The ondemand_powersave_bias_init() function used for resetting data
fields related to the powersave bias tunable of the ondemand governor
works by walking all of the online CPUs in the system and updating the
od_cpu_dbs_info_s structures for all of them.
However, if governor tunables are per policy, the update should not
touch the CPUs that are not associated with the given dbs_data.
Moreover, since the data fields in question are only ever used for
policy->cpu in each policy governed by ondemand, the update can be
limited to those specific CPUs.
Rework the code to take the above observations into account.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
The ->store() callbacks of some tunable sysfs attributes of the
ondemand and conservative governors trigger immediate updates of
the CPU load information for all CPUs "governed" by the given
dbs_data by walking the cpu_dbs_info structures for all online
CPUs in the system and updating them.
This is questionable for two reasons. First, it may lead to a lot of
extra overhead on a system with many CPUs if the given dbs_data is
only associated with a few of them. Second, if governor tunables are
per-policy, the CPUs associated with the other sets of governor
tunables should not be updated.
To address this issue, use the observation that in all of the places
in question the update operation may be carried out in the same way
(because all of the tunables involved are now located in struct
dbs_data and readily available to the common code) and make the
code in those places invoke the same (new) helper function that
will carry out the update correctly.
That new function always checks the ignore_nice_load tunable value
and updates the CPUs' prev_cpu_nice data fields if that's set, which
wasn't done by the original code in store_io_is_busy(), but it
should have been done in there too.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
The ->powersave_bias_init_cpu callback in struct od_ops is only used
in one place and that invocation may be replaced with a direct call
to the function pointed to by that callback, so change the code
accordingly and drop the callback.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
After some previous changes, the ->get_cpu_dbs_info_s governor
callback and the "governor" field in struct dbs_governor (whose
value represents the governor type) are not used any more, so
drop them.
Also drop the unused gov_ops field from struct dbs_governor.
No functional changes.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
To avoid having to check the governor type explicitly in the common
code in order to initialize data structures specific to the governor
type properly, add a ->start callback to struct dbs_governor and
use it to initialize those data structures for the ondemand and
conservative governors.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
The io_is_busy governor tunable is only used by the ondemand governor
and is located in the ondemand-specific data structure, but it is
looked at by the common governor code that has to do ugly things to
get to that value, so move it to struct dbs_data and modify ondemand
accordingly.
Since the conservative governor never touches that field, it will
be always 0 for that governor and it won't have any effect on the
results of computations in that case.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
It is possible for a dbs_data object to be updated after its
usage counter has become 0. That may happen if governor_store()
runs (via a govenor tunable sysfs attribute write) in parallel
with cpufreq_governor_exit() called for the last cpufreq policy
associated with the dbs_data in question. In that case, if
governor_store() acquires dbs_data->mutex right after
cpufreq_governor_exit() has released it, the ->store() callback
invoked by it may operate on dbs_data with no users. Although
sysfs will cause the kobject_put() in cpufreq_governor_exit() to
block until governor_store() has returned, that situation may
lead to some unexpected results, depending on the implementation
of the ->store callback, and therefore it should be avoided.
To that end, modify governor_store() to check the dbs_data's
usage count before invoking the ->store() callback and return
an error if it is 0 at that point.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
The ->freq_increase callback in struct od_ops is never invoked,
so drop it.
No functional changes.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Drop some lines of code from od_update() by arranging the statements
in there in a more logical way.
No functional changes.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Do not convert microseconds to jiffies and the other way around
in governor computations related to the sampling rate and sample
delay and drop delay_for_sampling_rate() which isn't of any use
then.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Reduce the indentation level in the conditionals in od_dbs_timer()
and drop the delay variable from it.
No functional changes.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Viresh Kumar <viresh.kumar@linaro.org>
The rate_mult field in struct od_cpu_dbs_info_s is used by the code
shared with the conservative governor and to access it that code
has to do an ugly governor type check. However, first of all it
is ever only used for policy->cpu, so it is per-policy rather than
per-CPU and second, it is initialized to 1 by cpufreq_governor_start(),
so if the conservative governor never modifies it, it will have no
effect on the results of any computations.
For these reasons, move rate_mult to struct policy_dbs_info (as a
common field).
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
If store_sampling_rate() updates the sample delay when the ondemand
governor is in the middle of its high/low dance (OD_SUB_SAMPLE sample
type is set), the governor will still do the bottom half of the
previous sample which may take too much time.
To prevent that from happening, change store_sampling_rate() to always
reset the sample delay to 0 which also is consistent with the new
behavior of cpufreq_governor_limits().
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
The way the ->gov_check_cpu governor callback is used by the ondemand
and conservative governors is not really straightforward. Namely, the
governor calls dbs_check_cpu() that updates the load information for
the policy and the invokes ->gov_check_cpu() for the governor.
To get rid of that entanglement, notice that cpufreq_governor_limits()
doesn't need to call dbs_check_cpu() directly. Instead, it can simply
reset the sample delay to 0 which will cause a sample to be taken
immediately. The result of that is practically equivalent to calling
dbs_check_cpu() except that it will trigger a full update of governor
internal state and not just the ->gov_check_cpu() part.
Following that observation, make cpufreq_governor_limits() reset
the sample delay and turn dbs_check_cpu() into a function that will
simply evaluate the load and return the result called dbs_update().
That function can now be called by governors from the routines that
previously were pointed to by ->gov_check_cpu and those routines
can be called directly by each governor instead of dbs_check_cpu().
This way ->gov_check_cpu becomes unnecessary, so drop it.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Clean up some load-related computations in dbs_check_cpu() and
cpufreq_governor_start() to get rid of unnecessary operations and
type casts and make the code easier to read.
No functional changes.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
The contribution of the CPU nice time to the idle time in dbs_check_cpu()
is computed in a bogus way, as the code may subtract current and previous
nice values for different CPUs.
That doesn't matter for cases when cpufreq policies are not shared,
but may lead to problems otherwise.
Fix the computation and simplify it to avoid taking unnecessary steps.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Rework the handling of work items by dbs_update_util_handler() and
dbs_work_handler() so the former (which is executed in scheduler
paths) only uses atomic operations when absolutely necessary. That
is, when the policy is shared and dbs_update_util_handler() has
already decided that this is the time to queue up a work item.
In particular, this avoids the atomic ops entirely on platforms where
policy objects are never shared.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
The atomic work counter incrementation in gov_cancel_work() is not
necessary any more, because work items won't be queued up after
gov_clear_update_util() anyway, so drop it along with the comment
about how it may be missed by the gov_clear_update_util().
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
As it turns out, irq_work_queue_on() will crash if invoked on
non-SMP ARM platforms, but in fact it is not necessary to use that
function in the cpufreq governor code (as it doesn't matter to that
code which CPU will handle the irq_work), so change it to always use
irq_work_queue().
Fixes: 8fb47ff100af (cpufreq: governor: Replace timers with utilization update callbacks)
Reported-and-tested-by: Guenter Roeck <linux@roeck-us.net>
Reported-and-tested-by: Tony Lindgren <tony@atomide.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Avoid extra checks in od_dbs_timer() by rearranging updates to the
local delay variable in it.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
[ rjw: Changelog ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The ondemand governor already updates sample_delay_ns immediately on
updates to the sampling rate, but conservative doesn't do that.
It was left out earlier as the code was really too complex to get
that done easily. Things are sorted out very well now, however, and
the conservative governor can be modified to follow ondemand in that
respect.
Moreover, since the code needed to implement that in the
conservative governor would be identical to the corresponding
ondemand governor's code, make that code common and change both
governors to use it.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Tested-by: Juri Lelli <juri.lelli@arm.com>
Tested-by: Shilpasri G Bhat <shilpa.bhat@linux.vnet.ibm.com>
[ rjw: Changelog ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The cpufreq core now guarantees that policy->rwsem won't be dropped
while running the ->governor callback for the CPUFREQ_GOV_POLICY_EXIT
event and will be held acquired until the complete sequence of governor
state changes has finished.
This allows governor state machine checks to be dropped from multiple
functions in cpufreq_governor.c.
This also means that policy_dbs->policy can be initialized upfront, so
the entire initialization of struct policy_dbs can be carried out in
one place.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Tested-by: Juri Lelli <juri.lelli@arm.com>
Tested-by: Shilpasri G Bhat <shilpa.bhat@linux.vnet.ibm.com>
[ rjw: Changelog ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
We used to drop policy->rwsem just before calling __cpufreq_governor()
in some cases earlier and so it was possible that __cpufreq_governor()
ran concurrently via separate threads for the same policy.
In order to guarantee valid state transitions for governors,
'governor_enabled' was required to be protected using some locking
and cpufreq_governor_lock was added for that.
But now __cpufreq_governor() is always called under policy->rwsem,
and 'governor_enabled' is protected against races even without
cpufreq_governor_lock.
Get rid of the extra lock now.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Tested-by: Juri Lelli <juri.lelli@arm.com>
Tested-by: Shilpasri G Bhat <shilpa.bhat@linux.vnet.ibm.com>
[ rjw : Changelog ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The cpufreq core code is not consistent with respect to invoking
__cpufreq_governor() under policy->rwsem.
Changing all code to always hold policy->rwsem around
__cpufreq_governor() invocations will allow us to remove
cpufreq_governor_lock that is used today because we can't
guarantee that __cpufreq_governor() isn't executed twice in
parallel for the same policy.
We should also ensure that policy->rwsem is held across governor
state changes.
For example, while adding a CPU to the policy in the CPU online path,
we need to stop the governor, change policy->cpus, start the governor
and then refresh its limits. The complete sequence must be guaranteed
to complete without interruptions by concurrent governor state
updates. That can be achieved by holding policy->rwsem around those
sequences of operations.
Also note that after this patch cpufreq_driver->stop_cpu() and
->exit() will get called under policy->rwsem which wasn't the case
earlier. That shouldn't have any side effects, though.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Tested-by: Juri Lelli <juri.lelli@arm.com>
Tested-by: Shilpasri G Bhat <shilpa.bhat@linux.vnet.ibm.com>
[ rjw: Changelog ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Commit 1aee40ac9c (cpufreq: Invoke __cpufreq_remove_dev_finish()
after releasing cpu_hotplug.lock) split the cpufreq's CPU offline
routine in two pieces, one of them to be run with CPU offline/online
locked and the other to be called later. The reason for that split
was a possible deadlock scenario involving cpufreq sysfs attributes
and CPU offline.
However, the handling of CPU offline in cpufreq has changed since
then. Policy sysfs attributes are never removed during CPU offline,
so there's no need to worry about accessing them during CPU offline,
because that can't lead to any deadlocks now. Governor sysfs
attributes are still removed in __cpufreq_governor(_EXIT), but
there is a new kobject type for them now and its show/store
callbacks don't lock CPU offline/online (they don't need to do
that).
This means that the CPU offline code in cpufreq doesn't need to
be split any more, so combine cpufreq_offline_prepare() with
cpufreq_offline_finish().
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
[ rjw: Changelog ]
Tested-by: Juri Lelli <juri.lelli@arm.com>
Tested-by: Shilpasri G Bhat <shilpa.bhat@linux.vnet.ibm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The dbs_data_mutex lock is currently used in two places. First,
cpufreq_governor_dbs() uses it to guarantee mutual exclusion between
invocations of governor operations from the core. Second, it is used by
ondemand governor's update_sampling_rate() to ensure the stability of
data structures walked by it.
The second usage is quite problematic, because update_sampling_rate() is
called from a governor sysfs attribute's ->store callback and that leads
to a deadlock scenario involving cpufreq_governor_exit() which runs
under dbs_data_mutex. Thus it is better to rework the code so
update_sampling_rate() doesn't need to acquire dbs_data_mutex.
To that end, rework update_sampling_rate() to walk a list of policy_dbs
objects supported by the dbs_data one it has been called for (instead of
walking cpu_dbs_info object for all CPUs). The list manipulation is
protected with dbs_data->mutex which also is held around the execution
of update_sampling_rate(), it is not necessary to hold dbs_data_mutex in
that function any more.
Reported-by: Juri Lelli <juri.lelli@arm.com>
Reported-by: Shilpasri G Bhat <shilpa.bhat@linux.vnet.ibm.com>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
[ rjw: Subject & changelog ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Earlier, when the struct freq-attr was used to represent governor
attributes, the standard cpufreq show/store sysfs attribute callbacks
were applied to the governor tunable attributes and they always acquire
the policy->rwsem lock before carrying out the operation. That could
have resulted in an ABBA deadlock if governor tunable attributes are
removed under policy->rwsem while one of them is being accessed
concurrently (if sysfs attributes removal wins the race, it will wait
for the access to complete with policy->rwsem held while the attribute
callback will block on policy->rwsem indefinitely).
We attempted to address this issue by dropping policy->rwsem around
governor tunable attributes removal (that is, around invocations of the
->governor callback with the event arg equal to CPUFREQ_GOV_POLICY_EXIT)
in cpufreq_set_policy(), but that opened up race conditions that had not
been possible with policy->rwsem held all the time.
The previous commit, "cpufreq: governor: New sysfs show/store callbacks
for governor tunables", fixed the original ABBA deadlock by adding new
governor specific show/store callbacks.
We don't have to drop rwsem around invocations of governor event
CPUFREQ_GOV_POLICY_EXIT anymore, and original fix can be reverted now.
Fixes: 955ef48335 (cpufreq: Drop rwsem lock around CPUFREQ_GOV_POLICY_EXIT)
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Reported-by: Juri Lelli <juri.lelli@arm.com>
Tested-by: Juri Lelli <juri.lelli@arm.com>
Tested-by: Shilpasri G Bhat <shilpa.bhat@linux.vnet.ibm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The previous commit introduced a new set of macros for creating sysfs
attributes that represent governor tunables and the old macros used for
this purpose are not needed any more, so drop them.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Tested-by: Juri Lelli <juri.lelli@arm.com>
Tested-by: Shilpasri G Bhat <shilpa.bhat@linux.vnet.ibm.com>
[ rjw: Subject & changelog ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The ondemand and conservative governors use the global-attr or freq-attr
structures to represent sysfs attributes corresponding to their tunables
(which of them is actually used depends on whether or not different
policy objects can use the same governor with different tunables at the
same time and, consequently, on where those attributes are located in
sysfs).
Unfortunately, in the freq-attr case, the standard cpufreq show/store
sysfs attribute callbacks are applied to the governor tunable attributes
and they always acquire the policy->rwsem lock before carrying out the
operation. That may lead to an ABBA deadlock if governor tunable
attributes are removed under policy->rwsem while one of them is being
accessed concurrently (if sysfs attributes removal wins the race, it
will wait for the access to complete with policy->rwsem held while the
attribute callback will block on policy->rwsem indefinitely).
We attempted to address this issue by dropping policy->rwsem around
governor tunable attributes removal (that is, around invocations of the
->governor callback with the event arg equal to CPUFREQ_GOV_POLICY_EXIT)
in cpufreq_set_policy(), but that opened up race conditions that had not
been possible with policy->rwsem held all the time. Therefore
policy->rwsem cannot be dropped in cpufreq_set_policy() at any point,
but the deadlock situation described above must be avoided too.
To that end, use the observation that in principle governor tunables may
be represented by the same data type regardless of whether the governor
is system-wide or per-policy and introduce a new structure, struct
governor_attr, for representing them and new corresponding macros for
creating show/store sysfs callbacks for them. Also make their parent
kobject use a new kobject type whose default show/store callbacks are
not related to the standard core cpufreq ones in any way (and they don't
acquire policy->rwsem in particular).
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Tested-by: Juri Lelli <juri.lelli@arm.com>
Tested-by: Shilpasri G Bhat <shilpa.bhat@linux.vnet.ibm.com>
[ rjw: Subject & changelog + rebase ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
There are a few common tunables shared between the ondemand and
conservative governors. Move them to struct dbs_data to simplify
code.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Tested-by: Juri Lelli <juri.lelli@arm.com>
Tested-by: Shilpasri G Bhat <shilpa.bhat@linux.vnet.ibm.com>
[ rjw: Changelog ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Some tunables are present in governor-specific structures, whereas one
(min_sampling_rate) is located directly in struct dbs_data.
There is a special macro for creating its sysfs attribute and the
show/store callbacks, but since more tunables are going to be moved
to struct dbs_data, a new generic macro for such cases will be useful,
so add it and use it for min_sampling_rate.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Tested-by: Juri Lelli <juri.lelli@arm.com>
Tested-by: Shilpasri G Bhat <shilpa.bhat@linux.vnet.ibm.com>
[ rjw: Subject & changelog ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
It is silly to jump around "return 0", so don't do that.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
The skip_work field in struct policy_dbs_info technically is a
counter, so give it a new name to reflect that.
No functional changes.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Make the initialization of struct cpu_dbs_info objects in
alloc_policy_dbs_info() and the code that cleans them up in
free_policy_dbs_info() more symmetrical. In particular,
set/clear the update_util.func field in those functions along
with the policy_dbs field.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
The struct policy_dbs_info objects representing per-policy governor
data are not accessible directly from the corresponding policy
objects. To access them, one has to get a pointer to the
struct cpu_dbs_info of policy->cpu and use the policy_dbs field of
that which isn't really straightforward.
To address that rearrange the governor data structures so the
governor_data pointer in struct cpufreq_policy will point to
struct policy_dbs_info (instead of struct dbs_data) and that will
contain a pointer to struct dbs_data.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Use the observation that cpufreq_governor_limits() doesn't have to
get to the policy object it wants to manipulate by walking the
reference chain cdbs->policy_dbs->policy, as the final pointer is
actually equal to its argument, and make it access the policy
object directy via its argument.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Since policy->cpu is always passed as the second argument to
dbs_check_cpu(), it is not really necessary to pass it, because
the function can obtain that value via its first argument just fine.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
The struct cpu_common_dbs_info structure represents the per-policy
part of the governor data (for the ondemand and conservative
governors), but its name doesn't reflect its purpose.
Rename it to struct policy_dbs_info and rename variables related to
it accordingly.
No functional changes.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Since it is possible to obtain a pointer to struct dbs_governor
from a pointer to the struct governor embedded in it with the help
of container_of(), the additional gov pointer in struct dbs_data
isn't really necessary.
Drop that pointer and make the code using it reach the dbs_governor
object via policy->governor.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Since it is possible to obtain a pointer to struct dbs_governor
from a pointer to the struct governor embedded in it via
container_of(), the second argument of cpufreq_governor_init()
is not necessary. Accordingly, cpufreq_governor_dbs() doesn't
need its second argument either and the ->governor callbacks
for both the ondemand and conservative governors may be set
to cpufreq_governor_dbs() directly. Make that happen.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Saravana Kannan <skannan@codeaurora.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
The ondemand and conservative governors are represented by
struct common_dbs_data whose name doesn't reflect the purpose it
is used for, so rename it to struct dbs_governor and rename
variables of that type accordingly.
No functional changes.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
For the ondemand and conservative governors (generally, governors
that use the common code in cpufreq_governor.c), there are two static
data structures representing the governor, the struct governor
structure (the interface to the cpufreq core) and the struct
common_dbs_data one (the interface to the cpufreq_governor.c code).
There's no fundamental reason why those two structures have to be
separate. Moreover, if the struct governor one is included into
struct common_dbs_data, it will be possible to reach the latter from
the policy via its policy->governor pointer, so it won't be necessary
to pass a separate pointer to it around. For this reason, embed
struct governor in struct common_dbs_data.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Saravana Kannan <skannan@codeaurora.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Do not pass struct dbs_data pointers to the family of functions
implementing governor operations in cpufreq_governor.c as they can
take that pointer from policy->governor by themselves.
The cpufreq_governor_init() case is slightly more complicated, since
policy->governor may be NULL when it is invoked, but then it can reach
the pointer in question via its cdata argument just fine.
While at it, rework cpufreq_governor_dbs() to avoid a pointless
policy_governor check in the CPUFREQ_GOV_POLICY_INIT case.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Every governor relying on the common code in cpufreq_governor.c
has to provide its own mutex in struct common_dbs_data. However,
there actually is no need to have a separate mutex per governor
for this purpose, they may be using the same global mutex just
fine. Accordingly, introduce a single common mutex for that and
drop the mutex field from struct common_dbs_data.
That at least will ensure that the mutex is always present and
initialized regardless of what the particular governors do.
Another benefit is that the common code does not need a pointer to
a governor-related structure to get to the mutex which sometimes
helps.
Finally, it makes the code generally easier to follow.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Saravana Kannan <skannan@codeaurora.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Instead of using a per-CPU deferrable timer for queuing up governor
work items, register a utilization update callback that will be
invoked from the scheduler on utilization changes.
The sampling rate is still the same as what was used for the
deferrable timers and the added irq_work overhead should be offset by
the eliminated timers overhead, so in theory the functional impact of
this patch should not be significant.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Tested-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Instead of using a per-CPU deferrable timer for utilization sampling
and P-states adjustments, register a utilization update callback that
will be invoked from the scheduler on utilization changes.
The sampling rate is still the same as what was used for the deferrable
timers, so the functional impact of this patch should not be significant.
Based on an earlier patch from Srinivas Pandruvada.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Introduce a mechanism by which parts of the cpufreq subsystem
("setpolicy" drivers or the core) can register callbacks to be
executed from cpufreq_update_util() which is invoked by the
scheduler's update_load_avg() on CPU utilization changes.
This allows the "setpolicy" drivers to dispense with their timers
and do all of the computations they need and frequency/voltage
adjustments in the update_load_avg() code path, among other things.
The update_load_avg() changes were suggested by Peter Zijlstra.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Ingo Molnar <mingo@kernel.org>
The preprocessor magic used for setting the default cpufreq governor
(and for using the performance governor as a fallback one for that
matter) is really nasty, so replace it with __weak functions and
overrides.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Saravana Kannan <skannan@codeaurora.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
* pm-cpuidle:
cpuidle: coupled: remove unused define cpuidle_coupled_lock
cpuidle: fix fallback mechanism for suspend to idle in absence of enter_freeze
* pm-cpufreq:
cpufreq: cpufreq-dt: avoid uninitialized variable warnings:
cpufreq: pxa2xx: fix pxa_cpufreq_change_voltage prototype
cpufreq: Use list_is_last() to check last entry of the policy list
cpufreq: Fix NULL reference crash while accessing policy->governor_data
* pm-domains:
PM / Domains: Fix typo in comment
PM / Domains: Fix potential deadlock while adding/removing subdomains
PM / domains: fix lockdep issue for all subdomains
* pm-sleep:
PM: APM_EMULATION does not depend on PM
gcc warns quite a bit about values returned from allocate_resources()
in cpufreq-dt.c:
cpufreq-dt.c: In function 'cpufreq_init':
cpufreq-dt.c:327:6: error: 'cpu_dev' may be used uninitialized in this function [-Werror=maybe-uninitialized]
cpufreq-dt.c:197:17: note: 'cpu_dev' was declared here
cpufreq-dt.c:376:2: error: 'cpu_clk' may be used uninitialized in this function [-Werror=maybe-uninitialized]
cpufreq-dt.c:199:14: note: 'cpu_clk' was declared here
cpufreq-dt.c: In function 'dt_cpufreq_probe':
cpufreq-dt.c:461:2: error: 'cpu_clk' may be used uninitialized in this function [-Werror=maybe-uninitialized]
cpufreq-dt.c:447:14: note: 'cpu_clk' was declared here
The problem is that it's slightly hard for gcc to follow return
codes across PTR_ERR() calls.
This patch uses explicit assignments to the "ret" variable to make
it easier for gcc to verify that the code is actually correct,
without the need to add a bogus initialization.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>