If the hypervisor gives us an error on a hugepage insert we panic. The
normal page code already handles this by returning an error instead and we end
calling low_hash_fault which will just kill the task if possible.
The patch below does a similar thing for the hugepage case.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
via following scripts
FILES=$(find * -type f | grep -vE 'oprofile|[^K]config')
sed -i \
-e 's/lmb/memblock/g' \
-e 's/LMB/MEMBLOCK/g' \
$FILES
for N in $(find . -name lmb.[ch]); do
M=$(echo $N | sed 's/lmb/memblock/g')
mv $N $M
done
and remove some wrong change like lmbench and dlmb etc.
also move memblock.c from lib/ to mm/
Suggested-by: Ingo Molnar <mingo@elte.hu>
Acked-by: "H. Peter Anvin" <hpa@zytor.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Use the MMU config registers to scan for available direct and
indirect page sizes and print out the result. Will be needed
for future hugetlbfs implementation.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
We patch the TLB miss exception vectors to point to alternate
functions when using HW page table on BookE.
However, we were patching in a new branch in the first instruction
of the exception handler instead of the second one, thus overriding
the nop that is in the first instruction.
This cause problems when single stepping as we rely on that nop for
the single step to stop properly within the exception vector range
rather than on the target of the branch.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
CONFIG_SMP_750 doesn't exist in Kconfig, therefore removing all
references for it from the source code.
Signed-off-by: Christoph Egger <siccegge@cs.fau.de>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Form 1 affinity allows multiple entries in ibm,associativity-reference-points
which represent affinity domains in decreasing order of importance. The
Linux concept of a node is always the first entry, but using the other
values as an input to node_distance() allows the memory allocator to make
better decisions on which node to go first when local memory has been
exhausted.
We keep things simple and create an array indexed by NUMA node, capped at
4 entries. Each time we lookup an associativity property we initialise
the array which is overkill, but since we should only hit this path during
boot it didn't seem worth adding a per node valid bit.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Remove all rcu head inits. We don't care about the RCU head state before
passing it to call_rcu() anyway. Only leave the "on_stack" variants so
debugobjects can keep track of objects on stack.
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
There are no BATS on BookE - we have the TLBCAM instead. Also correct
the page size information to included extended sizes. We don't actually allow
a 4G page size to be used, so comment on that as well.
Signed-off-by: Becky Bruce <beckyb@kernel.crashing.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
CONFIG_HIGHPTE doesn't exist in Kconfig, therefore removing all
references for it from the source code.
Signed-off-by: Christoph Egger <siccegge@cs.fau.de>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* 'kvm-updates/2.6.35' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (269 commits)
KVM: x86: Add missing locking to arch specific vcpu ioctls
KVM: PPC: Add missing vcpu_load()/vcpu_put() in vcpu ioctls
KVM: MMU: Segregate shadow pages with different cr0.wp
KVM: x86: Check LMA bit before set_efer
KVM: Don't allow lmsw to clear cr0.pe
KVM: Add cpuid.txt file
KVM: x86: Tell the guest we'll warn it about tsc stability
x86, paravirt: don't compute pvclock adjustments if we trust the tsc
x86: KVM guest: Try using new kvm clock msrs
KVM: x86: export paravirtual cpuid flags in KVM_GET_SUPPORTED_CPUID
KVM: x86: add new KVMCLOCK cpuid feature
KVM: x86: change msr numbers for kvmclock
x86, paravirt: Add a global synchronization point for pvclock
x86, paravirt: Enable pvclock flags in vcpu_time_info structure
KVM: x86: Inject #GP with the right rip on efer writes
KVM: SVM: Don't allow nested guest to VMMCALL into host
KVM: x86: Fix exception reinjection forced to true
KVM: Fix wallclock version writing race
KVM: MMU: Don't read pdptrs with mmu spinlock held in mmu_alloc_roots
KVM: VMX: enable VMXON check with SMX enabled (Intel TXT)
...
I've been told that the architected way to determine we are in form 1
affinity mode is by reading the ibm,architecture-vec-5 property which
mirrors the layout of the fifth vector of the ibm,client-architecture
structure.
Eventually we may want to parse the ibm,architecture-vec-5 and create
FW_FEATURE_* bits.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
When we build with ftrace enabled its possible that loadcam_entry would
have used the stack pointer (even though the code doesn't need it). We
call loadcam_entry in __secondary_start before the stack is setup. To
ensure that loadcam_entry doesn't use the stack pointer the easiest
solution is to just have it in asm code.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
We need to reserve a context from KVM to make sure we have our own
segment space. While we did that split for Book3S_64 already, 32 bit
is still outstanding.
So let's split it now.
Signed-off-by: Alexander Graf <agraf@suse.de>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
CC: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Avi Kivity <avi@redhat.com>
Convert NUMA code to new cpumask API. We shift the node to cpumask
setup code until after we complete bootmem allocation so we can
dynamically allocate the cpumasks.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
As explained in commit 1c0fe6e3bd, we want to call the architecture independent
oom killer when getting an unexplained OOM from handle_mm_fault, rather than
simply killing current.
Cc: linuxppc-dev@ozlabs.org
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: linux-arch@vger.kernel.org
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
We need to keep track of the backing pages that get allocated by
vmemmap_populate() so that when we use kdump, the dump-capture kernel knows
where these pages are.
We use a simple linked list of structures that contain the physical address
of the backing page and corresponding virtual address to track the backing
pages.
To save space, we just use a pointer to the next struct vmemmap_backing. We
can also do this because we never remove nodes. We call the pointer "list"
to be compatible with changes made to the crash utility.
vmemmap_populate() is called either at boot-time or on a memory hotplug
operation. We don't have to worry about the boot-time calls because they
will be inherently single-threaded, and for a memory hotplug operation
vmemmap_populate() is called through:
sparse_add_one_section()
|
V
kmalloc_section_memmap()
|
V
sparse_mem_map_populate()
|
V
vmemmap_populate()
and in sparse_add_one_section() we're protected by pgdat_resize_lock().
So, we don't need a spinlock to protect the vmemmap_list.
We allocate space for the vmemmap_backing structs by allocating whole pages
in vmemmap_list_alloc() and then handing out chunks of this to
vmemmap_list_populate().
This means that we waste at most just under one page, but this keeps the code
is simple.
Signed-off-by: Mark Nelson <markn@au1.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
So we tried to speed things up a bit using flush_hash_pages() directly
but that falls over on 603 of course meaning we fail to flush the TLB
properly and we may even end up having it corrupt memory randomly by
accessing a hash table that doesn't exist.
This removes the "optimization" by always going through flush_tlb_page()
for now at least.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This patch adds the base support for the 476 processor. The code was
primarily written by Ben Herrenschmidt and Torez Smith, but I've been
maintaining it for a while.
The goal is to have a single binary that will run on 44x and 47x, but
we still have some details to work out. The biggest is that the L1 cache
line size differs on the two platforms, but it's currently a compile-time
option.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Torez Smith <lnxtorez@linux.vnet.ibm.com>
Signed-off-by: Dave Kleikamp <shaggy@linux.vnet.ibm.com>
Signed-off-by: Josh Boyer <jwboyer@linux.vnet.ibm.com>
The bypassing of this test is a leftover from 2.4 vintage
kernels, and is no longer appropriate, or even used by KGDB.
Currently KGDB uses probe_kernel_write() for all access to
memory via the KGDB core, so it can simply be deleted.
This fixes CVE-2010-1446.
CC: Benjamin Herrenschmidt <benh@kernel.crashing.org>
CC: Paul Mackerras <paulus@samba.org>
CC: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Wufei <fei.wu@windriver.com>
Signed-off-by: Jason Wessel <jason.wessel@windriver.com>
Firmware changed the way it represents memory and cpu affinity on POWER7.
Unfortunately the old method now caps the topology to work around issues
with legacy operating systems. For Linux to get the correct topology we
need to use the new form 1 affinity information.
We set the form 1 field in the client architecture, and if we see "1" in the
ibm,associativity-form property firmware supports form 1 affinity and
we should look at the first field in the ibm,associativity-reference-points
array. If not we use the second field as we always have.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The code was looking for this in cpu_features, not mmu_features. Fix this.
Signed-off-by: Becky Bruce <beckyb@kernel.crashing.org>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Data address breakpoint exceptions are currently handled along with page-faults
which require interrupts to remain in enabled state. Since exception handling
for data breakpoints aren't pre-empt safe, we handle them separately.
Signed-off-by: K.Prasad <prasad@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
We can't just clear the user read permission in book3e pte, because
that will also clear supervisor read permission. This surely isn't
desired. Fix the problem by adding the supervisor read back.
BenH: Slightly simplified the ifdef and applied to ppc64 too
Signed-off-by: Li Yang <leoli@freescale.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
powerpc initializes swiotlb before parsing the kernel boot options so
swiotlb options (e.g. specifying the swiotlb buffer size) are ignored.
Any time before freeing bootmem works for swiotlb so this patch moves
powerpc's swiotlb initialization after parsing the kernel boot
options, mem_init (as x86 does).
Signed-off-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
Tested-by: Becky Bruce <beckyb@kernel.crashing.org>
Tested-by: Albert Herranz <albert_herranz@yahoo.es>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The macro any_online_node() is prone to producing sparse warnings due to
the local symbol 'node'. Since all the in-tree users are really
requesting the first online node (the mask argument is either
NODE_MASK_ALL or node_online_map) just use the first_online_node macro and
remove the any_online_node macro since there are no users.
Signed-off-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Acked-by: David Rientjes <rientjes@google.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Milton Miller <miltonm@bga.com>
Cc: Nathan Fontenot <nfont@austin.ibm.com>
Cc: Geoff Levand <geoffrey.levand@am.sony.com>
Cc: Grant Likely <grant.likely@secretlab.ca>
Cc: J. Bruce Fields <bfields@fieldses.org>
Cc: Neil Brown <neilb@suse.de>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Benny Halevy <bhalevy@panasas.com>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Ricardo Labiaga <Ricardo.Labiaga@netapp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On VIVT ARM, when we have multiple shared mappings of the same file
in the same MM, we need to ensure that we have coherency across all
copies. We do this via make_coherent() by making the pages
uncacheable.
This used to work fine, until we allowed highmem with highpte - we
now have a page table which is mapped as required, and is not available
for modification via update_mmu_cache().
Ralf Beache suggested getting rid of the PTE value passed to
update_mmu_cache():
On MIPS update_mmu_cache() calls __update_tlb() which walks pagetables
to construct a pointer to the pte again. Passing a pte_t * is much
more elegant. Maybe we might even replace the pte argument with the
pte_t?
Ben Herrenschmidt would also like the pte pointer for PowerPC:
Passing the ptep in there is exactly what I want. I want that
-instead- of the PTE value, because I have issue on some ppc cases,
for I$/D$ coherency, where set_pte_at() may decide to mask out the
_PAGE_EXEC.
So, pass in the mapped page table pointer into update_mmu_cache(), and
remove the PTE value, updating all implementations and call sites to
suit.
Includes a fix from Stephen Rothwell:
sparc: fix fallout from update_mmu_cache API change
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
tlbivax_lock needs to be a real spinlock in RT. Convert it to
raw_spinlock.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
native_tlbie_lock needs to be a real spinlock in RT. Convert it to
raw_spinlock.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
context_lock needs to be a real spinlock in RT. Convert it to
raw_spinlock.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Now we have real bit locks use them instead of open coding it.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This patch adds support for boards with more that 512MByte RAM. Currently
only 512MB of memory are enabled in the DCCR/ICCR real-mode cache
control registers. This patch now enables caching in real-mode for
2GByte.
Signed-off-by: Stefan Roese <sr@denx.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Josh Boyer <jwboyer@linux.vnet.ibm.com>
Signed-off-by: Josh Boyer <jwboyer@linux.vnet.ibm.com>
Commit f71dc176aa 'Make
hpte_need_flush() correctly mask for multiple page sizes' introduced
bug, which is triggered when a kernel with a 64k base page size is run
on a system whose hardware does not 64k hash PTEs. In this case, we
emulate 64k pages with multiple 4k hash PTEs, however in
hpte_need_flush() we incorrectly only mask the hardware page size from
the address, instead of the logical page size. This causes things to
go wrong when we later attempt to iterate through the hardware
subpages of the logical page.
This patch corrects the error. It has been tested on pSeries bare
metal by Michael Neuling.
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
We can use the much more lightweight ida allocator since we don't
need the pointer storage idr provides.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Make sure compiler won't do weird things with limits. E.g. fetching
them twice may return 2 different values after writable limits are
implemented.
I.e. either use rlimit helpers added in
3e10e716ab
or ACCESS_ONCE if not applicable.
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: linuxppc-dev@ozlabs.org
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Commit d28513bc7f ("Fix bug in pagetable
cache cleanup with CONFIG_PPC_SUBPAGE_PROT"), itself a fix for
breakage caused by an earlier clean up patch of mine, contains a
stupid bug. I changed the parameters of the subpage_protection()
function, but failed to update one of the callers.
This patch fixes it, and replaces a void * with a typed pointer so
that the compiler will warn on such an error in future.
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The function name of cpumask_clear_cpu was not correct. Fortunately
nobody uses that code with hotplug yet :-)
Reported-by: Jin Qing <b24347@freescale.com>
Signed-off-by: Li Yang <leoli@freescale.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This time without the funny characters.
Fix following build errors generated with DEBUG=1
cc1: warnings being treated as errors
arch/powerpc/mm/hash_utils_64.c: In function 'htab_dt_scan_page_sizes':
arch/powerpc/mm/hash_utils_64.c:343: error: format '%04x' expects type 'unsigned int', but argument 4 has type 'long unsigned int'
arch/powerpc/mm/hash_utils_64.c:343: error: format '%08x' expects type 'unsigned int', but argument 5 has type 'long unsigned int'
arch/powerpc/mm/hash_utils_64.c: In function 'htab_initialize':
arch/powerpc/mm/hash_utils_64.c:666: error: format '%x' expects type 'unsigned int', but argument 4 has type 'long unsigned int'
... SNIP ...
Signed-off-by: Sachin Sant <sachinp@in.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Set need to call __set_pte_at() and not set_pte_at() from __change_page_attr()
since the later will perform checks with CONFIG_DEBUG_VM that aren't suitable
to the way we override an existing PTE. (More specifically, it doesn't let
you write over a present PTE).
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* 'next' of git://git.secretlab.ca/git/linux-2.6: (23 commits)
powerpc: fix up for mmu_mapin_ram api change
powerpc: wii: allow ioremap within the memory hole
powerpc: allow ioremap within reserved memory regions
wii: use both mem1 and mem2 as ram
wii: bootwrapper: add fixup to calc useable mem2
powerpc: gamecube/wii: early debugging using usbgecko
powerpc: reserve fixmap entries for early debug
powerpc: wii: default config
powerpc: wii: platform support
powerpc: wii: hollywood interrupt controller support
powerpc: broadway processor support
powerpc: wii: bootwrapper bits
powerpc: wii: device tree
powerpc: gamecube: default config
powerpc: gamecube: platform support
powerpc: gamecube/wii: flipper interrupt controller support
powerpc: gamecube/wii: udbg support for usbgecko
powerpc: gamecube/wii: do not include PCI support
powerpc: gamecube/wii: declare as non-coherent platforms
powerpc: gamecube/wii: introduce GAMECUBE_COMMON
...
Fix up conflicts in arch/powerpc/mm/fsl_booke_mmu.c.
Hopefully even close to correctly.
Today's linux-next build (powerpc ppc44x_defconfig) failed like this:
arch/powerpc/mm/pgtable_32.c: In function 'mapin_ram':
arch/powerpc/mm/pgtable_32.c:318: error: too many arguments to function 'mmu_mapin_ram'
Casued by commit de32400dd2 ("wii: use both
mem1 and mem2 as ram").
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
Add a flag to let a platform ioremap memory regions marked as reserved.
This flag will be used later by the Nintendo Wii support code to allow
ioremapping the I/O region sitting between MEM1 and MEM2 and marked
as reserved RAM in the patch "wii: use both mem1 and mem2 as ram".
This will no longer be needed when proper discontig memory support
for 32-bit PowerPC is added to the kernel.
Signed-off-by: Albert Herranz <albert_herranz@yahoo.es>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
The Nintendo Wii video game console has two discontiguous RAM regions:
- MEM1: 24MB @ 0x00000000
- MEM2: 64MB @ 0x10000000
Unfortunately, the kernel currently does not support discontiguous RAM
memory regions on 32-bit PowerPC platforms.
This patch adds a series of workarounds to allow the use of the second
memory region (MEM2) as RAM by the kernel.
Basically, a single range of memory from the beginning of MEM1 to the
end of MEM2 is reported to the kernel, and a memory reservation is
created for the hole between MEM1 and MEM2.
With this patch the system is able to use all the available RAM and not
just ~27% of it.
This will no longer be needed when proper discontig memory support
for 32-bit PowerPC is added to the kernel.
Signed-off-by: Albert Herranz <albert_herranz@yahoo.es>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
8xx sometimes need to load a invalid/non-present TLBs in
it DTLB asm handler.
These must be invalidated separaly as linux mm don't.
Signed-off-by: Joakim Tjernlund <Joakim.Tjernlund@transmode.se>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Commit a0668cdc15 cleans up the handling
of kmem_caches for allocating various levels of pagetables.
Unfortunately, it conflicts badly with CONFIG_PPC_SUBPAGE_PROT, due to
the latter's cleverly hidden technique of adding some extra allocation
space to the top level page directory to store the extra information
it needs.
Since that extra allocation really doesn't fit into the cleaned up
page directory allocating scheme, this patch alters
CONFIG_PPC_SUBPAGE_PROT to instead allocate its struct
subpage_prot_table as part of the mm_context_t.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This reverts commit c045256d14.
It breaks build when CONFIG_PPC_SUBPAGE_PROT is not set. I will
commit a fixed version separately
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Commit a4fe3ce769 introduced a new
get_user_pages() path for hugepages on powerpc. Unfortunately, there
is a bug in it's loop logic, which can cause it to overrun the end of
the intended region. This came about by copying the logic from the
normal page path, which assumes the address and end parameters have
been pagesize aligned at the top-level. Since they're not *hugepage*
size aligned, the simplistic logic could step over the end of the gup
region without triggering the loop end condition.
This patch fixes the bug by using the technique that the normal page
path uses in levels above the lowest to truncate the ending address to
something we know we'll match with.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Commit a0668cdc15 cleans up the handling
of kmem_caches for allocating various levels of pagetables.
Unfortunately, it conflicts badly with CONFIG_PPC_SUBPAGE_PROT, due to
the latter's cleverly hidden technique of adding some extra allocation
space to the top level page directory to store the extra information
it needs.
Since that extra allocation really doesn't fit into the cleaned up
page directory allocating scheme, this patch alters
CONFIG_PPC_SUBPAGE_PROT to instead allocate its struct
subpage_prot_table as part of the mm_context_t.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Re-write the code so its more standalone and fixed some issues:
* Bump'd # of CAM entries to 64 to support e500mc
* Make the code handle MAS7 properly
* Use pr_cont instead of creating a string as we go
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
For KVM we need to allocate a new context id, but don't really care about
all the mm context around it.
So let's split the alloc and destroy functions for the context id, so we can
grab one without allocating an mm context.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
We want to be able to build KVM as a module. To enable us doing so, we
need some more exports from core Linux parts.
This patch exports all functions and variables that are required for KVM.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
I inadvertently left that debug code enabled, causing the number of
contexts to be clamped to 31 which is going to slow things down on
4xx and just plain breaks 8xx
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The hugepage arch code provides a number of hook functions/macros
which mirror the functionality of various normal page pte access
functions. Various changes in the normal page accessors (in
particular BenH's recent changes to the handling of lazy icache
flushing and PAGE_EXEC) have caused the hugepage versions to get out
of sync with the originals. In some cases, this is a bug, at least on
some MMU types.
One of the reasons that some hooks were not identical to the normal
page versions, is that the fact we're dealing with a hugepage needed
to be passed down do use the correct dcache-icache flush function.
This patch makes the main flush_dcache_icache_page() function hugepage
aware (by checking for the PageCompound flag). That in turn means we
can make set_huge_pte_at() just a call to set_pte_at() bringing it
back into sync. As a bonus, this lets us remove the
hash_huge_page_do_lazy_icache() function, replacing it with a call to
the hash_page_do_lazy_icache() function it was based on.
Some other hugepage pte access hooks - huge_ptep_get_and_clear() and
huge_ptep_clear_flush() - are not so easily unified, but this patch at
least brings them back into sync with the current versions of the
corresponding normal page functions.
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This patch separates the parts of hugetlbpage.c which are inherently
specific to the hash MMU into a new hugelbpage-hash64.c file.
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This patch simplifies the logic used to initialize hugepages on
powerpc. The somewhat oddly named set_huge_psize() is renamed to
add_huge_page_size() and now does all necessary verification of
whether it's given a valid hugepage sizes (instead of just some) and
instantiates the generic hstate structure (but no more).
hugetlbpage_init() now steps through the available pagesizes, checks
if they're valid for hugepages by calling add_huge_page_size() and
initializes the kmem_caches for the hugepage pagetables. This means
we can now eliminate the mmu_huge_psizes array, since we no longer
need to pass the sizing information for the pagetable caches from
set_huge_psize() into hugetlbpage_init()
Determination of the default huge page size is also moved from the
hash code into the general hugepage code.
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Currently each available hugepage size uses a slightly different
pagetable layout: that is, the bottem level table of pointers to
hugepages is a different size, and may branch off from the normal page
tables at a different level. Every hugepage aware path that needs to
walk the pagetables must therefore look up the hugepage size from the
slice info first, and work out the correct way to walk the pagetables
accordingly. Future hardware is likely to add more possible hugepage
sizes, more layout options and more mess.
This patch, therefore reworks the handling of hugepage pagetables to
reduce this complexity. In the new scheme, instead of having to
consult the slice mask, pagetable walking code can check a flag in the
PGD/PUD/PMD entries to see where to branch off to hugepage pagetables,
and the entry also contains the information (eseentially hugepage
shift) necessary to then interpret that table without recourse to the
slice mask. This scheme can be extended neatly to handle multiple
levels of self-describing "special" hugepage pagetables, although for
now we assume only one level exists.
This approach means that only the pagetable allocation path needs to
know how the pagetables should be set out. All other (hugepage)
pagetable walking paths can just interpret the structure as they go.
There already was a flag bit in PGD/PUD/PMD entries for hugepage
directory pointers, but it was only used for debug. We alter that
flag bit to instead be a 0 in the MSB to indicate a hugepage pagetable
pointer (normally it would be 1 since the pointer lies in the linear
mapping). This means that asm pagetable walking can test for (and
punt on) hugepage pointers with the same test that checks for
unpopulated page directory entries (beq becomes bge), since hugepage
pointers will always be positive, and normal pointers always negative.
While we're at it, we get rid of the confusing (and grep defeating)
#defining of hugepte_shift to be the same thing as mmu_huge_psizes.
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Currently we have a fair bit of rather fiddly code to manage the
various kmem_caches used to store page tables of various levels. We
generally have two caches holding some combination of PGD, PUD and PMD
tables, plus several more for the special hugepage pagetables.
This patch cleans this all up by taking a different approach. Rather
than the caches being designated as for PUDs or for hugeptes for 16M
pages, the caches are simply allocated to be a specific size. Thus
sharing of caches between different types/levels of pagetables happens
naturally. The pagetable size, where needed, is passed around encoded
in the same way as {PGD,PUD,PMD}_INDEX_SIZE; that is n where the
pagetable contains 2^n pointers.
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Currently, hpte_need_flush() only correctly flushes the given address
for normal pages. Callers for hugepages are required to mask the
address themselves.
But hpte_need_flush() already looks up the page sizes for its own
reasons, so this is a rather silly imposition on the callers. This
patch alters it to mask based on the pagesize it has looked up itself,
and removes the awkward masking code in the hugepage caller.
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
On pSeries, we always force the IO space to be mapped using 4K
pages even with a 64K base page size to cope with some limitations
in the HV interface to some devices.
However, the SLB miss handler code to discriminate between vmalloc
and ioremap space uses a CPU feature section such that the code
is nop'ed out when the processor support large pages non-cachable
mappings.
Thus, we end up always using the ioremap page size for vmalloc
segments on such processors, causing a discrepency between the
segment and the hash table, and thus a hang continously hashing
the page.
It works for the first segment of the vmalloc space since that
segment is "bolted" in by C code correctly, and thankfully we
almost never use the vmalloc space beyond the first segment,
but the new percpu code made the bug happen.
This fixes it by removing the feature section from the assembly,
we now always do the comparison between vmalloc and ioremap.
Signed-off-by; Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
After upgrading to the latest kernel on my mpc875 userspace started
running incredibly slow (hours to get to a shell, even!).
I tracked it down to commit 8d30c14cab,
that patch removed a work-around for the 8xx. Adding it
back makes my problem go away.
Signed-off-by: Rex Feany <rfeany@mrv.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
For /proc/kcore, each arch registers its memory range by kclist_add().
In usual,
- range of physical memory
- range of vmalloc area
- text, etc...
are registered but "range of physical memory" has some troubles. It
doesn't updated at memory hotplug and it tend to include unnecessary
memory holes. Now, /proc/iomem (kernel/resource.c) includes required
physical memory range information and it's properly updated at memory
hotplug. Then, it's good to avoid using its own code(duplicating
information) and to rebuild kclist for physical memory based on
/proc/iomem.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Jiri Slaby <jirislaby@gmail.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: WANG Cong <xiyou.wangcong@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Originally, walk_memory_resource() was introduced to traverse all memory
of "System RAM" for detecting memory hotplug/unplug range. For doing so,
flags of IORESOUCE_MEM|IORESOURCE_BUSY was used and this was enough for
memory hotplug.
But for using other purpose, /proc/kcore, this may includes some firmware
area marked as IORESOURCE_BUSY | IORESOUCE_MEM. This patch makes the
check strict to find out busy "System RAM".
Note: PPC64 keeps their own walk_memory_resouce(), which walk through
ppc64's lmb informaton. Because old kclist_add() is called per lmb, this
patch makes no difference in behavior, finally.
And this patch removes CONFIG_MEMORY_HOTPLUG check from this function.
Because pfn_valid() just show "there is memmap or not* and cannot be used
for "there is physical memory or not", this function is useful in generic
to scan physical memory range.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: WANG Cong <xiyou.wangcong@gmail.com>
Cc: Américo Wang <xiyou.wangcong@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Roland Dreier <rolandd@cisco.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For /proc/kcore, vmalloc areas are registered per arch. But, all of them
registers same range of [VMALLOC_START...VMALLOC_END) This patch unifies
them. By this. archs which have no kclist_add() hooks can see vmalloc
area correctly.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: WANG Cong <xiyou.wangcong@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Presently, kclist_add() only eats start address and size as its arguments.
Considering to make kclist dynamically reconfigulable, it's necessary to
know which kclists are for System RAM and which are not.
This patch add kclist types as
KCORE_RAM
KCORE_VMALLOC
KCORE_TEXT
KCORE_OTHER
This "type" is used in a patch following this for detecting KCORE_RAM.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: WANG Cong <xiyou.wangcong@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 9617729941 ("Drop free_pages()")
modified nr_free_pages() to return 'unsigned long' instead of 'unsigned
int'. This made the casts to 'unsigned long' in most callers superfluous,
so remove them.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Geert Uytterhoeven <Geert.Uytterhoeven@sonycom.com>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Acked-by: Ingo Molnar <mingo@elte.hu>
Acked-by: Russell King <rmk+kernel@arm.linux.org.uk>
Acked-by: David S. Miller <davem@davemloft.net>
Acked-by: Kyle McMartin <kyle@mcmartin.ca>
Acked-by: WANG Cong <xiyou.wangcong@gmail.com>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Haavard Skinnemoen <hskinnemoen@atmel.com>
Cc: Mikael Starvik <starvik@axis.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Hirokazu Takata <takata@linux-m32r.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: David Howells <dhowells@redhat.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Chris Zankel <zankel@tensilica.com>
Cc: Michal Simek <monstr@monstr.eu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Bye-bye Performance Counters, welcome Performance Events!
In the past few months the perfcounters subsystem has grown out its
initial role of counting hardware events, and has become (and is
becoming) a much broader generic event enumeration, reporting, logging,
monitoring, analysis facility.
Naming its core object 'perf_counter' and naming the subsystem
'perfcounters' has become more and more of a misnomer. With pending
code like hw-breakpoints support the 'counter' name is less and
less appropriate.
All in one, we've decided to rename the subsystem to 'performance
events' and to propagate this rename through all fields, variables
and API names. (in an ABI compatible fashion)
The word 'event' is also a bit shorter than 'counter' - which makes
it slightly more convenient to write/handle as well.
Thanks goes to Stephane Eranian who first observed this misnomer and
suggested a rename.
User-space tooling and ABI compatibility is not affected - this patch
should be function-invariant. (Also, defconfigs were not touched to
keep the size down.)
This patch has been generated via the following script:
FILES=$(find * -type f | grep -vE 'oprofile|[^K]config')
sed -i \
-e 's/PERF_EVENT_/PERF_RECORD_/g' \
-e 's/PERF_COUNTER/PERF_EVENT/g' \
-e 's/perf_counter/perf_event/g' \
-e 's/nb_counters/nb_events/g' \
-e 's/swcounter/swevent/g' \
-e 's/tpcounter_event/tp_event/g' \
$FILES
for N in $(find . -name perf_counter.[ch]); do
M=$(echo $N | sed 's/perf_counter/perf_event/g')
mv $N $M
done
FILES=$(find . -name perf_event.*)
sed -i \
-e 's/COUNTER_MASK/REG_MASK/g' \
-e 's/COUNTER/EVENT/g' \
-e 's/\<event\>/event_id/g' \
-e 's/counter/event/g' \
-e 's/Counter/Event/g' \
$FILES
... to keep it as correct as possible. This script can also be
used by anyone who has pending perfcounters patches - it converts
a Linux kernel tree over to the new naming. We tried to time this
change to the point in time where the amount of pending patches
is the smallest: the end of the merge window.
Namespace clashes were fixed up in a preparatory patch - and some
stylistic fallout will be fixed up in a subsequent patch.
( NOTE: 'counters' are still the proper terminology when we deal
with hardware registers - and these sed scripts are a bit
over-eager in renaming them. I've undone some of that, but
in case there's something left where 'counter' would be
better than 'event' we can undo that on an individual basis
instead of touching an otherwise nicely automated patch. )
Suggested-by: Stephane Eranian <eranian@google.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Paul Mackerras <paulus@samba.org>
Reviewed-by: Arjan van de Ven <arjan@linux.intel.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Kyle McMartin <kyle@mcmartin.ca>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: <linux-arch@vger.kernel.org>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc: (134 commits)
powerpc/nvram: Enable use Generic NVRAM driver for different size chips
powerpc/iseries: Fix oops reading from /proc/iSeries/mf/*/cmdline
powerpc/ps3: Workaround for flash memory I/O error
powerpc/booke: Don't set DABR on 64-bit BookE, use DAC1 instead
powerpc/perf_counters: Reduce stack usage of power_check_constraints
powerpc: Fix bug where perf_counters breaks oprofile
powerpc/85xx: Fix SMP compile error and allow NULL for smp_ops
powerpc/irq: Improve nanodoc
powerpc: Fix some late PowerMac G5 with PCIe ATI graphics
powerpc/fsl-booke: Use HW PTE format if CONFIG_PTE_64BIT
powerpc/book3e: Add missing page sizes
powerpc/pseries: Fix to handle slb resize across migration
powerpc/powermac: Thermal control turns system off too eagerly
powerpc/pci: Merge ppc32 and ppc64 versions of phb_scan()
powerpc/405ex: support cuImage via included dtb
powerpc/405ex: provide necessary fixup function to support cuImage
powerpc/40x: Add support for the ESTeem 195E (PPC405EP) SBC
powerpc/44x: Add Eiger AMCC (AppliedMicro) PPC460SX evaluation board support.
powerpc/44x: Update Arches defconfig
powerpc/44x: Update Arches dts
...
Fix up conflicts in drivers/char/agp/uninorth-agp.c
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu: (46 commits)
powerpc64: convert to dynamic percpu allocator
sparc64: use embedding percpu first chunk allocator
percpu: kill lpage first chunk allocator
x86,percpu: use embedding for 64bit NUMA and page for 32bit NUMA
percpu: update embedding first chunk allocator to handle sparse units
percpu: use group information to allocate vmap areas sparsely
vmalloc: implement pcpu_get_vm_areas()
vmalloc: separate out insert_vmalloc_vm()
percpu: add chunk->base_addr
percpu: add pcpu_unit_offsets[]
percpu: introduce pcpu_alloc_info and pcpu_group_info
percpu: move pcpu_lpage_build_unit_map() and pcpul_lpage_dump_cfg() upward
percpu: add @align to pcpu_fc_alloc_fn_t
percpu: make @dyn_size mandatory for pcpu_setup_first_chunk()
percpu: drop @static_size from first chunk allocators
percpu: generalize first chunk allocator selection
percpu: build first chunk allocators selectively
percpu: rename 4k first chunk allocator to page
percpu: improve boot messages
percpu: fix pcpu_reclaim() locking
...
Fix trivial conflict as by Tejun Heo in kernel/sched.c
The SLB can change sizes across a live migration, which was not
being handled, resulting in possible machine crashes during
migration if migrating to a machine which has a smaller max SLB
size than the source machine. Fix this by first reducing the
SLB size to the minimum possible value, which is 32, prior to
migration. Then during the device tree update which occurs after
migration, we make the call to ensure the SLB gets updated. Also
add the slb_size to the lparcfg output so that the migration
tools can check to make sure the kernel has this capability
before allowing migration in scenarios where the SLB size will change.
BenH: Fixed #include <asm/mmu-hash64.h> -> <asm/mmu.h> to avoid
breaking ppc32 build
Signed-off-by: Brian King <brking@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Support for TLB reservation (or TLB Write Conditional) and Paired MAS
registers are optional for a processor implementation so we handle
them via MMU feature sections.
We currently only used paired MAS registers to access the full RPN + perm
bits that are kept in MAS7||MAS3. We assume that if an implementation has
hardware page table at this time it also implements in TLB reservations.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This is an attempt at cleaning up a bit the way we handle execute
permission on powerpc. _PAGE_HWEXEC is gone, _PAGE_EXEC is now only
defined by CPUs that can do something with it, and the myriad of
#ifdef's in the I$/D$ coherency code is reduced to 2 cases that
hopefully should cover everything.
The logic on BookE is a little bit different than what it was though
not by much. Since now, _PAGE_EXEC will be set by the generic code
for executable pages, we need to filter out if they are unclean and
recover it. However, I don't expect the code to be more bloated than
it already was in that area due to that change.
I could boast that this brings proper enforcing of per-page execute
permissions to all BookE and 40x but in fact, we've had that now for
some time as a side effect of my previous rework in that area (and
I didn't even know it :-) We would only enable execute permission if
the page was cache clean and we would only cache clean it if we took
and exec fault. Since we now enforce that the later only work if
VM_EXEC is part of the VMA flags, we de-fact already enforce per-page
execute permissions... Unless I missed something
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The MMUCSR is now defined as part of the Book-3E architecture so we
can move it into mmu-book3e.h and add some of the additional bits
defined by the architecture specs.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Since the pte_lockptr is a spinlock it gets optimized away on
uniprocessor builds so using spin_is_locked is not correct. We can use
assert_spin_locked instead and get the proper behavior between UP and
SMP builds.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
cam[tlbcam_index] is checked before tlbcam_index < ARRAY_SIZE(cam)
Signed-off-by: Roel Kluin <roel.kluin@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Introduced a temporary variable into our iterating over the list cpus
that are threads on the same core. For some reason Ben forgot how for
loops work.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This contains all the bits that didn't fit in previous patches :-) This
includes the actual exception handlers assembly, the changes to the
kernel entry, other misc bits and wiring it all up in Kconfig.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The base TLB support didn't include support for SPARSEMEM_VMEMMAP, though
we did carve out some virtual space for it, the necessary support code
wasn't there. This implements it by using 16M pages for now, though the
page size could easily be changed at runtime if necessary.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This adds the TLB miss handler assembly, the low level TLB flush routines
along with the necessary hook for dealing with our virtual page tables
or indirect TLB entries that need to be flushes when PTE pages are freed.
There is currently no support for hugetlbfs
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The definition for the global structure mmu_gathers, used by generic code,
is currently defined in multiple places not including anything used by
64-bit Book3E. This changes it by moving to one place common to all
processors.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This adds the PTE and pgtable format definitions, along with changes
to the kernel memory map and other definitions related to implementing
support for 64-bit Book3E. This also shields some asm-offset bits that
are currently only relevant on 32-bit
We also move the definition of the "linux" page size constants to
the common mmu.h file and add a few sizes that are relevant to
embedded processors.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
That patch used to just add a hook to page table flushing but
pulling that string brought out a whole bunch of issues, so it
now does that and more:
- We now make the RCU batching of page freeing SMP only, as I
believe it was intended initially. We make a few more things compile
to nothing on !CONFIG_SMP
- Some macros are turned into functions, though that forced me to
out of line a few stuffs due to unsolvable include depenencies,
however it's probably better that way anyway, it's not -that-
critical code path.
- 32-bit didn't call pte_free_finish() on tlb_flush() which means
that it wouldn't push out the batch to RCU for delayed freeing when
a bunch of page tables have been freed, they would just stay in there
until the batch gets full.
64-bit BookE will use that hook to maintain the virtually linear
page tables or the indirect entries in the TLB when using the
HW loader.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
We need to pass down whether the page is direct or indirect and we'll
need to pass the page size to _tlbil_va and _tlbivax_bcast
We also add a new low level _tlbil_pid_noind() which does a TLB flush
by PID but avoids flushing indirect entries if possible
This implements those new prototypes but defines them with inlines
or macros so that no additional arguments are actually passed on current
processors.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This adds some code to do early ioremap's using page tables instead of
bolting entries in the hash table. This will be used by the upcoming
64-bits BookE port.
The patch also changes the test for early vs. late ioremap to use
slab_is_available() instead of our old hackish mem_init_done.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The current "no hash" MMU context management code is written with
the assumption that one CPU == one TLB. This is not the case on
implementations that support HW multithreading, where several
linux CPUs can share the same TLB.
This adds some basic support for this to our context management
and our TLB flushing code.
It also cleans up the optional debugging output a bit
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The kernel uses SPRG registers for various purposes, typically in
low level assembly code as scratch registers or to hold per-cpu
global infos such as the PACA or the current thread_info pointer.
We want to be able to easily shuffle the usage of those registers
as some implementations have specific constraints realted to some
of them, for example, some have userspace readable aliases, etc..
and the current choice isn't always the best.
This patch should not change any code generation, and replaces the
usage of SPRN_SPRGn everywhere in the kernel with a named replacement
and adds documentation next to the definition of the names as to
what those are used for on each processor family.
The only parts that still use the original numbers are bits of KVM
or suspend/resume code that just blindly needs to save/restore all
the SPRGs.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
TASK_UNMAPPED_BASE is not used with the new top down mmap layout. We can
reuse this preload slot by loading in the segment at 0x10000000, where almost
all PowerPC binaries are linked at.
On a microbenchmark that bounces a token between two 64bit processes over pipes
and calls gettimeofday each iteration (to access the VDSO), both the 32bit and
64bit context switch rate improves (tested on a 4GHz POWER6):
32bit: 273k/sec -> 283k/sec
64bit: 277k/sec -> 284k/sec
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
With the new top down layout it is likely that the pc and stack will be in the
same segment, because the pc is most likely in a library allocated via a top
down mmap. Right now we bail out early if these segments match.
Rearrange the SLB preload code to sanity check all SLB preload addresses
are not in the kernel, then check all addresses for conflicts.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This provides a mechanism to allow the perf_counters code to access
user memory in a PMU interrupt routine. Such an access can cause
various kinds of interrupt: SLB miss, MMU hash table miss, segment
table miss, or TLB miss, depending on the processor. This commit
only deals with 64-bit classic/server processors, which use an MMU
hash table. 32-bit processors are already able to access user memory
at interrupt time. Since we don't soft-disable on 32-bit, we avoid
the possibility of reentering hash_page or the TLB miss handlers,
since they run with interrupts disabled.
On 64-bit processors, an SLB miss interrupt on a user address will
update the slb_cache and slb_cache_ptr fields in the paca. This is
OK except in the case where a PMU interrupt occurs in switch_slb,
which also accesses those fields. To prevent this, we hard-disable
interrupts in switch_slb. Interrupts are already soft-disabled at
this point, and will get hard-enabled when they get soft-enabled
later.
This also reworks slb_flush_and_rebolt: to avoid hard-disabling twice,
and to make sure that it clears the slb_cache_ptr when called from
other callers than switch_slb, the existing routine is renamed to
__slb_flush_and_rebolt, which is called by switch_slb and the new
version of slb_flush_and_rebolt.
Similarly, switch_stab (used on POWER3 and RS64 processors) gets a
hard_irq_disable() to protect the per-cpu variables used there and
in ste_allocate.
If a MMU hashtable miss interrupt occurs, normally we would call
hash_page to look up the Linux PTE for the address and create a HPTE.
However, hash_page is fairly complex and takes some locks, so to
avoid the possibility of deadlock, we check the preemption count
to see if we are in a (pseudo-)NMI handler, and if so, we don't call
hash_page but instead treat it like a bad access that will get
reported up through the exception table mechanism. An interrupt
whose handler runs even though the interrupt occurred when
soft-disabled (such as the PMU interrupt) is considered a pseudo-NMI
handler, which should use nmi_enter()/nmi_exit() rather than
irq_enter()/irq_exit().
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Conflicts:
arch/sparc/kernel/smp_64.c
arch/x86/kernel/cpu/perf_counter.c
arch/x86/kernel/setup_percpu.c
drivers/cpufreq/cpufreq_ondemand.c
mm/percpu.c
Conflicts in core and arch percpu codes are mostly from commit
ed78e1e078dd44249f88b1dd8c76dafb39567161 which substituted many
num_possible_cpus() with nr_cpu_ids. As for-next branch has moved all
the first chunk allocators into mm/percpu.c, the changes are moved
from arch code to mm/percpu.c.
Signed-off-by: Tejun Heo <tj@kernel.org>
In switch_mmu_context() if we call steal_context_smp() to get a context
to use we shouldn't fall through and than call steal_context_up(). Doing
so can be problematic in that the 'mm' that steal_context_up() ends up
using will not get marked dirty in the stale_map[] for other CPUs that
might have used that mm. Thus we could end up with stale TLB entries in
the other CPUs that can cause all kinda of havoc.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
mm: Pass virtual address to [__]p{te,ud,md}_free_tlb()
Upcoming paches to support the new 64-bit "BookE" powerpc architecture
will need to have the virtual address corresponding to PTE page when
freeing it, due to the way the HW table walker works.
Basically, the TLB can be loaded with "large" pages that cover the whole
virtual space (well, sort-of, half of it actually) represented by a PTE
page, and which contain an "indirect" bit indicating that this TLB entry
RPN points to an array of PTEs from which the TLB can then create direct
entries. Thus, in order to invalidate those when PTE pages are deleted,
we need the virtual address to pass to tlbilx or tlbivax instructions.
The old trick of sticking it somewhere in the PTE page struct page sucks
too much, the address is almost readily available in all call sites and
almost everybody implemets these as macros, so we may as well add the
argument everywhere. I added it to the pmd and pud variants for consistency.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: David Howells <dhowells@redhat.com> [MN10300 & FRV]
Acked-by: Nick Piggin <npiggin@suse.de>
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> [s390]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
pr_debug() can now result in code being generated even when DEBUG
is not defined. That's not really desirable in some places.
With CONFIG_DYNAMIC_DEBUG=y:
size before:
text data bss dec hex filename
2036 368 8 2412 96c arch/powerpc/mm/pgtable.o
size after:
text data bss dec hex filename
1677 248 8 1933 78d arch/powerpc/mm/pgtable.o
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
pr_debug() can now result in code being generated even when DEBUG
is not defined. That's not really desirable in some places.
With CONFIG_DYNAMIC_DEBUG=y:
size before:
text data bss dec hex filename
3252 384 0 3636 e34 arch/powerpc/mm/gup.o
size after:
text data bss dec hex filename
2576 96 0 2672 a70 arch/powerpc/mm/gup.o
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
pr_debug() can now result in code being generated even when DEBUG
is not defined. That's not really desirable in some places.
With CONFIG_DYNAMIC_DEBUG=y:
size before:
text data bss dec hex filename
3261 416 4 3681 e61 arch/powerpc/mm/slb.o
size after:
text data bss dec hex filename
2861 248 4 3113 c29 arch/powerpc/mm/slb.o
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
pr_debug() can now result in code being generated even when DEBUG
is not defined. That's not really desirable in some places.
With CONFIG_DYNAMIC_DEBUG=y:
size before:
text data bss dec hex filename
1508 48 28 1584 630 powerpc/mm/mmu_context_nohash.o
size after:
text data bss dec hex filename
1088 0 28 1116 45c powerpc/mm/mmu_context_nohash.o
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Pull linus#master to merge PER_CPU_DEF_ATTRIBUTES and alpha build fix
changes. As alpha in percpu tree uses 'weak' attribute instead of
inline assembly, there's no need for __used attribute.
Conflicts:
arch/alpha/include/asm/percpu.h
arch/mn10300/kernel/vmlinux.lds.S
include/linux/percpu-defs.h
Those functions are way too big to be inline, besides, kmap_atomic()
wants to call debug_kmap_atomic() which isn't exported for modules
and causes module link failures.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Currently, the following three different ways to define percpu arrays
are in use.
1. DEFINE_PER_CPU(elem_type[array_len], array_name);
2. DEFINE_PER_CPU(elem_type, array_name[array_len]);
3. DEFINE_PER_CPU(elem_type, array_name)[array_len];
Unify to #1 which correctly separates the roles of the two parameters
and thus allows more flexibility in the way percpu variables are
defined.
[ Impact: cleanup ]
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Jeremy Fitzhardinge <jeremy@xensource.com>
Cc: linux-mm@kvack.org
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: David S. Miller <davem@davemloft.net>
This allows the callers to now pass down the full set of FAULT_FLAG_xyz
flags to handle_mm_fault(). All callers have been (mechanically)
converted to the new calling convention, there's almost certainly room
for architectures to clean up their code and then add FAULT_FLAG_RETRY
when that support is added.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add the option to build the code under arch/powerpc with -Werror.
The intention is to make it harder for people to inadvertantly introduce
warnings in the arch/powerpc code. It needs to be configurable so that
if a warning is introduced, people can easily work around it while it's
being fixed.
The option is a negative, ie. don't enable -Werror, so that it will be
turned on for allyes and allmodconfig builds.
The default is n, in the hope that developers will build with -Werror,
that will probably lead to some build breaks, I am prepared to be flamed.
It's not enabled for math-emu, which is a steaming pile of warnings.
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Pure renames only, to PERF_COUNT_HW_* and PERF_COUNT_SW_*.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This is a random collection of added ifdef's around portions of
code that only mak sense on server processors. Using either
CONFIG_PPC_STD_MMU_64 or CONFIG_PPC_BOOK3S as seems appropriate.
This is meant to make the future merging of Book3E 64-bit support
easier.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
For some obscure reason, we only set init_bootmem_done after initializing
bootmem when NUMA isn't enabled. We even document this next to the declaration
of that global in system.h which of course I didn't read before I had to
debug why some WIP code wasn't working properly...
This patch changes it so that we always set it after bootmem is initialized
which should have always been the case... go figure !
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The MMU context_lock can be taken from switch_mm() while the
rq->lock is held. The rq->lock can also be taken from interrupts,
thus if we get interrupted in destroy_context() with the context
lock held and that interrupt tries to take the rq->lock, there's
a possible deadlock scenario with another CPU having the rq->lock
and calling switch_mm() which takes our context lock.
The fix is to always ensure interrupts are off when taking our
context lock. The switch_mm() path is already good so this fixes
the destroy_context() path.
While at it, turn the context lock into a new style spinlock.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This patch fixes a couple of issues that can happen as a result
of steal_context() dropping the context_lock when all possible
PIDs are ineligible for stealing (hopefully an extremely hard to
hit occurence).
This case exposes the possibility of a stale context_mm[] entry
to be seen since destroy_context() doesn't clear it and the free
map isn't re-tested. It also means steal_context() will not notice
a context freed while the lock was help, thus possibly trying to
steal a context when a free one was available.
This fixes it by always returning to the caller from steal_context
when it dropped the lock with a return value that causes the
caller to re-samble the number of free contexts, along with
properly clearing the context_mm[] array for destroyed contexts.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Merge reason: merge almost-rc8 into perfcounters/core, which was -rc6
based - to pick up the latest upstream fixes.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The implementation we just revived has issues, such as using a
Kconfig-defined virtual address area in kernel space that nothing
actually carves out (and thus will overlap whatever is there),
or having some dependencies on being self contained in a single
PTE page which adds unnecessary constraints on the kernel virtual
address space.
This fixes it by using more classic PTE accessors and automatically
locating the area for consistent memory, carving an appropriate hole
in the kernel virtual address space, leaving only the size of that
area as a Kconfig option. It also brings some dma-mask related fixes
from the ARM implementation which was almost identical initially but
grew its own fixes.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Make FIXADDR_TOP a compile time constant and cleanup a
couple of definitions relative to the layout of the kernel
address space on ppc32. We also print out that layout at
boot time for debugging purposes.
This is a pre-requisite for properly fixing non-coherent
DMA allocactions.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The recent rework of the MMU PID handling for non-hash CPUs has a
subtle bug in the !SMP "optimized" variant of the PID stealing
function. It clears the PID in the mm context before it calls
local_flush_tlb_mm(). However, the later will not flush anything
if the PID in the context is clear...
Signed-off-by: Hideo Saito <hsaito.ppc@gmail.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This adds the PowerPC 2.06 tlbie mnemonics and keeps backwards
compatibilty for CPUs before 2.06.
Only useful for bare metal systems.
Signed-off-by: Milton Miller <miltonm@bga.com>
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
We're currently choking on mem=4g (and above) due to memory_limit
being specified as an unsigned long. Make memory_limit
phys_addr_t to fix this.
Signed-off-by: Becky Bruce <beckyb@kernel.crashing.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Previous gcc versions didn't notice this because one of the preceding
#ifs always evaluated to true.
gcc 4.4.0 produced this error:
arch/powerpc/mm/tlb_nohash_low.S:206:6: error: #elif with no expression
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Josh Boyer <jwboyer@linux.vnet.ibm.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
This reverts commit e996557740. Our HW
guys were able to fix this so it never sees the light of day.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
early_init_mmu_secondary() is called at CPU hotplug time, so it
must be marked as __cpuinit, not __init.
Caused by 757c74d2 ("powerpc/mm: Introduce early_init_mmu() on 64-bit").
Tested-by: Sachin Sant <sachinp@in.ibm.com>
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Paul suggested we allow for data addresses to be recorded along with
the traditional IPs as power can provide these.
For now, only the software pagefault events provide data addresses,
but in the future power might as well for some events.
x86 doesn't seem capable of providing this atm.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
LKML-Reference: <20090408130409.394816925@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
arch/powerpc/mm/tlb_nohash.c: In function 'flush_tlb_mm':
arch/powerpc/mm/tlb_nohash.c:128: warning: unused variable 'cpu_mask'
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
During the ISA 2.06 development the opcode for tlbilx changed and some
early implementations used to old opcode. Add support for a MMU_FTR
fixup to deal with this.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Provide separate sw counters for major and minor page faults.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
We use the generic software counter infrastructure to provide
page fault events.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This moves some MMU related init code out of setup_64.c into hash_utils_64.c
and calls it early_init_mmu() and early_init_mmu_secondary(). This will
make it easier to plug in a new MMU type.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This patch tweaks the way some PTE bit combinations are defined, in such a
way that the 32 and 64-bit variant become almost identical and that will
make it easier to bring in a new common pte-* file for the new variant
of the Book3-E support.
The combination of bits defining access to kernel pages are now clearly
separated from the combination used by userspace and the core VM. The
resulting generated code should remain identical unless I made a mistake.
Note: While at it, I removed a non-sensical statement related to CONFIG_KGDB
in ppc_mmu_32.c which could cause kernel mappings to be user accessible when
that option is enabled. Probably something that bitrot.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Makes code futureproof against the impending change to mm->cpu_vm_mask.
It's also a chance to use the new cpumask_ ops which take a pointer
(the older ones are deprecated, but there's no hurry for arch code).
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
While we did add support for _PAGE_SPECIAL on some 32-bit platforms,
we never actually built get_user_pages_fast() on them. This fixes
it which requires a little bit of ifdef'ing around.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This adds the necessary bits and pieces to powerpc implementation of
ioremap to benefit from caller tracking in /proc/vmallocinfo, at least
for ioremap's done after mem init as the older ones aren't tracked.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The e500mc core supports the new tlbilx instructions that do core
local invalidates and also provide us the ability to take down
all TLB entries matching a given PID.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
On 64bit there is a possibility our stack and mmap randomisation will put
the two close enough such that we can't expand our stack to match the ulimit
specified.
To avoid this, start the upper mmap address at 1GB + 128MB below the top of our
address space, so in the worst case we end up with the same ~128MB hole as in
32bit. This works because we randomise the stack over a 1GB range.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
get_random_int() returns the same value within a 1 jiffy interval. This means
that the mmap and stack regions will almost always end up the same distance
apart, making a relative offset based attack possible.
To fix this, shift the randomness we use for the mmap region by 1 bit.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Rearrange mmap.c to better match the x86 version.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This patch reworks the hot_add_scn_to_nid and its supporting functions
to make them easier to understand. There are no functional changes in
this patch and has been tested on machine with memory represented in the
device tree as memory nodes and in the ibm,dynamic-memory property.
My previous patch that introduced support for hotplug memory add on
systems whose memory was represented by the ibm,dynamic-memory property
of the device tree only left the code more unintelligible. This
will hopefully makes things easier to understand.
Signed-off-by: Nathan Fontenot <nfont@austin.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
At the moment we size the hashtable based on 4kB pages / 2, even on a
64kB kernel. This results in a hashtable that is much larger than it
needs to be.
Grab the real page size and size the hashtable based on that
Note: This only has effect on non hypervisor machines.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Fix the powerpc NUMA reserve bootmem page selection logic.
commit 8f64e1f2d1 (powerpc: Reserve
in bootmem lmb reserved regions that cross NUMA nodes) changed
the logic for how the powerpc LMB reserved regions were converted
to bootmen reserved regions. As the folowing discussion reports,
the new logic was not correct.
mark_reserved_regions_for_nid() goes through each LMB on the
system that specifies a reserved area. It searches for
active regions that intersect with that LMB and are on the
specified node. It attempts to bootmem-reserve only the area
where the active region and the reserved LMB intersect. We
can not reserve things on other nodes as they may not have
bootmem structures allocated, yet.
We base the size of the bootmem reservation on two possible
things. Normally, we just make the reservation start and
stop exactly at the start and end of the LMB.
However, the LMB reservations are not aware of NUMA nodes and
on occasion a single LMB may cross into several adjacent
active regions. Those may even be on different NUMA nodes
and will require separate calls to the bootmem reserve
functions. So, the bootmem reservation must be trimmed to
fit inside the current active region.
That's all fine and dandy, but we trim the reservation
in a page-aligned fashion. That's bad because we start the
reservation at a non-page-aligned address: physbase.
The reservation may only span 2 bytes, but that those bytes
may span two pfns and cause a reserve_size of 2*PAGE_SIZE.
Take the case where you reserve 0x2 bytes at 0x0fff and
where the active region ends at 0x1000. You'll jump into
that if() statment, but node_ar.end_pfn=0x1 and
start_pfn=0x0. You'll end up with a reserve_size=0x1000,
and then call
reserve_bootmem_node(node, physbase=0xfff, size=0x1000);
0x1000 may not be on the same node as 0xfff. Oops.
In almost all the vm code, end_<anything> is not inclusive.
If you have an end_pfn of 0x1234, page 0x1234 is not
included in the range. Using PFN_UP instead of the
(>> >> PAGE_SHIFT) will make this consistent with the other VM
code.
We also need to do math for the reserved size with physbase
instead of start_pfn. node_ar.end_pfn << PAGE_SHIFT is
*precisely* the end of the node. However,
(start_pfn << PAGE_SHIFT) is *NOT* precisely the beginning
of the reserved area. That is, of course, physbase.
If we don't use physbase here, the reserve_size can be
made too large.
From: Dave Hansen <dave@linux.vnet.ibm.com>
Tested-by: Geoff Levand <geoffrey.levand@am.sony.com> Tested on PS3.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
arch/powerpc/mm/fsl_booke_mmu.c: In function 'adjust_total_lowmem':
arch/powerpc/mm/fsl_booke_mmu.c:221: warning: format '%ld' expects type 'long int', but argument 3 has type 'phys_addr_t'
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
The Power ISA 2.06 added power of two page sizes to the embedded MMU
architecture. Its done it such a way to be code compatiable with the
existing HW. Made the minor code changes to support both power of two
and power of four page sizes. Also added some new MAS bits and macros
that are defined as part of the 2.06 ISA. Renamed some things to use
the 'Book-3e' concept to convey the new MMU that is based on the
Freescale Book-E MMU programming model.
Note, its still invalid to try and use a page size that isn't supported
by cpu.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
The following commit:
commit 64b3d0e812
Author: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Date: Thu Dec 18 19:13:51 2008 +0000
powerpc/mm: Rework usage of _PAGE_COHERENT/NO_CACHE/GUARDED
broke setting of the _PAGE_COHERENT bit in the PPC HW PTE. Since we now
actually set _PAGE_COHERENT in the Linux PTE we shouldn't be clearing it
out before we propogate it to the PPC HW PTE.
Reported-by: Martyn Welch <martyn.welch@gefanuc.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This patch reworks the way we do I and D cache coherency on PowerPC.
The "old" way was split in 3 different parts depending on the processor type:
- Hash with per-page exec support (64-bit and >= POWER4 only) does it
at hashing time, by preventing exec on unclean pages and cleaning pages
on exec faults.
- Everything without per-page exec support (32-bit hash, 8xx, and
64-bit < POWER4) does it for all page going to user space in update_mmu_cache().
- Embedded with per-page exec support does it from do_page_fault() on
exec faults, in a way similar to what the hash code does.
That leads to confusion, and bugs. For example, the method using update_mmu_cache()
is racy on SMP where another processor can see the new PTE and hash it in before
we have cleaned the cache, and then blow trying to execute. This is hard to hit but
I think it has bitten us in the past.
Also, it's inefficient for embedded where we always end up having to do at least
one more page fault.
This reworks the whole thing by moving the cache sync into two main call sites,
though we keep different behaviours depending on the HW capability. The call
sites are set_pte_at() which is now made out of line, and ptep_set_access_flags()
which joins the former in pgtable.c
The base idea for Embedded with per-page exec support, is that we now do the
flush at set_pte_at() time when coming from an exec fault, which allows us
to avoid the double fault problem completely (we can even improve the situation
more by implementing TLB preload in update_mmu_cache() but that's for later).
If for some reason we didn't do it there and we try to execute, we'll hit
the page fault, which will do a minor fault, which will hit ptep_set_access_flags()
to do things like update _PAGE_ACCESSED or _PAGE_DIRTY if needed, we just make
this guys also perform the I/D cache sync for exec faults now. This second path
is the catch all for things that weren't cleaned at set_pte_at() time.
For cpus without per-pag exec support, we always do the sync at set_pte_at(),
thus guaranteeing that when the PTE is visible to other processors, the cache
is clean.
For the 64-bit hash with per-page exec support case, we keep the old mechanism
for now. I'll look into changing it later, once I've reworked a bit how we
use _PAGE_EXEC.
This is also a first step for adding _PAGE_EXEC support for embedded platforms
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Use of_get_cpu_node, which is a superset of numa.c's find_cpu_node in
a less restrictive section (text vs cpuinit).
Signed-off-by: Milton Miller <miltonm@bga.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
find_min_common_depth() was checking the property length incorrectly.
The value is in bytes not cells, and it is using the second entry.
Signed-off-By: Milton Miller <miltonm@bga.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Fixed v_mapped_by_tlbcam() and p_mapped_by_tlbcam() to use phys_addr_t
instead of unsigned long. In 36-bit physical mode we really need these
functions to deal with phys_addr_t when trying to match a physical
address or when returning one.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
On booke processors, the code that maps low memory only uses up to three
CAM entries, even though there are sixteen and nothing else uses them.
Make this number configurable in the advanced options menu along with max
low memory size. If one wants 1 GB of lowmem, then it's typically
necessary to have four CAM entries.
Signed-off-by: Trent Piepho <tpiepho@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
The code that maps kernel low memory would only use page sizes up to 256
MB. On E500v2 pages up to 4 GB are supported.
However, a page must be aligned to a multiple of the page's size. I.e.
256 MB pages must aligned to a 256 MB boundary. This was enforced by a
requirement that the physical and virtual addresses of the start of lowmem
be aligned to 256 MB. Clearly requiring 1GB or 4GB alignment to allow
pages of that size isn't acceptable.
To solve this, I simply have adjust_total_lowmem() take alignment into
account when it decides what size pages to use. Give it PAGE_OFFSET =
0x7000_0000, PHYSICAL_START = 0x3000_0000, and 2GB of RAM, and it will map
pages like this:
PA 0x3000_0000 VA 0x7000_0000 Size 256 MB
PA 0x4000_0000 VA 0x8000_0000 Size 1 GB
PA 0x8000_0000 VA 0xC000_0000 Size 256 MB
PA 0x9000_0000 VA 0xD000_0000 Size 256 MB
PA 0xA000_0000 VA 0xE000_0000 Size 256 MB
Because the lowmem mapping code now takes alignment into account,
PHYSICAL_ALIGN can be lowered from 256 MB to 64 MB. Even lower might be
possible. The lowmem code will work down to 4 kB but it's possible some of
the boot code will fail before then. Poor alignment will force small pages
to be used, which combined with the limited number of TLB1 pages available,
will result in very little memory getting mapped. So alignments less than
64 MB probably aren't very useful anyway.
Signed-off-by: Trent Piepho <tpiepho@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
The code to map lowmem uses three CAM aka TLB[1] entries to cover it. The
size of each is stored in three globals named __cam0, __cam1, and __cam2.
All the code that uses them is duplicated three times for each of the three
variables.
We have these things called arrays and loops....
Once converted to use an array, it will be easier to make the number of
CAMs configurable.
Signed-off-by: Trent Piepho <tpiepho@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
_PAGE_COHERENT is now always set in _PAGE_RAM resp. PAGE_KERNEL.
Thus it has to be masked out, if the BAT mapping should be non
cacheable or CPU_FTR_NEED_COHERENT is not set.
This will work on normal SMP setups because we force-set
CPU_FTR_NEED_COHERENT as part of CPU_FTR_COMMON on SMP.
Signed-off-by: Gerhard Pircher <gerhard_pircher@gmx.net>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
powerpc: is_hugepage_only_range() must account for both 4kB and 64kB slices
The subpage_prot syscall fails on second and subsequent calls for a given
region, because is_hugepage_only_range() is mis-identifying the 4 kB
slices when the process has a 64 kB page size.
Signed-off-by: Dave Kleikamp <shaggy@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Convert arch/powerpc/ over to long long based u64:
-#ifdef __powerpc64__
-# include <asm-generic/int-l64.h>
-#else
-# include <asm-generic/int-ll64.h>
-#endif
+#include <asm-generic/int-ll64.h>
This will avoid reoccuring spurious warnings in core kernel code that
comes when people test on their own hardware. (i.e. x86 in ~98% of the
cases) This is what x86 uses and it generally helps keep 64-bit code
32-bit clean too.
[Adjusted to not impact user mode (from paulus) - sfr]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The clear_fixmap() routine issues map_page() with flags set to 0.
Currently this causes a BUG_ON() inside the map_page(), as it assumes
that a PTE should be clear before mapping.
This patch makes the map_page() to trigger the BUG_ON() only if the
flags were set.
Signed-off-by: Anton Vorontsov <avorontsov@ru.mvista.com>
Acked-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This is a brown paper bag from one of my earlier patches that
breaks build on 40x and 8xx.
And yes, I've now added 40x and 8xx to my list of test configs :-)
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Dave Liu <daveliu@freescale.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Both users of careful_allocation() immediately memset() the
result. So, just do it in one place.
Also give careful_allocation() a 'z' prefix to bring it in
line with kzmalloc() and friends.
Signed-off-by: Dave Hansen <dave@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Since we memset() the result in both of the uses here,
just make careful_alloc() return a virtual address.
Also, add a separate variable to store the physial
address that comes back from the lmb_alloc() functions.
This makes it less likely that someone will screw it up
forgetting to convert before returning since the vaddr
is always in a void* and the paddr is always in an
unsigned long.
I admit this is arbitrary since one of its users needs
a paddr and one a vaddr, but it does remove a good
number of casts.
Signed-off-by: Dave Hansen <dave@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
If we fail a bootmem allocation, the bootmem code itself
panics. No need to redo it here.
Also change the wording of the other panic. We don't
strictly have to allocate memory on the specified node.
It is just a hint and that node may not even *have* any
memory on it. In that case we can and do fall back to
other nodes.
Signed-off-by: Dave Hansen <dave@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The behavior in careful_allocation() really confused me
at first. Add a comment to hopefully make it easier
on the next doofus that looks at it.
Signed-off-by: Dave Hansen <dave@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This is a global variable defined in fsl_booke_mmu.c with a value that gets
initialized in assembly code in head_fsl_booke.S.
It's never used.
If some code ever does want to know the number of entries in TLB1, then
"numcams = mfspr(SPRN_TLB1CFG) & 0xfff", is a whole lot simpler than a
global initialized during kernel boot from assembly.
Signed-off-by: Trent Piepho <tpiepho@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Some assembly code in head_fsl_booke.S hard-coded the size of struct tlbcam
to 20 when it indexed the TLBCAM table. Anyone changing the size of struct
tlbcam would not know to expect that.
The kernel already has a system to get the size of C structures into
assembly language files, asm-offsets, so let's use it.
The definition of the struct gets moved to a header, so that asm-offsets.c
can include it.
Signed-off-by: Trent Piepho <tpiepho@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Show node to memory section relationship with symlinks in sysfs
Add /sys/devices/system/node/nodeX/memoryY symlinks for all
the memory sections located on nodeX. For example:
/sys/devices/system/node/node1/memory135 -> ../../memory/memory135
indicates that memory section 135 resides on node1.
Also revises documentation to cover this change as well as updating
Documentation/ABI/testing/sysfs-devices-memory to include descriptions
of memory hotremove files 'phys_device', 'phys_index', and 'state'
that were previously not described there.
In addition to it always being a good policy to provide users with
the maximum possible amount of physical location information for
resources that can be hot-added and/or hot-removed, the following
are some (but likely not all) of the user benefits provided by
this change.
Immediate:
- Provides information needed to determine the specific node
on which a defective DIMM is located. This will reduce system
downtime when the node or defective DIMM is swapped out.
- Prevents unintended onlining of a memory section that was
previously offlined due to a defective DIMM. This could happen
during node hot-add when the user or node hot-add assist script
onlines _all_ offlined sections due to user or script inability
to identify the specific memory sections located on the hot-added
node. The consequences of reintroducing the defective memory
could be ugly.
- Provides information needed to vary the amount and distribution
of memory on specific nodes for testing or debugging purposes.
Future:
- Will provide information needed to identify the memory
sections that need to be offlined prior to physical removal
of a specific node.
Symlink creation during boot was tested on 2-node x86_64, 2-node
ppc64, and 2-node ia64 systems. Symlink creation during physical
memory hot-add tested on a 2-node x86_64 system.
Signed-off-by: Gary Hade <garyhade@us.ibm.com>
Signed-off-by: Badari Pulavarty <pbadari@us.ibm.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The KernelPageSize entry in /proc/pid/smaps is the pagesize used by the
kernel to back a VMA. This matches the size used by the MMU in the
majority of cases. However, one counter-example occurs on PPC64 kernels
whereby a kernel using 64K as a base pagesize may still use 4K pages for
the MMU on older processor. To distinguish, this patch reports
MMUPageSize as the pagesize used by the MMU in /proc/pid/smaps.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: "KOSAKI Motohiro" <kosaki.motohiro@jp.fujitsu.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc: (144 commits)
powerpc/44x: Support 16K/64K base page sizes on 44x
powerpc: Force memory size to be a multiple of PAGE_SIZE
powerpc/32: Wire up the trampoline code for kdump
powerpc/32: Add the ability for a classic ppc kernel to be loaded at 32M
powerpc/32: Allow __ioremap on RAM addresses for kdump kernel
powerpc/32: Setup OF properties for kdump
powerpc/32/kdump: Implement crash_setup_regs() using ppc_save_regs()
powerpc: Prepare xmon_save_regs for use with kdump
powerpc: Remove default kexec/crash_kernel ops assignments
powerpc: Make default kexec/crash_kernel ops implicit
powerpc: Setup OF properties for ppc32 kexec
powerpc/pseries: Fix cpu hotplug
powerpc: Fix KVM build on ppc440
powerpc/cell: add QPACE as a separate Cell platform
powerpc/cell: fix build breakage with CONFIG_SPUFS disabled
powerpc/mpc5200: fix error paths in PSC UART probe function
powerpc/mpc5200: add rts/cts handling in PSC UART driver
powerpc/mpc5200: Make PSC UART driver update serial errors counters
powerpc/mpc5200: Remove obsolete code from mpc5200 MDIO driver
powerpc/mpc5200: Add MDMA/UDMA support to MPC5200 ATA driver
...
Fix trivial conflict in drivers/char/Makefile as per Paul's directions
This adds support for 16k and 64k page sizes on PowerPC 44x processors.
The PGDIR table is much smaller than a page when using 16k or 64k
pages (512 and 32 bytes respectively) so we allocate the PGDIR with
kzalloc() instead of __get_free_pages().
One PTE table covers rather a large memory area when using 16k or 64k
pages (32MB or 512MB respectively), so we can easily put FIXMAP and
PKMAP in the area covered by one PTE table.
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Vladimir Panfilov <pvr@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Acked-by: Josh Boyer <jwboyer@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Add the ability for a classic ppc kernel to be loaded at an address
of 32MB. This done by fixing a few places that assume we are loaded
at address 0, and by changing several uses of KERNELBASE to use
PAGE_OFFSET, instead.
Signed-off-by: Dale Farnsworth <dale@farnsworth.org>
Signed-off-by: Anton Vorontsov <avorontsov@ru.mvista.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
While for debugging it is good to catch bogus users of ioremap, though
for kdump support it is more convenient to use __ioremap for
copy_oldmem_page() (exactly as we do for PPC64 currently).
Note that copy_oldmem_page() calls __ioremap with flags set to '0',
so it should be safe with the regard to the caches.
The other option is to use kmap_atomic_pfn()[1], but it will not work
for kernels compiled without HIGHMEM.
That is, on a board with 256MB RAM and crashkernel=64M@32M case, the
!HIGHMEM capturing kernel maps 0-96M range, which does not include all
the memory needed to capture the dump. And, obviously, accessing
anything upper than 96M will cause faults.
[1] http://ozlabs.org/pipermail/linuxppc-dev/2007-November/046747.html
Signed-off-by: Anton Vorontsov <avorontsov@ru.mvista.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Rework to MMU code dropped a much missed 'blr' instruction.
Brown-Paper-Bag-Worn-By: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
Currently, we never set _PAGE_COHERENT in the PTEs, we just OR it in
in the hash code based on some CPU feature bit. We also manipulate
_PAGE_NO_CACHE and _PAGE_GUARDED by hand in all sorts of places.
This changes the logic so that instead, the PTE now contains
_PAGE_COHERENT for all normal RAM pages thay have I = 0 on platforms
that need it. The hash code clears it if the feature bit is not set.
It also adds some clean accessors to setup various valid combinations
of access flags and change various bits of code to use them instead.
This should help having the PTE actually containing the bit
combinations that we really want.
I also removed _PAGE_GUARDED from _PAGE_BASE on 44x and instead
set it explicitely from the TLB miss. I will ultimately remove it
completely as it appears that it might not be needed after all
but in the meantime, having it in the TLB miss makes things a
lot easier.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This makes the MMU context code used for CPUs with no hash table
(except 603) dynamically allocate the various maps used to track
the state of contexts.
Only the main free map and CPU 0 stale map are allocated at boot
time. Other CPU maps are allocated when those CPUs are brought up
and freed if they are unplugged.
This also moves the initialization of the MMU context management
slightly later during the boot process, which should be fine as
it's really only needed when userland if first started anyways.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
The handlers for Critical, Machine Check or Debug interrupts
will save and restore MMUCR nowadays, thus we only need to
disable normal interrupts when invalidating TLB entries.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Kumar Gala <galak@kernel.crashing.org>
Acked-by: Josh Boyer <jwboyer@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Currently, the various forms of low level TLB invalidations are all
implemented in misc_32.S for 32-bit processors, in a fairly scary
mess of #ifdef's and with interesting duplication such as a whole
bunch of code for FSL _tlbie and _tlbia which are no longer used.
This moves things around such that _tlbie is now defined in
hash_low_32.S and is only used by the 32-bit hash code, and all
nohash CPUs use the various _tlbil_* forms that are now moved to
a new file, tlb_nohash_low.S.
I moved all the definitions for that stuff out of
include/asm/tlbflush.h as they are really internal mm stuff, into
mm/mmu_decl.h
The code should have no functional changes. I kept some variants
inline for trivial forms on things like 40x and 8xx.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This commit moves the whole no-hash TLB handling out of line into a
new tlb_nohash.c file, and implements some basic SMP support using
IPIs and/or broadcast tlbivax instructions.
Note that I'm using local invalidations for D->I cache coherency.
At worst, if another processor is trying to execute the same and
has the old entry in its TLB, it will just take a fault and re-do
the TLB flush locally (it won't re-do the cache flush in any case).
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
We're soon running out of CPU features and I need to add some new
ones for various MMU related bits, so this patch separates the MMU
features from the CPU features. I moved over the 32-bit MMU related
ones, added base features for MMU type families, but didn't move
over any 64-bit only feature yet.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This reworks the context management code used by 4xx,8xx and
freescale BookE. It adds support for SMP by implementing a
concept of stale context map to lazily flush the TLB on
processors where a context may have been invalidated. This
also contains the ground work for generalizing such lazy TLB
flushing by just picking up a new PID and marking the old one
stale. This will be implemented later.
This is a first implementation that uses a global spinlock.
Ideally, we should try to get at least the fast path (context ID
already assigned) lockless or limited to a per context lock,
but for now this will do.
I tried to keep the UP case reasonably simple to avoid adding
too much overhead to 8xx which does a lot of context stealing
since it effectively has only 16 PIDs available.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This splits the mmu_context handling between 32-bit hash based
processors, 64-bit hash based processors and everybody else. This is
preliminary work for adding SMP support for BookE processors.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
The function flush_HPTE() is used in only one place, the implementation
of DEBUG_PAGEALLOC on ppc32.
It's actually a dup of flush_tlb_page() though it's -slightly- more
efficient on hash based processors. We remove it and replace it by
a direct call to the hash flush code on those processors and to
flush_tlb_page() for everybody else.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This renames the files to clarify the fact that they are used by
the hash based family of CPUs (the 603 being an exception in that
family but is still handled by that code).
This paves the way for the new tlb_nohash.c coming via a subsequent
commit.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
careful_allocation() was calling into the bootmem allocator for
nodes which had not been fully initialized and caused a previous
bug: http://patchwork.ozlabs.org/patch/10528/ So, I merged a
few broken out loops in do_init_bootmem() to fix it. That changed
the code ordering.
I think this bug is triggered by having reserved areas for a node
which are spanned by another node's contents. In the
mark_reserved_regions_for_nid() code, we attempt to reserve the
area for a node before we have allocated the NODE_DATA() for that
nid. We do this since I reordered that loop. I suck.
This is causing crashes at bootup on some systems, as reported
by Jon Tollefson.
This may only present on some systems that have 16GB pages
reserved. But, it can probably happen on any system that is
trying to reserve large swaths of memory that happen to span other
nodes' contents.
This commit ensures that we do not touch bootmem for any node which
has not been initialized, and also removes a compile warning about
an unused variable.
Signed-off-by: Dave Hansen <dave@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
It looks like most of the hugetlb code is doing the correct thing if
hugepages are not supported, but the mmap code is not. If we get into
the mmap code when hugepages are not supported, such as in an LPAR
which is running Active Memory Sharing, we can oops the kernel. This
fixes the oops being seen in this path.
oops: Kernel access of bad area, sig: 11 [#1]
SMP NR_CPUS=1024 NUMA pSeries
Modules linked in: nfs(N) lockd(N) nfs_acl(N) sunrpc(N) ipv6(N) fuse(N) loop(N)
dm_mod(N) sg(N) ibmveth(N) sd_mod(N) crc_t10dif(N) ibmvscsic(N)
scsi_transport_srp(N) scsi_tgt(N) scsi_mod(N)
Supported: No
NIP: c000000000038d60 LR: c00000000003945c CTR: c0000000000393f0
REGS: c000000077e7b830 TRAP: 0300 Tainted: G
(2.6.27.5-bz50170-2-ppc64)
MSR: 8000000000009032 <EE,ME,IR,DR> CR: 44000448 XER: 20000001
DAR: c000002000af90a8, DSISR: 0000000040000000
TASK = c00000007c1b8600[4019] 'hugemmap01' THREAD: c000000077e78000 CPU: 6
GPR00: 0000001fffffffe0 c000000077e7bab0 c0000000009a4e78 0000000000000000
GPR04: 0000000000010000 0000000000000001 00000000ffffffff 0000000000000001
GPR08: 0000000000000000 c000000000af90c8 0000000000000001 0000000000000000
GPR12: 000000000000003f c000000000a73880 0000000000000000 0000000000000000
GPR16: 0000000000000000 0000000000000000 0000000000000000 0000000000010000
GPR20: 0000000000000000 0000000000000003 0000000000010000 0000000000000001
GPR24: 0000000000000003 0000000000000000 0000000000000001 ffffffffffffffb5
GPR28: c000000077ca2e80 0000000000000000 c00000000092af78 0000000000010000
NIP [c000000000038d60] .slice_get_unmapped_area+0x6c/0x4e0
LR [c00000000003945c] .hugetlb_get_unmapped_area+0x6c/0x80
Call Trace:
[c000000077e7bbc0] [c00000000003945c] .hugetlb_get_unmapped_area+0x6c/0x80
[c000000077e7bc30] [c000000000107e30] .get_unmapped_area+0x64/0xd8
[c000000077e7bcb0] [c00000000010b140] .do_mmap_pgoff+0x140/0x420
[c000000077e7bd80] [c00000000000bf5c] .sys_mmap+0xc4/0x140
[c000000077e7be30] [c0000000000086b4] syscall_exit+0x0/0x40
Instruction dump:
fac1ffb0 fae1ffb8 fb01ffc0 fb21ffc8 fb41ffd0 fb61ffd8 fb81ffe0 fbc1fff0
fbe1fff8 f821fef1 f8c10158 f8e10160 <7d49002e> f9010168 e92d01b0 eb4902b0
Signed-off-by: Brian King <brking@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Conflicts:
fs/nfsd/nfs4recover.c
Manually fixed above to use new creds API functions, e.g.
nfs4_save_creds().
Signed-off-by: James Morris <jmorris@namei.org>
Refactor the RCU based pte free code that was used on ppc64 to be used
on all powerpc.
Additionally refactor pte_free() & pte_free_kernel() into common code
between ppc32 & ppc64.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Clean up the ifdefs so we only use hash_page_sync if we have
CONFIG_SMP && CONFIG_PPC_STD_MMU_32.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
* 'merge' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc:
powerpc: Fix system calls on Cell entered with XER.SO=1
powerpc/cell: Fix GDB watchpoints, again
powerpc/mpic: Don't reset affinity for secondary MPIC on boot
powerpc/cell/axon-msi: Retry on missing interrupt
powerpc: Fix boot freeze on machine with empty memory node
powerpc: Fix IRQ assignment for some PCIe devices
powerpc/spufs: Fix spinning in spufs_ps_fault on signal
powerpc/mpc832x_rdb: fix swapped ethernet ids
powerpc: Use generic PHY driver for Marvell 88E1111 PHY on GE Fanuc SBC610
powerpc/85xx: L2 cache size wrong in 8572DS dts
powerpc/virtex: Update defconfigs
powerpc/52xx: update defconfigs
xsysace: Fix driver to use resource_size_t instead of unsigned long
powerpc/virtex: fix various format/casting printk mismatches
powerpc/mpc5200: fix bestcomm Kconfig dependencies
powerpc/44x: Fix 460EX/460GT machine check handling
powerpc/40x: Limit allocable DRAM during early mapping
I got a bug report about a distro kernel not booting on a particular
machine. It would freeze during boot:
> ...
> Could not find start_pfn for node 1
> [boot]0015 Setup Done
> Built 2 zonelists in Node order, mobility grouping on. Total pages: 123783
> Policy zone: DMA
> Kernel command line:
> [boot]0020 XICS Init
> [boot]0021 XICS Done
> PID hash table entries: 4096 (order: 12, 32768 bytes)
> clocksource: timebase mult[7d0000] shift[22] registered
> Console: colour dummy device 80x25
> console handover: boot [udbg0] -> real [hvc0]
> Dentry cache hash table entries: 1048576 (order: 7, 8388608 bytes)
> Inode-cache hash table entries: 524288 (order: 6, 4194304 bytes)
> freeing bootmem node 0
I've reproduced this on 2.6.27.7. It is caused by commit
8f64e1f2d1 ("powerpc: Reserve in bootmem
lmb reserved regions that cross NUMA nodes").
The problem is that Jon took a loop which was (in pseudocode):
for_each_node(nid)
NODE_DATA(nid) = careful_alloc(nid);
setup_bootmem(nid);
reserve_node_bootmem(nid);
and broke it up into:
for_each_node(nid)
NODE_DATA(nid) = careful_alloc(nid);
setup_bootmem(nid);
for_each_node(nid)
reserve_node_bootmem(nid);
The issue comes in when the 'careful_alloc()' is called on a node with
no memory. It falls back to using bootmem from a previously-initialized
node. But, bootmem has not yet been reserved when Jon's patch is
applied. It gives back bogus memory (0xc000000000000000) and pukes
later in boot.
The following patch collapses the loop back together. It also breaks
the mark_reserved_regions_for_nid() code out into a function and adds
some comments. I think a huge part of introducing this bug is because
for loop was too long and hard to read.
The actual bug fix here is the:
+ if (end_pfn <= node->node_start_pfn ||
+ start_pfn >= node_end_pfn)
+ continue;
Signed-off-by: Dave Hansen <dave@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
called only from __init, calls __init. Incidentally, it ought to be static
in file.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Linux will report the number of page-ins so that the hypervisor can
better determine partition memory pressure. The hardware page size
and the OS page size can be different. In the case where the hardware
page size is 4k and the OS is running with 64k pages the code in
commit 409001948d ("powerpc: Update
page-in counter for CMM") would under-report the number of pages.
This corrects the reporting to the hypervisor by incrementing the
page_in count by 1 << PAGE_FACTOR each time.
Reported-by: Andrew Theurer <habanero@linux.vnet.ibm.com>
Signed-off-by: Robert Jennings <rcj@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Wrap access to task credentials so that they can be separated more easily from
the task_struct during the introduction of COW creds.
Change most current->(|e|s|fs)[ug]id to current_(|e|s|fs)[ug]id().
Change some task->e?[ug]id to task_e?[ug]id(). In some places it makes more
sense to use RCU directly rather than a convenient wrapper; these will be
addressed by later patches.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: linuxppc-dev@ozlabs.org
Signed-off-by: James Morris <jmorris@namei.org>
If the size of DRAM is not an exact power of two, we may not have
covered DRAM in its entirety with large 16 and 4 MiB pages. If that
is the case, we can get non-recoverable page faults when doing the
final PTE mappings for the non-large page PTEs.
Consequently, we restrict the top end of DRAM currently allocable
by updating '__initial_memory_limit_addr' so that calls to the LMB to
allocate PTEs for "tail" coverage with normal-sized pages (or other
reasons) do not attempt to allocate outside the allowed range.
Signed-off-by: Grant Erickson <gerickson@nuovations.com>
Signed-off-by: Josh Boyer <jwboyer@linux.vnet.ibm.com>
Andrew Morton suggested that using a macro that makes an array
reference look like a function call makes it harder to understand the
code.
This therefore removes the huge_pgtable_cache(psize) macro and
replaces its uses with pgtable_cache[HUGE_PGTABLE_INDEX(psize)].
Signed-off-by: Jon Tollefson <kniht@linux.vnet.ibm.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
A new field has been added to the VPA as a method for the client OS to
communicate to firmware the number of page-ins it is performing when
running collaborative memory overcommit. The hypervisor will use this
information to better determine if a partition is experiencing memory
pressure and needs more memory allocated to it.
Signed-off-by: Brian King <brking@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
If mem= is used on the boot command line to limit memory then the memory block where a 16G page resides may not be available.
Thanks to Michael Ellerman for finding the problem.
Signed-off-by: Jon Tollefson <kniht@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
numa_enforce_memory_limit tried to be smart and only call lmb_end_of_DRAM
when a memory limit was set via mem= on the command line. However,
the early boot code will also limit memory added to the lmb system
when iommu=off is specified. When this happens, the page allocator
is given pages not in the linear mapping and this results in a fatal
data reference to the unmapped page.
Signed-off-by: Milton Miller <miltonm@bga.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Adjust amount to reserve based on previous nodes for reserves spanning
multiple nodes. Check if the node active range is empty before attempting
to pass the reserve to bootmem. In practice the range shouldn't be empty,
but to be sure we check.
Signed-off-by: Jon Tollefson <kniht@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
There is nothing architecture specific about remove_memory().
remove_memory() function is common for all architectures which support
hotplug memory remove. Instead of duplicating it in every architecture,
collapse them into arch neutral function.
[akpm@linux-foundation.org: fix the export]
Signed-off-by: Badari Pulavarty <pbadari@us.ibm.com>
Cc: Yasunori Goto <y-goto@jp.fujitsu.com>
Cc: Gary Hade <garyhade@us.ibm.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Yasunori Goto <y-goto@jp.fujitsu.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The typesafe version of the powerpc pagetable handling (with
USE_STRICT_MM_TYPECHECKS defined) has bitrotted again. This patch
makes a bunch of small fixes to get it back to building status.
It's still not enabled by default as gcc still generates worse
code with it for some reason.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
If there are multiple reserved memory blocks via lmb_reserve() that are
contiguous addresses and on different NUMA nodes we are losing track of which
address ranges to reserve in bootmem on which node. I discovered this
when I recently got to try 16GB huge pages on a system with more then 2 nodes.
When scanning the device tree in early boot we call lmb_reserve() with
the addresses of the 16G pages that we find so that the memory doesn't
get used for something else. For example the addresses for the pages
could be 4000000000, 4400000000, 4800000000, 4C00000000, etc - 8 pages,
one on each of eight nodes. In the lmb after all the pages have been
reserved it will look something like the following:
lmb_dump_all:
memory.cnt = 0x2
memory.size = 0x3e80000000
memory.region[0x0].base = 0x0
.size = 0x1e80000000
memory.region[0x1].base = 0x4000000000
.size = 0x2000000000
reserved.cnt = 0x5
reserved.size = 0x3e80000000
reserved.region[0x0].base = 0x0
.size = 0x7b5000
reserved.region[0x1].base = 0x2a00000
.size = 0x78c000
reserved.region[0x2].base = 0x328c000
.size = 0x43000
reserved.region[0x3].base = 0xf4e8000
.size = 0xb18000
reserved.region[0x4].base = 0x4000000000
.size = 0x2000000000
The reserved.region[0x4] contains the 16G pages. In
arch/powerpc/mm/num.c: do_init_bootmem() we loop through each of the
node numbers looking for the reserved regions that belong to the
particular node. It is not able to identify region 0x4 as being a part
of each of the 8 nodes. It is assuming that a reserved region is only
on a single node.
This patch takes out the reserved region loop from inside
the loop that goes over each node. It looks up the active region containing
the start of the reserved region. If it extends past that active region then
it adjusts the size and gets the next active region containing it.
Signed-off-by: Jon Tollefson <kniht@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Commit 8b150478 ("ppc: make phys_mem_access_prot() work with pfns
instead of addresses") fixed page_is_ram() in arch/ppc to avoid overflow
for addresses above 4G on 32-bit kernels. However arch/powerpc's
page_is_ram() is missing the same fix -- it computes a physical address
by doing pfn << PAGE_SHIFT, which overflows if pfn corresponds to a page
above 4G.
In particular this causes pages above 4G to be mapped with the wrong
caching attribute; for example many ppc440-based SoCs have PCI space
above 4G, and mmap()ing MMIO space may end up with a mapping that has
caching enabled.
Fix this by working with the pfn and avoiding the conversion to
physical address that causes the overflow. This patch compares the
pfn to max_pfn, which is a semantic change from the old code -- that
code compared the physical address to high_memory, which corresponds
to max_low_pfn. However, I think that was is another bug, since
highmem pages are still RAM.
Reported-by: vb <vb@vsbe.com>
Signed-off-by: Roland Dreier <rolandd@cisco.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This rearranges a bit of code, and adds support for
36-bit physical addressing for configs that use a
hashed page table. The 36b physical support is not
enabled by default on any config - it must be
explicitly enabled via the config system.
This patch *only* expands the page table code to accomodate
large physical addresses on 32-bit systems and enables the
PHYS_64BIT config option for 86xx. It does *not*
allow you to boot a board with more than about 3.5GB of
RAM - for that, SWIOTLB support is also required (and
coming soon).
Signed-off-by: Becky Bruce <becky.bruce@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
This fixes a build warning when PHYS_64BIT is enabled, and removes an
unnecessary cast to phys_addr_t (the variable being cast is already
a phys_addr_t)
Signed-off-by: Becky Bruce <becky.bruce@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
There is a small bug in the handling of 16G hugepages recently added
to the kernel. This doesn't cause a crash or other user-visible
problems, but it does mean that more levels of pagetable are allocated
than makes sense for 16G pages. The hugepage pagetables for the 16G
pages are allocated much lower in the pagetable tree than they should
be, with the intervening levels allocated with full pmd and pud pages
which will only ever have one entry filled in.
This corrects this problem, at the same time cleaning up the handling
of which level 64k versus 16M hugepage pagetables are allocated at.
The new way of formatting the tests should be more robust against
changes in pagetable structure, or any newly added hugepage sizes.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
It's the size of the hardware PTE; make that clear in the name.
Signed-off-by: Becky Bruce <becky.bruce@freescale.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This implements CONFIG_RELOCATABLE for 64-bit by making the kernel as
a position-independent executable (PIE) when it is set. This involves
processing the dynamic relocations in the image in the early stages of
booting, even if the kernel is being run at the address it is linked at,
since the linker does not necessarily fill in words in the image for
which there are dynamic relocations. (In fact the linker does fill in
such words for 64-bit executables, though not for 32-bit executables,
so in principle we could avoid calling relocate() entirely when we're
running a 64-bit kernel at the linked address.)
The dynamic relocations are processed by a new function relocate(addr),
where the addr parameter is the virtual address where the image will be
run. In fact we call it twice; once before calling prom_init, and again
when starting the main kernel. This means that reloc_offset() returns
0 in prom_init (since it has been relocated to the address it is running
at), which necessitated a few adjustments.
This also changes __va and __pa to use an equivalent definition that is
simpler. With the relocatable kernel, PAGE_OFFSET and MEMORY_START are
constants (for 64-bit) whereas PHYSICAL_START is a variable (and
KERNELBASE ideally should be too, but isn't yet).
With this, relocatable kernels still copy themselves down to physical
address 0 and run there.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Kdump kernel needs to use only those memory regions that it is allowed
to use (crashkernel, rtas, tce, etc.). Each of these regions have
their own sizes and are currently added under 'linux,usable-memory'
property under each memory@xxx node of the device tree.
The ibm,dynamic-memory property of ibm,dynamic-reconfiguration-memory
node (on POWER6) now stores in it the representation for most of the
logical memory blocks with the size of each memory block being a
constant (lmb_size). If one or more or part of the above mentioned
regions lie under one of the lmb from ibm,dynamic-memory property,
there is a need to identify those regions within the given lmb.
This makes the kernel recognize a new 'linux,drconf-usable-memory'
property added by kexec-tools. Each entry in this property is of the
form of a count followed by that many (base, size) pairs for the above
mentioned regions. The number of cells in the count value is given by
the #size-cells property of the root node.
Signed-off-by: Chandru Siddalingappa <chandru@in.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Commit bc033b63bb ("powerpc/mm: Fix
attribute confusion with htab_bolt_mapping()") moved the check for
whether we should make pages of the linear mapping executable from
htab_bolt_mapping into its callers, including htab_initialize.
A side-effect of this is that the decision is now made once for
each contiguous section in the LMB array rather than for each page
individually. This can often mean that the whole of the linear
mapping ends up being executable.
This reverts to the previous behaviour, where individual pages are
checked for being part of the kernel text or not, by moving the check
back down into htab_bolt_mapping.
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
htab_dt_scan_hugepage_blocks is only used when CONFIG_HUGETLB_PAGE is
defined, so guard the declaration likewise.
Signed-off-by: Tony Breeds <tony@bakeyournoodle.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
The function htab_bolt_mapping() is used to create permanent
mappings in the MMU hash table, for example, in order to create
the linear mapping of vmemmap. It's also used by early boot
ioremap (before mem_init_done).
However, the way ioremap uses it is incorrect as it passes it the
protection flags in the "linux PTE" form while htab_bolt_mapping()
expects them in the hash table format. This is made more confusing by
the fact that some of those flags are actually in the same position in
both cases.
This fixes it all by making htab_bolt_mapping() take normal linux
protection flags instead, and use a little helper to convert them to
htab flags. Callers can now use the usual PAGE_* definitions safely.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
arch/powerpc/include/asm/mmu-hash64.h | 2 -
arch/powerpc/mm/hash_utils_64.c | 65 ++++++++++++++++++++--------------
arch/powerpc/mm/init_64.c | 9 +---
3 files changed, 44 insertions(+), 32 deletions(-)
Signed-off-by: Paul Mackerras <paulus@samba.org>
total_memory is a 'phys_addr_t', Which can be either 64 or 32 bits.
Force printing as unsigned long long to silence the warning.
Signed-off-by: Tony Breeds <tony@bakeyournoodle.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Explicitly cast to unsigned long long, rather than u64.
Signed-off-by: Tony Breeds <tony@bakeyournoodle.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
from include/asm-powerpc. This is the result of a
mkdir arch/powerpc/include/asm
git mv include/asm-powerpc/* arch/powerpc/include/asm
Followed by a few documentation/comment fixups and a couple of places
where <asm-powepc/...> was being used explicitly. Of the latter only
one was outside the arch code and it is a driver only built for powerpc.
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Implement lockless get_user_pages_fast for 64-bit powerpc.
Page table existence is guaranteed with RCU, and speculative page references
are used to take a reference to the pages without having a prior existence
guarantee on them.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Dave Kleikamp <shaggy@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The 64K SPU local store mapping feature is incompatible with the
64K huge pages support due to the inability of some parts of
the memory management to differenciate between them while they
use a different page table format.
For now, disable 64K huge pages when CONFIG_SPU_FS_64K_LS,
in the long run, this can be fixed by making this feature use
the hugetlb page table format.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Remove arch-specific show_mem() in favor of the generic version.
This also removes the following redundant information display:
- pages in swapcache, printed by show_swap_cache_info()
where show_mem() calls show_free_areas(), which calls
show_swap_cache_info().
Signed-off-by: Johannes Weiner <hannes@saeurebad.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Kmem cache passed to constructor is only needed for constructors that are
themselves multiplexeres. Nobody uses this "feature", nor does anybody uses
passed kmem cache in non-trivial way, so pass only pointer to object.
Non-trivial places are:
arch/powerpc/mm/init_64.c
arch/powerpc/mm/hugetlbpage.c
This is flag day, yes.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Acked-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jon Tollefson <kniht@linux.vnet.ibm.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Matt Mackall <mpm@selenic.com>
[akpm@linux-foundation.org: fix arch/powerpc/mm/hugetlbpage.c]
[akpm@linux-foundation.org: fix mm/slab.c]
[akpm@linux-foundation.org: fix ubifs]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch implements support for HW based watchpoint via the
DBSR_DAC (Data Address Compare) facility of the BookE processors.
It does so by interfacing with the existing DABR breakpoint code
and adding the necessary bits and pieces for the new bits to
be properly set or cleared
Signed-off-by: Luis Machado <luisgpm@br.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Instead of using the variable mmu_huge_psize to keep track of the huge
page size we use an array of MMU_PAGE_* values. For each supported huge
page size we need to know the hugepte_shift value and have a
pgtable_cache. The hstate or an mmu_huge_psizes index is passed to
functions so that they know which huge page size they should use.
The hugepage sizes 16M and 64K are setup(if available on the hardware) so
that they don't have to be set on the boot cmd line in order to use them.
The number of 16G pages have to be specified at boot-time though (e.g.
hugepagesz=16G hugepages=5).
Signed-off-by: Jon Tollefson <kniht@linux.vnet.ibm.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The huge page size is defined for 16G pages. If a hugepagesz of 16G is
specified at boot-time then it becomes the huge page size instead of the
default 16M.
The change in pgtable-64K.h is to the macro pte_iterate_hashed_subpages to
make the increment to va (the 1 being shifted) be a long so that it is not
shifted to 0. Otherwise it would create an infinite loop when the shift
value is for a 16G page (when base page size is 64K).
Signed-off-by: Jon Tollefson <kniht@linux.vnet.ibm.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The 16G huge pages have to be reserved in the HMC prior to boot. The
location of the pages are placed in the device tree. This patch adds code
to scan the device tree during very early boot and save these page
locations until hugetlbfs is ready for them.
Acked-by: Adam Litke <agl@us.ibm.com>
Signed-off-by: Jon Tollefson <kniht@linux.vnet.ibm.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The 16G page locations have been saved during early boot in an array. The
alloc_bootmem_huge_page() function adds a page from here to the
huge_boot_pages list.
Acked-by: Adam Litke <agl@us.ibm.com>
Signed-off-by: Jon Tollefson <kniht@linux.vnet.ibm.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Straight forward extensions for huge pages located in the PUD instead of
PMDs.
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The goal of this patchset is to support multiple hugetlb page sizes. This
is achieved by introducing a new struct hstate structure, which
encapsulates the important hugetlb state and constants (eg. huge page
size, number of huge pages currently allocated, etc).
The hstate structure is then passed around the code which requires these
fields, they will do the right thing regardless of the exact hstate they
are operating on.
This patch adds the hstate structure, with a single global instance of it
(default_hstate), and does the basic work of converting hugetlb to use the
hstate.
Future patches will add more hstate structures to allow for different
hugetlbfs mounts to have different page sizes.
[akpm@linux-foundation.org: coding-style fixes]
Acked-by: Adam Litke <agl@us.ibm.com>
Acked-by: Nishanth Aravamudan <nacc@us.ibm.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The double indirection here is not needed anywhere and hence (at least)
confusing.
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: "David S. Miller" <davem@davemloft.net>
Acked-by: Jeremy Fitzhardinge <jeremy@goop.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds ioremap_prot and pte_pgprot() so that one can extract protection
bits from a PTE and use them to ioremap_prot() (in order to support ptrace
of VM_IO | VM_PFNMAP as per Rik's patch).
This moves a couple of flag checks around in the ioremap implementations
of arch/powerpc. There's a side effect of allowing non-cacheable and
non-guarded mappings on ppc32 which before would always have _PAGE_GUARDED
set whenever _PAGE_NO_CACHE is.
(standard ioremap will still set _PAGE_GUARDED, but ioremap_prot will be
capable of setting such a non guarded mapping).
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: Dave Airlie <airlied@linux.ie>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>