6fB
bh0aSSELKsD7pX8wnNyNACvmz2zL12ITlDKdZWUr8MSxyTjgVy7s0BDsQT3sbrA1
1sH++RvUWfC2k7tVT3vjZFzUDlPw3bnZmo5YMWRTMbXEdr1V5rDw5F5IXit13KeT
8bk0hnJgnLmyoX2A17v5dkFMIKD7p13tqDRdfFcn0ru63HIKxgkS3ITkDmsAQELK
DHT7RBE0
=Bhta
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 updates for 6.4
- Numerous fixes for the pathological lock inversion issue that
plagued KVM/arm64 since... forever.
- New framework allowing SMCCC-compliant hypercalls to be forwarded
to userspace, hopefully paving the way for some more features
being moved to VMMs rather than be implemented in the kernel.
- Large rework of the timer code to allow a VM-wide offset to be
applied to both virtual and physical counters as well as a
per-timer, per-vcpu offset that complements the global one.
This last part allows the NV timer code to be implemented on
top.
- A small set of fixes to make sure that we don't change anything
affecting the EL1&0 translation regime just after having having
taken an exception to EL2 until we have executed a DSB. This
ensures that speculative walks started in EL1&0 have completed.
- The usual selftest fixes and improvements.
API:
- Total usage stats now include all that returned error (instead of some).
- Remove maximum hash statesize limit.
- Add cloning support for hmac and unkeyed hashes.
- Demote BUG_ON in crypto_unregister_alg to a WARN_ON.
Algorithms:
- Use RIP-relative addressing on x86 to prepare for PIE build.
- Add accelerated AES/GCM stitched implementation on powerpc P10.
- Add some test vectors for cmac(camellia).
- Remove failure case where jent is unavailable outside of FIPS mode in drbg.
- Add permanent and intermittent health error checks in jitter RNG.
Drivers:
- Add support for 402xx devices in qat.
- Add support for HiSTB TRNG.
- Fix hash concurrency issues in stm32.
- Add OP-TEE firmware support in caam.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEn51F/lCuNhUwmDeSxycdCkmxi6cFAmRGCjcACgkQxycdCkmx
i6d6JA//ZmwgEqAKA8qWpHnNKZylTLqFhLxnKZwr4Hhp1KzManh/T9pepXiD2zAY
D92wU60v0hfGAazeUWQRmrIZxcjyd3b3Tr7WiFuNoZbkPsuXWZAoz8iHgMq69dqb
DXZhKJnlmVlcr+qTSk9MP8HODL5kU6Ug2pk+r8hL/WsBI+JGfZEXKcJhhMqYLYls
nl+NN4fkE5tgcTh2lp/9dQsQRylhESZuqb8L2wItQmripSbhPGwYf24I7B7xcGrn
o7X4XG//cQO6zQErgnOJOosIgJEEynW27CN4ZiHB8WhRAk0YLXydQBs6EjZgNA8H
EvZC/bIx2YOt8ngG99q4kRg4OgKp4c7UnV6l1pxuJWbIyXrFh4djxHdq9pTYr3UB
P3pVEX38Wu7U5Tfgy3y1QqZzsvrPjmnI3NQ8QBrcFzNRDan5K6nH4kQyk9Cv7LQm
GlE1JOThU5U2G33ZWKCluJUjVUCRceMWQYla1X5R4uWMCwSqRMpmx8Ib9QvbYlWe
iUI+RatLnlIobx+lgaC8mtij9dQddFjk6YwFYhQcD3Bl30DhTeIlbnOUY9YOTXps
H6V9X2inVUjyZr1uJ4a7rPdCUuzQxR6HWPyp6fXMlbLrEhL8e6c4/QbEoTubRQeS
WTtoIFt4ezd2SG6hI6dTCscgFc5EAyEMDD5GtQmJeyozu0Gqtpo=
=ITkW
-----END PGP SIGNATURE-----
Merge tag 'v6.4-p1' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
Pull crypto updates from Herbert Xu:
"API:
- Total usage stats now include all that returned errors (instead of
just some)
- Remove maximum hash statesize limit
- Add cloning support for hmac and unkeyed hashes
- Demote BUG_ON in crypto_unregister_alg to a WARN_ON
Algorithms:
- Use RIP-relative addressing on x86 to prepare for PIE build
- Add accelerated AES/GCM stitched implementation on powerpc P10
- Add some test vectors for cmac(camellia)
- Remove failure case where jent is unavailable outside of FIPS mode
in drbg
- Add permanent and intermittent health error checks in jitter RNG
Drivers:
- Add support for 402xx devices in qat
- Add support for HiSTB TRNG
- Fix hash concurrency issues in stm32
- Add OP-TEE firmware support in caam"
* tag 'v6.4-p1' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (139 commits)
i2c: designware: Add doorbell support for Mendocino
i2c: designware: Use PCI PSP driver for communication
powerpc: Move Power10 feature PPC_MODULE_FEATURE_P10
crypto: p10-aes-gcm - Remove POWER10_CPU dependency
crypto: testmgr - Add some test vectors for cmac(camellia)
crypto: cryptd - Add support for cloning hashes
crypto: cryptd - Convert hash to use modern init_tfm/exit_tfm
crypto: hmac - Add support for cloning
crypto: hash - Add crypto_clone_ahash/shash
crypto: api - Add crypto_clone_tfm
crypto: api - Add crypto_tfm_get
crypto: x86/sha - Use local .L symbols for code
crypto: x86/crc32 - Use local .L symbols for code
crypto: x86/aesni - Use local .L symbols for code
crypto: x86/sha256 - Use RIP-relative addressing
crypto: x86/ghash - Use RIP-relative addressing
crypto: x86/des3 - Use RIP-relative addressing
crypto: x86/crc32c - Use RIP-relative addressing
crypto: x86/cast6 - Use RIP-relative addressing
crypto: x86/cast5 - Use RIP-relative addressing
...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQQqUNBr3gm4hGXdBJlZ7Krx/gZQ6wUCZEYCQAAKCRBZ7Krx/gZQ
64FdAQDZ2hTDyZEWPt486dWYPYpiKyaGFXSXDGo7wgP0fiwxXQEA/mROKb6JqYw6
27mZ9A7qluT8r3AfTTQ0D+Yse/dr4AM=
=GA9W
-----END PGP SIGNATURE-----
Merge tag 'pull-fd' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull vfs fget updates from Al Viro:
"fget() to fdget() conversions"
* tag 'pull-fd' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
fuse_dev_ioctl(): switch to fdget()
cgroup_get_from_fd(): switch to fdget_raw()
bpf: switch to fdget_raw()
build_mount_idmapped(): switch to fdget()
kill the last remaining user of proc_ns_fget()
SVM-SEV: convert the rest of fget() uses to fdget() in there
convert sgx_set_attribute() to fdget()/fdput()
convert setns(2) to fdget()/fdput()
o MAINTAINERS files additions and changes.
o Fix hotplug warning in nohz code.
o Tick dependency changes by Zqiang.
o Lazy-RCU shrinker fixes by Zqiang.
o rcu-tasks stall reporting improvements by Neeraj.
o Initial changes for renaming of k[v]free_rcu() to its new k[v]free_rcu_mightsleep()
name for robustness.
o Documentation Updates:
o Significant changes to srcu_struct size.
o Deadlock detection for srcu_read_lock() vs synchronize_srcu() from Boqun.
o rcutorture and rcu-related tool, which are targeted for v6.4 from Boqun's tree.
o Other misc changes.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEcoCIrlGe4gjE06JJqA4nf2o45hAFAmQuBnIACgkQqA4nf2o4
5hACVRAAoXu7/gfh5Pjw9O4E4pCdPJKsZZVYrcrVGrq6NAxRn6M1SgurAdC5grj2
96x0waoGaiO82V0H5iJMcKdAVu67x9R8WaQ1JoxN75Efn8h9W4TguB87TV1gk0xS
eZ18b/CyEaM5mNb80DFFF4FLohy5737p/kNTMqXQdUyR1BsDl16iRMgjiBiFhNUx
yPo8Y2kC2U2OTbldZgaE7s9bQO3xxEcifx93sGWsAex/gx54FYNisiwSlCOSgOE+
XkYo/OKk8Xvr82tLVX8XQVEPCMJ+rxea8T5zSs8/alvsPq7gA8wW3y6fsoa3vUU/
+Gd+W+Q/OsONIDtp8rQAY1qsD0ScDpaR8052RSH0zTa7pj8HsQgE5PjZ+cJW0SEi
cKN+Oe8+ETqKald+xZ6PDf58O212VLrru3RpQWrOQcJ7fmKmfT4REK0RcbLgg4qT
CBgOo6eg+ub4pxq2y11LZJBNTv1/S7xAEzFE0kArew64KB2gyVud0VJRZVAJnEfe
93QQVDFrwK2bhgWQZ6J6IbTvGeQW0L93IibuaU6jhZPR283VtUIIvM7vrOylN7Fq
4jsae0T7YGYfKUhgTpm7rCnm8A/D3Ni8MY0sKYYgDSyKmZUsnpI5wpx1xke4lwwV
ErrY46RCFa+k8wscc6iWfB4cGXyyFHyu+wtyg0KpFn5JAzcfz4A=
=Rgbj
-----END PGP SIGNATURE-----
Merge tag 'rcu.6.4.april5.2023.3' of git://git.kernel.org/pub/scm/linux/kernel/git/jfern/linux
Pull RCU updates from Joel Fernandes:
- Updates and additions to MAINTAINERS files, with Boqun being added to
the RCU entry and Zqiang being added as an RCU reviewer.
I have also transitioned from reviewer to maintainer; however, Paul
will be taking over sending RCU pull-requests for the next merge
window.
- Resolution of hotplug warning in nohz code, achieved by fixing
cpu_is_hotpluggable() through interaction with the nohz subsystem.
Tick dependency modifications by Zqiang, focusing on fixing usage of
the TICK_DEP_BIT_RCU_EXP bitmask.
- Avoid needless calls to the rcu-lazy shrinker for CONFIG_RCU_LAZY=n
kernels, fixed by Zqiang.
- Improvements to rcu-tasks stall reporting by Neeraj.
- Initial renaming of k[v]free_rcu() to k[v]free_rcu_mightsleep() for
increased robustness, affecting several components like mac802154,
drbd, vmw_vmci, tracing, and more.
A report by Eric Dumazet showed that the API could be unknowingly
used in an atomic context, so we'd rather make sure they know what
they're asking for by being explicit:
https://lore.kernel.org/all/20221202052847.2623997-1-edumazet@google.com/
- Documentation updates, including corrections to spelling,
clarifications in comments, and improvements to the srcu_size_state
comments.
- Better srcu_struct cache locality for readers, by adjusting the size
of srcu_struct in support of SRCU usage by Christoph Hellwig.
- Teach lockdep to detect deadlocks between srcu_read_lock() vs
synchronize_srcu() contributed by Boqun.
Previously lockdep could not detect such deadlocks, now it can.
- Integration of rcutorture and rcu-related tools, targeted for v6.4
from Boqun's tree, featuring new SRCU deadlock scenarios, test_nmis
module parameter, and more
- Miscellaneous changes, various code cleanups and comment improvements
* tag 'rcu.6.4.april5.2023.3' of git://git.kernel.org/pub/scm/linux/kernel/git/jfern/linux: (71 commits)
checkpatch: Error out if deprecated RCU API used
mac802154: Rename kfree_rcu() to kvfree_rcu_mightsleep()
rcuscale: Rename kfree_rcu() to kfree_rcu_mightsleep()
ext4/super: Rename kfree_rcu() to kfree_rcu_mightsleep()
net/mlx5: Rename kfree_rcu() to kfree_rcu_mightsleep()
net/sysctl: Rename kvfree_rcu() to kvfree_rcu_mightsleep()
lib/test_vmalloc.c: Rename kvfree_rcu() to kvfree_rcu_mightsleep()
tracing: Rename kvfree_rcu() to kvfree_rcu_mightsleep()
misc: vmw_vmci: Rename kvfree_rcu() to kvfree_rcu_mightsleep()
drbd: Rename kvfree_rcu() to kvfree_rcu_mightsleep()
rcu: Protect rcu_print_task_exp_stall() ->exp_tasks access
rcu: Avoid stack overflow due to __rcu_irq_enter_check_tick() being kprobe-ed
rcu-tasks: Report stalls during synchronize_srcu() in rcu_tasks_postscan()
rcu: Permit start_poll_synchronize_rcu_expedited() to be invoked early
rcu: Remove never-set needwake assignment from rcu_report_qs_rdp()
rcu: Register rcu-lazy shrinker only for CONFIG_RCU_LAZY=y kernels
rcu: Fix missing TICK_DEP_MASK_RCU_EXP dependency check
rcu: Fix set/clear TICK_DEP_BIT_RCU_EXP bitmask race
rcu/trace: use strscpy() to instead of strncpy()
tick/nohz: Fix cpu_is_hotpluggable() by checking with nohz subsystem
...
Filter out XTILE_CFG from the supported XCR0 reported to userspace if the
current process doesn't have access to XTILE_DATA. Attempting to set
XTILE_CFG in XCR0 will #GP if XTILE_DATA is also not set, and so keeping
XTILE_CFG as supported results in explosions if userspace feeds
KVM_GET_SUPPORTED_CPUID back into KVM and the guest doesn't sanity check
CPUID.
Fixes: 445ecdf79b ("kvm: x86: Exclude unpermitted xfeatures at KVM_GET_SUPPORTED_CPUID")
Reported-by: Aaron Lewis <aaronlewis@google.com>
Reviewed-by: Aaron Lewis <aaronlewis@google.com>
Tested-by: Aaron Lewis <aaronlewis@google.com>
Link: https://lore.kernel.org/r/20230405004520.421768-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add a helper, kvm_get_filtered_xcr0(), to dedup code that needs to account
for XCR0 features that require explicit opt-in on a per-process basis. In
addition to documenting when KVM should/shouldn't consult
xstate_get_guest_group_perm(), the helper will also allow sanitizing the
filtered XCR0 to avoid enumerating architecturally illegal XCR0 values,
e.g. XTILE_CFG without XTILE_DATA.
No functional changes intended.
Signed-off-by: Aaron Lewis <aaronlewis@google.com>
Reviewed-by: Mingwei Zhang <mizhang@google.com>
[sean: rename helper, move to x86.h, massage changelog]
Reviewed-by: Aaron Lewis <aaronlewis@google.com>
Tested-by: Aaron Lewis <aaronlewis@google.com>
Link: https://lore.kernel.org/r/20230405004520.421768-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Extend VMX's nested intercept logic for emulated instructions to handle
"pause" interception, in quotes because KVM's emulator doesn't filter out
NOPs when checking for nested intercepts. Failure to allow emulation of
NOPs results in KVM injecting a #UD into L2 on any NOP that collides with
the emulator's definition of PAUSE, i.e. on all single-byte NOPs.
For PAUSE itself, honor L1's PAUSE-exiting control, but ignore PLE to
avoid unnecessarily injecting a #UD into L2. Per the SDM, the first
execution of PAUSE after VM-Entry is treated as the beginning of a new
loop, i.e. will never trigger a PLE VM-Exit, and so L1 can't expect any
given execution of PAUSE to deterministically exit.
... the processor considers this execution to be the first execution of
PAUSE in a loop. (It also does so for the first execution of PAUSE at
CPL 0 after VM entry.)
All that said, the PLE side of things is currently a moot point, as KVM
doesn't expose PLE to L1.
Note, vmx_check_intercept() is still wildly broken when L1 wants to
intercept an instruction, as KVM injects a #UD instead of synthesizing a
nested VM-Exit. That issue extends far beyond NOP/PAUSE and needs far
more effort to fix, i.e. is a problem for the future.
Fixes: 07721feee4 ("KVM: nVMX: Don't emulate instructions in guest mode")
Cc: Mathias Krause <minipli@grsecurity.net>
Cc: stable@vger.kernel.org
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Link: https://lore.kernel.org/r/20230405002359.418138-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Refresh the MMU's snapshot of the vCPU's CR0.WP prior to checking for
permission faults when emulating a guest memory access and CR0.WP may be
guest owned. If the guest toggles only CR0.WP and triggers emulation of
a supervisor write, e.g. when KVM is emulating UMIP, KVM may consume a
stale CR0.WP, i.e. use stale protection bits metadata.
Note, KVM passes through CR0.WP if and only if EPT is enabled as CR0.WP
is part of the MMU role for legacy shadow paging, and SVM (NPT) doesn't
support per-bit interception controls for CR0. Don't bother checking for
EPT vs. NPT as the "old == new" check will always be true under NPT, i.e.
the only cost is the read of vcpu->arch.cr4 (SVM unconditionally grabs CR0
from the VMCB on VM-Exit).
Reported-by: Mathias Krause <minipli@grsecurity.net>
Link: https://lkml.kernel.org/r/677169b4-051f-fcae-756b-9a3e1bb9f8fe%40grsecurity.net
Fixes: fb509f76ac ("KVM: VMX: Make CR0.WP a guest owned bit")
Tested-by: Mathias Krause <minipli@grsecurity.net>
Link: https://lore.kernel.org/r/20230405002608.418442-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Refactor Hyper-V's range-based TLB flushing API to take a gfn+nr_pages
pair instead of a struct, and bury said struct in Hyper-V specific code.
Passing along two params generates much better code for the common case
where KVM is _not_ running on Hyper-V, as forwarding the flush on to
Hyper-V's hv_flush_remote_tlbs_range() from kvm_flush_remote_tlbs_range()
becomes a tail call.
Cc: David Matlack <dmatlack@google.com>
Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Link: https://lore.kernel.org/r/20230405003133.419177-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Rename the Hyper-V hooks for TLB flushing to match the naming scheme used
by all the other TLB flushing hooks, e.g. in kvm_x86_ops, vendor code,
arch hooks from common code, etc.
Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Link: https://lore.kernel.org/r/20230405003133.419177-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
When counting "Instructions Retired" (0xc0) in a guest, KVM will
occasionally increment the PMU counter regardless of if that event is
being filtered. This is because some PMU events are incremented via
kvm_pmu_trigger_event(), which doesn't know about the event filter. Add
the event filter to kvm_pmu_trigger_event(), so events that are
disallowed do not increment their counters.
Fixes: 9cd803d496 ("KVM: x86: Update vPMCs when retiring instructions")
Signed-off-by: Aaron Lewis <aaronlewis@google.com>
Reviewed-by: Like Xu <likexu@tencent.com>
Link: https://lore.kernel.org/r/20230307141400.1486314-2-aaronlewis@google.com
[sean: prepend "pmc" to the new function]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Fix a "reprogam" => "reprogram" typo in kvm_pmu_request_counter_reprogam().
Fixes: 68fb4757e8 ("KVM: x86/pmu: Defer reprogram_counter() to kvm_pmu_handle_event()")
Signed-off-by: Like Xu <likexu@tencent.com>
Link: https://lore.kernel.org/r/20230310113349.31799-1-likexu@tencent.com
[sean: trim the changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
A valid pmc is always tested before using pmu->reprogram_pmi. Eliminate
this part of the redundancy by setting the counter's bitmask directly,
and in addition, trigger KVM_REQ_PMU only once to save more cpu cycles.
Signed-off-by: Like Xu <likexu@tencent.com>
Link: https://lore.kernel.org/r/20230214050757.9623-4-likexu@tencent.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Invert the flows in intel_pmu_{g,s}et_msr()'s case statements so that
they follow the kernel's preferred style of:
if (<not valid>)
return <error>
<commit change>
return <success>
which is also the style used by every other {g,s}et_msr() helper (except
AMD's PMU variant, which doesn't use a switch statement).
Modify the "set" paths with costly side effects, i.e. that reprogram
counters, to skip only the side effects, i.e. to perform reserved bits
checks even if the value is unchanged. None of the reserved bits checks
are expensive, so there's no strong justification for skipping them, and
guarding only the side effect makes it slightly more obvious what is being
skipped and why.
No functional change intended (assuming no reserved bit bugs).
Link: https://lkml.kernel.org/r/Y%2B6cfen%2FCpO3%2FdLO%40google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
The name of function pmc_is_enabled() is a bit misleading. A PMC can
be disabled either by PERF_CLOBAL_CTRL or by its corresponding EVTSEL.
Append global semantics to its name.
Suggested-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Like Xu <likexu@tencent.com>
Link: https://lore.kernel.org/r/20230214050757.9623-2-likexu@tencent.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Zero out the LBR capabilities during PMU refresh to avoid exposing LBRs
to the guest against userspace's wishes. If userspace modifies the
guest's CPUID model or invokes KVM_CAP_PMU_CAPABILITY to disable vPMU
after an initial KVM_SET_CPUID2, but before the first KVM_RUN, KVM will
retain the previous LBR info due to bailing before refreshing the LBR
descriptor.
Note, this is a very theoretical bug, there is no known use case where a
VMM would deliberately enable the vPMU via KVM_SET_CPUID2, and then later
disable the vPMU.
Link: https://lore.kernel.org/r/20230311004618.920745-9-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Now that KVM disallows changing feature MSRs, i.e. PERF_CAPABILITIES,
after running a vCPU, WARN and bug the VM if the PMU is refreshed after
the vCPU has run.
Note, KVM has disallowed CPUID updates after running a vCPU since commit
feb627e8d6 ("KVM: x86: Forbid KVM_SET_CPUID{,2} after KVM_RUN"), i.e.
PERF_CAPABILITIES was the only remaining way to trigger a PMU refresh
after KVM_RUN.
Cc: Like Xu <like.xu.linux@gmail.com>
Link: https://lore.kernel.org/r/20230311004618.920745-8-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Disallow writes to feature MSRs after KVM_RUN to prevent userspace from
changing the vCPU model after running the vCPU. Similar to guest CPUID,
KVM uses feature MSRs to configure intercepts, determine what operations
are/aren't allowed, etc. Changing the capabilities while the vCPU is
active will at best yield unpredictable guest behavior, and at worst
could be dangerous to KVM.
Allow writing the current value, e.g. so that userspace can blindly set
all MSRs when emulating RESET, and unconditionally allow writes to
MSR_IA32_UCODE_REV so that userspace can emulate patch loads.
Special case the VMX MSRs to keep the generic list small, i.e. so that
KVM can do a linear walk of the generic list without incurring meaningful
overhead.
Cc: Like Xu <like.xu.linux@gmail.com>
Cc: Yu Zhang <yu.c.zhang@linux.intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20230311004618.920745-7-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add VMX MSRs to the runtime list of feature MSRs by iterating over the
range of emulated MSRs instead of manually defining each MSR in the "all"
list. Using the range definition reduces the cost of emulating a new VMX
MSR, e.g. prevents forgetting to add an MSR to the list.
Extracting the VMX MSRs from the "all" list, which is a compile-time
constant, also shrinks the list to the point where the compiler can
heavily optimize code that iterates over the list.
No functional change intended.
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20230311004618.920745-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add macros to track the range of VMX feature MSRs that are emulated by
KVM to reduce the maintenance cost of extending the set of emulated MSRs.
Note, KVM doesn't necessarily emulate all known/consumed VMX MSRs, e.g.
PROCBASED_CTLS3 is consumed by KVM to enable IPI virtualization, but is
not emulated as KVM doesn't emulate/virtualize IPI virtualization for
nested guests.
No functional change intended.
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20230311004618.920745-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add a helper to query if a vCPU has run so that KVM doesn't have to open
code the check on last_vmentry_cpu being set to a magic value.
No functional change intended.
Suggested-by: Xiaoyao Li <xiaoyao.li@intel.com>
Cc: Like Xu <like.xu.linux@gmail.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20230311004618.920745-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Rename kvm_init_msr_list() to kvm_init_msr_lists() to clarify that it
initializes multiple lists: MSRs to save, emulated MSRs, and feature MSRs.
No functional change intended.
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20230311004618.920745-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Rename "r" to "ret" and actually return it from svm_set_msr() to reduce
the probability of repeating the mistake of commit 723d5fb0ff ("kvm:
svm: Add IA32_FLUSH_CMD guest support"), which set "r" thinking that it
would be propagated to the caller.
Alternatively, the declaration of "r" could be moved into the handling of
MSR_TSC_AUX, but that risks variable shadowing in the future. A wrapper
for kvm_set_user_return_msr() would allow eliding a local variable, but
that feels like delaying the inevitable.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230322011440.2195485-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Virtualize FLUSH_L1D so that the guest can use the performant L1D flush
if one of the many mitigations might require a flush in the guest, e.g.
Linux provides an option to flush the L1D when switching mms.
Passthrough MSR_IA32_FLUSH_CMD for write when it's supported in hardware
and exposed to the guest, i.e. always let the guest write it directly if
FLUSH_L1D is fully supported.
Forward writes to hardware in host context on the off chance that KVM
ends up emulating a WRMSR, or in the really unlikely scenario where
userspace wants to force a flush. Restrict these forwarded WRMSRs to
the known command out of an abundance of caution. Passing through the
MSR means the guest can throw any and all values at hardware, but doing
so in host context is arguably a bit more dangerous.
Link: https://lkml.kernel.org/r/CALMp9eTt3xzAEoQ038bJQ9LN0ZOXrSWsN7xnNUD%2B0SS%3DWwF7Pg%40mail.gmail.com
Link: https://lore.kernel.org/all/20230201132905.549148-2-eesposit@redhat.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230322011440.2195485-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Dedup the handling of MSR_IA32_PRED_CMD across VMX and SVM by moving the
logic to kvm_set_msr_common(). Now that the MSR interception toggling is
handled as part of setting guest CPUID, the VMX and SVM paths are
identical.
Opportunistically massage the code to make it a wee bit denser.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-Id: <20230322011440.2195485-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Passthrough MSR_IA32_PRED_CMD based purely on whether or not the MSR is
supported and enabled, i.e. don't wait until the first write. There's no
benefit to deferred passthrough, and the extra logic only adds complexity.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230322011440.2195485-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Passthrough MSR_IA32_PRED_CMD based purely on whether or not the MSR is
supported and enabled, i.e. don't wait until the first write. There's no
benefit to deferred passthrough, and the extra logic only adds complexity.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-Id: <20230322011440.2195485-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Revert the recently added virtualizing of MSR_IA32_FLUSH_CMD, as both
the VMX and SVM are fatally buggy to guests that use MSR_IA32_FLUSH_CMD or
MSR_IA32_PRED_CMD, and because the entire foundation of the logic is
flawed.
The most immediate problem is an inverted check on @cmd that results in
rejecting legal values. SVM doubles down on bugs and drops the error,
i.e. silently breaks all guest mitigations based on the command MSRs.
The next issue is that neither VMX nor SVM was updated to mark
MSR_IA32_FLUSH_CMD as being a possible passthrough MSR,
which isn't hugely problematic, but does break MSR filtering and triggers
a WARN on VMX designed to catch this exact bug.
The foundational issues stem from the MSR_IA32_FLUSH_CMD code reusing
logic from MSR_IA32_PRED_CMD, which in turn was likely copied from KVM's
support for MSR_IA32_SPEC_CTRL. The copy+paste from MSR_IA32_SPEC_CTRL
was misguided as MSR_IA32_PRED_CMD (and MSR_IA32_FLUSH_CMD) is a
write-only MSR, i.e. doesn't need the same "deferred passthrough"
shenanigans as MSR_IA32_SPEC_CTRL.
Revert all MSR_IA32_FLUSH_CMD enabling in one fell swoop so that there is
no point where KVM advertises, but does not support, L1D_FLUSH.
This reverts commits 45cf86f261,
723d5fb0ff, and
a807b78ad0.
Reported-by: Nathan Chancellor <nathan@kernel.org>
Link: https://lkml.kernel.org/r/20230317190432.GA863767%40dev-arch.thelio-3990X
Cc: Emanuele Giuseppe Esposito <eesposit@redhat.com>
Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Cc: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Mathias Krause <minipli@grsecurity.net>
Message-Id: <20230322011440.2195485-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Disallow enabling LBR support if the CPU supports architectural LBRs.
Traditional LBR support is absent on CPU models that have architectural
LBRs, and KVM doesn't yet support arch LBRs, i.e. KVM will pass through
non-existent MSRs if userspace enables LBRs for the guest.
Cc: stable@vger.kernel.org
Cc: Yang Weijiang <weijiang.yang@intel.com>
Cc: Like Xu <like.xu.linux@gmail.com>
Reported-by: Paolo Bonzini <pbonzini@redhat.com>
Fixes: be635e34c2 ("KVM: vmx/pmu: Expose LBR_FMT in the MSR_IA32_PERF_CAPABILITIES")
Tested-by: Like Xu <likexu@tencent.com>
Link: https://lore.kernel.org/r/20230128001427.2548858-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
smatch reports
arch/x86/kvm/x86.c:199:20: warning: symbol
'mitigate_smt_rsb' was not declared. Should it be static?
This variable is only used in one file so it should be static.
Signed-off-by: Tom Rix <trix@redhat.com>
Link: https://lore.kernel.org/r/20230404010141.1913667-1-trix@redhat.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
The kvm_pmu_refresh() may be called repeatedly (e.g. configure guest
CPUID repeatedly or update MSR_IA32_PERF_CAPABILITIES) and each
call will use the last pmu->all_valid_pmc_idx value, with the residual
bits introducing additional overhead later in the vPMU emulation.
Fixes: b35e5548b4 ("KVM: x86/vPMU: Add lazy mechanism to release perf_event per vPMC")
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Like Xu <likexu@tencent.com>
Link: https://lore.kernel.org/r/20230404071759.75376-1-likexu@tencent.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
sgx_get_encls_gva() uses is_long_mode() to check 64-bit mode, however,
SGX system leaf instructions are valid in compatibility mode, should
use is_64_bit_mode() instead.
Fixes: 70210c044b ("KVM: VMX: Add SGX ENCLS[ECREATE] handler to enforce CPUID restrictions")
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230404032502.27798-1-binbin.wu@linux.intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Now that the SRCU Kconfig option is unconditionally selected, there is
no longer any point in selecting it. Therefore, remove the "select SRCU"
Kconfig statements from the various KVM Kconfig files.
Acked-by: Sean Christopherson <seanjc@google.com> (x86)
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Aleksandar Markovic <aleksandar.qemu.devel@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: <kvm@vger.kernel.org>
Acked-by: Marc Zyngier <maz@kernel.org> (arm64)
Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Acked-by: Anup Patel <anup@brainfault.org> (riscv)
Acked-by: Heiko Carstens <hca@linux.ibm.com> (s390)
Reviewed-by: John Ogness <john.ogness@linutronix.de>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
The 'longmode' field is a bit annoying as it blows an entire __u32 to
represent a boolean value. Since other architectures are looking to add
support for KVM_EXIT_HYPERCALL, now is probably a good time to clean it
up.
Redefine the field (and the remaining padding) as a set of flags.
Preserve the existing ABI by using bit 0 to indicate if the guest was in
long mode and requiring that the remaining 31 bits must be zero.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Acked-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230404154050.2270077-2-oliver.upton@linux.dev
Merge __handle_changed_pte() and handle_changed_spte_acc_track() into a
single function, handle_changed_pte(), as the two are always used
together. Remove the existing handle_changed_pte(), as it's just a
wrapper that calls __handle_changed_pte() and
handle_changed_spte_acc_track().
Signed-off-by: Vipin Sharma <vipinsh@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Reviewed-by: David Matlack <dmatlack@google.com>
[sean: massage changelog]
Link: https://lore.kernel.org/r/20230321220021.2119033-14-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Remove handle_changed_spte_dirty_log() as there is no code flow which
sets 4KiB SPTE writable and hit this path. This function marks the page
dirty in a memslot only if new SPTE is 4KiB in size and writable.
Current users of handle_changed_spte_dirty_log() are:
1. set_spte_gfn() - Create only non writable SPTEs.
2. write_protect_gfn() - Change an SPTE to non writable.
3. zap leaf and roots APIs - Everything is 0.
4. handle_removed_pt() - Sets SPTEs to REMOVED_SPTE
5. tdp_mmu_link_sp() - Makes non leaf SPTEs.
There is also no path which creates a writable 4KiB without going
through make_spte() and this functions takes care of marking SPTE dirty
in the memslot if it is PT_WRITABLE.
Signed-off-by: Vipin Sharma <vipinsh@google.com>
Reviewed-by: David Matlack <dmatlack@google.com>
[sean: add blurb to __handle_changed_spte()'s comment]
Link: https://lore.kernel.org/r/20230321220021.2119033-13-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Remove bool parameter "record_acc_track" from __tdp_mmu_set_spte() and
refactor the code. This variable is always set to true by its caller.
Remove single and double underscore prefix from tdp_mmu_set_spte()
related APIs:
1. Change __tdp_mmu_set_spte() to tdp_mmu_set_spte()
2. Change _tdp_mmu_set_spte() to tdp_mmu_iter_set_spte()
Signed-off-by: Vipin Sharma <vipinsh@google.com>
Reviewed-by: David Matlack <dmatlack@google.com>
Link: https://lore.kernel.org/r/20230321220021.2119033-12-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Drop everything except the "tdp_mmu_spte_changed" tracepoint part of
__handle_changed_spte() when aging SPTEs in the TDP MMU, as clearing the
accessed status doesn't affect the SPTE's shadow-present status, whether
or not the SPTE is a leaf, or change the PFN. I.e. none of the functional
updates handled by __handle_changed_spte() are relevant.
Losing __handle_changed_spte()'s sanity checks does mean that a bug could
theoretical go unnoticed, but that scenario is extremely unlikely, e.g.
would effectively require a misconfigured MMU or a locking bug elsewhere.
Link: https://lore.kernel.org/all/Y9HcHRBShQgjxsQb@google.com
Signed-off-by: Vipin Sharma <vipinsh@google.com>
Reviewed-by: David Matlack <dmatlack@google.com>
[sean: massage changelog]
Link: https://lore.kernel.org/r/20230321220021.2119033-11-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Drop the unnecessary call to handle dirty log updates when aging TDP MMU
SPTEs, as neither clearing the Accessed bit nor marking a SPTE for access
tracking can _set_ the Writable bit, i.e. can't trigger marking a gfn
dirty in its memslot. The access tracking path can _clear_ the Writable
bit, e.g. if the XCHG races with fast_page_fault() and writes the stale
value without the Writable bit set, but clearing the Writable bit outside
of mmu_lock is not allowed, i.e. access tracking can't spuriously set the
Writable bit.
Signed-off-by: Vipin Sharma <vipinsh@google.com>
[sean: split to separate patch, apply to dirty path, write changelog]
Link: https://lore.kernel.org/r/20230321220021.2119033-10-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Use tdp_mmu_clear_spte_bits() when clearing the Accessed bit in TDP MMU
SPTEs so as to use an atomic-AND instead of XCHG to clear the A-bit.
Similar to the D-bit story, this will allow KVM to bypass
__handle_changed_spte() by ensuring only the A-bit is modified.
Link: https://lore.kernel.org/all/Y9HcHRBShQgjxsQb@google.com
Signed-off-by: Vipin Sharma <vipinsh@google.com>
Reviewed-by: David Matlack <dmatlack@google.com>
[sean: massage changelog]
Link: https://lore.kernel.org/r/20230321220021.2119033-9-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Remove bool parameter "record_dirty_log" from __tdp_mmu_set_spte() and
refactor the code as this variable is always set to true by its caller.
Signed-off-by: Vipin Sharma <vipinsh@google.com>
Reviewed-by: David Matlack <dmatlack@google.com>
Link: https://lore.kernel.org/r/20230321220021.2119033-8-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Drop everything except marking the PFN dirty and the relevant tracepoint
parts of __handle_changed_spte() when clearing the dirty status of gfns in
the TDP MMU. Clearing only the Dirty (or Writable) bit doesn't affect
the SPTEs shadow-present status, whether or not the SPTE is a leaf, or
change the SPTE's PFN. I.e. other than marking the PFN dirty, none of the
functional updates handled by __handle_changed_spte() are relevant.
Losing __handle_changed_spte()'s sanity checks does mean that a bug could
theoretical go unnoticed, but that scenario is extremely unlikely, e.g.
would effectively require a misconfigured or a locking bug elsewhere.
Opportunistically remove a comment blurb from __handle_changed_spte()
about all modifications to TDP MMU SPTEs needing to invoke said function,
that "rule" hasn't been true since fast page fault support was added for
the TDP MMU (and perhaps even before).
Tested on a VM (160 vCPUs, 160 GB memory) and found that performance of
clear dirty log stage improved by ~40% in dirty_log_perf_test (with the
full optimization applied).
Before optimization:
--------------------
Iteration 1 clear dirty log time: 3.638543593s
Iteration 2 clear dirty log time: 3.145032742s
Iteration 3 clear dirty log time: 3.142340358s
Clear dirty log over 3 iterations took 9.925916693s. (Avg 3.308638897s/iteration)
After optimization:
-------------------
Iteration 1 clear dirty log time: 2.318988110s
Iteration 2 clear dirty log time: 1.794470164s
Iteration 3 clear dirty log time: 1.791668628s
Clear dirty log over 3 iterations took 5.905126902s. (Avg 1.968375634s/iteration)
Link: https://lore.kernel.org/all/Y9hXmz%2FnDOr1hQal@google.com
Signed-off-by: Vipin Sharma <vipinsh@google.com>
Reviewed-by: David Matlack <dmatlack@google.com>
[sean: split the switch to atomic-AND to a separate patch]
Link: https://lore.kernel.org/r/20230321220021.2119033-7-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Drop the unnecessary call to handle access-tracking changes when clearing
the dirty status of TDP MMU SPTEs. Neither the Dirty bit nor the Writable
bit has any impact on the accessed state of a page, i.e. clearing only
the aforementioned bits doesn't make an accessed SPTE suddently not
accessed.
Signed-off-by: Vipin Sharma <vipinsh@google.com>
[sean: split to separate patch, write changelog]
Link: https://lore.kernel.org/r/20230321220021.2119033-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Optimize the clearing of dirty state in TDP MMU SPTEs by doing an
atomic-AND (on SPTEs that have volatile bits) instead of the full XCHG
that currently ends up being invoked (see kvm_tdp_mmu_write_spte()).
Clearing _only_ the bit in question will allow KVM to skip the many
irrelevant checks in __handle_changed_spte() by avoiding any collateral
damage due to the XCHG writing all SPTE bits, e.g. the XCHG could race
with fast_page_fault() setting the W-bit and the CPU setting the D-bit,
and thus incorrectly drop the CPU's D-bit update.
Link: https://lore.kernel.org/all/Y9hXmz%2FnDOr1hQal@google.com
Signed-off-by: Vipin Sharma <vipinsh@google.com>
Reviewed-by: David Matlack <dmatlack@google.com>
[sean: split the switch to atomic-AND to a separate patch]
Link: https://lore.kernel.org/r/20230321220021.2119033-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Deduplicate the guts of the TDP MMU's clearing of dirty status by
snapshotting whether to check+clear the Dirty bit vs. the Writable bit,
which is the only difference between the two flavors of dirty tracking.
Note, kvm_ad_enabled() is just a wrapper for shadow_accessed_mask, i.e.
is constant after kvm-{intel,amd}.ko is loaded.
Link: https://lore.kernel.org/all/Yz4Qi7cn7TWTWQjj@google.com
Signed-off-by: Vipin Sharma <vipinsh@google.com>
[sean: split to separate patch, apply to dirty log, write changelog]
Link: https://lore.kernel.org/r/20230321220021.2119033-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Use the constant-after-module-load kvm_ad_enabled() to check if SPTEs in
the TDP MMU need to be write-protected when clearing accessed/dirty status
instead of manually checking every SPTE. The per-SPTE A/D enabling is
specific to nested EPT MMUs, i.e. when KVM is using EPT A/D bits but L1 is
not, and so cannot happen in the TDP MMU (which is non-nested only).
Keep the original code as sanity checks buried under MMU_WARN_ON().
MMU_WARN_ON() is more or less useless at the moment, but there are plans
to change that.
Link: https://lore.kernel.org/all/Yz4Qi7cn7TWTWQjj@google.com
Signed-off-by: Vipin Sharma <vipinsh@google.com>
[sean: split to separate patch, apply to dirty path, write changelog]
Link: https://lore.kernel.org/r/20230321220021.2119033-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Move conditions in kvm_tdp_mmu_write_spte() to check if an SPTE should
be written atomically or not to a separate function.
This new function, kvm_tdp_mmu_spte_need_atomic_write(), will be used
in future commits to optimize clearing bits in SPTEs.
Signed-off-by: Vipin Sharma <vipinsh@google.com>
Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Link: https://lore.kernel.org/r/20230321220021.2119033-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
When introduced, IRQFD resampling worked on POWER8 with XICS. However
KVM on POWER9 has never implemented it - the compatibility mode code
("XICS-on-XIVE") misses the kvm_notify_acked_irq() call and the native
XIVE mode does not handle INTx in KVM at all.
This moved the capability support advertising to platforms and stops
advertising it on XIVE, i.e. POWER9 and later.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Acked-by: Anup Patel <anup@brainfault.org>
Acked-by: Nicholas Piggin <npiggin@gmail.com>
Message-Id: <20220504074807.3616813-1-aik@ozlabs.ru>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Don't report an error code to L1 when synthesizing a nested VM-Exit and
L2 is in Real Mode. Per Intel's SDM, regarding the error code valid bit:
This bit is always 0 if the VM exit occurred while the logical processor
was in real-address mode (CR0.PE=0).
The bug was introduced by a recent fix for AMD's Paged Real Mode, which
moved the error code suppression from the common "queue exception" path
to the "inject exception" path, but missed VMX's "synthesize VM-Exit"
path.
Fixes: b97f074583 ("KVM: x86: determine if an exception has an error code only when injecting it.")
Cc: stable@vger.kernel.org
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230322143300.2209476-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When injecting an exception into a vCPU in Real Mode, suppress the error
code by clearing the flag that tracks whether the error code is valid, not
by clearing the error code itself. The "typo" was introduced by recent
fix for SVM's funky Paged Real Mode.
Opportunistically hoist the logic above the tracepoint so that the trace
is coherent with respect to what is actually injected (this was also the
behavior prior to the buggy commit).
Fixes: b97f074583 ("KVM: x86: determine if an exception has an error code only when injecting it.")
Cc: stable@vger.kernel.org
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230322143300.2209476-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Clear vcpu->mmio_needed when injecting an exception from the emulator to
squash a (legitimate) warning about vcpu->mmio_needed being true at the
start of KVM_RUN without a callback being registered to complete the
userspace MMIO exit. Suppressing the MMIO write exit is inarguably wrong
from an architectural perspective, but it is the least awful hack-a-fix
due to shortcomings in KVM's uAPI, not to mention that KVM already
suppresses MMIO writes in this scenario.
Outside of REP string instructions, KVM doesn't provide a way to resume
an instruction at the exact point where it was "interrupted" if said
instruction partially completed before encountering an MMIO access. For
MMIO reads, KVM immediately exits to userspace upon detecting MMIO as
userspace provides the to-be-read value in a buffer, and so KVM can safely
(more or less) restart the instruction from the beginning. When the
emulator re-encounters the MMIO read, KVM will service the MMIO by getting
the value from the buffer instead of exiting to userspace, i.e. KVM won't
put the vCPU into an infinite loop.
On an emulated MMIO write, KVM finishes the instruction before exiting to
userspace, as exiting immediately would ultimately hang the vCPU due to
the aforementioned shortcoming of KVM not being able to resume emulation
in the middle of an instruction.
For the vast majority of _emulated_ instructions, deferring the userspace
exit doesn't cause problems as very few x86 instructions (again ignoring
string operations) generate multiple writes. But for instructions that
generate multiple writes, e.g. PUSHA (multiple pushes onto the stack),
deferring the exit effectively results in only the final write triggering
an exit to userspace. KVM does support multiple MMIO "fragments", but
only for page splits; if an instruction performs multiple distinct MMIO
writes, the number of fragments gets reset when the next MMIO write comes
along and any previous MMIO writes are dropped.
Circling back to the warning, if a deferred MMIO write coincides with an
exception, e.g. in this case a #SS due to PUSHA underflowing the stack
after queueing a write to an MMIO page on a previous push, KVM injects
the exceptions and leaves the deferred MMIO pending without registering a
callback, thus triggering the splat.
Sweep the problem under the proverbial rug as dropping MMIO writes is not
unique to the exception scenario (see above), i.e. instructions like PUSHA
are fundamentally broken with respect to MMIO, and have been since KVM's
inception.
Reported-by: zhangjianguo <zhangjianguo18@huawei.com>
Reported-by: syzbot+760a73552f47a8cd0fd9@syzkaller.appspotmail.com
Reported-by: syzbot+8accb43ddc6bd1f5713a@syzkaller.appspotmail.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230322141220.2206241-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM irqfd based emulation of level-triggered interrupts doesn't work
quite correctly in some cases, particularly in the case of interrupts
that are handled in a Linux guest as oneshot interrupts (IRQF_ONESHOT).
Such an interrupt is acked to the device in its threaded irq handler,
i.e. later than it is acked to the interrupt controller (EOI at the end
of hardirq), not earlier.
Linux keeps such interrupt masked until its threaded handler finishes,
to prevent the EOI from re-asserting an unacknowledged interrupt.
However, with KVM + vfio (or whatever is listening on the resamplefd)
we always notify resamplefd at the EOI, so vfio prematurely unmasks the
host physical IRQ, thus a new physical interrupt is fired in the host.
This extra interrupt in the host is not a problem per se. The problem is
that it is unconditionally queued for injection into the guest, so the
guest sees an extra bogus interrupt. [*]
There are observed at least 2 user-visible issues caused by those
extra erroneous interrupts for a oneshot irq in the guest:
1. System suspend aborted due to a pending wakeup interrupt from
ChromeOS EC (drivers/platform/chrome/cros_ec.c).
2. Annoying "invalid report id data" errors from ELAN0000 touchpad
(drivers/input/mouse/elan_i2c_core.c), flooding the guest dmesg
every time the touchpad is touched.
The core issue here is that by the time when the guest unmasks the IRQ,
the physical IRQ line is no longer asserted (since the guest has
acked the interrupt to the device in the meantime), yet we
unconditionally inject the interrupt queued into the guest by the
previous resampling. So to fix the issue, we need a way to detect that
the IRQ is no longer pending, and cancel the queued interrupt in this
case.
With IOAPIC we are not able to probe the physical IRQ line state
directly (at least not if the underlying physical interrupt controller
is an IOAPIC too), so in this patch we use irqfd resampler for that.
Namely, instead of injecting the queued interrupt, we just notify the
resampler that this interrupt is done. If the IRQ line is actually
already deasserted, we are done. If it is still asserted, a new
interrupt will be shortly triggered through irqfd and injected into the
guest.
In the case if there is no irqfd resampler registered for this IRQ, we
cannot fix the issue, so we keep the existing behavior: immediately
unconditionally inject the queued interrupt.
This patch fixes the issue for x86 IOAPIC only. In the long run, we can
fix it for other irqchips and other architectures too, possibly taking
advantage of reading the physical state of the IRQ line, which is
possible with some other irqchips (e.g. with arm64 GIC, maybe even with
the legacy x86 PIC).
[*] In this description we assume that the interrupt is a physical host
interrupt forwarded to the guest e.g. by vfio. Potentially the same
issue may occur also with a purely virtual interrupt from an
emulated device, e.g. if the guest handles this interrupt, again, as
a oneshot interrupt.
Signed-off-by: Dmytro Maluka <dmy@semihalf.com>
Link: https://lore.kernel.org/kvm/31420943-8c5f-125c-a5ee-d2fde2700083@semihalf.com/
Link: https://lore.kernel.org/lkml/87o7wrug0w.wl-maz@kernel.org/
Message-Id: <20230322204344.50138-3-dmy@semihalf.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The Hyper-V "EnlightenedNptTlb" enlightenment is always enabled when KVM
is running on top of Hyper-V and Hyper-V exposes support for it (which
is always). On AMD CPUs this enlightenment results in ASID invalidations
not flushing TLB entries derived from the NPT. To force the underlying
(L0) hypervisor to rebuild its shadow page tables, an explicit hypercall
is needed.
The original KVM implementation of Hyper-V's "EnlightenedNptTlb" on SVM
only added remote TLB flush hooks. This worked out fine for a while, as
sufficient remote TLB flushes where being issued in KVM to mask the
problem. Since v5.17, changes in the TDP code reduced the number of
flushes and the out-of-sync TLB prevents guests from booting
successfully.
Split svm_flush_tlb_current() into separate callbacks for the 3 cases
(guest/all/current), and issue the required Hyper-V hypercall when a
Hyper-V TLB flush is needed. The most important case where the TLB flush
was missing is when loading a new PGD, which is followed by what is now
svm_flush_tlb_current().
Cc: stable@vger.kernel.org # v5.17+
Fixes: 1e0c7d4075 ("KVM: SVM: hyper-v: Remote TLB flush for SVM")
Link: https://lore.kernel.org/lkml/43980946-7bbf-dcef-7e40-af904c456250@linux.microsoft.com/
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Jeremi Piotrowski <jpiotrowski@linux.microsoft.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20230324145233.4585-1-jpiotrowski@linux.microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
To be able to trace invocations of smp_send_reschedule(), rename the
arch-specific definitions of it to arch_smp_send_reschedule() and wrap it
into an smp_send_reschedule() that contains a tracepoint.
Changes to include the declaration of the tracepoint were driven by the
following coccinelle script:
@func_use@
@@
smp_send_reschedule(...);
@include@
@@
#include <trace/events/ipi.h>
@no_include depends on func_use && !include@
@@
#include <...>
+
+ #include <trace/events/ipi.h>
[csky bits]
[riscv bits]
Signed-off-by: Valentin Schneider <vschneid@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Guo Ren <guoren@kernel.org>
Acked-by: Palmer Dabbelt <palmer@rivosinc.com>
Link: https://lore.kernel.org/r/20230307143558.294354-6-vschneid@redhat.com
If !guest_cpuid_has(vcpu, X86_FEATURE_PCID), CR4.PCIDE would have been in
vcpu->arch.cr4_guest_rsvd_bits and failed earlier kvm_is_valid_cr4() check.
Remove this meaningless check.
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Robert Hoo <robert.hu@linux.intel.com>
Fixes: 4683d758f4 ("KVM: x86: Supplement __cr4_reserved_bits() with X86_FEATURE_PCID check")
Link: https://lore.kernel.org/r/20230308072936.1293101-1-robert.hu@intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Yell loudly if KVM attempts to load CS outside of Real Mode without an
accompanying control transfer type, i.e. on X86_TRANSFER_NONE. KVM uses
X86_TRANSFER_NONE when emulating IRET and exceptions/interrupts for Real
Mode, but IRET emulation for Protected Mode is non-existent. WARN instead
of trying to pass in a less-wrong type, e.g. X86_TRANSFER_RET, as
emulating IRET goes even beyond emulating FAR RET (which KVM also doesn't
fully support).
Reported-by: Hou Wenlong <houwenlong.hwl@antgroup.com>
Link: https://lore.kernel.org/r/20230216202254.671772-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Allow L1 to use vNMI to accelerate its injection of NMI to L2 by
propagating vNMI int_ctl bits from/to vmcb12 to/from vmcb02.
To handle both the case where vNMI is enabled for L1 and L2, and where
vNMI is enabled for L1 but _not_ L2, move pending L1 vNMIs to nmi_pending
on nested VM-Entry and raise KVM_REQ_EVENT, i.e. rely on existing code to
route the NMI to the correct domain.
On nested VM-Exit, reverse the process and set/clear V_NMI_PENDING for L1
based one whether nmi_pending is zero or non-zero. There is no need to
consider vmcb02 in this case, as V_NMI_PENDING can be set in vmcb02 if
vNMI is disabled for L2, and if vNMI is enabled for L2, then L1 and L2
have different NMI contexts.
Co-developed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Santosh Shukla <santosh.shukla@amd.com>
Link: https://lore.kernel.org/r/20230227084016.3368-12-santosh.shukla@amd.com
[sean: massage changelog to match the code]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add support for SVM's Virtual NMIs implementation, which adds proper
tracking of virtual NMI blocking, and an intr_ctrl flag that software can
set to mark a virtual NMI as pending. Pending virtual NMIs are serviced
by hardware if/when virtual NMIs become unblocked, i.e. act more or less
like real NMIs.
Introduce two new kvm_x86_ops callbacks so to support SVM's vNMI, as KVM
needs to treat a pending vNMI as partially injected. Specifically, if
two NMIs (for L1) arrive concurrently in KVM's software model, KVM's ABI
is to inject one and pend the other. Without vNMI, KVM manually tracks
the pending NMI and uses NMI windows to detect when the NMI should be
injected.
With vNMI, the pending NMI is simply stuffed into the VMCB and handed
off to hardware. This means that KVM needs to be able to set a vNMI
pending on-demand, and also query if a vNMI is pending, e.g. to honor the
"at most one NMI pending" rule and to preserve all NMIs across save and
restore.
Warn if KVM attempts to open an NMI window when vNMI is fully enabled,
as the above logic should prevent KVM from ever getting to
kvm_check_and_inject_events() with two NMIs pending _in software_, and
the "at most one NMI pending" logic should prevent having an NMI pending
in hardware and an NMI pending in software if NMIs are also blocked, i.e.
if KVM can't immediately inject the second NMI.
Signed-off-by: Santosh Shukla <Santosh.Shukla@amd.com>
Co-developed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20230227084016.3368-11-santosh.shukla@amd.com
[sean: rewrite shortlog and changelog, massage code comments]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Use the asynchronous NMI queue to handle pending NMIs coming in from
userspace during KVM_SET_VCPU_EVENTS so that all of KVM's logic for
handling multiple NMIs goes through process_nmi(). This will simplify
supporting SVM's upcoming "virtual NMI" functionality, which will need
changes KVM manages pending NMIs.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Change return type of is_long_mode() to bool to avoid implicit cast,
as literally every user of is_long_mode() treats its return value as a
boolean.
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Link: https://lore.kernel.org/r/20230322045824.22970-5-binbin.wu@linux.intel.com
Reviewed-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Save all pending NMIs in KVM_GET_VCPU_EVENTS, and queue KVM_REQ_NMI if one
or more NMIs are pending after KVM_SET_VCPU_EVENTS in order to re-evaluate
pending NMIs with respect to NMI blocking.
KVM allows multiple NMIs to be pending in order to faithfully emulate bare
metal handling of simultaneous NMIs (on bare metal, truly simultaneous
NMIs are impossible, i.e. one will always arrive first and be consumed).
Support for simultaneous NMIs botched the save/restore though. KVM only
saves one pending NMI, but allows userspace to restore 255 pending NMIs
as kvm_vcpu_events.nmi.pending is a u8, and KVM's internal state is stored
in an unsigned int.
Fixes: 7460fb4a34 ("KVM: Fix simultaneous NMIs")
Signed-off-by: Santosh Shukla <Santosh.Shukla@amd.com>
Link: https://lore.kernel.org/r/20230227084016.3368-8-santosh.shukla@amd.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tweak the code and comment that deals with concurrent NMIs to explicitly
call out that x86 allows exactly one pending NMI, but that KVM needs to
temporarily allow two pending NMIs in order to workaround the fact that
the target vCPU cannot immediately recognize an incoming NMI, unlike bare
metal.
No functional change intended.
Signed-off-by: Santosh Shukla <Santosh.Shukla@amd.com>
Link: https://lore.kernel.org/r/20230227084016.3368-7-santosh.shukla@amd.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Don't raise KVM_REQ_EVENT if no NMIs are pending at the end of
process_nmi(). Finishing process_nmi() without a pending NMI will become
much more likely when KVM gains support for AMD's vNMI, which allows
pending vNMIs in hardware, i.e. doesn't require explicit injection.
Signed-off-by: Santosh Shukla <Santosh.Shukla@amd.com>
Link: https://lore.kernel.org/r/20230227084016.3368-6-santosh.shukla@amd.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
SEV-ES guests don't use IRET interception for the detection of
an end of a NMI.
Therefore it makes sense to create a wrapper to avoid repeating
the check for the SEV-ES.
No functional change is intended.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
[Renamed iret intercept API of style svm_{clr,set}_iret_intercept()]
Signed-off-by: Santosh Shukla <Santosh.Shukla@amd.com>
Link: https://lore.kernel.org/r/20230227084016.3368-5-santosh.shukla@amd.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
If L1 doesn't intercept interrupts, then KVM will use vmcb02's V_IRQ
to detect an interrupt window for L1 IRQs. On a subsequent nested
VM-Exit, KVM might need to copy the current V_IRQ from vmcb02 to vmcb01
to continue waiting for an interrupt window, i.e. if there is still a
pending IRQ for L1.
Raise KVM_REQ_EVENT on nested exit if L1 isn't intercepting IRQs to ensure
that KVM will re-enable interrupt window detection if needed.
Note that this is a theoretical bug because KVM already raises
KVM_REQ_EVENT on each nested VM exit, because the nested VM exit resets
RFLAGS and kvm_set_rflags() raises the KVM_REQ_EVENT unconditionally.
Explicitly raise KVM_REQ_EVENT for the interrupt window case to avoid
having an unnecessary dependency on kvm_set_rflags(), and to document
the scenario.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
[santosh: reworded description as per Sean's v2 comment]
Signed-off-by: Santosh Shukla <Santosh.Shukla@amd.com>
Link: https://lore.kernel.org/r/20230227084016.3368-4-santosh.shukla@amd.com
[sean: further massage changelog and comment]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Disable intercept of virtual interrupts (used to detect interrupt windows)
if the saved host (L1) RFLAGS.IF is '0', as the effective RFLAGS.IF for L1
interrupts will never be set while L2 is running (L2's RFLAGS.IF doesn't
affect L1 IRQs when virtual interrupts are enabled).
Suggested-by: Sean Christopherson <seanjc@google.com>
Link: https://lkml.kernel.org/r/Y9hybI65So5X2LFg%40google.com
Signed-off-by: Santosh Shukla <Santosh.Shukla@amd.com>
Link: https://lore.kernel.org/r/20230227084016.3368-3-santosh.shukla@amd.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Don't sync vmcb02 V_IRQ back to vmcb12 if KVM (L0) is intercepting
virtual interrupts in order to request an interrupt window, as KVM
has usurped vmcb02's int_ctl. If an interrupt window opens before
the next VM-Exit, svm_clear_vintr() will restore vmcb12's int_ctl.
If no window opens, V_IRQ will be correctly preserved in vmcb12's
int_ctl (because it was never recognized while L2 was running).
Suggested-by: Sean Christopherson <seanjc@google.com>
Link: https://lkml.kernel.org/r/Y9hybI65So5X2LFg%40google.com
Signed-off-by: Santosh Shukla <Santosh.Shukla@amd.com>
Link: https://lore.kernel.org/r/20230227084016.3368-2-santosh.shukla@amd.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Use kvm_is_cr4_bit_set() to query SMAP and SMEP when determining whether
or not AMD's SMAP+SEV errata prevents KVM from emulating an instruction.
This eliminates an implicit cast from ulong to bool and makes the code
slightly more readable.
Note, any overhead from making multiple calls to kvm_read_cr4_bits() is
negligible, not to mention the code is question is encountered only in
rare situations, i.e. is not a remotely hot path.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Link: https://lore.kernel.org/r/20230322045824.22970-4-binbin.wu@linux.intel.com
[sean: keep local smap/smep variables, massage changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Convert is_{pae,pse,paging}() to use kvm_is_cr{0,4}_bit_set() and return
bools. Returning an "int" requires not one, but two implicit casts, first
from "unsigned long" to "int", and then again to a "bool". Both casts are
more than a bit dangerous; the ulong=>int casts would drop a bit on 64-bit
kernels _if_ the bits in question weren't in the lower 32 bits, and the
int=>bool cast can result in false negatives/positives, e.g. see commit
0c928ff26b ("KVM: SVM: Fix benign "bool vs. int" comparison in
svm_set_cr0()").
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Link: https://lore.kernel.org/r/20230322045824.22970-3-binbin.wu@linux.intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add helpers to check if a specific CR0/CR4 bit is set to avoid a plethora
of implicit casts from the "unsigned long" return of kvm_read_cr*_bits(),
and to make each caller's intent more obvious.
Defer converting helpers that do truly ugly casts from "unsigned long" to
"int", e.g. is_pse(), to a future commit so that their conversion is more
isolated.
Opportunistically drop the superfluous pcid_enabled from kvm_set_cr3();
the local variable is used only once, immediately after its declaration.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Link: https://lore.kernel.org/r/20230322045824.22970-2-binbin.wu@linux.intel.com
[sean: move "obvious" conversions to this commit, massage changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Explicitly convert the return from is_paging() to a bool when comparing
against old_paging, which is also a boolean. is_paging() sneakily uses
kvm_read_cr0_bits() and returns an int, i.e. returns X86_CR0_PG or 0, not
1 or 0.
Luckily, the bug is benign as it only results in a false positive, not a
false negative, i.e. only causes a spurious refresh of CR4 when paging is
enabled in both the old and new.
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Fixes: c53bbe2145 ("KVM: x86: SVM: don't passthrough SMAP/SMEP/PKE bits in !NPT && !gCR0.PG case")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Guests like grsecurity that make heavy use of CR0.WP to implement kernel
level W^X will suffer from the implied VMEXITs.
With EPT there is no need to intercept a guest change of CR0.WP, so
simply make it a guest owned bit if we can do so.
This implies that a read of a guest's CR0.WP bit might need a VMREAD.
However, the only potentially affected user seems to be kvm_init_mmu()
which is a heavy operation to begin with. But also most callers already
cache the full value of CR0 anyway, so no additional VMREAD is needed.
The only exception is nested_vmx_load_cr3().
This change is VMX-specific, as SVM has no such fine grained control
register intercept control.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Mathias Krause <minipli@grsecurity.net>
Link: https://lore.kernel.org/r/20230322013731.102955-7-minipli@grsecurity.net
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Make use of the kvm_read_cr{0,4}_bits() helper functions when we only
want to know the state of certain bits instead of the whole register.
This not only makes the intent cleaner, it also avoids a potential
VMREAD in case the tested bits aren't guest owned.
Signed-off-by: Mathias Krause <minipli@grsecurity.net>
Link: https://lore.kernel.org/r/20230322013731.102955-5-minipli@grsecurity.net
Signed-off-by: Sean Christopherson <seanjc@google.com>
If paging is disabled, there are no permission bits to emulate.
Micro-optimize this case to avoid unnecessary work.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Mathias Krause <minipli@grsecurity.net>
Link: https://lore.kernel.org/r/20230322013731.102955-4-minipli@grsecurity.net
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
There is no need to unload the MMU roots with TDP enabled when only
CR0.WP has changed -- the paging structures are still valid, only the
permission bitmap needs to be updated.
One heavy user of toggling CR0.WP is grsecurity's KERNEXEC feature to
implement kernel W^X.
The optimization brings a huge performance gain for this case as the
following micro-benchmark running 'ssdd 10 50000' from rt-tests[1] on a
grsecurity L1 VM shows (runtime in seconds, lower is better):
legacy TDP shadow
kvm-x86/next@d8708b 8.43s 9.45s 70.3s
+patch 5.39s 5.63s 70.2s
For legacy MMU this is ~36% faster, for TDP MMU even ~40% faster. Also
TDP and legacy MMU now both have a similar runtime which vanishes the
need to disable TDP MMU for grsecurity.
Shadow MMU sees no measurable difference and is still slow, as expected.
[1] https://git.kernel.org/pub/scm/utils/rt-tests/rt-tests.git
Signed-off-by: Mathias Krause <minipli@grsecurity.net>
Link: https://lore.kernel.org/r/20230322013731.102955-3-minipli@grsecurity.net
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Most of the time, calls to get_guest_pgd result in calling
kvm_read_cr3 (the exception is only nested TDP). Hardcode
the default instead of using the get_cr3 function, avoiding
a retpoline if they are enabled.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Mathias Krause <minipli@grsecurity.net>
Link: https://lore.kernel.org/r/20230322013731.102955-2-minipli@grsecurity.net
Signed-off-by: Sean Christopherson <seanjc@google.com>
nested_vmx_setup_ctls_msrs() is used to set up the various VMX MSR
controls for nested VMX. But it is a bit lengthy, just add helpers
to setup the configuration of VMX MSRs.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Link: https://lore.kernel.org/r/20230119141946.585610-2-yu.c.zhang@linux.intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
nested_vmx_setup_ctls_msrs() initializes the vmcs_conf.nested,
which stores the global VMX MSR configurations when nested is
supported, regardless of any particular CPUID settings for one
VM.
Commit 6defc59184 ("KVM: nVMX: include conditional controls
in /dev/kvm KVM_GET_MSRS") added the some feature flags for
secondary proc-based controls, so that those features can be
available in KVM_GET_MSRS. Yet this commit did not remove the
obsolete comments in nested_vmx_setup_ctls_msrs().
Just fix the comments, and no functional change intended.
Fixes: 6defc59184 ("KVM: nVMX: include conditional controls in /dev/kvm KVM_GET_MSRS")
Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Link: https://lore.kernel.org/r/20230119141946.585610-1-yu.c.zhang@linux.intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Adjust a variety of functions in mmu.c to put the function return type on
the same line as the function declaration. As stated in the Linus
specification:
But the "on their own line" is complete garbage to begin with. That
will NEVER be a kernel rule. We should never have a rule that assumes
things are so long that they need to be on multiple lines.
We don't put function return types on their own lines either, even if
some other projects have that rule (just to get function names at the
beginning of lines or some other odd reason).
Leave the functions generated by BUILD_MMU_ROLE_REGS_ACCESSOR() as-is,
that code is basically illegible no matter how it's formatted.
No functional change intended.
Link: https://lore.kernel.org/mm-commits/CAHk-=wjS-Jg7sGMwUPpDsjv392nDOOs0CtUtVkp=S6Q7JzFJRw@mail.gmail.com
Signed-off-by: Ben Gardon <bgardon@google.com>
Link: https://lore.kernel.org/r/20230202182809.1929122-4-bgardon@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Assert that mmu_lock is held for write in __walk_slot_rmaps() instead of
hoping the function comment will magically prevent introducing bugs.
Signed-off-by: Ben Gardon <bgardon@google.com>
Link: https://lore.kernel.org/r/20230202182809.1929122-3-bgardon@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Use gfn_t instead of u64 for kvm_flush_remote_tlbs_range()'s parameters,
since gfn_t is the standard type for GFNs throughout KVM.
Opportunistically rename pages to nr_pages to make its role even more
obvious.
No functional change intended.
Signed-off-by: David Matlack <dmatlack@google.com>
Link: https://lore.kernel.org/r/20230126184025.2294823-6-dmatlack@google.com
[sean: convert pages to gfn_t too, and rename]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Rename kvm_flush_remote_tlbs_with_address() to
kvm_flush_remote_tlbs_range(). This name is shorter, which reduces the
number of callsites that need to be broken up across multiple lines, and
more readable since it conveys a range of memory is being flushed rather
than a single address.
No functional change intended.
Signed-off-by: David Matlack <dmatlack@google.com>
Link: https://lore.kernel.org/r/20230126184025.2294823-5-dmatlack@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Collapse kvm_flush_remote_tlbs_with_range() and
kvm_flush_remote_tlbs_with_address() into a single function. This
eliminates some lines of code and a useless NULL check on the range
struct.
Opportunistically switch from ENOTSUPP to EOPNOTSUPP to make checkpatch
happy.
Signed-off-by: David Matlack <dmatlack@google.com>
Link: https://lore.kernel.org/r/20230126184025.2294823-4-dmatlack@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
The TEE subdriver for CCP, the amdtee driver and the i2c-designware-amdpsp
drivers all include `psp-sev.h` even though they don't use SEV
functionality.
Move the definition of `__psp_pa` into a common header to be included
by all of these drivers.
Reviewed-by: Jan Dabros <jsd@semihalf.com>
Acked-by: Jarkko Nikula <jarkko.nikula@linux.intel.com> # For the drivers/i2c/busses/i2c-designware-amdpsp.c
Acked-by: Sumit Garg <sumit.garg@linaro.org> # For TEE subsystem bits
Acked-by: Tom Lendacky <thomas.lendacky@amd.com>
Acked-by: Sean Christopherson <seanjc@google.com> # KVM
Signed-off-by: Mario Limonciello <mario.limonciello@amd.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Rework "struct pte_list_desc" and pte_list_{add|remove} to track the tail
count, i.e. number of PTEs in non-head descriptors, and to always keep all
tail descriptors full so that adding a new entry and counting the number
of entries is done in constant time instead of linear time.
No visible performace is changed in tests. But pte_list_add() is no longer
shown in the perf result for the COWed pages even the guest forks millions
of tasks.
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Link: https://lore.kernel.org/r/20230113122910.672417-1-jiangshanlai@gmail.com
[sean: reword shortlog, tweak changelog, add lots of comments, add BUG_ON()]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Sync the spte only when the spte is set and avoid the indirect branch.
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Link: https://lore.kernel.org/r/20230216235321.735214-5-jiangshanlai@gmail.com
[sean: add wrapper instead of open coding each check]
Signed-off-by: Sean Christopherson <seanjc@google.com>
In hardware TLB, invalidating TLB entries means the translations are
removed from the TLB.
In KVM shadowed vTLB, the translations (combinations of shadow paging
and hardware TLB) are generally maintained as long as they remain "clean"
when the TLB of an address space (i.e. a PCID or all) is flushed with
the help of write-protections, sp->unsync, and kvm_sync_page(), where
"clean" in this context means that no updates to KVM's SPTEs are needed.
However, FNAME(invlpg) always zaps/removes the vTLB if the shadow page is
unsync, and thus triggers a remote flush even if the original vTLB entry
is clean, i.e. is usable as-is.
Besides this, FNAME(invlpg) is largely is a duplicate implementation of
FNAME(sync_spte) to invalidate a vTLB entry.
To address both issues, reuse FNAME(sync_spte) to share the code and
slightly modify the semantics, i.e. keep the vTLB entry if it's "clean"
and avoid remote TLB flush.
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Link: https://lore.kernel.org/r/20230216235321.735214-3-jiangshanlai@gmail.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Don't assume the current root to be valid, just check it and remove
the WARN().
Also move the code to check if the root is valid into FNAME(invlpg)
to simplify the code.
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Link: https://lore.kernel.org/r/20230216235321.735214-2-jiangshanlai@gmail.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Use kvm_mmu_invalidate_addr() instead open calls to mmu->invlpg().
No functional change intended.
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Link: https://lore.kernel.org/r/20230216235321.735214-1-jiangshanlai@gmail.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
The @root_hpa for kvm_mmu_invalidate_addr() is called with @mmu->root.hpa
or INVALID_PAGE where @mmu->root.hpa is to invalidate gva for the current
root (the same meaning as KVM_MMU_ROOT_CURRENT) and INVALID_PAGE is to
invalidate gva for all roots (the same meaning as KVM_MMU_ROOTS_ALL).
Change the argument type of kvm_mmu_invalidate_addr() and use
KVM_MMU_ROOT_XXX instead so that we can reuse the function for
kvm_mmu_invpcid_gva() and nested_ept_invalidate_addr() for invalidating
gva for different set of roots.
No fuctionalities changed.
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Link: https://lore.kernel.org/r/20230216154115.710033-9-jiangshanlai@gmail.com
[sean: massage comment slightly]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tweak KVM_MMU_ROOTS_ALL to precisely cover all current+previous root
flags, and add a sanity in kvm_mmu_free_roots() to verify that the set
of roots to free doesn't stray outside KVM_MMU_ROOTS_ALL.
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Link: https://lore.kernel.org/r/20230216154115.710033-8-jiangshanlai@gmail.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Sometimes when the guest updates its pagetable, it adds only new gptes
to it without changing any existed one, so there is no point to update
the sptes for these existed gptes.
Also when the sptes for these unchanged gptes are updated, the AD
bits are also removed since make_spte() is called with prefetch=true
which might result unneeded TLB flushing.
Just do nothing if the gpte's permissions are unchanged.
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Link: https://lore.kernel.org/r/20230216154115.710033-7-jiangshanlai@gmail.com
[sean: expand comment to call out A/D bits]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Rename mmu->sync_page to mmu->sync_spte and move the code out
of FNAME(sync_page)'s loop body into mmu.c.
No functionalities change intended.
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Link: https://lore.kernel.org/r/20230216154115.710033-6-jiangshanlai@gmail.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
mmu->sync_page for direct paging is never called.
And both mmu->sync_page and mm->invlpg only make sense in shadow paging.
Setting mmu->sync_page as NULL for direct paging makes it consistent
with mm->invlpg which is set NULL for the case.
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Link: https://lore.kernel.org/r/20230216154115.710033-5-jiangshanlai@gmail.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Assert that mmu->sync_page is non-NULL as part of the sanity checks
performed before attempting to sync a shadow page. Explicitly checking
mmu->sync_page is all but guaranteed to be redundant with the existing
sanity check that the MMU is indirect, but the cost is negligible, and
the explicit check also serves as documentation.
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Link: https://lore.kernel.org/r/20230216154115.710033-4-jiangshanlai@gmail.com
[sean: increase verbosity of changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
FNAME(invlpg)() and kvm_mmu_invalidate_gva() take a gva_t, i.e. unsigned
long, as the type of the address to invalidate. On 32-bit kernels, the
upper 32 bits of the GPA will get dropped when an L2 GPA address is
invalidated in the shadowed nested TDP MMU.
Convert it to u64 to fix the problem.
Reported-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Link: https://lore.kernel.org/r/20230216154115.710033-2-jiangshanlai@gmail.com
[sean: tweak changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
All kvm_arch_vm_ioctl() implementations now only deal with "int"
types as return values, so we can change the return type of these
functions to use "int" instead of "long".
Signed-off-by: Thomas Huth <thuth@redhat.com>
Acked-by: Anup Patel <anup@brainfault.org>
Message-Id: <20230208140105.655814-7-thuth@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The KVM_GET_NR_MMU_PAGES ioctl is quite questionable on 64-bit hosts
since it fails to return the full 64 bits of the value that can be
set with the corresponding KVM_SET_NR_MMU_PAGES call. Its "long" return
value is truncated into an "int" in the kvm_arch_vm_ioctl() function.
Since this ioctl also never has been used by userspace applications
(QEMU, Google's internal VMM, kvmtool and CrosVM have been checked),
it's likely the best if we remove this badly designed ioctl before
anybody really tries to use it.
Signed-off-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230208140105.655814-4-thuth@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
FLUSH_L1D was already added in 11e34e64e4, but the feature is not
visible to userspace yet.
The bit definition:
CPUID.(EAX=7,ECX=0):EDX[bit 28]
If the feature is supported by the host, kvm should support it too so
that userspace can choose whether to expose it to the guest or not.
One disadvantage of not exposing it is that the guest will report
a non existing vulnerability in
/sys/devices/system/cpu/vulnerabilities/mmio_stale_data
because the mitigation is present only if the guest supports
(FLUSH_L1D and MD_CLEAR) or FB_CLEAR.
Signed-off-by: Emanuele Giuseppe Esposito <eesposit@redhat.com>
Message-Id: <20230201132905.549148-4-eesposit@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Expose IA32_FLUSH_CMD to the guest if the guest CPUID enumerates
support for this MSR. As with IA32_PRED_CMD, permission for
unintercepted writes to this MSR will be granted to the guest after
the first non-zero write.
Signed-off-by: Emanuele Giuseppe Esposito <eesposit@redhat.com>
Message-Id: <20230201132905.549148-3-eesposit@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Expose IA32_FLUSH_CMD to the guest if the guest CPUID enumerates
support for this MSR. As with IA32_PRED_CMD, permission for
unintercepted writes to this MSR will be granted to the guest after
the first non-zero write.
Co-developed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Emanuele Giuseppe Esposito <eesposit@redhat.com>
Message-Id: <20230201132905.549148-2-eesposit@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename enable_evmcs to __kvm_is_using_evmcs to match its wrapper, and to
avoid confusion with enabling eVMCS for nested virtualization, i.e. have
"enable eVMCS" be reserved for "enable eVMCS support for L1".
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230211003534.564198-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Wrap enable_evmcs in a helper and stub it out when CONFIG_HYPERV=n in
order to eliminate the static branch nop placeholders. clang-14 is clever
enough to elide the nop, but gcc-12 is not. Stubbing out the key reduces
the size of kvm-intel.ko by ~7.5% (200KiB) when compiled with gcc-12
(there are a _lot_ of VMCS accesses throughout KVM).
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230211003534.564198-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the macros that define the set of VMCS controls that are supported
by eVMCS1 from hyperv.h to hyperv.c, i.e. make them "private". The
macros should never be consumed directly by KVM at-large since the "final"
set of supported controls depends on guest CPUID.
No functional change intended.
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230211003534.564198-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop FNAME(is_self_change_mapping) and instead rely on
kvm_mmu_hugepage_adjust() to adjust the hugepage accordingly. Prior to
commit 4cd071d13c ("KVM: x86/mmu: Move calls to thp_adjust() down a
level"), the hugepage adjustment was done before allocating new shadow
pages, i.e. failed to restrict the hugepage sizes if a new shadow page
resulted in account_shadowed() changing the disallowed hugepage tracking.
Removing FNAME(is_self_change_mapping) fixes a bug reported by Huang Hang
where KVM unnecessarily forces a 4KiB page. FNAME(is_self_change_mapping)
has a defect in that it blindly disables _all_ hugepage mappings rather
than trying to reduce the size of the hugepage. If the guest is writing
to a 1GiB page and the 1GiB is self-referential but a 2MiB page is not,
then KVM can and should create a 2MiB mapping.
Add a comment above the call to kvm_mmu_hugepage_adjust() to call out the
new dependency on adjusting the hugepage size after walking indirect PTEs.
Reported-by: Huang Hang <hhuang@linux.alibaba.com>
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Link: https://lore.kernel.org/r/20221213125538.81209-1-jiangshanlai@gmail.com
[sean: rework changelog after separating out the emulator change]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230202182817.407394-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the detection of write #PF to shadow pages, i.e. a fault on a write
to a page table that is being shadowed by KVM that is used to translate
the write itself, from FNAME(is_self_change_mapping) to FNAME(fetch).
There is no need to detect the self-referential write before
kvm_faultin_pfn() as KVM does not consume EMULTYPE_WRITE_PF_TO_SP for
accesses that resolve to "error or no-slot" pfns, i.e. KVM doesn't allow
retrying MMIO accesses or writes to read-only memslots.
Detecting the EMULTYPE_WRITE_PF_TO_SP scenario in FNAME(fetch) will allow
dropping FNAME(is_self_change_mapping) entirely, as the hugepage
interaction can be deferred to kvm_mmu_hugepage_adjust().
Cc: Huang Hang <hhuang@linux.alibaba.com>
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Link: https://lore.kernel.org/r/20221213125538.81209-1-jiangshanlai@gmail.com
[sean: split to separate patch, write changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230202182817.407394-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use a new EMULTYPE flag, EMULTYPE_WRITE_PF_TO_SP, to track page faults
on self-changing writes to shadowed page tables instead of propagating
that information to the emulator via a semi-persistent vCPU flag. Using
a flag in "struct kvm_vcpu_arch" is confusing, especially as implemented,
as it's not at all obvious that clearing the flag only when emulation
actually occurs is correct.
E.g. if KVM sets the flag and then retries the fault without ever getting
to the emulator, the flag will be left set for future calls into the
emulator. But because the flag is consumed if and only if both
EMULTYPE_PF and EMULTYPE_ALLOW_RETRY_PF are set, and because
EMULTYPE_ALLOW_RETRY_PF is deliberately not set for direct MMUs, emulated
MMIO, or while L2 is active, KVM avoids false positives on a stale flag
since FNAME(page_fault) is guaranteed to be run and refresh the flag
before it's ultimately consumed by the tail end of reexecute_instruction().
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230202182817.407394-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
WARN if generating a GATag given a VM ID and vCPU ID doesn't yield the
same IDs when pulling the IDs back out of the tag. Don't bother adding
error handling to callers, this is very much a paranoid sanity check as
KVM fully controls the VM ID and is supposed to reject too-big vCPU IDs.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Tested-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Message-Id: <20230207002156.521736-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Define AVIC_VCPU_ID_MASK based on AVIC_PHYSICAL_MAX_INDEX, i.e. the mask
that effectively controls the largest guest physical APIC ID supported by
x2AVIC, instead of hardcoding the number of bits to 8 (and the number of
VM bits to 24).
The AVIC GATag is programmed into the AMD IOMMU IRTE to provide a
reference back to KVM in case the IOMMU cannot inject an interrupt into a
non-running vCPU. In such a case, the IOMMU notifies software by creating
a GALog entry with the corresponded GATag, and KVM then uses the GATag to
find the correct VM+vCPU to kick. Dropping bit 8 from the GATag results
in kicking the wrong vCPU when targeting vCPUs with x2APIC ID > 255.
Fixes: 4d1d7942e3 ("KVM: SVM: Introduce logic to (de)activate x2AVIC mode")
Cc: stable@vger.kernel.org
Reported-by: Alejandro Jimenez <alejandro.j.jimenez@oracle.com>
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Tested-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Message-Id: <20230207002156.521736-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>