We sometimes collect non-critical fixes that come in during the later part
of the merge window in a branch for the next release instead, and this is
that contents for v4.11.
Most of these are OMAP fixes, dealing with OMAP36/37 detection, quirks
and setup. There's also some fixes for Davinci and a Kconfig fix for SCPI
to only enable on ARM{,64}.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJYrMlHAAoJEIwa5zzehBx3oZ4P/3nRgb4dtwEwXwFmJf8Xd4nu
yetQbcwRreHvh8utsU2Pe+8tffV8jLgsW8TxZ43d6deYFii046HhZAXtvTTVgFpE
OA0fJpNJ00KYqP1Nx5q/kwZoH3uBz442uMUQ9lyziB3RpimhRsiKyHwnTyuWljyx
hPmO1XKcF6pQBXk1uwOzO1lSDUeOn4eAmeLonlG1gQ5qtrkU0WbrTPxpmn/CB546
LH5Nj0qVRzEa7xr8O+2nzeKPVwcXGwsKVKCDbSJmsey2KOEDnEjjxpToAh3WnA4W
Tm1av5QdyqsLVqAMkNYezrS8EzBjRKa1ma4xUqsNoIhO1XI7xa/LkonU8a0+ZdSX
p48DCvv7IHX5IqdIHHB0s1eICvTsW8Cp/4YUJzuZDFbS9B2t5b3412+n43tVa8l3
HYPeTzL5S3VOrMtpQKkGAFrw5OGm+URy4CYQxpX5DxSRSqvXTj12ajBHRbfdbzCO
r2i2rhKL07PF3DAf8L1coHcBQDS7Vc/k+fhKCQy+W1RDxmjYwYKSI9agOyZi1HQ7
X+0HuUyKTthCE2kUrj4rye/87MffWwdjNgnOZiHR1X7YtWgnjp1g9K+mLZHh/y5m
Tq/M55cK9h6dOghx121jYFkkvDclEQDemJuDbKY0sEMDrDXtppcI/T+znZ1LTq7i
1eaK4lTyAX7dbQJUQCwe
=NhZq
-----END PGP SIGNATURE-----
Merge tag 'armsoc-fixes-nc' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
Pull ARM SoC non-urgent fixes from Arnd Bergmann:
"We sometimes collect non-critical fixes that come in during the later
part of the merge window in a branch for the next release instead, and
this is that contents for v4.11.
Most of these are OMAP fixes, dealing with OMAP36/37 detection, quirks
and setup. There's also some fixes for Davinci and a Kconfig fix for
SCPI to only enable on ARM{,64}"
* tag 'armsoc-fixes-nc' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc:
firmware: arm_scpi: Add hardware dependencies
ARM: OMAP3: Fix SoC detection of OMAP36/37 Family
ARM: OMAP5: Add HWMOD_SWSUP_SIDLE_ACT flag for UART
ARM: dts: Fix compatible for ti81xx uarts for 8250
ARM: dts: Fix am335x and dm814x scm syscon to probe children
ARM: OMAP2+: Fix init for multiple quirks for the same SoC
ARM: dts: Fix omap3 off mode pull defines
bus: da850-mstpri: fix my e-mail address
ARM: davinci: da850: fix da850_set_pll0rate()
ARM: davinci: da850: coding style fix
- Operating Performance Points (OPP) framework fixes, cleanups and
switch over from RCU-based synchronization to reference counting
using krefs (Viresh Kumar, Wei Yongjun, Dave Gerlach).
- cpufreq core cleanups and documentation updates (Viresh Kumar,
Rafael Wysocki).
- New cpufreq driver for Broadcom BMIPS SoCs (Markus Mayer).
- New cpufreq-dt sub-driver for TI SoCs requiring special handling,
like in the AM335x, AM437x, DRA7x, and AM57x families, along with
new DT bindings for it (Dave Gerlach, Paul Gortmaker).
- ARM64 SoCs support for the qoriq cpufreq driver (Tang Yuantian).
- intel_pstate driver updates including a new sysfs knob to control
the driver's operation mode and fixes related to the no_turbo
sysfs knob and the hardware-managed P-states feature support
(Rafael Wysocki, Srinivas Pandruvada).
- New interface to export ultra-turbo frequencies for the powernv
cpufreq driver (Shilpasri Bhat).
- Assorted fixes for cpufreq drivers (Arnd Bergmann, Dan Carpenter,
Wei Yongjun).
- devfreq core fixes, mostly related to the sysfs interface exported
by it (Chanwoo Choi, Chris Diamand).
- Updates of the exynos-bus and exynos-ppmu devfreq drivers (Chanwoo
Choi).
- Device PM QoS extension to support CPUs and support for per-CPU
wakeup (device resume) latency constraints in the cpuidle menu
governor (Alex Shi).
- Wakeup IRQs framework fixes (Grygorii Strashko).
- Generic power domains framework update including a fix to make
it handle asynchronous invocations of *noirq suspend/resume
callbacks correctly (Ulf Hansson, Geert Uytterhoeven).
- Assorted fixes and cleanups in the core suspend/hibernate code,
PM QoS framework and x86 ACPI idle support code (Corentin Labbe,
Geert Uytterhoeven, Geliang Tang, John Keeping, Nick Desaulniers).
- Update of the analyze_suspend.py script is updated to version 4.5
offering multiple improvements (Todd Brandt).
- New tool for intel_pstate diagnostics using the pstate_sample
tracepoint (Doug Smythies).
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABCAAGBQJYq3IjAAoJEILEb/54YlRx/lYP+gNXhfETSzjd4kWSHy3FVEDb
gc5rMiE2j0OYgVSXwBI7p4EqMPy56lSWBASvbF2o6v9CIxb880KLFEsMDCVHwn46
6xfEnIRxf1oeRqn7EG9ZPIcTgNsUyvK+gah7zgLXu/0KU7ceXxygvNk47qpeOZ8f
dKYgIk/TOSGPC8H2nsg8VBKlK/ZOj5hID4F3MmFw6yDuWVCYuh2EokYXS4Nx0JwY
UQGpWtz+FWWs71vhgVl33GbPXWvPqA7OMe0btZ3RCnhnz4tA/mH+jDWiaspCdS3J
vKGeZyZptjIMJcufm3X7s7ghYjELheqQusMODDXk4AaWQ5nz8V5/h7NThYfa9J1b
M93Tb0rMb2MqUhBpv/M6D3qQroZmhq55QKfQrul3QWSOiQUzTWJcbbpyeBQ7nkrI
F1qNqQfuCnBL/r9y7HpW8P2iFg9kCHkwTtXMdp/lzGXdKzSGtAUSkYg5ohnUzQTp
2WCPTEk+5DxLVPjW5rDoZOotr5p1kdcdWBk6r3MEWRokZK6PJo7rJBcnTtXSo2mO
lLRba006q+fTlI5wZtjAI0rOiS3JgtT6cRx7uPjZlze9TGjklJhdsCPJbM5gcOT+
YiOxvqD+9if5QRSxiEZNj3bQ43wYhXmpctfIanyxziq09BPIPxvgfRR/BkUzc34R
ps4CIvImim5v5xc8Zsbk
=57xJ
-----END PGP SIGNATURE-----
Merge tag 'pm-4.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management updates from Rafael Wysocki:
"The majority of changes go into the Operating Performance Points (OPP)
framework and cpufreq this time, followed by devfreq and some
scattered updates all over.
The OPP changes are mostly related to switching over from RCU-based
synchronization, that turned out to be overly complicated and
problematic, to reference counting using krefs.
In the cpufreq land there are core cleanups, documentation updates, a
new driver for Broadcom BMIPS SoCs, a new cpufreq-dt sub-driver for TI
SoCs that require special handling, ARM64 SoCs support for the qoriq
driver, intel_pstate updates, powernv driver update and assorted
fixes.
The devfreq changes are mostly fixes related to the sysfs interface
and some Exynos drivers updates.
Apart from that, the cpuidle menu governor will support per-CPU PM QoS
constraints for the wakeup latency now, some bugs in the wakeup IRQs
framework are fixed, the generic power domains framework should handle
asynchronous invocations of *noirq suspend/resume callbacks from now
on, the analyze_suspend.py script is updated and there is a new tool
for intel_pstate diagnostics.
Specifics:
- Operating Performance Points (OPP) framework fixes, cleanups and
switch over from RCU-based synchronization to reference counting
using krefs (Viresh Kumar, Wei Yongjun, Dave Gerlach)
- cpufreq core cleanups and documentation updates (Viresh Kumar,
Rafael Wysocki)
- New cpufreq driver for Broadcom BMIPS SoCs (Markus Mayer)
- New cpufreq-dt sub-driver for TI SoCs requiring special handling,
like in the AM335x, AM437x, DRA7x, and AM57x families, along with
new DT bindings for it (Dave Gerlach, Paul Gortmaker)
- ARM64 SoCs support for the qoriq cpufreq driver (Tang Yuantian)
- intel_pstate driver updates including a new sysfs knob to control
the driver's operation mode and fixes related to the no_turbo sysfs
knob and the hardware-managed P-states feature support (Rafael
Wysocki, Srinivas Pandruvada)
- New interface to export ultra-turbo frequencies for the powernv
cpufreq driver (Shilpasri Bhat)
- Assorted fixes for cpufreq drivers (Arnd Bergmann, Dan Carpenter,
Wei Yongjun)
- devfreq core fixes, mostly related to the sysfs interface exported
by it (Chanwoo Choi, Chris Diamand)
- Updates of the exynos-bus and exynos-ppmu devfreq drivers (Chanwoo
Choi)
- Device PM QoS extension to support CPUs and support for per-CPU
wakeup (device resume) latency constraints in the cpuidle menu
governor (Alex Shi)
- Wakeup IRQs framework fixes (Grygorii Strashko)
- Generic power domains framework update including a fix to make it
handle asynchronous invocations of *noirq suspend/resume callbacks
correctly (Ulf Hansson, Geert Uytterhoeven)
- Assorted fixes and cleanups in the core suspend/hibernate code, PM
QoS framework and x86 ACPI idle support code (Corentin Labbe, Geert
Uytterhoeven, Geliang Tang, John Keeping, Nick Desaulniers)
- Update of the analyze_suspend.py script is updated to version 4.5
offering multiple improvements (Todd Brandt)
- New tool for intel_pstate diagnostics using the pstate_sample
tracepoint (Doug Smythies)"
* tag 'pm-4.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (85 commits)
MAINTAINERS: cpufreq: add bmips-cpufreq.c
PM / QoS: Fix memory leak on resume_latency.notifiers
PM / Documentation: Spelling s/wrtie/write/
PM / sleep: Fix test_suspend after sleep state rework
cpufreq: CPPC: add ACPI_PROCESSOR dependency
cpufreq: make ti-cpufreq explicitly non-modular
cpufreq: Do not clear real_cpus mask on policy init
tools/power/x86: Debug utility for intel_pstate driver
AnalyzeSuspend: fix drag and zoom bug in javascript
PM / wakeirq: report a wakeup_event on dedicated wekup irq
PM / wakeirq: Fix spurious wake-up events for dedicated wakeirqs
PM / wakeirq: Enable dedicated wakeirq for suspend
cpufreq: dt: Don't use generic platdev driver for ti-cpufreq platforms
cpufreq: ti: Add cpufreq driver to determine available OPPs at runtime
Documentation: dt: add bindings for ti-cpufreq
PM / OPP: Expose _of_get_opp_desc_node as dev_pm_opp API
cpufreq: qoriq: Don't look at clock implementation details
cpufreq: qoriq: add ARM64 SoCs support
PM / Domains: Provide dummy governors if CONFIG_PM_GENERIC_DOMAINS=n
cpufreq: brcmstb-avs-cpufreq: remove unnecessary platform_set_drvdata()
...
Pull scheduler updates from Ingo Molnar:
"The main changes in this (fairly busy) cycle were:
- There was a class of scheduler bugs related to forgetting to update
the rq-clock timestamp which can cause weird and hard to debug
problems, so there's a new debug facility for this: which uncovered
a whole lot of bugs which convinced us that we want to keep the
debug facility.
(Peter Zijlstra, Matt Fleming)
- Various cputime related updates: eliminate cputime and use u64
nanoseconds directly, simplify and improve the arch interfaces,
implement delayed accounting more widely, etc. - (Frederic
Weisbecker)
- Move code around for better structure plus cleanups (Ingo Molnar)
- Move IO schedule accounting deeper into the scheduler plus related
changes to improve the situation (Tejun Heo)
- ... plus a round of sched/rt and sched/deadline fixes, plus other
fixes, updats and cleanups"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (85 commits)
sched/core: Remove unlikely() annotation from sched_move_task()
sched/autogroup: Rename auto_group.[ch] to autogroup.[ch]
sched/topology: Split out scheduler topology code from core.c into topology.c
sched/core: Remove unnecessary #include headers
sched/rq_clock: Consolidate the ordering of the rq_clock methods
delayacct: Include <uapi/linux/taskstats.h>
sched/core: Clean up comments
sched/rt: Show the 'sched_rr_timeslice' SCHED_RR timeslice tuning knob in milliseconds
sched/clock: Add dummy clear_sched_clock_stable() stub function
sched/cputime: Remove generic asm headers
sched/cputime: Remove unused nsec_to_cputime()
s390, sched/cputime: Remove unused cputime definitions
powerpc, sched/cputime: Remove unused cputime definitions
s390, sched/cputime: Make arch_cpu_idle_time() to return nsecs
ia64, sched/cputime: Remove unused cputime definitions
ia64: Convert vtime to use nsec units directly
ia64, sched/cputime: Move the nsecs based cputime headers to the last arch using it
sched/cputime: Remove jiffies based cputime
sched/cputime, vtime: Return nsecs instead of cputime_t to account
sched/cputime: Complete nsec conversion of tick based accounting
...
Without the Kconfig dependency, we can get this warning:
warning: ACPI_CPPC_CPUFREQ selects ACPI_CPPC_LIB which has unmet direct dependencies (ACPI && ACPI_PROCESSOR)
Fixes: 5477fb3bd1 (ACPI / CPPC: Add a CPUFreq driver for use with CPPC)
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The Kconfig currently controlling compilation of this code is:
drivers/cpufreq/Kconfig.arm:config ARM_TI_CPUFREQ
drivers/cpufreq/Kconfig.arm: bool "Texas Instruments CPUFreq support"
...meaning that it currently is not being built as a module by anyone.
Lets remove the couple traces of modular infrastructure use, so that
when reading the driver there is no doubt it is builtin-only.
Since module_init translates to device_initcall in the non-modular
case, the init ordering remains unchanged with this commit.
We also delete the MODULE_LICENSE tag etc. since all that information
is already contained at the top of the file in the comments.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
If new_policy is set in cpufreq_online(), the policy object has just
been created and its real_cpus mask has been zeroed on allocation,
and the driver's ->init() callback should not touch it.
It doesn't need to be cleared again, so don't do that.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Some TI platforms, specifically those in the am33xx, am43xx, dra7xx, and
am57xx families of SoCs can make use of the ti-cpufreq driver to
selectively enable OPPs based on the exact configuration in use. The
ti-cpufreq is given the responsibility of creating the cpufreq-dt
platform device when the driver is in use so drop am33xx and dra7xx
from the cpufreq-dt-platdev driver so it is not created twice.
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Dave Gerlach <d-gerlach@ti.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Some TI SoCs, like those in the AM335x, AM437x, DRA7x, and AM57x families,
have different OPPs available for the MPU depending on which specific
variant of the SoC is in use. This can be determined through use of the
revision and an eFuse register present in the silicon. Introduce a
ti-cpufreq driver that can read the aformentioned values and provide
them as version matching data to the opp framework. Through this the
opp-supported-hw dt binding that is part of the operating-points-v2
table can be used to indicate availability of OPPs for each device.
This driver also creates the "cpufreq-dt" platform_device after passing
the version matching data to the OPP framework so that the cpufreq-dt
handles the actual cpufreq implementation. Even without the necessary
data to pass the version matching data the driver will still create this
device to maintain backwards compatibility with operating-points v1
tables.
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Dave Gerlach <d-gerlach@ti.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Get the CPU clock's potential parent clocks from the clock interface
itself, rather than manually parsing the clocks property to find a
phandle, looking at the clock-names property of that, and assuming that
those are valid parent clocks for the cpu clock.
This is necessary now that the clocks are generated based on the clock
driver's knowledge of the chip rather than a fragile device-tree
description of the mux options.
We can now rely on the clock driver to ensure that the mux only exposes
options that are valid. The cpufreq driver was currently being overly
conservative in some cases -- for example, the "min_cpufreq =
get_bus_freq()" restriction only applies to chips with erratum
A-004510, and whether the freq_mask used on p5020 is needed depends on
the actual frequencies of the PLLs (FWIW, p5040 has a similar
limitation but its .freq_mask was zero) -- and the frequency mask
mechanism made assumptions about particular parent clock indices that
are no longer valid.
Signed-off-by: Scott Wood <scottwood@nxp.com>
Signed-off-by: Tang Yuantian <yuantian.tang@nxp.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Add ARM64 config to Kconfig to enable CPU frequency feature on
NXP ARM64 SoCs.
Signed-off-by: Tang Yuantian <yuantian.tang@nxp.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The driver core clears the driver data to NULL after device_release
or on probe failure. Thus, it is not needed to manually clear the
device driver data to NULL.
Signed-off-by: Wei Yongjun <weiyongjun1@huawei.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The "goto err_armclk;" error path already does a clk_put(s3c_freq->hclk);
so this is a double free.
Fixes: 34ee550752 ([CPUFREQ] Add S3C2416/S3C2450 cpufreq driver)
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: Krzysztof Kozlowski <krzk@kernel.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Add the MIPS CPUfreq driver. This driver currently supports CPUfreq on
BMIPS5xxx-based SoCs.
Signed-off-by: Markus Mayer <mmayer@broadcom.com>
Acked-by: Florian Fainelli <f.fainelli@gmail.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Some Kabylake desktop processors may not reach max turbo when running in
HWP mode, even if running under sustained 100% utilization.
This occurs when the HWP.EPP (Energy Performance Preference) is set to
"balance_power" (0x80) -- the default on most systems.
It occurs because the platform BIOS may erroneously enable an
energy-efficiency setting -- MSR_IA32_POWER_CTL BIT-EE, which is not
recommended to be enabled on this SKU.
On the failing systems, this BIOS issue was not discovered when the
desktop motherboard was tested with Windows, because the BIOS also
neglects to provide the ACPI/CPPC table, that Windows requires to enable
HWP, and so Windows runs in legacy P-state mode, where this setting has
no effect.
Linux' intel_pstate driver does not require ACPI/CPPC to enable HWP, and
so it runs in HWP mode, exposing this incorrect BIOS configuration.
There are several ways to address this problem.
First, Linux can also run in legacy P-state mode on this system.
As intel_pstate is how Linux enables HWP, booting with
"intel_pstate=disable"
will run in acpi-cpufreq/ondemand legacy p-state mode.
Or second, the "performance" governor can be used with intel_pstate,
which will modify HWP.EPP to 0.
Or third, starting in 4.10, the
/sys/devices/system/cpu/cpufreq/policy*/energy_performance_preference
attribute in can be updated from "balance_power" to "performance".
Or fourth, apply this patch, which fixes the erroneous setting of
MSR_IA32_POWER_CTL BIT_EE on this model, allowing the default
configuration to function as designed.
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Reviewed-by: Len Brown <len.brown@intel.com>
Cc: 4.6+ <stable@vger.kernel.org> # 4.6+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
When HWP is active, turbo activation ratio is not used to calculate max
non turbo ratio. But on these systems the max non turbo ratio is decided
by config TDP settings.
This change removes usage of MSR_TURBO_ACTIVATION_RATIO for HWP systems,
instead directly use TDP ratios, when more than one TDPs are available.
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Under HWP the performance limits are calculated using max_perf_pct
and min_perf_pct using possible performance, not available performance.
The available performance can be reduced by no_turbo setting. To make
compatible with legacy mode, use max/min performance percentage with
respect to available performance.
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
When turbo is not disabled by BIOS, but user disabled from intel P-State
sysfs and changes max/min using cpufreq sysfs, the resultant frequency
is lower than what user requested.
The reason for this, when the perf limits are calculated in set_policy()
callback, they are with reference to max cpu frequency (turbo frequency
), but when enforced in the intel_pstate_get_min_max() they are with
reference to max available performance as documented in the intel_pstate
documentation (in this case max non turbo P-State).
This needs similar change as done in intel_cpufreq_verify_policy() for
passive mode. Set policy->cpuinfo.max_freq based on the turbo status.
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Make it possible to change the operation mode of intel_pstate with
the help of a new sysfs attribute called "status".
There are three possible configurations that can be selected using
this attribute:
"off" - The driver is not in use at this time.
"active" - The driver works as a P-state governor (default).
"passive" - The driver works as a regular cpufreq one and collaborates
with the generic cpufreq governors (it sets P-states as
requested by those governors). [This is the same mode
the driver can be started in by passing intel_pstate=passive
in the kernel command line.]
The current setting is returned by reads from this attribute. Writing
one of the above strings to it changes the operation mode as indicated
by that string, if possible.
If HW-managed P-states (HWP) feature is enabled, it is not possible
to change the driver's operation mode and attempts to write to this
attribute will fail.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Expose the intel_pstate's global sysfs attributes before registering
the driver to prepare for the addition of an attribute that also will
have to work if the driver is not registered.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
In P8+, Workload Optimized Frequency(WOF) provides the capability to
boost the cpu frequency based on the utilization of the other cpus
running in the chip. The On-Chip-Controller(OCC) firmware will control
the achievability of these frequencies depending on the power headroom
available in the chip. Currently the ultra-turbo frequencies provided
by this feature are exported along with the turbo and sub-turbo
frequencies as scaling_available_frequencies. This patch will export
the ultra-turbo frequencies separately as scaling_boost_frequencies in
WOF enabled systems. This patch will add the boost sysfs file which
can be used to disable/enable ultra-turbo frequencies.
Signed-off-by: Shilpasri G Bhat <shilpa.bhat@linux.vnet.ibm.com>
Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This doesn't have any benefit apart from saving a small amount of memory
when it is disabled. The ifdef hackery in the code makes it dirty
unnecessarily.
Clean it up by removing the Kconfig option completely. Few defconfigs
are also updated and CONFIG_CPU_FREQ_STAT_DETAILS is replaced with
CONFIG_CPU_FREQ_STAT now in them, as users wanted stats to be enabled.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Gregory CLEMENT <gregory.clement@free-electrons.com>
Reviewed-by: Chanwoo Choi <cw00.choi@samsung.com>
Acked-by: Krzysztof Kozlowski <krzk@kernel.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Those were added by:
commit fcd7af917a ("cpufreq: stats: handle cpufreq_unregister_driver()
and suspend/resume properly")
but aren't used anymore since:
commit 1aefc75b24 ("cpufreq: stats: Make the stats code non-modular").
Remove them. Also remove the redundant parameter to the respective
routines.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Kernel CPU stats are stored in cputime_t which is an architecture
defined type, and hence a bit opaque and requiring accessors and mutators
for any operation.
Converting them to nsecs simplifies the code and is one step toward
the removal of cputime_t in the core code.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Stanislaw Gruszka <sgruszka@redhat.com>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Link: http://lkml.kernel.org/r/1485832191-26889-4-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch updates dev_pm_opp_find_freq_*() routines to get a reference
to the OPPs returned by them.
Also updates the users of dev_pm_opp_find_freq_*() routines to call
dev_pm_opp_put() after they are done using the OPPs.
As it is guaranteed the that OPPs wouldn't get freed while being used,
the RCU read side locking present with the users isn't required anymore.
Drop it as well.
This patch also updates all users of devfreq_recommended_opp() which was
returning an OPP received from the OPP core.
Note that some of the OPP core routines have gained
rcu_read_{lock|unlock}() calls, as those still use RCU specific APIs
within them.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Reviewed-by: Chanwoo Choi <cw00.choi@samsung.com> [Devfreq]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Now that we have proper kernel reference infrastructure in place for OPP
tables, use it to guarantee that the OPP table isn't freed while being
used by the callers of dev_pm_opp_set_*() APIs.
Make them all return the pointer to the OPP table after taking its
reference and put the reference back with dev_pm_opp_put_*() APIs.
Now that the OPP table wouldn't get freed while these routines are
executing after dev_pm_opp_get_opp_table() is called, there is no need
to take opp_table_lock. Drop them as well.
Remove the rcu specific comments from these routines as they aren't
relevant anymore.
Note that prototypes of dev_pm_opp_{set|put}_regulators() were already
updated by another patch.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Reviewed-by: Stephen Boyd <sboyd@codeaurora.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
There is only one user of dev_pm_opp_get_suspend_opp() and that uses it
to get the OPP rate for the suspend_opp.
Rename dev_pm_opp_get_suspend_opp() as dev_pm_opp_get_suspend_opp_freq()
and return the rate directly from it.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Reviewed-by: Stephen Boyd <sboyd@codeaurora.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The AVS GET_PMAP command does return a P-state along with the P-map
information. However, that P-state is the initial P-state when the
P-map was first downloaded to AVS. It is *not* the current P-state.
Therefore, we explicitly retrieve the P-state using the GET_PSTATE
command.
Signed-off-by: Markus Mayer <mmayer@broadcom.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
We extend the brcm_avs_pmap sysfs entry (which issues the GET_PMAP
command to AVS) to include all fields from struct pmap. This means
adding mode (AVS, DVS, DVFS) and state (the P-state) to the output.
Signed-off-by: Markus Mayer <mmayer@broadcom.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
A side effect of keeping intel_pstate sysfs limits in sync with cpufreq
is that the now sysfs limits can't enforced under performance policy.
For example, if the max_perf_pct is changed from 100 to 80, this will call
intel_pstate_set_policy(), which will change the max_perf to 100 again for
performance policy. Same issue happens, when no_turbo is set.
This change calculates max and min frequency using sysfs performance
limits in intel_pstate_verify_policy() and adjusts policy limits by
calling cpufreq_verify_within_limits().
Also, it causes the setting of performance limits to be skipped if
no_turbo is set.
Fixes: 111b8b3fe4 (cpufreq: intel_pstate: Always keep all limits settings in sync)
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
* pm-cpufreq:
cpufreq: dt: Add support for APM X-Gene 2
cpufreq: intel_pstate: Always keep all limits settings in sync
cpufreq: intel_pstate: Use locking in intel_cpufreq_verify_policy()
cpufreq: intel_pstate: Use locking in intel_pstate_resume()
cpufreq: intel_pstate: Do not expose PID parameters in passive mode
Add the compatible string for supporting the generic device tree cpufreq-dt
driver on APM's X-Gene 2 SoC.
Signed-off-by: Hoan Tran <hotran@apm.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This function is confusing - its second argument is an index to the
freq table, not the requested clock rate in Hz, but it's used as the
set_rate callback for the pll0 clock. It leads to an oops when the
caller doesn't know the internals and passes the rate in Hz as
argument instead of the cpufreq index since this argument isn't bounds
checked either.
Fix it by iterating over the array of supported frequencies and
selecting a one that matches or returning -EINVAL for unsupported
rates.
Also: update the davinci cpufreq driver. It's the only user of this
clock and currently it passes the cpufreq table index to
clk_set_rate(), which is confusing. Make it pass the requested clock
rate in Hz.
Signed-off-by: Bartosz Golaszewski <bgolaszewski@baylibre.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
[nsekhar@ti.com: commit headline update]
Signed-off-by: Sekhar Nori <nsekhar@ti.com>
Make intel_pstate update per-logical-CPU limits when the global
settings are changed to ensure that they are always in sync and
users will not see confusing values in per-logical-CPU sysfs
attributes.
This also fixes the problem that setting the "no_turbo" global
attribute to 1 in the "passive" mode (ie. when intel_pstate acts
as a regular cpufreq driver) when scaling_governor is set to
"performance" has no effect.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Race conditions are possible if intel_cpufreq_verify_policy()
is executed in parallel with global limits updates from sysfs,
so the invocation of intel_pstate_update_perf_limits() in it
should be carried out under intel_pstate_limits_lock.
Make that happen.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Theoretically, intel_pstate_resume() may be executed in parallel
with intel_pstate_set_policy(), if the latter is invoked via
cpufreq_update_policy() as a result of a notification, so use
intel_pstate_limits_lock in there too to avoid race conditions.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
If intel_pstate works in the passive mode in which it acts as
a regular cpufreq driver and collaborates with generic cpufreq
governors, the PID parameters are not used, so do not expose
them via debugfs in that case.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This was entirely automated, using the script by Al:
PATT='^[[:blank:]]*#[[:blank:]]*include[[:blank:]]*<asm/uaccess.h>'
sed -i -e "s!$PATT!#include <linux/uaccess.h>!" \
$(git grep -l "$PATT"|grep -v ^include/linux/uaccess.h)
to do the replacement at the end of the merge window.
Requested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* pm-cpufreq:
cpufreq: s3c64xx: remove incorrect __init annotation
cpufreq: Remove CPU hotplug callbacks only if they were initialized
CPU/hotplug: Clarify description of __cpuhp_setup_state() return value
s3c64xx_cpufreq_config_regulator is incorrectly annotated
as __init, since the caller is also not init:
WARNING: vmlinux.o(.text+0x92fe1c): Section mismatch in reference from the function s3c64xx_cpufreq_driver_init() to the function .init.text:s3c64xx_cpufreq_config_regulator()
With modern gcc versions, the function gets inline, so we don't
see the warning, this only happens with gcc-4.6 and older.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Krzysztof Kozlowski <krzk@kernel.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Since CPU hotplug callbacks are requested for CPUHP_AP_ONLINE_DYN state,
successful callback initialization will result in cpuhp_setup_state()
returning a positive value. Therefore acpi_cpufreq_online being zero
indicates that callbacks have not been installed.
This means that acpi_cpufreq_boost_exit() should only remove them if
acpi_cpufreq_online is positive. Trying to call
cpuhp_remove_state_nocalls(0) will cause a BUG().
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
- New cpufreq driver for Broadcom STB SoCs and a Device Tree binding
for it (Markus Mayer).
- Support for ARM Integrator/AP and Integrator/CP in the generic
DT cpufreq driver and elimination of the old Integrator cpufreq
driver (Linus Walleij).
- Support for the zx296718, r8a7743 and r8a7745, Socionext UniPhier,
and PXA SoCs in the the generic DT cpufreq driver (Baoyou Xie,
Geert Uytterhoeven, Masahiro Yamada, Robert Jarzmik).
- cpufreq core fix to eliminate races that may lead to using
inactive policy objects and related cleanups (Rafael Wysocki).
- cpufreq schedutil governor update to make it use SCHED_FIFO
kernel threads (instead of regular workqueues) for doing delayed
work (to reduce the response latency in some cases) and related
cleanups (Viresh Kumar).
- New cpufreq sysfs attribute for resetting statistics (Markus
Mayer).
- cpufreq governors fixes and cleanups (Chen Yu, Stratos Karafotis,
Viresh Kumar).
- Support for using generic cpufreq governors in the intel_pstate
driver (Rafael Wysocki).
- Support for per-logical-CPU P-state limits and the EPP/EPB
(Energy Performance Preference/Energy Performance Bias) knobs
in the intel_pstate driver (Srinivas Pandruvada).
- New CPU ID for Knights Mill in intel_pstate (Piotr Luc).
- intel_pstate driver modification to use the P-state selection
algorithm based on CPU load on platforms with the system profile
in the ACPI tables set to "mobile" (Srinivas Pandruvada).
- intel_pstate driver cleanups (Arnd Bergmann, Rafael Wysocki,
Srinivas Pandruvada).
- cpufreq powernv driver updates including fast switching support
(for the schedutil governor), fixes and cleanus (Akshay Adiga,
Andrew Donnellan, Denis Kirjanov).
- acpi-cpufreq driver rework to switch it over to the new CPU
offline/online state machine (Sebastian Andrzej Siewior).
- Assorted cleanups in cpufreq drivers (Wei Yongjun, Prashanth
Prakash).
- Idle injection rework (to make it use the regular idle path
instead of a home-grown custom one) and related powerclamp
thermal driver updates (Peter Zijlstra, Jacob Pan, Petr Mladek,
Sebastian Andrzej Siewior).
- New CPU IDs for Atom Z34xx and Knights Mill in intel_idle (Andy
Shevchenko, Piotr Luc).
- intel_idle driver cleanups and switch over to using the new CPU
offline/online state machine (Anna-Maria Gleixner, Sebastian
Andrzej Siewior).
- cpuidle DT driver update to support suspend-to-idle properly
(Sudeep Holla).
- cpuidle core cleanups and misc updates (Daniel Lezcano, Pan Bian,
Rafael Wysocki).
- Preliminary support for power domains including CPUs in the
generic power domains (genpd) framework and related DT bindings
(Lina Iyer).
- Assorted fixes and cleanups in the generic power domains (genpd)
framework (Colin Ian King, Dan Carpenter, Geert Uytterhoeven).
- Preliminary support for devices with multiple voltage regulators
and related fixes and cleanups in the Operating Performance Points
(OPP) library (Viresh Kumar, Masahiro Yamada, Stephen Boyd).
- System sleep state selection interface rework to make it easier
to support suspend-to-idle as the default system suspend method
(Rafael Wysocki).
- PM core fixes and cleanups, mostly related to the interactions
between the system suspend and runtime PM frameworks (Ulf Hansson,
Sahitya Tummala, Tony Lindgren).
- Latency tolerance PM QoS framework imorovements (Andrew
Lutomirski).
- New Knights Mill CPU ID for the Intel RAPL power capping driver
(Piotr Luc).
- Intel RAPL power capping driver fixes, cleanups and switch over
to using the new CPU offline/online state machine (Jacob Pan,
Thomas Gleixner, Sebastian Andrzej Siewior).
- Fixes and cleanups in the exynos-ppmu, exynos-nocp, rk3399_dmc,
rockchip-dfi devfreq drivers and the devfreq core (Axel Lin,
Chanwoo Choi, Javier Martinez Canillas, MyungJoo Ham, Viresh
Kumar).
- Fix for false-positive KASAN warnings during resume from ACPI S3
(suspend-to-RAM) on x86 (Josh Poimboeuf).
- Memory map verification during resume from hibernation on x86 to
ensure a consistent address space layout (Chen Yu).
- Wakeup sources debugging enhancement (Xing Wei).
- rockchip-io AVS driver cleanup (Shawn Lin).
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABCAAGBQJYTx4+AAoJEILEb/54YlRx9f8P/2SlNHUENW5qh6FtCw00oC2u
UqJerQJ2L38UgbgxbE/0VYblma9rFABDWC1eO2xN2XdcdW5UPBKPVvNcOgNe1Clh
gjy3RxZXVpmjfzt2kGfsTLEuGnHqwvx51hTUkeA2LwvkOal45xb8ZESmy8opCtiv
iG4LwmPHoxdX5Za5nA9ItFKzxyO1EoyNSnBYAVwALDHxmNOfxEcRevfurASt/0M9
brCCZJA0/sZxeL0lBdy8fNQPIBTUfCoTJG/MtmzGrObJ9wMFvEDfXrVEyZiWs/zA
AAZ4kQL77enrIKgrLN8e0G6LzTLHoVcvn38Xjf24dKUqhd7ACBhYcnW+jK3+7EAd
gjZ8efObQsiuyK/EDLUNw35tt96CHOqfrQCj2tIwRVvk9EekLqAGXdIndTCr2kYW
RpefmP5kMljnm/nQFOVLwMEUQMuVkvUE7EgxADy7DoDmepBFC4ICRDWPye70R2kC
0O1Tn2PAQq4Fd1tyI9TYYz0YQQkRoaRb5rfYUSzbRbeCdsphUopp4Vhsiyn6IcnF
XnLbg6pRAat82MoS9n4pfO/VCo8vkErKA8tut9G7TDakkrJoEE7l31PdKW0hP3f6
sBo6xXy6WTeivU/o/i8TbM6K4mA37pBaj78ooIkWLgg5fzRaS2+0xSPVy2H9x1m5
LymHcobCK9rSZ1l208Fe
=vhxI
-----END PGP SIGNATURE-----
Merge tag 'pm-4.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management updates from Rafael Wysocki:
"Again, cpufreq gets more changes than the other parts this time (one
new driver, one old driver less, a bunch of enhancements of the
existing code, new CPU IDs, fixes, cleanups)
There also are some changes in cpuidle (idle injection rework, a
couple of new CPU IDs, online/offline rework in intel_idle, fixes and
cleanups), in the generic power domains framework (mostly related to
supporting power domains containing CPUs), and in the Operating
Performance Points (OPP) library (mostly related to supporting devices
with multiple voltage regulators)
In addition to that, the system sleep state selection interface is
modified to make it easier for distributions with unchanged user space
to support suspend-to-idle as the default system suspend method, some
issues are fixed in the PM core, the latency tolerance PM QoS
framework is improved a bit, the Intel RAPL power capping driver is
cleaned up and there are some fixes and cleanups in the devfreq
subsystem
Specifics:
- New cpufreq driver for Broadcom STB SoCs and a Device Tree binding
for it (Markus Mayer)
- Support for ARM Integrator/AP and Integrator/CP in the generic DT
cpufreq driver and elimination of the old Integrator cpufreq driver
(Linus Walleij)
- Support for the zx296718, r8a7743 and r8a7745, Socionext UniPhier,
and PXA SoCs in the the generic DT cpufreq driver (Baoyou Xie,
Geert Uytterhoeven, Masahiro Yamada, Robert Jarzmik)
- cpufreq core fix to eliminate races that may lead to using inactive
policy objects and related cleanups (Rafael Wysocki)
- cpufreq schedutil governor update to make it use SCHED_FIFO kernel
threads (instead of regular workqueues) for doing delayed work (to
reduce the response latency in some cases) and related cleanups
(Viresh Kumar)
- New cpufreq sysfs attribute for resetting statistics (Markus Mayer)
- cpufreq governors fixes and cleanups (Chen Yu, Stratos Karafotis,
Viresh Kumar)
- Support for using generic cpufreq governors in the intel_pstate
driver (Rafael Wysocki)
- Support for per-logical-CPU P-state limits and the EPP/EPB (Energy
Performance Preference/Energy Performance Bias) knobs in the
intel_pstate driver (Srinivas Pandruvada)
- New CPU ID for Knights Mill in intel_pstate (Piotr Luc)
- intel_pstate driver modification to use the P-state selection
algorithm based on CPU load on platforms with the system profile in
the ACPI tables set to "mobile" (Srinivas Pandruvada)
- intel_pstate driver cleanups (Arnd Bergmann, Rafael Wysocki,
Srinivas Pandruvada)
- cpufreq powernv driver updates including fast switching support
(for the schedutil governor), fixes and cleanus (Akshay Adiga,
Andrew Donnellan, Denis Kirjanov)
- acpi-cpufreq driver rework to switch it over to the new CPU
offline/online state machine (Sebastian Andrzej Siewior)
- Assorted cleanups in cpufreq drivers (Wei Yongjun, Prashanth
Prakash)
- Idle injection rework (to make it use the regular idle path instead
of a home-grown custom one) and related powerclamp thermal driver
updates (Peter Zijlstra, Jacob Pan, Petr Mladek, Sebastian Andrzej
Siewior)
- New CPU IDs for Atom Z34xx and Knights Mill in intel_idle (Andy
Shevchenko, Piotr Luc)
- intel_idle driver cleanups and switch over to using the new CPU
offline/online state machine (Anna-Maria Gleixner, Sebastian
Andrzej Siewior)
- cpuidle DT driver update to support suspend-to-idle properly
(Sudeep Holla)
- cpuidle core cleanups and misc updates (Daniel Lezcano, Pan Bian,
Rafael Wysocki)
- Preliminary support for power domains including CPUs in the generic
power domains (genpd) framework and related DT bindings (Lina Iyer)
- Assorted fixes and cleanups in the generic power domains (genpd)
framework (Colin Ian King, Dan Carpenter, Geert Uytterhoeven)
- Preliminary support for devices with multiple voltage regulators
and related fixes and cleanups in the Operating Performance Points
(OPP) library (Viresh Kumar, Masahiro Yamada, Stephen Boyd)
- System sleep state selection interface rework to make it easier to
support suspend-to-idle as the default system suspend method
(Rafael Wysocki)
- PM core fixes and cleanups, mostly related to the interactions
between the system suspend and runtime PM frameworks (Ulf Hansson,
Sahitya Tummala, Tony Lindgren)
- Latency tolerance PM QoS framework imorovements (Andrew Lutomirski)
- New Knights Mill CPU ID for the Intel RAPL power capping driver
(Piotr Luc)
- Intel RAPL power capping driver fixes, cleanups and switch over to
using the new CPU offline/online state machine (Jacob Pan, Thomas
Gleixner, Sebastian Andrzej Siewior)
- Fixes and cleanups in the exynos-ppmu, exynos-nocp, rk3399_dmc,
rockchip-dfi devfreq drivers and the devfreq core (Axel Lin,
Chanwoo Choi, Javier Martinez Canillas, MyungJoo Ham, Viresh Kumar)
- Fix for false-positive KASAN warnings during resume from ACPI S3
(suspend-to-RAM) on x86 (Josh Poimboeuf)
- Memory map verification during resume from hibernation on x86 to
ensure a consistent address space layout (Chen Yu)
- Wakeup sources debugging enhancement (Xing Wei)
- rockchip-io AVS driver cleanup (Shawn Lin)"
* tag 'pm-4.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (127 commits)
devfreq: rk3399_dmc: Don't use OPP structures outside of RCU locks
devfreq: rk3399_dmc: Remove dangling rcu_read_unlock()
devfreq: exynos: Don't use OPP structures outside of RCU locks
Documentation: intel_pstate: Document HWP energy/performance hints
cpufreq: intel_pstate: Support for energy performance hints with HWP
cpufreq: intel_pstate: Add locking around HWP requests
PM / sleep: Print active wakeup sources when blocking on wakeup_count reads
PM / core: Fix bug in the error handling of async suspend
PM / wakeirq: Fix dedicated wakeirq for drivers not using autosuspend
PM / Domains: Fix compatible for domain idle state
PM / OPP: Don't WARN on multiple calls to dev_pm_opp_set_regulators()
PM / OPP: Allow platform specific custom set_opp() callbacks
PM / OPP: Separate out _generic_set_opp()
PM / OPP: Add infrastructure to manage multiple regulators
PM / OPP: Pass struct dev_pm_opp_supply to _set_opp_voltage()
PM / OPP: Manage supply's voltage/current in a separate structure
PM / OPP: Don't use OPP structure outside of rcu protected section
PM / OPP: Reword binding supporting multiple regulators per device
PM / OPP: Fix incorrect cpu-supply property in binding
cpuidle: Add a kerneldoc comment to cpuidle_use_deepest_state()
..
* pm-cpufreq: (51 commits)
Documentation: intel_pstate: Document HWP energy/performance hints
cpufreq: intel_pstate: Support for energy performance hints with HWP
cpufreq: intel_pstate: Add locking around HWP requests
cpufreq: ondemand: Set MIN_FREQUENCY_UP_THRESHOLD to 1
cpufreq: intel_pstate: Add Knights Mill CPUID
MAINTAINERS: Add bug tracking system location entry for cpufreq
cpufreq: dt: Add support for zx296718
cpufreq: acpi-cpufreq: drop rdmsr_on_cpus() usage
cpufreq: acpi-cpufreq: Convert to hotplug state machine
cpufreq: intel_pstate: fix intel_pstate_exit_perf_limits() prototype
cpufreq: intel_pstate: Set EPP/EPB to 0 in performance mode
cpufreq: schedutil: Rectify comment in sugov_irq_work() function
cpufreq: intel_pstate: increase precision of performance limits
cpufreq: intel_pstate: round up min_perf limits
cpufreq: Make cpufreq_update_policy() void
ACPI / processor: Make acpi_processor_ppc_has_changed() void
cpufreq: Avoid using inactive policies
cpufreq: intel_pstate: Generic governors support
cpufreq: intel_pstate: Request P-states control from SMM if needed
cpufreq: dt: Add support for r8a7743 and r8a7745
...
It is possible to provide hints to the HWP algorithms in the processor
to be more performance centric to more energy centric. These hints are
provided by using HWP energy performance preference (EPP) or energy
performance bias (EPB) settings.
The scope of these settings is per logical processor, which means that
each of the logical processors in the package can be programmed with a
different value.
This change provides cpufreq sysfs interface to provide hint. For each
policy, two additional attributes will be available to check and provide
hint. These attributes will only be present when the intel_pstate driver
is using HWP mode.
These attributes are:
- energy_performance_available_preferences
- energy_performance_preference
To get list of supported hints:
$ cat energy_performance_available_preferences
default performance balance_performance balance_power power
The current preference can be read or changed via cpufreq sysfs
attribute "energy_performance_preference". Reading from this attribute
will display current effective setting changed via any method. User can
write any of the valid preference string to this attribute. User can
always restore to power-on default by writing "default".
Implementation
Since these hints can be provided by direct MSR write or using some tools
like x86_energy_perf_policy, the driver internally doesn't maintain any
state. The user operation will result in direct read/write of MSR: 0x774
(HWP_REQUEST_MSR). Also driver use read modify write to update other
fields in this MSR.
Summary of changes:
- struct cpudata field epp_saved is renamed to epp_powersave, as this
stores the value to restore once policy is switched from performance
to powersave to restore original powersave EPP value.
- A new struct cpudata field epp_saved is used to store the raw MSR
EPP/EPB value when a CPU goes offline or on suspend and restore on
online/resume. This ensures that EPP value is restored to correct
value irrespective of the means used to set.
- EPP/EPB value ranges are fixed for each preference, which can be
set for the cpufreq sysfs, so user request is mapped to/from this
range.
- New attributes are only added when HWP is present.
- Since EPP value of 0 is valid the fields are initialized to
-EINVAL when not valid. The field epp_default is read only once
after powerup to avoid reading on subsequent CPU online operation
- New suspend callback to store epp on suspend operation
- Don't invalidate old epp_saved field on resume and online as now
we can restore last epp value on suspend and this field can still
have old EPP value sampled during switch to performance from
powersave.
- While here optimized setting of cpu_data->epp_powersave = epp in
intel_pstate_hwp_set() as this was done in both true and false
paths.
- epp/epb set function returns error to caller on failure to pass
on to user space for display.
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
To avoid race conditions from multiple threads, increase the scope
of intel_pstate_limits_lock to include HWP requests also.
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
[ rjw: Subject ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>