For KVM we need to allocate a new context id, but don't really care about
all the mm context around it.
So let's split the alloc and destroy functions for the context id, so we can
grab one without allocating an mm context.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
We want to be able to build KVM as a module. To enable us doing so, we
need some more exports from core Linux parts.
This patch exports all functions and variables that are required for KVM.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The hugepage arch code provides a number of hook functions/macros
which mirror the functionality of various normal page pte access
functions. Various changes in the normal page accessors (in
particular BenH's recent changes to the handling of lazy icache
flushing and PAGE_EXEC) have caused the hugepage versions to get out
of sync with the originals. In some cases, this is a bug, at least on
some MMU types.
One of the reasons that some hooks were not identical to the normal
page versions, is that the fact we're dealing with a hugepage needed
to be passed down do use the correct dcache-icache flush function.
This patch makes the main flush_dcache_icache_page() function hugepage
aware (by checking for the PageCompound flag). That in turn means we
can make set_huge_pte_at() just a call to set_pte_at() bringing it
back into sync. As a bonus, this lets us remove the
hash_huge_page_do_lazy_icache() function, replacing it with a call to
the hash_page_do_lazy_icache() function it was based on.
Some other hugepage pte access hooks - huge_ptep_get_and_clear() and
huge_ptep_clear_flush() - are not so easily unified, but this patch at
least brings them back into sync with the current versions of the
corresponding normal page functions.
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This patch separates the parts of hugetlbpage.c which are inherently
specific to the hash MMU into a new hugelbpage-hash64.c file.
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This patch simplifies the logic used to initialize hugepages on
powerpc. The somewhat oddly named set_huge_psize() is renamed to
add_huge_page_size() and now does all necessary verification of
whether it's given a valid hugepage sizes (instead of just some) and
instantiates the generic hstate structure (but no more).
hugetlbpage_init() now steps through the available pagesizes, checks
if they're valid for hugepages by calling add_huge_page_size() and
initializes the kmem_caches for the hugepage pagetables. This means
we can now eliminate the mmu_huge_psizes array, since we no longer
need to pass the sizing information for the pagetable caches from
set_huge_psize() into hugetlbpage_init()
Determination of the default huge page size is also moved from the
hash code into the general hugepage code.
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Currently each available hugepage size uses a slightly different
pagetable layout: that is, the bottem level table of pointers to
hugepages is a different size, and may branch off from the normal page
tables at a different level. Every hugepage aware path that needs to
walk the pagetables must therefore look up the hugepage size from the
slice info first, and work out the correct way to walk the pagetables
accordingly. Future hardware is likely to add more possible hugepage
sizes, more layout options and more mess.
This patch, therefore reworks the handling of hugepage pagetables to
reduce this complexity. In the new scheme, instead of having to
consult the slice mask, pagetable walking code can check a flag in the
PGD/PUD/PMD entries to see where to branch off to hugepage pagetables,
and the entry also contains the information (eseentially hugepage
shift) necessary to then interpret that table without recourse to the
slice mask. This scheme can be extended neatly to handle multiple
levels of self-describing "special" hugepage pagetables, although for
now we assume only one level exists.
This approach means that only the pagetable allocation path needs to
know how the pagetables should be set out. All other (hugepage)
pagetable walking paths can just interpret the structure as they go.
There already was a flag bit in PGD/PUD/PMD entries for hugepage
directory pointers, but it was only used for debug. We alter that
flag bit to instead be a 0 in the MSB to indicate a hugepage pagetable
pointer (normally it would be 1 since the pointer lies in the linear
mapping). This means that asm pagetable walking can test for (and
punt on) hugepage pointers with the same test that checks for
unpopulated page directory entries (beq becomes bge), since hugepage
pointers will always be positive, and normal pointers always negative.
While we're at it, we get rid of the confusing (and grep defeating)
#defining of hugepte_shift to be the same thing as mmu_huge_psizes.
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Currently we have a fair bit of rather fiddly code to manage the
various kmem_caches used to store page tables of various levels. We
generally have two caches holding some combination of PGD, PUD and PMD
tables, plus several more for the special hugepage pagetables.
This patch cleans this all up by taking a different approach. Rather
than the caches being designated as for PUDs or for hugeptes for 16M
pages, the caches are simply allocated to be a specific size. Thus
sharing of caches between different types/levels of pagetables happens
naturally. The pagetable size, where needed, is passed around encoded
in the same way as {PGD,PUD,PMD}_INDEX_SIZE; that is n where the
pagetable contains 2^n pointers.
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Currently, hpte_need_flush() only correctly flushes the given address
for normal pages. Callers for hugepages are required to mask the
address themselves.
But hpte_need_flush() already looks up the page sizes for its own
reasons, so this is a rather silly imposition on the callers. This
patch alters it to mask based on the pagesize it has looked up itself,
and removes the awkward masking code in the hugepage caller.
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
On pSeries, we always force the IO space to be mapped using 4K
pages even with a 64K base page size to cope with some limitations
in the HV interface to some devices.
However, the SLB miss handler code to discriminate between vmalloc
and ioremap space uses a CPU feature section such that the code
is nop'ed out when the processor support large pages non-cachable
mappings.
Thus, we end up always using the ioremap page size for vmalloc
segments on such processors, causing a discrepency between the
segment and the hash table, and thus a hang continously hashing
the page.
It works for the first segment of the vmalloc space since that
segment is "bolted" in by C code correctly, and thankfully we
almost never use the vmalloc space beyond the first segment,
but the new percpu code made the bug happen.
This fixes it by removing the feature section from the assembly,
we now always do the comparison between vmalloc and ioremap.
Signed-off-by; Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
After upgrading to the latest kernel on my mpc875 userspace started
running incredibly slow (hours to get to a shell, even!).
I tracked it down to commit 8d30c14cab,
that patch removed a work-around for the 8xx. Adding it
back makes my problem go away.
Signed-off-by: Rex Feany <rfeany@mrv.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
For /proc/kcore, each arch registers its memory range by kclist_add().
In usual,
- range of physical memory
- range of vmalloc area
- text, etc...
are registered but "range of physical memory" has some troubles. It
doesn't updated at memory hotplug and it tend to include unnecessary
memory holes. Now, /proc/iomem (kernel/resource.c) includes required
physical memory range information and it's properly updated at memory
hotplug. Then, it's good to avoid using its own code(duplicating
information) and to rebuild kclist for physical memory based on
/proc/iomem.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Jiri Slaby <jirislaby@gmail.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: WANG Cong <xiyou.wangcong@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Originally, walk_memory_resource() was introduced to traverse all memory
of "System RAM" for detecting memory hotplug/unplug range. For doing so,
flags of IORESOUCE_MEM|IORESOURCE_BUSY was used and this was enough for
memory hotplug.
But for using other purpose, /proc/kcore, this may includes some firmware
area marked as IORESOURCE_BUSY | IORESOUCE_MEM. This patch makes the
check strict to find out busy "System RAM".
Note: PPC64 keeps their own walk_memory_resouce(), which walk through
ppc64's lmb informaton. Because old kclist_add() is called per lmb, this
patch makes no difference in behavior, finally.
And this patch removes CONFIG_MEMORY_HOTPLUG check from this function.
Because pfn_valid() just show "there is memmap or not* and cannot be used
for "there is physical memory or not", this function is useful in generic
to scan physical memory range.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: WANG Cong <xiyou.wangcong@gmail.com>
Cc: Américo Wang <xiyou.wangcong@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Roland Dreier <rolandd@cisco.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For /proc/kcore, vmalloc areas are registered per arch. But, all of them
registers same range of [VMALLOC_START...VMALLOC_END) This patch unifies
them. By this. archs which have no kclist_add() hooks can see vmalloc
area correctly.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: WANG Cong <xiyou.wangcong@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Presently, kclist_add() only eats start address and size as its arguments.
Considering to make kclist dynamically reconfigulable, it's necessary to
know which kclists are for System RAM and which are not.
This patch add kclist types as
KCORE_RAM
KCORE_VMALLOC
KCORE_TEXT
KCORE_OTHER
This "type" is used in a patch following this for detecting KCORE_RAM.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: WANG Cong <xiyou.wangcong@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 9617729941 ("Drop free_pages()")
modified nr_free_pages() to return 'unsigned long' instead of 'unsigned
int'. This made the casts to 'unsigned long' in most callers superfluous,
so remove them.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Geert Uytterhoeven <Geert.Uytterhoeven@sonycom.com>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Acked-by: Ingo Molnar <mingo@elte.hu>
Acked-by: Russell King <rmk+kernel@arm.linux.org.uk>
Acked-by: David S. Miller <davem@davemloft.net>
Acked-by: Kyle McMartin <kyle@mcmartin.ca>
Acked-by: WANG Cong <xiyou.wangcong@gmail.com>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Haavard Skinnemoen <hskinnemoen@atmel.com>
Cc: Mikael Starvik <starvik@axis.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Hirokazu Takata <takata@linux-m32r.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: David Howells <dhowells@redhat.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Chris Zankel <zankel@tensilica.com>
Cc: Michal Simek <monstr@monstr.eu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Bye-bye Performance Counters, welcome Performance Events!
In the past few months the perfcounters subsystem has grown out its
initial role of counting hardware events, and has become (and is
becoming) a much broader generic event enumeration, reporting, logging,
monitoring, analysis facility.
Naming its core object 'perf_counter' and naming the subsystem
'perfcounters' has become more and more of a misnomer. With pending
code like hw-breakpoints support the 'counter' name is less and
less appropriate.
All in one, we've decided to rename the subsystem to 'performance
events' and to propagate this rename through all fields, variables
and API names. (in an ABI compatible fashion)
The word 'event' is also a bit shorter than 'counter' - which makes
it slightly more convenient to write/handle as well.
Thanks goes to Stephane Eranian who first observed this misnomer and
suggested a rename.
User-space tooling and ABI compatibility is not affected - this patch
should be function-invariant. (Also, defconfigs were not touched to
keep the size down.)
This patch has been generated via the following script:
FILES=$(find * -type f | grep -vE 'oprofile|[^K]config')
sed -i \
-e 's/PERF_EVENT_/PERF_RECORD_/g' \
-e 's/PERF_COUNTER/PERF_EVENT/g' \
-e 's/perf_counter/perf_event/g' \
-e 's/nb_counters/nb_events/g' \
-e 's/swcounter/swevent/g' \
-e 's/tpcounter_event/tp_event/g' \
$FILES
for N in $(find . -name perf_counter.[ch]); do
M=$(echo $N | sed 's/perf_counter/perf_event/g')
mv $N $M
done
FILES=$(find . -name perf_event.*)
sed -i \
-e 's/COUNTER_MASK/REG_MASK/g' \
-e 's/COUNTER/EVENT/g' \
-e 's/\<event\>/event_id/g' \
-e 's/counter/event/g' \
-e 's/Counter/Event/g' \
$FILES
... to keep it as correct as possible. This script can also be
used by anyone who has pending perfcounters patches - it converts
a Linux kernel tree over to the new naming. We tried to time this
change to the point in time where the amount of pending patches
is the smallest: the end of the merge window.
Namespace clashes were fixed up in a preparatory patch - and some
stylistic fallout will be fixed up in a subsequent patch.
( NOTE: 'counters' are still the proper terminology when we deal
with hardware registers - and these sed scripts are a bit
over-eager in renaming them. I've undone some of that, but
in case there's something left where 'counter' would be
better than 'event' we can undo that on an individual basis
instead of touching an otherwise nicely automated patch. )
Suggested-by: Stephane Eranian <eranian@google.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Paul Mackerras <paulus@samba.org>
Reviewed-by: Arjan van de Ven <arjan@linux.intel.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Kyle McMartin <kyle@mcmartin.ca>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: <linux-arch@vger.kernel.org>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc: (134 commits)
powerpc/nvram: Enable use Generic NVRAM driver for different size chips
powerpc/iseries: Fix oops reading from /proc/iSeries/mf/*/cmdline
powerpc/ps3: Workaround for flash memory I/O error
powerpc/booke: Don't set DABR on 64-bit BookE, use DAC1 instead
powerpc/perf_counters: Reduce stack usage of power_check_constraints
powerpc: Fix bug where perf_counters breaks oprofile
powerpc/85xx: Fix SMP compile error and allow NULL for smp_ops
powerpc/irq: Improve nanodoc
powerpc: Fix some late PowerMac G5 with PCIe ATI graphics
powerpc/fsl-booke: Use HW PTE format if CONFIG_PTE_64BIT
powerpc/book3e: Add missing page sizes
powerpc/pseries: Fix to handle slb resize across migration
powerpc/powermac: Thermal control turns system off too eagerly
powerpc/pci: Merge ppc32 and ppc64 versions of phb_scan()
powerpc/405ex: support cuImage via included dtb
powerpc/405ex: provide necessary fixup function to support cuImage
powerpc/40x: Add support for the ESTeem 195E (PPC405EP) SBC
powerpc/44x: Add Eiger AMCC (AppliedMicro) PPC460SX evaluation board support.
powerpc/44x: Update Arches defconfig
powerpc/44x: Update Arches dts
...
Fix up conflicts in drivers/char/agp/uninorth-agp.c
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu: (46 commits)
powerpc64: convert to dynamic percpu allocator
sparc64: use embedding percpu first chunk allocator
percpu: kill lpage first chunk allocator
x86,percpu: use embedding for 64bit NUMA and page for 32bit NUMA
percpu: update embedding first chunk allocator to handle sparse units
percpu: use group information to allocate vmap areas sparsely
vmalloc: implement pcpu_get_vm_areas()
vmalloc: separate out insert_vmalloc_vm()
percpu: add chunk->base_addr
percpu: add pcpu_unit_offsets[]
percpu: introduce pcpu_alloc_info and pcpu_group_info
percpu: move pcpu_lpage_build_unit_map() and pcpul_lpage_dump_cfg() upward
percpu: add @align to pcpu_fc_alloc_fn_t
percpu: make @dyn_size mandatory for pcpu_setup_first_chunk()
percpu: drop @static_size from first chunk allocators
percpu: generalize first chunk allocator selection
percpu: build first chunk allocators selectively
percpu: rename 4k first chunk allocator to page
percpu: improve boot messages
percpu: fix pcpu_reclaim() locking
...
Fix trivial conflict as by Tejun Heo in kernel/sched.c
The SLB can change sizes across a live migration, which was not
being handled, resulting in possible machine crashes during
migration if migrating to a machine which has a smaller max SLB
size than the source machine. Fix this by first reducing the
SLB size to the minimum possible value, which is 32, prior to
migration. Then during the device tree update which occurs after
migration, we make the call to ensure the SLB gets updated. Also
add the slb_size to the lparcfg output so that the migration
tools can check to make sure the kernel has this capability
before allowing migration in scenarios where the SLB size will change.
BenH: Fixed #include <asm/mmu-hash64.h> -> <asm/mmu.h> to avoid
breaking ppc32 build
Signed-off-by: Brian King <brking@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Support for TLB reservation (or TLB Write Conditional) and Paired MAS
registers are optional for a processor implementation so we handle
them via MMU feature sections.
We currently only used paired MAS registers to access the full RPN + perm
bits that are kept in MAS7||MAS3. We assume that if an implementation has
hardware page table at this time it also implements in TLB reservations.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This is an attempt at cleaning up a bit the way we handle execute
permission on powerpc. _PAGE_HWEXEC is gone, _PAGE_EXEC is now only
defined by CPUs that can do something with it, and the myriad of
#ifdef's in the I$/D$ coherency code is reduced to 2 cases that
hopefully should cover everything.
The logic on BookE is a little bit different than what it was though
not by much. Since now, _PAGE_EXEC will be set by the generic code
for executable pages, we need to filter out if they are unclean and
recover it. However, I don't expect the code to be more bloated than
it already was in that area due to that change.
I could boast that this brings proper enforcing of per-page execute
permissions to all BookE and 40x but in fact, we've had that now for
some time as a side effect of my previous rework in that area (and
I didn't even know it :-) We would only enable execute permission if
the page was cache clean and we would only cache clean it if we took
and exec fault. Since we now enforce that the later only work if
VM_EXEC is part of the VMA flags, we de-fact already enforce per-page
execute permissions... Unless I missed something
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The MMUCSR is now defined as part of the Book-3E architecture so we
can move it into mmu-book3e.h and add some of the additional bits
defined by the architecture specs.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Since the pte_lockptr is a spinlock it gets optimized away on
uniprocessor builds so using spin_is_locked is not correct. We can use
assert_spin_locked instead and get the proper behavior between UP and
SMP builds.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
cam[tlbcam_index] is checked before tlbcam_index < ARRAY_SIZE(cam)
Signed-off-by: Roel Kluin <roel.kluin@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Introduced a temporary variable into our iterating over the list cpus
that are threads on the same core. For some reason Ben forgot how for
loops work.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This contains all the bits that didn't fit in previous patches :-) This
includes the actual exception handlers assembly, the changes to the
kernel entry, other misc bits and wiring it all up in Kconfig.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The base TLB support didn't include support for SPARSEMEM_VMEMMAP, though
we did carve out some virtual space for it, the necessary support code
wasn't there. This implements it by using 16M pages for now, though the
page size could easily be changed at runtime if necessary.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This adds the TLB miss handler assembly, the low level TLB flush routines
along with the necessary hook for dealing with our virtual page tables
or indirect TLB entries that need to be flushes when PTE pages are freed.
There is currently no support for hugetlbfs
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The definition for the global structure mmu_gathers, used by generic code,
is currently defined in multiple places not including anything used by
64-bit Book3E. This changes it by moving to one place common to all
processors.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This adds the PTE and pgtable format definitions, along with changes
to the kernel memory map and other definitions related to implementing
support for 64-bit Book3E. This also shields some asm-offset bits that
are currently only relevant on 32-bit
We also move the definition of the "linux" page size constants to
the common mmu.h file and add a few sizes that are relevant to
embedded processors.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
That patch used to just add a hook to page table flushing but
pulling that string brought out a whole bunch of issues, so it
now does that and more:
- We now make the RCU batching of page freeing SMP only, as I
believe it was intended initially. We make a few more things compile
to nothing on !CONFIG_SMP
- Some macros are turned into functions, though that forced me to
out of line a few stuffs due to unsolvable include depenencies,
however it's probably better that way anyway, it's not -that-
critical code path.
- 32-bit didn't call pte_free_finish() on tlb_flush() which means
that it wouldn't push out the batch to RCU for delayed freeing when
a bunch of page tables have been freed, they would just stay in there
until the batch gets full.
64-bit BookE will use that hook to maintain the virtually linear
page tables or the indirect entries in the TLB when using the
HW loader.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
We need to pass down whether the page is direct or indirect and we'll
need to pass the page size to _tlbil_va and _tlbivax_bcast
We also add a new low level _tlbil_pid_noind() which does a TLB flush
by PID but avoids flushing indirect entries if possible
This implements those new prototypes but defines them with inlines
or macros so that no additional arguments are actually passed on current
processors.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This adds some code to do early ioremap's using page tables instead of
bolting entries in the hash table. This will be used by the upcoming
64-bits BookE port.
The patch also changes the test for early vs. late ioremap to use
slab_is_available() instead of our old hackish mem_init_done.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The current "no hash" MMU context management code is written with
the assumption that one CPU == one TLB. This is not the case on
implementations that support HW multithreading, where several
linux CPUs can share the same TLB.
This adds some basic support for this to our context management
and our TLB flushing code.
It also cleans up the optional debugging output a bit
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The kernel uses SPRG registers for various purposes, typically in
low level assembly code as scratch registers or to hold per-cpu
global infos such as the PACA or the current thread_info pointer.
We want to be able to easily shuffle the usage of those registers
as some implementations have specific constraints realted to some
of them, for example, some have userspace readable aliases, etc..
and the current choice isn't always the best.
This patch should not change any code generation, and replaces the
usage of SPRN_SPRGn everywhere in the kernel with a named replacement
and adds documentation next to the definition of the names as to
what those are used for on each processor family.
The only parts that still use the original numbers are bits of KVM
or suspend/resume code that just blindly needs to save/restore all
the SPRGs.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
TASK_UNMAPPED_BASE is not used with the new top down mmap layout. We can
reuse this preload slot by loading in the segment at 0x10000000, where almost
all PowerPC binaries are linked at.
On a microbenchmark that bounces a token between two 64bit processes over pipes
and calls gettimeofday each iteration (to access the VDSO), both the 32bit and
64bit context switch rate improves (tested on a 4GHz POWER6):
32bit: 273k/sec -> 283k/sec
64bit: 277k/sec -> 284k/sec
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
With the new top down layout it is likely that the pc and stack will be in the
same segment, because the pc is most likely in a library allocated via a top
down mmap. Right now we bail out early if these segments match.
Rearrange the SLB preload code to sanity check all SLB preload addresses
are not in the kernel, then check all addresses for conflicts.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This provides a mechanism to allow the perf_counters code to access
user memory in a PMU interrupt routine. Such an access can cause
various kinds of interrupt: SLB miss, MMU hash table miss, segment
table miss, or TLB miss, depending on the processor. This commit
only deals with 64-bit classic/server processors, which use an MMU
hash table. 32-bit processors are already able to access user memory
at interrupt time. Since we don't soft-disable on 32-bit, we avoid
the possibility of reentering hash_page or the TLB miss handlers,
since they run with interrupts disabled.
On 64-bit processors, an SLB miss interrupt on a user address will
update the slb_cache and slb_cache_ptr fields in the paca. This is
OK except in the case where a PMU interrupt occurs in switch_slb,
which also accesses those fields. To prevent this, we hard-disable
interrupts in switch_slb. Interrupts are already soft-disabled at
this point, and will get hard-enabled when they get soft-enabled
later.
This also reworks slb_flush_and_rebolt: to avoid hard-disabling twice,
and to make sure that it clears the slb_cache_ptr when called from
other callers than switch_slb, the existing routine is renamed to
__slb_flush_and_rebolt, which is called by switch_slb and the new
version of slb_flush_and_rebolt.
Similarly, switch_stab (used on POWER3 and RS64 processors) gets a
hard_irq_disable() to protect the per-cpu variables used there and
in ste_allocate.
If a MMU hashtable miss interrupt occurs, normally we would call
hash_page to look up the Linux PTE for the address and create a HPTE.
However, hash_page is fairly complex and takes some locks, so to
avoid the possibility of deadlock, we check the preemption count
to see if we are in a (pseudo-)NMI handler, and if so, we don't call
hash_page but instead treat it like a bad access that will get
reported up through the exception table mechanism. An interrupt
whose handler runs even though the interrupt occurred when
soft-disabled (such as the PMU interrupt) is considered a pseudo-NMI
handler, which should use nmi_enter()/nmi_exit() rather than
irq_enter()/irq_exit().
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Conflicts:
arch/sparc/kernel/smp_64.c
arch/x86/kernel/cpu/perf_counter.c
arch/x86/kernel/setup_percpu.c
drivers/cpufreq/cpufreq_ondemand.c
mm/percpu.c
Conflicts in core and arch percpu codes are mostly from commit
ed78e1e078dd44249f88b1dd8c76dafb39567161 which substituted many
num_possible_cpus() with nr_cpu_ids. As for-next branch has moved all
the first chunk allocators into mm/percpu.c, the changes are moved
from arch code to mm/percpu.c.
Signed-off-by: Tejun Heo <tj@kernel.org>
In switch_mmu_context() if we call steal_context_smp() to get a context
to use we shouldn't fall through and than call steal_context_up(). Doing
so can be problematic in that the 'mm' that steal_context_up() ends up
using will not get marked dirty in the stale_map[] for other CPUs that
might have used that mm. Thus we could end up with stale TLB entries in
the other CPUs that can cause all kinda of havoc.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
mm: Pass virtual address to [__]p{te,ud,md}_free_tlb()
Upcoming paches to support the new 64-bit "BookE" powerpc architecture
will need to have the virtual address corresponding to PTE page when
freeing it, due to the way the HW table walker works.
Basically, the TLB can be loaded with "large" pages that cover the whole
virtual space (well, sort-of, half of it actually) represented by a PTE
page, and which contain an "indirect" bit indicating that this TLB entry
RPN points to an array of PTEs from which the TLB can then create direct
entries. Thus, in order to invalidate those when PTE pages are deleted,
we need the virtual address to pass to tlbilx or tlbivax instructions.
The old trick of sticking it somewhere in the PTE page struct page sucks
too much, the address is almost readily available in all call sites and
almost everybody implemets these as macros, so we may as well add the
argument everywhere. I added it to the pmd and pud variants for consistency.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: David Howells <dhowells@redhat.com> [MN10300 & FRV]
Acked-by: Nick Piggin <npiggin@suse.de>
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> [s390]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
pr_debug() can now result in code being generated even when DEBUG
is not defined. That's not really desirable in some places.
With CONFIG_DYNAMIC_DEBUG=y:
size before:
text data bss dec hex filename
2036 368 8 2412 96c arch/powerpc/mm/pgtable.o
size after:
text data bss dec hex filename
1677 248 8 1933 78d arch/powerpc/mm/pgtable.o
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
pr_debug() can now result in code being generated even when DEBUG
is not defined. That's not really desirable in some places.
With CONFIG_DYNAMIC_DEBUG=y:
size before:
text data bss dec hex filename
3252 384 0 3636 e34 arch/powerpc/mm/gup.o
size after:
text data bss dec hex filename
2576 96 0 2672 a70 arch/powerpc/mm/gup.o
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
pr_debug() can now result in code being generated even when DEBUG
is not defined. That's not really desirable in some places.
With CONFIG_DYNAMIC_DEBUG=y:
size before:
text data bss dec hex filename
3261 416 4 3681 e61 arch/powerpc/mm/slb.o
size after:
text data bss dec hex filename
2861 248 4 3113 c29 arch/powerpc/mm/slb.o
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
pr_debug() can now result in code being generated even when DEBUG
is not defined. That's not really desirable in some places.
With CONFIG_DYNAMIC_DEBUG=y:
size before:
text data bss dec hex filename
1508 48 28 1584 630 powerpc/mm/mmu_context_nohash.o
size after:
text data bss dec hex filename
1088 0 28 1116 45c powerpc/mm/mmu_context_nohash.o
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Pull linus#master to merge PER_CPU_DEF_ATTRIBUTES and alpha build fix
changes. As alpha in percpu tree uses 'weak' attribute instead of
inline assembly, there's no need for __used attribute.
Conflicts:
arch/alpha/include/asm/percpu.h
arch/mn10300/kernel/vmlinux.lds.S
include/linux/percpu-defs.h