ktime_set(S,N) was required for the timespec storage type and is still
useful for situations where a Seconds and Nanoseconds part of a time value
needs to be converted. For anything where the Seconds argument is 0, this
is pointless and can be replaced with a simple assignment.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
ktime is a union because the initial implementation stored the time in
scalar nanoseconds on 64 bit machine and in a endianess optimized timespec
variant for 32bit machines. The Y2038 cleanup removed the timespec variant
and switched everything to scalar nanoseconds. The union remained, but
become completely pointless.
Get rid of the union and just keep ktime_t as simple typedef of type s64.
The conversion was done with coccinelle and some manual mopping up.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
This was entirely automated, using the script by Al:
PATT='^[[:blank:]]*#[[:blank:]]*include[[:blank:]]*<asm/uaccess.h>'
sed -i -e "s!$PATT!#include <linux/uaccess.h>!" \
$(git grep -l "$PATT"|grep -v ^include/linux/uaccess.h)
to do the replacement at the end of the merge window.
Requested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The documentation for schedule_timeout(), schedule_hrtimeout(), and
schedule_hrtimeout_range() all claim that the routines couldn't possibly
return early if the task state was TASK_UNINTERRUPTIBLE. This is simply
not true since wake_up_process() will cause those routines to exit early.
We cannot make schedule_[hr]timeout() loop until the timeout expires if the
task state is uninterruptible because we have users which rely on the
existing and designed behaviour.
Make the documentation match the (correct) implementation.
schedule_hrtimeout() returns -EINTR even when a uninterruptible task was
woken up. This might look strange, but making the return code depend on the
state is too much of an effort as it would affect all the call sites. There
is no value in doing so, but we spell it out clearly in the documentation.
Suggested-by: Daniel Kurtz <djkurtz@chromium.org>
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Cc: huangtao@rock-chips.com
Cc: heiko@sntech.de
Cc: broonie@kernel.org
Cc: briannorris@chromium.org
Cc: Andreas Mohr <andi@lisas.de>
Cc: linux-rockchip@lists.infradead.org
Cc: tony.xie@rock-chips.com
Cc: John Stultz <john.stultz@linaro.org>
Cc: linux@roeck-us.net
Cc: tskd08@gmail.com
Link: http://lkml.kernel.org/r/1477065531-30342-2-git-send-email-dianders@chromium.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Split out the clockevents callbacks instead of piggybacking them on
hrtimers.
This gets rid of a POST_DEAD user. See commit:
54e88fad22 ("sched: Make sure timers have migrated before killing the migration_thread")
We just move the callback state to the proper place in the state machine.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Reviewed-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: rt@linutronix.de
Link: http://lkml.kernel.org/r/20160713153337.485419196@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Only need CONFIG_NO_HZ_COMMON as this block is already in a
CONFIG_SMP block.
Signed-off-by: Pratyush Patel <pratyushpatel.1995@gmail.com>
Link: http://lkml.kernel.org/r/20160301172849.GA18152@cyborg
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
hrtimer_init_on_stack() needs a matching call to
destroy_hrtimer_on_stack(), so both need to be exported.
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
When activating a static object we need make sure that the object is
tracked in the object tracker. If it is a non-static object then the
activation is illegal.
In previous implementation, each subsystem need take care of this in
their fixup callbacks. Actually we can put it into debugobjects core.
Thus we can save duplicated code, and have *pure* fixup callbacks.
To achieve this, a new callback "is_static_object" is introduced to let
the type specific code decide whether a object is static or not. If
yes, we take it into object tracker, otherwise give warning and invoke
fixup callback.
This change has paassed debugobjects selftest, and I also do some test
with all debugobjects supports enabled.
At last, I have a concern about the fixups that can it change the object
which is in incorrect state on fixup? Because the 'addr' may not point
to any valid object if a non-static object is not tracked. Then Change
such object can overwrite someone's memory and cause unexpected
behaviour. For example, the timer_fixup_activate bind timer to function
stub_timer.
Link: http://lkml.kernel.org/r/1462576157-14539-1-git-send-email-changbin.du@intel.com
[changbin.du@intel.com: improve code comments where invoke the new is_static_object callback]
Link: http://lkml.kernel.org/r/1462777431-8171-1-git-send-email-changbin.du@intel.com
Signed-off-by: Du, Changbin <changbin.du@intel.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Josh Triplett <josh@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Update the return type to use bool instead of int, corresponding to
cheange (debugobjects: make fixup functions return bool instead of int).
Signed-off-by: Du, Changbin <changbin.du@intel.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Josh Triplett <josh@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This changes several users of manual "on"/"off" parsing to use
strtobool.
Some side-effects:
- these uses will now parse y/n/1/0 meaningfully too
- the early_param uses will now bubble up parse errors
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: Amitkumar Karwar <akarwar@marvell.com>
Cc: Andy Shevchenko <andy.shevchenko@gmail.com>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Joe Perches <joe@perches.com>
Cc: Kalle Valo <kvalo@codeaurora.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Nishant Sarmukadam <nishants@marvell.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Steve French <sfrench@samba.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patchset introduces a /proc/<pid>/timerslack_ns interface which
would allow controlling processes to be able to set the timerslack value
on other processes in order to save power by avoiding wakeups (Something
Android currently does via out-of-tree patches).
The first patch tries to fix the internal timer_slack_ns usage which was
defined as a long, which limits the slack range to ~4 seconds on 32bit
systems. It converts it to a u64, which provides the same basically
unlimited slack (500 years) on both 32bit and 64bit machines.
The second patch introduces the /proc/<pid>/timerslack_ns interface
which allows the full 64bit slack range for a task to be read or set on
both 32bit and 64bit machines.
With these two patches, on a 32bit machine, after setting the slack on
bash to 10 seconds:
$ time sleep 1
real 0m10.747s
user 0m0.001s
sys 0m0.005s
The first patch is a little ugly, since I had to chase the slack delta
arguments through a number of functions converting them to u64s. Let me
know if it makes sense to break that up more or not.
Other than that things are fairly straightforward.
This patch (of 2):
The timer_slack_ns value in the task struct is currently a unsigned
long. This means that on 32bit applications, the maximum slack is just
over 4 seconds. However, on 64bit machines, its much much larger (~500
years).
This disparity could make application development a little (as well as
the default_slack) to a u64. This means both 32bit and 64bit systems
have the same effective internal slack range.
Now the existing ABI via PR_GET_TIMERSLACK and PR_SET_TIMERSLACK specify
the interface as a unsigned long, so we preserve that limitation on
32bit systems, where SET_TIMERSLACK can only set the slack to a unsigned
long value, and GET_TIMERSLACK will return ULONG_MAX if the slack is
actually larger then what can be stored by an unsigned long.
This patch also modifies hrtimer functions which specified the slack
delta as a unsigned long.
Signed-off-by: John Stultz <john.stultz@linaro.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Oren Laadan <orenl@cellrox.com>
Cc: Ruchi Kandoi <kandoiruchi@google.com>
Cc: Rom Lemarchand <romlem@android.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Android Kernel Team <kernel-team@android.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If CONFIG_TIME_LOW_RES is enabled we add a jiffie to the relative timeout to
prevent short sleeps, but we do not account for that in interfaces which
retrieve the remaining time.
Helge observed that timerfd can return a remaining time larger than the
relative timeout. That's not expected and breaks userland test programs.
Store the information that the timer was armed relative and provide functions
to adjust the remaining time. To avoid bloating the hrtimer struct make state
a u8, which as a bonus results in better code on x86 at least.
Reported-and-tested-by: Helge Deller <deller@gmx.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: John Stultz <john.stultz@linaro.org>
Cc: linux-m68k@lists.linux-m68k.org
Cc: dhowells@redhat.com
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/20160114164159.273328486@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Cc: Hanjun Guo <guohanjun@huawei.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tianhong Ding <dingtianhong@huawei.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Xinwei Hu <huxinwei@huawei.com>
Cc: Xunlei Pang <pang.xunlei@linaro.org>
Cc: Zefan Li <lizefan@huawei.com>
Link: http://lkml.kernel.org/r/1440484973-13892-1-git-send-email-thunder.leizhen@huawei.com
[ Fixed yet another typo in one of the sentences fixed. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit 75e3b37d05 ("hrtimer: Drop return code of hrtimer_switch_to_hres()")
drops the return code of hrtimer_switch_to_hres(). While doing so, it also
drops the return statement itself on failure. This may cause a system hang.
Seen when running arm:multi_v7_defconfig in qemu with devicetree file
vexpress-v2p-ca9.
Fixes: 75e3b37d05 ("hrtimer: Drop return code of hrtimer_switch_to_hres()")
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Link: http://lkml.kernel.org/r/1440231047-16256-1-git-send-email-linux@roeck-us.net
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The variable called "this_base" is confusing because its name suggests
it's of "struct hrtimer_clock_base" type, along with "base" and "new_base"
which doesn't help understanding this complicated function.
Make its name clearer and fix the misleading comment while at it.
[ tglx: Fixed the comment for real ]
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/1439907509-9553-3-git-send-email-fweisbec@gmail.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Pull timer updates from Thomas Gleixner:
"A rather largish update for everything time and timer related:
- Cache footprint optimizations for both hrtimers and timer wheel
- Lower the NOHZ impact on systems which have NOHZ or timer migration
disabled at runtime.
- Optimize run time overhead of hrtimer interrupt by making the clock
offset updates smarter
- hrtimer cleanups and removal of restrictions to tackle some
problems in sched/perf
- Some more leap second tweaks
- Another round of changes addressing the 2038 problem
- First step to change the internals of clock event devices by
introducing the necessary infrastructure
- Allow constant folding for usecs/msecs_to_jiffies()
- The usual pile of clockevent/clocksource driver updates
The hrtimer changes contain updates to sched, perf and x86 as they
depend on them plus changes all over the tree to cleanup API changes
and redundant code, which got copied all over the place. The y2038
changes touch s390 to remove the last non 2038 safe code related to
boot/persistant clock"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (114 commits)
clocksource: Increase dependencies of timer-stm32 to limit build wreckage
timer: Minimize nohz off overhead
timer: Reduce timer migration overhead if disabled
timer: Stats: Simplify the flags handling
timer: Replace timer base by a cpu index
timer: Use hlist for the timer wheel hash buckets
timer: Remove FIFO "guarantee"
timers: Sanitize catchup_timer_jiffies() usage
hrtimer: Allow hrtimer::function() to free the timer
seqcount: Introduce raw_write_seqcount_barrier()
seqcount: Rename write_seqcount_barrier()
hrtimer: Fix hrtimer_is_queued() hole
hrtimer: Remove HRTIMER_STATE_MIGRATE
selftest: Timers: Avoid signal deadlock in leap-a-day
timekeeping: Copy the shadow-timekeeper over the real timekeeper last
clockevents: Check state instead of mode in suspend/resume path
selftests: timers: Add leap-second timer edge testing to leap-a-day.c
ntp: Do leapsecond adjustment in adjtimex read path
time: Prevent early expiry of hrtimers[CLOCK_REALTIME] at the leap second edge
ntp: Introduce and use SECS_PER_DAY macro instead of 86400
...
If nohz is disabled on the kernel command line the [hr]timer code
still calls wake_up_nohz_cpu() and tick_nohz_full_cpu(), a pretty
pointless exercise. Cache nohz_active in [hr]timer per cpu bases and
avoid the overhead.
Before:
48.10% hog [.] main
15.25% [kernel] [k] _raw_spin_lock_irqsave
9.76% [kernel] [k] _raw_spin_unlock_irqrestore
6.50% [kernel] [k] mod_timer
6.44% [kernel] [k] lock_timer_base.isra.38
3.87% [kernel] [k] detach_if_pending
3.80% [kernel] [k] del_timer
2.67% [kernel] [k] internal_add_timer
1.33% [kernel] [k] __internal_add_timer
0.73% [kernel] [k] timerfn
0.54% [kernel] [k] wake_up_nohz_cpu
After:
48.73% hog [.] main
15.36% [kernel] [k] _raw_spin_lock_irqsave
9.77% [kernel] [k] _raw_spin_unlock_irqrestore
6.61% [kernel] [k] lock_timer_base.isra.38
6.42% [kernel] [k] mod_timer
3.90% [kernel] [k] detach_if_pending
3.76% [kernel] [k] del_timer
2.41% [kernel] [k] internal_add_timer
1.39% [kernel] [k] __internal_add_timer
0.76% [kernel] [k] timerfn
We probably should have a cached value for nohz full in the per cpu
bases as well to avoid the cpumask check. The base cache line is hot
already, the cpumask not necessarily.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Joonwoo Park <joonwoop@codeaurora.org>
Cc: Wenbo Wang <wenbo.wang@memblaze.com>
Link: http://lkml.kernel.org/r/20150526224512.207378134@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Eric reported that the timer_migration sysctl is not really nice
performance wise as it needs to check at every timer insertion whether
the feature is enabled or not. Further the check does not live in the
timer code, so we have an extra function call which checks an extra
cache line to figure out that it is disabled.
We can do better and store that information in the per cpu (hr)timer
bases. I pondered to use a static key, but that's a nightmare to
update from the nohz code and the timer base cache line is hot anyway
when we select a timer base.
The old logic enabled the timer migration unconditionally if
CONFIG_NO_HZ was set even if nohz was disabled on the kernel command
line.
With this modification, we start off with migration disabled. The user
visible sysctl is still set to enabled. If the kernel switches to NOHZ
migration is enabled, if the user did not disable it via the sysctl
prior to the switch. If nohz=off is on the kernel command line,
migration stays disabled no matter what.
Before:
47.76% hog [.] main
14.84% [kernel] [k] _raw_spin_lock_irqsave
9.55% [kernel] [k] _raw_spin_unlock_irqrestore
6.71% [kernel] [k] mod_timer
6.24% [kernel] [k] lock_timer_base.isra.38
3.76% [kernel] [k] detach_if_pending
3.71% [kernel] [k] del_timer
2.50% [kernel] [k] internal_add_timer
1.51% [kernel] [k] get_nohz_timer_target
1.28% [kernel] [k] __internal_add_timer
0.78% [kernel] [k] timerfn
0.48% [kernel] [k] wake_up_nohz_cpu
After:
48.10% hog [.] main
15.25% [kernel] [k] _raw_spin_lock_irqsave
9.76% [kernel] [k] _raw_spin_unlock_irqrestore
6.50% [kernel] [k] mod_timer
6.44% [kernel] [k] lock_timer_base.isra.38
3.87% [kernel] [k] detach_if_pending
3.80% [kernel] [k] del_timer
2.67% [kernel] [k] internal_add_timer
1.33% [kernel] [k] __internal_add_timer
0.73% [kernel] [k] timerfn
0.54% [kernel] [k] wake_up_nohz_cpu
Reported-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Joonwoo Park <joonwoop@codeaurora.org>
Cc: Wenbo Wang <wenbo.wang@memblaze.com>
Link: http://lkml.kernel.org/r/20150526224512.127050787@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Currently an hrtimer callback function cannot free its own timer
because __run_hrtimer() still needs to clear HRTIMER_STATE_CALLBACK
after it. Freeing the timer would result in a clear use-after-free.
Solve this by using a scheme similar to regular timers; track the
current running timer in hrtimer_clock_base::running.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: ktkhai@parallels.com
Cc: rostedt@goodmis.org
Cc: juri.lelli@gmail.com
Cc: pang.xunlei@linaro.org
Cc: wanpeng.li@linux.intel.com
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: umgwanakikbuti@gmail.com
Link: http://lkml.kernel.org/r/20150611124743.471563047@infradead.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
To avoid getting spurious interrupts on a tickless CPU, clockevent
device can now be stopped by switching to ONESHOT_STOPPED state.
The natural place for handling this transition is tick_program_event().
On 'expires == KTIME_MAX', we skip programming the event and so we need
to fix such call sites as well, to always call tick_program_event()
irrespective of the expires value.
Once the clockevent device is required again, check if it was earlier
put into ONESHOT_STOPPED state. If yes, switch its state to ONESHOT
before programming its event.
To make sure we haven't missed any corner case, add a WARN() for the
case where we try to reprogram clockevent device while we aren't
configured in ONESHOT_STOPPED state.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: linaro-kernel@lists.linaro.org
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/5146b07be7f0bc497e0ebae036590ec2fa73e540.1428031396.git.viresh.kumar@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
It was noted that the 32bit implementation of ktime_divns()
was doing unsigned division and didn't properly handle
negative values.
And when a ktime helper was changed to utilize
ktime_divns, it caused a regression on some IR blasters.
See the following bugzilla for details:
https://bugzilla.redhat.com/show_bug.cgi?id=1200353
This patch fixes the problem in ktime_divns by checking
and preserving the sign bit, and then reapplying it if
appropriate after the division, it also changes the return
type to a s64 to make it more obvious this is expected.
Nicolas also pointed out that negative dividers would
cause infinite loops on 32bit systems, negative dividers
is unlikely for users of this function, but out of caution
this patch adds checks for negative dividers for both
32-bit (BUG_ON) and 64-bit(WARN_ON) versions to make sure
no such use cases creep in.
[ tglx: Hand an u64 to do_div() to avoid the compiler warning ]
Fixes: 166afb6451 'ktime: Sanitize ktime_to_us/ms conversion'
Reported-and-tested-by: Trevor Cordes <trevor@tecnopolis.ca>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Acked-by: Nicolas Pitre <nicolas.pitre@linaro.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Josh Boyer <jwboyer@redhat.com>
Cc: One Thousand Gnomes <gnomes@lxorguk.ukuu.org.uk>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/1431118043-23452-1-git-send-email-john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Because we drop cpu_base->lock around calling hrtimer::function, it is
possible for hrtimer_start() to come in between and enqueue the timer.
If hrtimer::function then returns HRTIMER_RESTART we'll hit the BUG_ON
because HRTIMER_STATE_ENQUEUED will be set.
Since the above is a perfectly valid scenario, remove the BUG_ON and
make the enqueue_hrtimer() call conditional on the timer not being
enqueued already.
NOTE: in that concurrent scenario its entirely common for both sites
to want to modify the hrtimer, since hrtimers don't provide
serialization themselves be sure to provide some such that the
hrtimer::function and the hrtimer_start() caller don't both try and
fudge the expiration state at the same time.
To that effect, add a WARN when someone tries to forward an already
enqueued timer, the most common way to change the expiry of self
restarting timers. Ideally we'd put the WARN in everything modifying
the expiry but most of that is inlines and we don't need the bloat.
Fixes: 2d44ae4d71 ("hrtimer: clean up cpu->base locking tricks")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Roman Gushchin <klamm@yandex-team.ru>
Cc: Paul Turner <pjt@google.com>
Link: http://lkml.kernel.org/r/20150415113105.GT5029@twins.programming.kicks-ass.net
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
We can do a lockless check for hrtimer_active before actually taking
the lock in hrtimer[_try_to]_cancel. This is useful for hotpath users
like nanosleep as they avoid the lock dance when the timer has
expired.
This is safe because active is true when the timer is enqueued or the
callback is running. Taking the hrtimer base lock does not protect
against concurrent hrtimer_start calls, the callsite has to do the
proper serialization itself.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/20150414203503.580273114@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
No user was ever interested whether the timer was active or not when
it was started. All abusers of the return value are gone, so get rid
of it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/20150414203503.483556394@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The check for hrtimer_active() after starting the timer is
pointless. If the timer is inactive it has expired already and
therefor the task pointer is already NULL.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/20150414203502.907149271@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
No point for an extra export just to set the extra argument of
hrtimer_start_range_ns() to 0.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/20150414203502.808544539@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The evaluation of the next timer in the nohz code is based on jiffies
while all the tick internals are nano seconds based. We have also to
convert hrtimer nanoseconds to jiffies in the !highres case. That's
just wrong and introduces interesting corner cases.
Turn it around and convert the next timer wheel timer expiry and the
rcu event to clock monotonic and base all calculations on
nanoseconds. That identifies the case where no timer is pending
clearly with an absolute expiry value of KTIME_MAX.
Makes the code more readable and gets rid of the jiffies magic in the
nohz code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Link: http://lkml.kernel.org/r/20150414203502.184198593@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
hrtimer softirq is a leftover from the initial implementation and
serves only the purpose to handle the enqueueing of already expired
timers in the high resolution timer mode. We discussed whether we
change the return value and force all start sites to handle that the
timer is already expired, but that would be a Herculean task and I'm
not sure whether its a good idea to enforce that handling on
everyone.
A simpler solution is to enforce a timer interrupt instead of raising
and scheduling a softirq. Just use the existing infrastructure to do
so and remove all the softirq leftovers.
The HRTIMER softirq enum is now unused, but kept around because trace
parsers rely on the existing numbering.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/20150414203501.840834708@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
__remove_hrtimer() needs to evaluate the expiry time to figure out
whether the timer which is removed is eventually the first expiring
timer on the cpu. Keep a pointer to it, which is lazily updated, so we
can avoid the evaluation dance and retrieve the information from there.
Generates slightly better code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/20150414203501.752838019@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Use the return value instead of reevaluating the information.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/20150414203501.658152945@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The active_bases field is guaranteed to be in sync with the timerqueue
of the corresponding clock base. So we can use it for iterating over
the clock bases. This allows to break out early if no more active
clock bases are available and avoids touching the cache lines of
inactive clock bases.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/20150414203501.322887675@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
On every tick/hrtimer interrupt we update the offset variables of the
clock bases. That's silly because these offsets change very seldom.
Add a sequence counter to the time keeping code which keeps track of
the offset updates (clock_was_set()). Have a sequence cache in the
hrtimer cpu bases to evaluate whether the offsets must be updated or
not. This allows us later to avoid pointless cacheline pollution.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: John Stultz <john.stultz@linaro.org>
Link: http://lkml.kernel.org/r/20150414203501.132820245@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: John Stultz <john.stultz@linaro.org>
The softirq time field in the clock bases is an optimization from the
early days of hrtimers. It provides a coarse "jiffies" like time
mostly for self rearming timers.
But that comes with a price:
- Larger code size
- Extra storage space
- Duplicated functions with really small differences
The benefit of this is optimization is marginal for contemporary
systems.
Consolidate everything on the high resolution timer
implementation. This makes further optimizations possible.
Text size reduction:
x8664 -95, i386 -356, ARM -148, ARM64 -40, power64 -16
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/20150414203501.039977424@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
No point in having usigned long for /proc/timer_list statistics. Make
them unsigned int.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/20150414203500.959773467@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The resolution is directly accessible now. So its simpler just to fill
in the values of the timespec and be done with it.
Text size reduction (combined with "hrtimer: Get rid of the resolution
field in hrtimer_clock_base"):
x8664 -61, i386 -221, ARM -60, power64 -48
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/20150414203500.879888080@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The field has no value because all clock bases have the same
resolution. The resolution only changes when we switch to high
resolution timer mode. We can evaluate that from a single static
variable as well. In the !HIGHRES case its simply a constant.
Export the variable, so we can simplify the usage sites.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/20150414203500.645454122@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
'active_bases' indicates which clock-base have active timer. The
intention of this bit field was to avoid evaluating inactive bases. It
was introduced with the introduction of the BOOTTIME and TAI clock
bases, but it was never brought into full use.
We want to use it now, but in __remove_hrtimer() the update happens
after the calling hrtimer_force_reprogram() which has to evaluate all
clock bases for the next expiring timer. So in case the last timer of
a clock base got removed we still see the active bit and therefor
evaluate the clock base for no value. There are further optimizations
possible when active_bases is updated in the right place.
Move the update before the call to hrtimer_force_reprogram()
[ tglx: Massaged changelog ]
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: linaro-kernel@lists.linaro.org
Link: http://lkml.kernel.org/r/20150414203500.533438642@linutronix.de
Link: http://lkml.kernel.org/r/c7c8ebcd9ed88bb09d76059c745a1fafb48314e7.1428039899.git.viresh.kumar@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Document the calling context conditions.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20150413210035.178751779@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
clockevents_notify() is a leftover from the early design of the
clockevents facility. It's really not a notification mechanism,
it's a multiplex call. We are way better off to have explicit
calls instead of this monstrosity.
Split out the cleanup function for a dead cpu and invoke it
directly from the cpu down code. Make it conditional on
CPU_HOTPLUG as well.
Temporary change, will be refined in the future.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
[ Rebased, added clockevents_notify() removal ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1735025.raBZdQHM3m@vostro.rjw.lan
Signed-off-by: Ingo Molnar <mingo@kernel.org>
clockevents_notify() is a leftover from the early design of the
clockevents facility. It's really not a notification mechanism,
it's a multiplex call. We are way better off to have explicit
calls instead of this monstrosity.
Split out the tick_handover call and invoke it explicitely from
the hotplug code. Temporary solution will be cleaned up in later
patches.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
[ Rebase ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/1658173.RkEEILFiQZ@vostro.rjw.lan
Signed-off-by: Ingo Molnar <mingo@kernel.org>
No point to expose everything to the world. People just believe
such functions can be abused for whatever purposes. Sigh.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
[ Rebased on top of 4.0-rc5 ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Nicolas Pitre <nico@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/28017337.VbCUc39Gme@vostro.rjw.lan
[ Merged to latest timers/core ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If an attacker can cause a controlled kernel stack overflow, overwriting
the restart block is a very juicy exploit target. This is because the
restart_block is held in the same memory allocation as the kernel stack.
Moving the restart block to struct task_struct prevents this exploit by
making the restart_block harder to locate.
Note that there are other fields in thread_info that are also easy
targets, at least on some architectures.
It's also a decent simplification, since the restart code is more or less
identical on all architectures.
[james.hogan@imgtec.com: metag: align thread_info::supervisor_stack]
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: David Miller <davem@davemloft.net>
Acked-by: Richard Weinberger <richard@nod.at>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Haavard Skinnemoen <hskinnemoen@gmail.com>
Cc: Hans-Christian Egtvedt <egtvedt@samfundet.no>
Cc: Steven Miao <realmz6@gmail.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Aurelien Jacquiot <a-jacquiot@ti.com>
Cc: Mikael Starvik <starvik@axis.com>
Cc: Jesper Nilsson <jesper.nilsson@axis.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Helge Deller <deller@gmx.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Tested-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Chen Liqin <liqin.linux@gmail.com>
Cc: Lennox Wu <lennox.wu@gmail.com>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: Chris Zankel <chris@zankel.net>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>