Commit Graph

177 Commits

Author SHA1 Message Date
luca abeni 1b02cd6a2d sched/deadline: Correctly handle active 0-lag timers
syzbot reported the following warning:

   [ ] WARNING: CPU: 4 PID: 17089 at kernel/sched/deadline.c:255 task_non_contending+0xae0/0x1950

line 255 of deadline.c is:

	WARN_ON(hrtimer_active(&dl_se->inactive_timer));

in task_non_contending().

Unfortunately, in some cases (for example, a deadline task
continuosly blocking and waking immediately) it can happen that
a task blocks (and task_non_contending() is called) while the
0-lag timer is still active.

In this case, the safest thing to do is to immediately decrease
the running bandwidth of the task, without trying to re-arm the 0-lag timer.

Signed-off-by: luca abeni <luca.abeni@santannapisa.it>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: chengjian (D) <cj.chengjian@huawei.com>
Link: https://lkml.kernel.org/r/20190325131530.34706-1-luca.abeni@santannapisa.it
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-16 16:54:58 +02:00
Vincent Guittot 2312729688 sched/fair: Update scale invariance of PELT
The current implementation of load tracking invariance scales the
contribution with current frequency and uarch performance (only for
utilization) of the CPU. One main result of this formula is that the
figures are capped by current capacity of CPU. Another one is that the
load_avg is not invariant because not scaled with uarch.

The util_avg of a periodic task that runs r time slots every p time slots
varies in the range :

    U * (1-y^r)/(1-y^p) * y^i < Utilization < U * (1-y^r)/(1-y^p)

with U is the max util_avg value = SCHED_CAPACITY_SCALE

At a lower capacity, the range becomes:

    U * C * (1-y^r')/(1-y^p) * y^i' < Utilization <  U * C * (1-y^r')/(1-y^p)

with C reflecting the compute capacity ratio between current capacity and
max capacity.

so C tries to compensate changes in (1-y^r') but it can't be accurate.

Instead of scaling the contribution value of PELT algo, we should scale the
running time. The PELT signal aims to track the amount of computation of
tasks and/or rq so it seems more correct to scale the running time to
reflect the effective amount of computation done since the last update.

In order to be fully invariant, we need to apply the same amount of
running time and idle time whatever the current capacity. Because running
at lower capacity implies that the task will run longer, we have to ensure
that the same amount of idle time will be applied when system becomes idle
and no idle time has been "stolen". But reaching the maximum utilization
value (SCHED_CAPACITY_SCALE) means that the task is seen as an
always-running task whatever the capacity of the CPU (even at max compute
capacity). In this case, we can discard this "stolen" idle times which
becomes meaningless.

In order to achieve this time scaling, a new clock_pelt is created per rq.
The increase of this clock scales with current capacity when something
is running on rq and synchronizes with clock_task when rq is idle. With
this mechanism, we ensure the same running and idle time whatever the
current capacity. This also enables to simplify the pelt algorithm by
removing all references of uarch and frequency and applying the same
contribution to utilization and loads. Furthermore, the scaling is done
only once per update of clock (update_rq_clock_task()) instead of during
each update of sched_entities and cfs/rt/dl_rq of the rq like the current
implementation. This is interesting when cgroup are involved as shown in
the results below:

On a hikey (octo Arm64 platform).
Performance cpufreq governor and only shallowest c-state to remove variance
generated by those power features so we only track the impact of pelt algo.

each test runs 16 times:

	./perf bench sched pipe
	(higher is better)
	kernel	tip/sched/core     + patch
	        ops/seconds        ops/seconds         diff
	cgroup
	root    59652(+/- 0.18%)   59876(+/- 0.24%)    +0.38%
	level1  55608(+/- 0.27%)   55923(+/- 0.24%)    +0.57%
	level2  52115(+/- 0.29%)   52564(+/- 0.22%)    +0.86%

	hackbench -l 1000
	(lower is better)
	kernel	tip/sched/core     + patch
	        duration(sec)      duration(sec)        diff
	cgroup
	root    4.453(+/- 2.37%)   4.383(+/- 2.88%)     -1.57%
	level1  4.859(+/- 8.50%)   4.830(+/- 7.07%)     -0.60%
	level2  5.063(+/- 9.83%)   4.928(+/- 9.66%)     -2.66%

Then, the responsiveness of PELT is improved when CPU is not running at max
capacity with this new algorithm. I have put below some examples of
duration to reach some typical load values according to the capacity of the
CPU with current implementation and with this patch. These values has been
computed based on the geometric series and the half period value:

  Util (%)     max capacity  half capacity(mainline)  half capacity(w/ patch)
  972 (95%)    138ms         not reachable            276ms
  486 (47.5%)  30ms          138ms                     60ms
  256 (25%)    13ms           32ms                     26ms

On my hikey (octo Arm64 platform) with schedutil governor, the time to
reach max OPP when starting from a null utilization, decreases from 223ms
with current scale invariance down to 121ms with the new algorithm.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bsegall@google.com
Cc: dietmar.eggemann@arm.com
Cc: patrick.bellasi@arm.com
Cc: pjt@google.com
Cc: pkondeti@codeaurora.org
Cc: quentin.perret@arm.com
Cc: rjw@rjwysocki.net
Cc: srinivas.pandruvada@linux.intel.com
Cc: thara.gopinath@linaro.org
Link: https://lkml.kernel.org/r/1548257214-13745-3-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-02-04 09:13:21 +01:00
Yangtao Li 9ebc605381 sched/core: Remove unnecessary unlikely() in push_*_task()
WARN_ON() already contains an unlikely(), so it's not necessary to
use WARN_ON(1).

Signed-off-by: Yangtao Li <tiny.windzz@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20181103172602.1917-1-tiny.windzz@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-12-11 15:16:57 +01:00
Ingo Molnar dfcb245e28 sched: Fix various typos in comments
Go over the scheduler source code and fix common typos
in comments - and a typo in an actual variable name.

No change in functionality intended.

Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-12-03 11:55:42 +01:00
Muchun Song ff1cdc94de sched/core: Introduce set_next_task() helper for better code readability
When we pick the next task, we will do the following for the task:

  1) p->se.exec_start = rq_clock_task(rq);
  2) dequeue_pushable(_dl)_task(rq, p);

When we call set_curr_task(), we also need to do the same thing
above. In rt.c, the code at 1) is in the _pick_next_task_rt()
and the code at 2) is in the pick_next_task_rt(). If we put two
operations in one function, maybe better. So, we introduce a new
function set_next_task(), which is responsible for doing the above.

By introducing the function we can get rid of calling the
dequeue_pushable(_dl)_task() directly(We can call set_next_task())
in pick_next_task() and have better code readability and reuse.
In set_curr_task_rt(), we also can call set_next_task().

Do this things such that we end up with:

  static struct task_struct *pick_next_task(struct rq *rq,
  					    struct task_struct *prev,
  					    struct rq_flags *rf)
  {
  	/* do something else ... */

  	put_prev_task(rq, prev);

  	/* pick next task p */

  	set_next_task(rq, p);

  	/* do something else ... */
  }

put_prev_task() can match set_next_task(), which can make the
code more readable.

Signed-off-by: Muchun Song <smuchun@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20181026131743.21786-1-smuchun@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-11-04 00:59:24 +01:00
Srikar Dronamraju 1327237a59 sched/numa: Pass destination CPU as a parameter to migrate_task_rq
This additional parameter (new_cpu) is used later for identifying if
task migration is across nodes.

No functional change.

Specjbb2005 results (8 warehouses)
Higher bops are better

2 Socket - 2  Node Haswell - X86
JVMS  Prev    Current  %Change
4     203353  200668   -1.32036
1     328205  321791   -1.95427

2 Socket - 4 Node Power8 - PowerNV
JVMS  Prev    Current  %Change
1     214384  204848   -4.44809

2 Socket - 2  Node Power9 - PowerNV
JVMS  Prev    Current  %Change
4     188553  188098   -0.241311
1     196273  200351   2.07772

4 Socket - 4  Node Power7 - PowerVM
JVMS  Prev     Current  %Change
8     57581.2  58145.9  0.980702
1     103468   103798   0.318939

Brings out the variance between different specjbb2005 runs.

Some events stats before and after applying the patch.

perf stats 8th warehouse Multi JVM 2 Socket - 2  Node Haswell - X86
Event                     Before          After
cs                        13,941,377      13,912,183
migrations                1,157,323       1,155,931
faults                    382,175         367,139
cache-misses              54,993,823,500  54,240,196,814
sched:sched_move_numa     2,005           1,571
sched:sched_stick_numa    14              9
sched:sched_swap_numa     529             463
migrate:mm_migrate_pages  1,573           703

vmstat 8th warehouse Multi JVM 2 Socket - 2  Node Haswell - X86
Event                   Before  After
numa_hint_faults        67099   50155
numa_hint_faults_local  58456   45264
numa_hit                240416  239652
numa_huge_pte_updates   18      36
numa_interleave         65      68
numa_local              240339  239576
numa_other              77      76
numa_pages_migrated     1574    680
numa_pte_updates        77182   71146

perf stats 8th warehouse Single JVM 2 Socket - 2  Node Haswell - X86
Event                     Before          After
cs                        3,176,453       3,156,720
migrations                30,238          30,354
faults                    87,869          97,261
cache-misses              12,544,479,391  12,400,026,826
sched:sched_move_numa     23              4
sched:sched_stick_numa    0               0
sched:sched_swap_numa     6               1
migrate:mm_migrate_pages  10              20

vmstat 8th warehouse Single JVM 2 Socket - 2  Node Haswell - X86
Event                   Before  After
numa_hint_faults        236     272
numa_hint_faults_local  201     186
numa_hit                72293   71362
numa_huge_pte_updates   0       0
numa_interleave         26      23
numa_local              72233   71299
numa_other              60      63
numa_pages_migrated     8       2
numa_pte_updates        0       0

perf stats 8th warehouse Multi JVM 2 Socket - 2  Node Power9 - PowerNV
Event                     Before       After
cs                        8,478,820    8,606,824
migrations                171,323      155,352
faults                    307,499      301,409
cache-misses              240,353,599  157,759,224
sched:sched_move_numa     214          168
sched:sched_stick_numa    0            0
sched:sched_swap_numa     4            3
migrate:mm_migrate_pages  89           125

vmstat 8th warehouse Multi JVM 2 Socket - 2  Node Power9 - PowerNV
Event                   Before  After
numa_hint_faults        5301    4650
numa_hint_faults_local  4745    3946
numa_hit                92943   90489
numa_huge_pte_updates   0       0
numa_interleave         899     892
numa_local              92345   90034
numa_other              598     455
numa_pages_migrated     88      124
numa_pte_updates        5505    4818

perf stats 8th warehouse Single JVM 2 Socket - 2  Node Power9 - PowerNV
Event                     Before      After
cs                        2,066,172   2,113,167
migrations                11,076      10,533
faults                    149,544     142,727
cache-misses              10,398,067  5,594,192
sched:sched_move_numa     43          10
sched:sched_stick_numa    0           0
sched:sched_swap_numa     0           0
migrate:mm_migrate_pages  6           6

vmstat 8th warehouse Single JVM 2 Socket - 2  Node Power9 - PowerNV
Event                   Before  After
numa_hint_faults        3552    744
numa_hint_faults_local  3347    584
numa_hit                25611   25551
numa_huge_pte_updates   0       0
numa_interleave         213     263
numa_local              25583   25302
numa_other              28      249
numa_pages_migrated     6       6
numa_pte_updates        3535    744

perf stats 8th warehouse Multi JVM 4 Socket - 4  Node Power7 - PowerVM
Event                     Before           After
cs                        99,358,136       101,227,352
migrations                4,041,607        4,151,829
faults                    749,653          745,233
cache-misses              225,562,543,251  224,669,561,766
sched:sched_move_numa     771              617
sched:sched_stick_numa    14               2
sched:sched_swap_numa     204              187
migrate:mm_migrate_pages  1,180            316

vmstat 8th warehouse Multi JVM 4 Socket - 4  Node Power7 - PowerVM
Event                   Before  After
numa_hint_faults        27409   24195
numa_hint_faults_local  20677   21639
numa_hit                239988  238331
numa_huge_pte_updates   0       0
numa_interleave         0       0
numa_local              239983  238331
numa_other              5       0
numa_pages_migrated     1016    204
numa_pte_updates        27916   24561

perf stats 8th warehouse Single JVM 4 Socket - 4  Node Power7 - PowerVM
Event                     Before          After
cs                        60,899,307      62,738,978
migrations                544,668         562,702
faults                    270,834         228,465
cache-misses              74,543,455,635  75,778,067,952
sched:sched_move_numa     735             648
sched:sched_stick_numa    25              13
sched:sched_swap_numa     174             137
migrate:mm_migrate_pages  816             733

vmstat 8th warehouse Single JVM 4 Socket - 4  Node Power7 - PowerVM
Event                   Before  After
numa_hint_faults        11059   10281
numa_hint_faults_local  4733    3242
numa_hit                41384   36338
numa_huge_pte_updates   0       0
numa_interleave         0       0
numa_local              41383   36338
numa_other              1       0
numa_pages_migrated     815     706
numa_pte_updates        11323   10176

Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Jirka Hladky <jhladky@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1537552141-27815-3-git-send-email-srikar@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-10-02 09:42:21 +02:00
Ingo Molnar 4765096f4f Merge branch 'sched/urgent' into sched/core, to pick up fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-25 11:29:58 +02:00
Daniel Bristot de Oliveira 840d719604 sched/deadline: Update rq_clock of later_rq when pushing a task
Daniel Casini got this warn while running a DL task here at RetisLab:

  [  461.137582] ------------[ cut here ]------------
  [  461.137583] rq->clock_update_flags < RQCF_ACT_SKIP
  [  461.137599] WARNING: CPU: 4 PID: 2354 at kernel/sched/sched.h:967 assert_clock_updated.isra.32.part.33+0x17/0x20
      [a ton of modules]
  [  461.137646] CPU: 4 PID: 2354 Comm: label_image Not tainted 4.18.0-rc4+ #3
  [  461.137647] Hardware name: ASUS All Series/Z87-K, BIOS 0801 09/02/2013
  [  461.137649] RIP: 0010:assert_clock_updated.isra.32.part.33+0x17/0x20
  [  461.137649] Code: ff 48 89 83 08 09 00 00 eb c6 66 0f 1f 84 00 00 00 00 00 55 48 c7 c7 98 7a 6c a5 c6 05 bc 0d 54 01 01 48 89 e5 e8 a9 84 fb ff <0f> 0b 5d c3 0f 1f 44 00 00 0f 1f 44 00 00 83 7e 60 01 74 0a 48 3b
  [  461.137673] RSP: 0018:ffffa77e08cafc68 EFLAGS: 00010082
  [  461.137674] RAX: 0000000000000000 RBX: ffff8b3fc1702d80 RCX: 0000000000000006
  [  461.137674] RDX: 0000000000000007 RSI: 0000000000000096 RDI: ffff8b3fded164b0
  [  461.137675] RBP: ffffa77e08cafc68 R08: 0000000000000026 R09: 0000000000000339
  [  461.137676] R10: ffff8b3fd060d410 R11: 0000000000000026 R12: ffffffffa4e14e20
  [  461.137677] R13: ffff8b3fdec22940 R14: ffff8b3fc1702da0 R15: ffff8b3fdec22940
  [  461.137678] FS:  00007efe43ee5700(0000) GS:ffff8b3fded00000(0000) knlGS:0000000000000000
  [  461.137679] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  [  461.137680] CR2: 00007efe30000010 CR3: 0000000301744003 CR4: 00000000001606e0
  [  461.137680] Call Trace:
  [  461.137684]  push_dl_task.part.46+0x3bc/0x460
  [  461.137686]  task_woken_dl+0x60/0x80
  [  461.137689]  ttwu_do_wakeup+0x4f/0x150
  [  461.137690]  ttwu_do_activate+0x77/0x80
  [  461.137692]  try_to_wake_up+0x1d6/0x4c0
  [  461.137693]  wake_up_q+0x32/0x70
  [  461.137696]  do_futex+0x7e7/0xb50
  [  461.137698]  __x64_sys_futex+0x8b/0x180
  [  461.137701]  do_syscall_64+0x5a/0x110
  [  461.137703]  entry_SYSCALL_64_after_hwframe+0x44/0xa9
  [  461.137705] RIP: 0033:0x7efe4918ca26
  [  461.137705] Code: 00 00 00 74 17 49 8b 48 20 44 8b 59 10 41 83 e3 30 41 83 fb 20 74 1e be 85 00 00 00 41 ba 01 00 00 00 41 b9 01 00 00 04 0f 05 <48> 3d 01 f0 ff ff 73 1f 31 c0 c3 be 8c 00 00 00 49 89 c8 4d 31 d2
  [  461.137738] RSP: 002b:00007efe43ee4928 EFLAGS: 00000283 ORIG_RAX: 00000000000000ca
  [  461.137739] RAX: ffffffffffffffda RBX: 0000000005094df0 RCX: 00007efe4918ca26
  [  461.137740] RDX: 0000000000000001 RSI: 0000000000000085 RDI: 0000000005094e24
  [  461.137741] RBP: 00007efe43ee49c0 R08: 0000000005094e20 R09: 0000000004000001
  [  461.137741] R10: 0000000000000001 R11: 0000000000000283 R12: 0000000000000000
  [  461.137742] R13: 0000000005094df8 R14: 0000000000000001 R15: 0000000000448a10
  [  461.137743] ---[ end trace 187df4cad2bf7649 ]---

This warning happened in the push_dl_task(), because
__add_running_bw()->cpufreq_update_util() is getting the rq_clock of
the later_rq before its update, which takes place at activate_task().
The fix then is to update the rq_clock before calling add_running_bw().

To avoid double rq_clock_update() call, we set ENQUEUE_NOCLOCK flag to
activate_task().

Reported-by: Daniel Casini <daniel.casini@santannapisa.it>
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Cc: Clark Williams <williams@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luca Abeni <luca.abeni@santannapisa.it>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tommaso Cucinotta <tommaso.cucinotta@santannapisa.it>
Fixes: e0367b1267 sched/deadline: Move CPU frequency selection triggering points
Link: http://lkml.kernel.org/r/ca31d073a4788acf0684a8b255f14fea775ccf20.1532077269.git.bristot@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-25 11:29:08 +02:00
Vincent Guittot 523e979d31 sched/core: Use PELT for scale_rt_capacity()
The utilization of the CPU by RT, DL and IRQs are now tracked with
PELT so we can use these metrics instead of rt_avg to evaluate the remaining
capacity available for CFS class.

scale_rt_capacity() behavior has been changed and now returns the remaining
capacity available for CFS instead of a scaling factor because RT, DL and
IRQ provide now absolute utilization value.

The same formula as schedutil is used:

  IRQ util_avg + (1 - IRQ util_avg / max capacity ) * /Sum rq util_avg

but the implementation is different because it doesn't return the same value
and doesn't benefit of the same optimization.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: claudio@evidence.eu.com
Cc: daniel.lezcano@linaro.org
Cc: dietmar.eggemann@arm.com
Cc: joel@joelfernandes.org
Cc: juri.lelli@redhat.com
Cc: luca.abeni@santannapisa.it
Cc: patrick.bellasi@arm.com
Cc: quentin.perret@arm.com
Cc: rjw@rjwysocki.net
Cc: valentin.schneider@arm.com
Cc: viresh.kumar@linaro.org
Link: http://lkml.kernel.org/r/1530200714-4504-10-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-16 00:16:25 +02:00
Vincent Guittot 3727e0e163 sched/dl: Add dl_rq utilization tracking
Similarly to what happens with RT tasks, CFS tasks can be preempted by DL
tasks and the CFS's utilization might no longer describes the real
utilization level.

Current DL bandwidth reflects the requirements to meet deadline when tasks are
enqueued but not the current utilization of the DL sched class. We track
DL class utilization to estimate the system utilization.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: claudio@evidence.eu.com
Cc: daniel.lezcano@linaro.org
Cc: dietmar.eggemann@arm.com
Cc: joel@joelfernandes.org
Cc: juri.lelli@redhat.com
Cc: luca.abeni@santannapisa.it
Cc: patrick.bellasi@arm.com
Cc: quentin.perret@arm.com
Cc: rjw@rjwysocki.net
Cc: valentin.schneider@arm.com
Cc: viresh.kumar@linaro.org
Link: http://lkml.kernel.org/r/1530200714-4504-5-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-15 23:51:20 +02:00
Juri Lelli e117cb52bd sched/deadline: Fix switched_from_dl() warning
Mark noticed that syzkaller is able to reliably trigger the following warning:

  dl_rq->running_bw > dl_rq->this_bw
  WARNING: CPU: 1 PID: 153 at kernel/sched/deadline.c:124 switched_from_dl+0x454/0x608
  Kernel panic - not syncing: panic_on_warn set ...

  CPU: 1 PID: 153 Comm: syz-executor253 Not tainted 4.18.0-rc3+ #29
  Hardware name: linux,dummy-virt (DT)
  Call trace:
   dump_backtrace+0x0/0x458
   show_stack+0x20/0x30
   dump_stack+0x180/0x250
   panic+0x2dc/0x4ec
   __warn_printk+0x0/0x150
   report_bug+0x228/0x2d8
   bug_handler+0xa0/0x1a0
   brk_handler+0x2f0/0x568
   do_debug_exception+0x1bc/0x5d0
   el1_dbg+0x18/0x78
   switched_from_dl+0x454/0x608
   __sched_setscheduler+0x8cc/0x2018
   sys_sched_setattr+0x340/0x758
   el0_svc_naked+0x30/0x34

syzkaller reproducer runs a bunch of threads that constantly switch
between DEADLINE and NORMAL classes while interacting through futexes.

The splat above is caused by the fact that if a DEADLINE task is setattr
back to NORMAL while in non_contending state (blocked on a futex -
inactive timer armed), its contribution to running_bw is not removed
before sub_rq_bw() gets called (!task_on_rq_queued() branch) and the
latter sees running_bw > this_bw.

Fix it by removing a task contribution from running_bw if the task is
not queued and in non_contending state while switched to a different
class.

Reported-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Reviewed-by: Luca Abeni <luca.abeni@santannapisa.it>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: claudio@evidence.eu.com
Cc: rostedt@goodmis.org
Link: http://lkml.kernel.org/r/20180711072948.27061-1-juri.lelli@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-15 23:47:33 +02:00
Juri Lelli ecda2b66e2 sched/deadline: Fix missing clock update
A missing clock update is causing the following warning:

 rq->clock_update_flags < RQCF_ACT_SKIP
 WARNING: CPU: 10 PID: 0 at kernel/sched/sched.h:963 inactive_task_timer+0x5d6/0x720
 Call Trace:
  <IRQ>
  __hrtimer_run_queues+0x10f/0x530
  hrtimer_interrupt+0xe5/0x240
  smp_apic_timer_interrupt+0x79/0x2b0
  apic_timer_interrupt+0xf/0x20
  </IRQ>
  do_idle+0x203/0x280
  cpu_startup_entry+0x6f/0x80
  start_secondary+0x1b0/0x200
  secondary_startup_64+0xa5/0xb0
 hardirqs last  enabled at (793919): [<ffffffffa27c5f6e>] cpuidle_enter_state+0x9e/0x360
 hardirqs last disabled at (793920): [<ffffffffa2a0096e>] interrupt_entry+0xce/0xe0
 softirqs last  enabled at (793922): [<ffffffffa20bef78>] irq_enter+0x68/0x70
 softirqs last disabled at (793921): [<ffffffffa20bef5d>] irq_enter+0x4d/0x70

This happens because inactive_task_timer() calls sub_running_bw() (if
TASK_DEAD and non_contending) that might trigger a schedutil update,
which might access the clock. Clock is however currently updated only
later in inactive_task_timer() function.

Fix the problem by updating the clock right after task_rq_lock().

Reported-by: kernel test robot <xiaolong.ye@intel.com>
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Claudio Scordino <claudio@evidence.eu.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luca Abeni <luca.abeni@santannapisa.it>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180530160809.9074-1-juri.lelli@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-05-31 12:27:13 +02:00
Mathieu Malaterre 3febfc8a21 sched/deadline: Make the grub_reclaim() function static
Since the grub_reclaim() function can be made static, make it so.

Silences the following GCC warning (W=1):

  kernel/sched/deadline.c:1120:5: warning: no previous prototype for ‘grub_reclaim’ [-Wmissing-prototypes]

Signed-off-by: Mathieu Malaterre <malat@debian.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180516200902.959-1-malat@debian.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-05-18 09:05:22 +02:00
Mathieu Malaterre f6a3463063 sched/debug: Move the print_rt_rq() and print_dl_rq() declarations to kernel/sched/sched.h
In the following commit:

  6b55c9654f ("sched/debug: Move print_cfs_rq() declaration to kernel/sched/sched.h")

the print_cfs_rq() prototype was added to <kernel/sched/sched.h>,
right next to the prototypes for print_cfs_stats(), print_rt_stats()
and print_dl_stats().

Finish this previous commit and also move related prototypes for
print_rt_rq() and print_dl_rq().

Remove existing extern declarations now that they not needed anymore.

Silences the following GCC warning, triggered by W=1:

  kernel/sched/debug.c:573:6: warning: no previous prototype for ‘print_rt_rq’ [-Wmissing-prototypes]
  kernel/sched/debug.c:603:6: warning: no previous prototype for ‘print_dl_rq’ [-Wmissing-prototypes]

Signed-off-by: Mathieu Malaterre <malat@debian.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180516195348.30426-1-malat@debian.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-05-18 09:05:14 +02:00
Davidlohr Bueso adcc8da885 sched/core: Simplify helpers for rq clock update skip requests
By renaming the functions we can get rid of the skip parameter
and have better code redability. It makes zero sense to have
things such as:

  rq_clock_skip_update(rq, false)

When the skip request is in fact not going to happen. Ever. Rename
things such that we end up with:

  rq_clock_skip_update(rq)
  rq_clock_cancel_skipupdate(rq)

Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Cc: matt@codeblueprint.co.uk
Cc: rostedt@goodmis.org
Link: http://lkml.kernel.org/r/20180404161539.nhadkff2aats74jh@linux-n805
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-04-05 09:20:46 +02:00
Peter Zijlstra 4042d003a0 cpufreq/schedutil: Remove unused CPUFREQ_DL
Bitrot...

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-03-09 07:59:14 +01:00
Ingo Molnar 02d8ec9456 sched/deadline, rt: Rename queue_push_tasks/queue_pull_task to create separate namespace
There are similarly named functions in both of these modules:

  kernel/sched/deadline.c:static inline void queue_push_tasks(struct rq *rq)
  kernel/sched/deadline.c:static inline void queue_pull_task(struct rq *rq)
  kernel/sched/deadline.c:static inline void queue_push_tasks(struct rq *rq)
  kernel/sched/deadline.c:static inline void queue_pull_task(struct rq *rq)
  kernel/sched/deadline.c:	queue_push_tasks(rq);
  kernel/sched/deadline.c:	queue_pull_task(rq);
  kernel/sched/deadline.c:			queue_push_tasks(rq);
  kernel/sched/deadline.c:			queue_pull_task(rq);
  kernel/sched/rt.c:static inline void queue_push_tasks(struct rq *rq)
  kernel/sched/rt.c:static inline void queue_pull_task(struct rq *rq)
  kernel/sched/rt.c:static inline void queue_push_tasks(struct rq *rq)
  kernel/sched/rt.c:	queue_push_tasks(rq);
  kernel/sched/rt.c:	queue_pull_task(rq);
  kernel/sched/rt.c:			queue_push_tasks(rq);
  kernel/sched/rt.c:			queue_pull_task(rq);

... which makes it harder to grep for them. Prefix them with
deadline_ and rt_, respectively.

Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-03-04 12:39:34 +01:00
Ingo Molnar 325ea10c08 sched/headers: Simplify and clean up header usage in the scheduler
Do the following cleanups and simplifications:

 - sched/sched.h already includes <asm/paravirt.h>, so no need to
   include it in sched/core.c again.

 - order the <linux/sched/*.h> headers alphabetically

 - add all <linux/sched/*.h> headers to kernel/sched/sched.h

 - remove all unnecessary includes from the .c files that
   are already included in kernel/sched/sched.h.

Finally, make all scheduler .c files use a single common header:

  #include "sched.h"

... which now contains a union of the relied upon headers.

This makes the various .c files easier to read and easier to handle.

Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-03-04 12:39:29 +01:00
Ingo Molnar 97fb7a0a89 sched: Clean up and harmonize the coding style of the scheduler code base
A good number of small style inconsistencies have accumulated
in the scheduler core, so do a pass over them to harmonize
all these details:

 - fix speling in comments,

 - use curly braces for multi-line statements,

 - remove unnecessary parentheses from integer literals,

 - capitalize consistently,

 - remove stray newlines,

 - add comments where necessary,

 - remove invalid/unnecessary comments,

 - align structure definitions and other data types vertically,

 - add missing newlines for increased readability,

 - fix vertical tabulation where it's misaligned,

 - harmonize preprocessor conditional block labeling
   and vertical alignment,

 - remove line-breaks where they uglify the code,

 - add newline after local variable definitions,

No change in functionality:

  md5:
     1191fa0a890cfa8132156d2959d7e9e2  built-in.o.before.asm
     1191fa0a890cfa8132156d2959d7e9e2  built-in.o.after.asm

Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-03-03 15:50:21 +01:00
Frederic Weisbecker d84b31313e sched/isolation: Offload residual 1Hz scheduler tick
When a CPU runs in full dynticks mode, a 1Hz tick remains in order to
keep the scheduler stats alive. However this residual tick is a burden
for bare metal tasks that can't stand any interruption at all, or want
to minimize them.

The usual boot parameters "nohz_full=" or "isolcpus=nohz" will now
outsource these scheduler ticks to the global workqueue so that a
housekeeping CPU handles those remotely. The sched_class::task_tick()
implementations have been audited and look safe to be called remotely
as the target runqueue and its current task are passed in parameter
and don't seem to be accessed locally.

Note that in the case of using isolcpus, it's still up to the user to
affine the global workqueues to the housekeeping CPUs through
/sys/devices/virtual/workqueue/cpumask or domains isolation
"isolcpus=nohz,domain".

Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Wanpeng Li <kernellwp@gmail.com>
Link: http://lkml.kernel.org/r/1519186649-3242-6-git-send-email-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-02-21 09:49:09 +01:00
Wen Yang 6fe0ce1eb0 sched/deadline: Make update_curr_dl() more accurate
rq->clock_task may be updated between the two calls of
rq_clock_task() in update_curr_dl(). Calling rq_clock_task() only
once makes it more accurate and efficient, taking update_curr() as
reference.

Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Wen Yang <wen.yang99@zte.com.cn>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Jiang Biao <jiang.biao2@zte.com.cn>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: zhong.weidong@zte.com.cn
Link: http://lkml.kernel.org/r/1517882148-44599-1-git-send-email-wen.yang99@zte.com.cn
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-02-13 11:44:40 +01:00
Juri Lelli 07881166a8 sched/deadline: Make bandwidth enforcement scale-invariant
Apply frequency and CPU scale-invariance correction factor to bandwidth
enforcement (similar to what we already do to fair utilization tracking).

Each delta_exec gets scaled considering current frequency and maximum
CPU capacity; which means that the reservation runtime parameter (that
need to be specified profiling the task execution at max frequency on
biggest capacity core) gets thus scaled accordingly.

Signed-off-by: Juri Lelli <juri.lelli@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Claudio Scordino <claudio@evidence.eu.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luca Abeni <luca.abeni@santannapisa.it>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: alessio.balsini@arm.com
Cc: bristot@redhat.com
Cc: dietmar.eggemann@arm.com
Cc: joelaf@google.com
Cc: juri.lelli@redhat.com
Cc: mathieu.poirier@linaro.org
Cc: morten.rasmussen@arm.com
Cc: patrick.bellasi@arm.com
Cc: rjw@rjwysocki.net
Cc: rostedt@goodmis.org
Cc: tkjos@android.com
Cc: tommaso.cucinotta@santannapisa.it
Cc: vincent.guittot@linaro.org
Link: http://lkml.kernel.org/r/20171204102325.5110-9-juri.lelli@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-10 12:53:35 +01:00
Juri Lelli 794a56ebd9 sched/cpufreq: Change the worker kthread to SCHED_DEADLINE
Worker kthread needs to be able to change frequency for all other
threads.

Make it special, just under STOP class.

Signed-off-by: Juri Lelli <juri.lelli@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Claudio Scordino <claudio@evidence.eu.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luca Abeni <luca.abeni@santannapisa.it>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: alessio.balsini@arm.com
Cc: bristot@redhat.com
Cc: dietmar.eggemann@arm.com
Cc: joelaf@google.com
Cc: juri.lelli@redhat.com
Cc: mathieu.poirier@linaro.org
Cc: morten.rasmussen@arm.com
Cc: patrick.bellasi@arm.com
Cc: rjw@rjwysocki.net
Cc: rostedt@goodmis.org
Cc: tkjos@android.com
Cc: tommaso.cucinotta@santannapisa.it
Cc: vincent.guittot@linaro.org
Link: http://lkml.kernel.org/r/20171204102325.5110-4-juri.lelli@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-10 12:53:29 +01:00
Juri Lelli e0367b1267 sched/deadline: Move CPU frequency selection triggering points
Since SCHED_DEADLINE doesn't track utilization signal (but reserves a
fraction of CPU bandwidth to tasks admitted to the system), there is no
point in evaluating frequency changes during each tick event.

Move frequency selection triggering points to where running_bw changes.

Co-authored-by: Claudio Scordino <claudio@evidence.eu.com>
Signed-off-by: Juri Lelli <juri.lelli@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luca Abeni <luca.abeni@santannapisa.it>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: alessio.balsini@arm.com
Cc: bristot@redhat.com
Cc: dietmar.eggemann@arm.com
Cc: joelaf@google.com
Cc: juri.lelli@redhat.com
Cc: mathieu.poirier@linaro.org
Cc: morten.rasmussen@arm.com
Cc: patrick.bellasi@arm.com
Cc: rjw@rjwysocki.net
Cc: rostedt@goodmis.org
Cc: tkjos@android.com
Cc: tommaso.cucinotta@santannapisa.it
Cc: vincent.guittot@linaro.org
Link: http://lkml.kernel.org/r/20171204102325.5110-3-juri.lelli@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-10 11:30:32 +01:00
Juri Lelli 34be39305a sched/deadline: Implement "runtime overrun signal" support
This patch adds the possibility of getting the delivery of a SIGXCPU
signal whenever there is a runtime overrun. The request is done through
the sched_flags field within the sched_attr structure.

Forward port of https://lkml.org/lkml/2009/10/16/170

Tested-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Signed-off-by: Juri Lelli <juri.lelli@gmail.com>
Signed-off-by: Claudio Scordino <claudio@evidence.eu.com>
Signed-off-by: Luca Abeni <luca.abeni@santannapisa.it>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tommaso Cucinotta <tommaso.cucinotta@sssup.it>
Link: http://lkml.kernel.org/r/1513077024-25461-1-git-send-email-claudio@evidence.eu.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-10 11:30:31 +01:00
Linus Torvalds 22714a2ba4 Merge branch 'for-4.15' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup updates from Tejun Heo:
 "Cgroup2 cpu controller support is finally merged.

   - Basic cpu statistics support to allow monitoring by default without
     the CPU controller enabled.

   - cgroup2 cpu controller support.

   - /sys/kernel/cgroup files to help dealing with new / optional
     features"

* 'for-4.15' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
  cgroup: export list of cgroups v2 features using sysfs
  cgroup: export list of delegatable control files using sysfs
  cgroup: mark @cgrp __maybe_unused in cpu_stat_show()
  MAINTAINERS: relocate cpuset.c
  cgroup, sched: Move basic cpu stats from cgroup.stat to cpu.stat
  sched: Implement interface for cgroup unified hierarchy
  sched: Misc preps for cgroup unified hierarchy interface
  sched/cputime: Add dummy cputime_adjust() implementation for CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
  cgroup: statically initialize init_css_set->dfl_cgrp
  cgroup: Implement cgroup2 basic CPU usage accounting
  cpuacct: Introduce cgroup_account_cputime[_field]()
  sched/cputime: Expose cputime_adjust()
2017-11-15 14:29:44 -08:00
Ingo Molnar 8a103df440 Merge branch 'linus' into sched/core, to pick up fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-11-08 10:17:15 +01:00
Greg Kroah-Hartman b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Peter Zijlstra 8c0944cee7 sched/deadline: Rename __dl_clear() to __dl_sub()
__dl_sub() is more meaningful as a name, and is more consistent
with the naming of the dual function (__dl_add()).

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Luca Abeni <luca.abeni@santannapisa.it>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mathieu Poirier <mathieu.poirier@linaro.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1504778971-13573-4-git-send-email-luca.abeni@santannapisa.it
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-10 11:45:26 +02:00
Luca Abeni 295d6d5e37 sched/deadline: Fix switching to -deadline
Fix a bug introduced in:

  72f9f3fdc9 ("sched/deadline: Remove dl_new from struct sched_dl_entity")

After that commit, when switching to -deadline if the scheduling
deadline of a task is in the past then switched_to_dl() calls
setup_new_entity() to properly initialize the scheduling deadline
and runtime.

The problem is that the task is enqueued _before_ having its parameters
initialized by setup_new_entity(), and this can cause problems.
For example, a task with its out-of-date deadline in the past will
potentially be enqueued as the highest priority one; however, its
adjusted deadline may not be the earliest one.

This patch fixes the problem by initializing the task's parameters before
enqueuing it.

Signed-off-by: luca abeni <luca.abeni@santannapisa.it>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mathieu Poirier <mathieu.poirier@linaro.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1504778971-13573-3-git-send-email-luca.abeni@santannapisa.it
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-10 11:43:30 +02:00
Tejun Heo d2cc5ed694 cpuacct: Introduce cgroup_account_cputime[_field]()
Introduce cgroup_account_cputime[_field]() which wrap cpuacct_charge()
and cgroup_account_field().  This doesn't introduce any functional
changes and will be used to add cgroup basic resource accounting.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
2017-09-25 08:12:04 -07:00
Davidlohr Bueso 2161573ecd sched/deadline: replace earliest dl and rq leftmost caching
... with the generic rbtree flavor instead. No changes
in semantics whatsoever.

Link: http://lkml.kernel.org/r/20170719014603.19029-9-dave@stgolabs.net
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-08 18:26:49 -07:00
Linus Torvalds 439644096c Power management updates for v4.14-rc1
- Drop the P-state selection algorithm based on a PID controller
    from intel_pstate and make it use the same P-state selection
    method (based on the CPU load) for all types of systems in the
    active mode (Rafael Wysocki, Srinivas Pandruvada).
 
  - Rework the cpufreq core and governors to make it possible to
    take cross-CPU utilization updates into account and modify the
    schedutil governor to actually do so (Viresh Kumar).
 
  - Clean up the handling of transition latency information in the
    cpufreq core and untangle it from the information on which drivers
    cannot do dynamic frequency switching (Viresh Kumar).
 
  - Add support for new SoCs (MT2701/MT7623 and MT7622) to the
    mediatek cpufreq driver and update its DT bindings (Sean Wang).
 
  - Modify the cpufreq dt-platdev driver to autimatically create
    cpufreq devices for the new (v2) Operating Performance Points
    (OPP) DT bindings and update its whitelist of supported systems
    (Viresh Kumar, Shubhrajyoti Datta, Marc Gonzalez, Khiem Nguyen,
    Finley Xiao).
 
  - Add support for Ux500 to the cpufreq-dt driver and drop the
    obsolete dbx500 cpufreq driver (Linus Walleij, Arnd Bergmann).
 
  - Add new SoC (R8A7795) support to the cpufreq rcar driver (Khiem
    Nguyen).
 
  - Fix and clean up assorted issues in the cpufreq drivers and core
    (Arvind Yadav, Christophe Jaillet, Colin Ian King, Gustavo Silva,
    Julia Lawall, Leonard Crestez, Rob Herring, Sudeep Holla).
 
  - Update the IO-wait boost handling in the schedutil governor to
    make it less aggressive (Joel Fernandes).
 
  - Rework system suspend diagnostics to make it print fewer messages
    to the kernel log by default, add a sysfs knob to allow more
    suspend-related messages to be printed and add Low Power S0 Idle
    constraints checks to the ACPI suspend-to-idle code (Rafael
    Wysocki, Srinivas Pandruvada).
 
  - Prefer suspend-to-idle over S3 on ACPI-based systems with the
    ACPI_FADT_LOW_POWER_S0 flag set and the Low Power Idle S0 _DSM
    interface present in the ACPI tables (Rafael Wysocki).
 
  - Update documentation related to system sleep and rename a number
    of items in the code to make it cleare that they are related to
    suspend-to-idle (Rafael Wysocki).
 
  - Export a variable allowing device drivers to check the target
    system sleep state from the core system suspend code (Florian
    Fainelli).
 
  - Clean up the cpuidle subsystem to handle the polling state on
    x86 in a more straightforward way and to use %pOF instead of
    full_name (Rafael Wysocki, Rob Herring).
 
  - Update the devfreq framework to fix and clean up a few minor
    issues (Chanwoo Choi, Rob Herring).
 
  - Extend diagnostics in the generic power domains (genpd) framework
    and clean it up slightly (Thara Gopinath, Rob Herring).
 
  - Fix and clean up a couple of issues in the operating performance
    points (OPP) framework (Viresh Kumar, Waldemar Rymarkiewicz).
 
  - Add support for RV1108 to the rockchip-io Adaptive Voltage Scaling
    (AVS) driver (David Wu).
 
  - Fix the usage of notifiers in CPU power management on some
    platforms (Alex Shi).
 
  - Update the pm-graph system suspend/hibernation and boot profiling
    utility (Todd Brandt).
 
  - Make it possible to run the cpupower utility without CPU0 (Prarit
    Bhargava).
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2
 
 iQIcBAABCAAGBQJZrcDJAAoJEILEb/54YlRx9FUQAIUKvWBAARc61ZIZXjbqZF1v
 aEMOBuksFns0CMekdptSic6n4wc81E/XYMS8yDhOOMpyDzfAZsTWjmu+gKwN7w3l
 E/yf/NVlhob9JZ7MqGgqD4EUFfFIaKBXPlWFdDi2rdCUXE2L8xJ7rla8i7zyZlc5
 pYHfAppBbF4qUcEY4OoOVOOGRZCfMdiLXj0iZOhMX8Y6yLBRk/AjnVADYsF33hoj
 gBEfomU+H0K5V8nQEp0ZFKDArPwL+oElHQj6i+nxBpGfPM5evvLXhHOyR6AsldJ5
 J4YI1kMuQNSCmvHMqOTxTYyJf8Jcf3Fj4wcjwaVMVGceY1lz6McAKknnFnCqCvz+
 mskn84gFCBCM8EoJDqRf0b9MQHcuRyQKM+yw4tjnR9r8yd32erb85ZWFHcPWYhCT
 fZatNOwFFv2MU+2vo5J3yeUNSWIKT+uBjy+tKPbrDkUwpKZVRj3Oj+hP3Mq9NE8U
 YBqltsj7tmrdA634zI8C7jfS6wF221S0fId/iPszwmPJaVn/lq8Ror7pWL5YI8U7
 SCJFjiqDiGmAcQEkuWwFAQnscZkyHpO+Y3A+jfXl/izoaZETaI5+ceIHBaocm3+5
 XrOOpHS3ik8EHf9ji0KFCKZ/pYDwllday3cBQPWo3sMIzpQ2lrjbqdnE1cVnBrld
 OtHZAeD/jLUXuY6XW2jN
 =mAiV
 -----END PGP SIGNATURE-----

Merge tag 'pm-4.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm

Pull power management updates from Rafael Wysocki:
 "This time (again) cpufreq gets the majority of changes which mostly
  are driver updates (including a major consolidation of intel_pstate),
  some schedutil governor modifications and core cleanups.

  There also are some changes in the system suspend area, mostly related
  to diagnostics and debug messages plus some renames of things related
  to suspend-to-idle. One major change here is that suspend-to-idle is
  now going to be preferred over S3 on systems where the ACPI tables
  indicate to do so and provide requsite support (the Low Power Idle S0
  _DSM in particular). The system sleep documentation and the tools
  related to it are updated too.

  The rest is a few cpuidle changes (nothing major), devfreq updates,
  generic power domains (genpd) framework updates and a few assorted
  modifications elsewhere.

  Specifics:

   - Drop the P-state selection algorithm based on a PID controller from
     intel_pstate and make it use the same P-state selection method
     (based on the CPU load) for all types of systems in the active mode
     (Rafael Wysocki, Srinivas Pandruvada).

   - Rework the cpufreq core and governors to make it possible to take
     cross-CPU utilization updates into account and modify the schedutil
     governor to actually do so (Viresh Kumar).

   - Clean up the handling of transition latency information in the
     cpufreq core and untangle it from the information on which drivers
     cannot do dynamic frequency switching (Viresh Kumar).

   - Add support for new SoCs (MT2701/MT7623 and MT7622) to the mediatek
     cpufreq driver and update its DT bindings (Sean Wang).

   - Modify the cpufreq dt-platdev driver to autimatically create
     cpufreq devices for the new (v2) Operating Performance Points (OPP)
     DT bindings and update its whitelist of supported systems (Viresh
     Kumar, Shubhrajyoti Datta, Marc Gonzalez, Khiem Nguyen, Finley
     Xiao).

   - Add support for Ux500 to the cpufreq-dt driver and drop the
     obsolete dbx500 cpufreq driver (Linus Walleij, Arnd Bergmann).

   - Add new SoC (R8A7795) support to the cpufreq rcar driver (Khiem
     Nguyen).

   - Fix and clean up assorted issues in the cpufreq drivers and core
     (Arvind Yadav, Christophe Jaillet, Colin Ian King, Gustavo Silva,
     Julia Lawall, Leonard Crestez, Rob Herring, Sudeep Holla).

   - Update the IO-wait boost handling in the schedutil governor to make
     it less aggressive (Joel Fernandes).

   - Rework system suspend diagnostics to make it print fewer messages
     to the kernel log by default, add a sysfs knob to allow more
     suspend-related messages to be printed and add Low Power S0 Idle
     constraints checks to the ACPI suspend-to-idle code (Rafael
     Wysocki, Srinivas Pandruvada).

   - Prefer suspend-to-idle over S3 on ACPI-based systems with the
     ACPI_FADT_LOW_POWER_S0 flag set and the Low Power Idle S0 _DSM
     interface present in the ACPI tables (Rafael Wysocki).

   - Update documentation related to system sleep and rename a number of
     items in the code to make it cleare that they are related to
     suspend-to-idle (Rafael Wysocki).

   - Export a variable allowing device drivers to check the target
     system sleep state from the core system suspend code (Florian
     Fainelli).

   - Clean up the cpuidle subsystem to handle the polling state on x86
     in a more straightforward way and to use %pOF instead of full_name
     (Rafael Wysocki, Rob Herring).

   - Update the devfreq framework to fix and clean up a few minor issues
     (Chanwoo Choi, Rob Herring).

   - Extend diagnostics in the generic power domains (genpd) framework
     and clean it up slightly (Thara Gopinath, Rob Herring).

   - Fix and clean up a couple of issues in the operating performance
     points (OPP) framework (Viresh Kumar, Waldemar Rymarkiewicz).

   - Add support for RV1108 to the rockchip-io Adaptive Voltage Scaling
     (AVS) driver (David Wu).

   - Fix the usage of notifiers in CPU power management on some
     platforms (Alex Shi).

   - Update the pm-graph system suspend/hibernation and boot profiling
     utility (Todd Brandt).

   - Make it possible to run the cpupower utility without CPU0 (Prarit
     Bhargava)"

* tag 'pm-4.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (87 commits)
  cpuidle: Make drivers initialize polling state
  cpuidle: Move polling state initialization code to separate file
  cpuidle: Eliminate the CPUIDLE_DRIVER_STATE_START symbol
  cpufreq: imx6q: Fix imx6sx low frequency support
  cpufreq: speedstep-lib: make several arrays static, makes code smaller
  PM: docs: Delete the obsolete states.txt document
  PM: docs: Describe high-level PM strategies and sleep states
  PM / devfreq: Fix memory leak when fail to register device
  PM / devfreq: Add dependency on PM_OPP
  PM / devfreq: Move private devfreq_update_stats() into devfreq
  PM / devfreq: Convert to using %pOF instead of full_name
  PM / AVS: rockchip-io: add io selectors and supplies for RV1108
  cpufreq: ti: Fix 'of_node_put' being called twice in error handling path
  cpufreq: dt-platdev: Drop few entries from whitelist
  cpufreq: dt-platdev: Automatically create cpufreq device with OPP v2
  ARM: ux500: don't select CPUFREQ_DT
  cpuidle: Convert to using %pOF instead of full_name
  cpufreq: Convert to using %pOF instead of full_name
  PM / Domains: Convert to using %pOF instead of full_name
  cpufreq: Cap the default transition delay value to 10 ms
  ...
2017-09-05 12:19:08 -07:00
Byungchul Park 3261ed0b25 sched/deadline: Change return value of cpudl_find()
cpudl_find() users are only interested in knowing if suitable CPU(s)
were found or not (and then they look at later_mask to know which).

Change cpudl_find() return type accordingly. Aligns with rt code.

Signed-off-by: Byungchul Park <byungchul.park@lge.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <bristot@redhat.com>
Cc: <juri.lelli@gmail.com>
Cc: <kernel-team@lge.com>
Cc: <rostedt@goodmis.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1495504859-10960-3-git-send-email-byungchul.park@lge.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-08-10 12:18:17 +02:00
Byungchul Park b18c3ca11c sched/deadline: Make find_later_rq() choose a closer CPU in topology
When cpudl_find() returns any among free_cpus, the CPU might not be
closer than others, considering sched domain. For example:

   this_cpu: 15
   free_cpus: 0, 1,..., 14 (== later_mask)
   best_cpu: 0

   topology:

   0 --+
       +--+
   1 --+  |
          +-- ... --+
   2 --+  |         |
       +--+         |
   3 --+            |

   ...             ...

   12 --+           |
        +--+        |
   13 --+  |        |
           +-- ... -+
   14 --+  |
        +--+
   15 --+

In this case, it would be best to select 14 since it's a free CPU and
closest to 15 (this_cpu). However, currently the code selects 0 (best_cpu)
even though that's just any among free_cpus. Fix it.

This (re)aligns the deadline behaviour with the rt behaviour.

Signed-off-by: Byungchul Park <byungchul.park@lge.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <bristot@redhat.com>
Cc: <juri.lelli@gmail.com>
Cc: <kernel-team@lge.com>
Cc: <rostedt@goodmis.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1495504859-10960-2-git-send-email-byungchul.park@lge.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-08-10 12:18:17 +02:00
Viresh Kumar 181a80d1f7 sched: Mark pick_next_task_dl() and build_sched_domain() as static
pick_next_task_dl() and build_sched_domain() aren't used outside
deadline.c and topology.c.

Make them static.

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: linaro-kernel@lists.linaro.org
Link: http://lkml.kernel.org/r/36e4cbb6210002cadae89920ae97e19e7e513008.1493281605.git.viresh.kumar@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-08-10 12:18:14 +02:00
Viresh Kumar 674e75411f sched: cpufreq: Allow remote cpufreq callbacks
With Android UI and benchmarks the latency of cpufreq response to
certain scheduling events can become very critical. Currently, callbacks
into cpufreq governors are only made from the scheduler if the target
CPU of the event is the same as the current CPU. This means there are
certain situations where a target CPU may not run the cpufreq governor
for some time.

One testcase to show this behavior is where a task starts running on
CPU0, then a new task is also spawned on CPU0 by a task on CPU1. If the
system is configured such that the new tasks should receive maximum
demand initially, this should result in CPU0 increasing frequency
immediately. But because of the above mentioned limitation though, this
does not occur.

This patch updates the scheduler core to call the cpufreq callbacks for
remote CPUs as well.

The schedutil, ondemand and conservative governors are updated to
process cpufreq utilization update hooks called for remote CPUs where
the remote CPU is managed by the cpufreq policy of the local CPU.

The intel_pstate driver is updated to always reject remote callbacks.

This is tested with couple of usecases (Android: hackbench, recentfling,
galleryfling, vellamo, Ubuntu: hackbench) on ARM hikey board (64 bit
octa-core, single policy). Only galleryfling showed minor improvements,
while others didn't had much deviation.

The reason being that this patch only targets a corner case, where
following are required to be true to improve performance and that
doesn't happen too often with these tests:

- Task is migrated to another CPU.
- The task has high demand, and should take the target CPU to higher
  OPPs.
- And the target CPU doesn't call into the cpufreq governor until the
  next tick.

Based on initial work from Steve Muckle.

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Saravana Kannan <skannan@codeaurora.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-08-01 14:24:53 +02:00
Joel Fernandes 193be41e33 sched/deadline: Fix confusing comments about selection of top pi-waiter
This comment in the code is incomplete, and I believe it begs a definition of
dl_boosted to make sense of the condition that follows. Rewrite the comment and
also rearrange the condition that follows to reflect the first condition "we
have a top pi-waiter which is a SCHED_DEADLINE task" in that order. Also fix a
typo that follows.

Signed-off-by: Joel Fernandes <joelaf@google.com>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Acked-by: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170713022429.10307-1-joelaf@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-07-14 10:35:16 +02:00
Nicolas Pitre 06a76fe08d sched/deadline: Move DL related code from sched/core.c to sched/deadline.c
This helps making sched/core.c smaller and hopefully easier to understand and maintain.

Signed-off-by: Nicolas Pitre <nico@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170621182203.30626-2-nicolas.pitre@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-06-23 10:46:45 +02:00
Daniel Bristot de Oliveira 3effcb4247 sched/deadline: Use the revised wakeup rule for suspending constrained dl tasks
We have been facing some problems with self-suspending constrained
deadline tasks. The main reason is that the original CBS was not
designed for such sort of tasks.

One problem reported by Xunlei Pang takes place when a task
suspends, and then is awakened before the deadline, but so close
to the deadline that its remaining runtime can cause the task
to have an absolute density higher than allowed. In such situation,
the original CBS assumes that the task is facing an early activation,
and so it replenishes the task and set another deadline, one deadline
in the future. This rule works fine for implicit deadline tasks.
Moreover, it allows the system to adapt the period of a task in which
the external event source suffered from a clock drift.

However, this opens the window for bandwidth leakage for constrained
deadline tasks. For instance, a task with the following parameters:

  runtime   = 5 ms
  deadline  = 7 ms
  [density] = 5 / 7 = 0.71
  period    = 1000 ms

If the task runs for 1 ms, and then suspends for another 1ms,
it will be awakened with the following parameters:

  remaining runtime = 4
  laxity = 5

presenting a absolute density of 4 / 5 = 0.80.

In this case, the original CBS would assume the task had an early
wakeup. Then, CBS will reset the runtime, and the absolute deadline will
be postponed by one relative deadline, allowing the task to run.

The problem is that, if the task runs this pattern forever, it will keep
receiving bandwidth, being able to run 1ms every 2ms. Following this
behavior, the task would be able to run 500 ms in 1 sec. Thus running
more than the 5 ms / 1 sec the admission control allowed it to run.

Trying to address the self-suspending case, Luca Abeni, Giuseppe
Lipari, and Juri Lelli [1] revisited the CBS in order to deal with
self-suspending tasks. In the new approach, rather than
replenishing/postponing the absolute deadline, the revised wakeup rule
adjusts the remaining runtime, reducing it to fit into the allowed
density.

A revised version of the idea is:

At a given time t, the maximum absolute density of a task cannot be
higher than its relative density, that is:

  runtime / (deadline - t) <= dl_runtime / dl_deadline

Knowing the laxity of a task (deadline - t), it is possible to move
it to the other side of the equality, thus enabling to define max
remaining runtime a task can use within the absolute deadline, without
over-running the allowed density:

  runtime = (dl_runtime / dl_deadline) * (deadline - t)

For instance, in our previous example, the task could still run:

  runtime = ( 5 / 7 ) * 5
  runtime = 3.57 ms

Without causing damage for other deadline tasks. It is note worthy
that the laxity cannot be negative because that would cause a negative
runtime. Thus, this patch depends on the patch:

  df8eac8caf ("sched/deadline: Throttle a constrained deadline task activated after the deadline")

Which throttles a constrained deadline task activated after the
deadline.

Finally, it is also possible to use the revised wakeup rule for
all other tasks, but that would require some more discussions
about pros and cons.

Reported-by: Xunlei Pang <xpang@redhat.com>
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
[peterz: replaced dl_is_constrained with dl_is_implicit]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luca Abeni <luca.abeni@santannapisa.it>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Romulo Silva de Oliveira <romulo.deoliveira@ufsc.br>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tommaso Cucinotta <tommaso.cucinotta@sssup.it>
Link: http://lkml.kernel.org/r/5c800ab3a74a168a84ee5f3f84d12a02e11383be.1495803804.git.bristot@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-06-08 10:32:03 +02:00
Xunlei Pang ae83b56a56 sched/deadline: Zero out positive runtime after throttling constrained tasks
When a contrained task is throttled by dl_check_constrained_dl(),
it may carry the remaining positive runtime, as a result when
dl_task_timer() fires and calls replenish_dl_entity(), it will
not be replenished correctly due to the positive dl_se->runtime.

This patch assigns its runtime to 0 if positive after throttling.

Signed-off-by: Xunlei Pang <xlpang@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luca Abeni <luca.abeni@santannapisa.it>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: df8eac8caf ("sched/deadline: Throttle a constrained deadline task activated after the deadline)
Link: http://lkml.kernel.org/r/1494421417-27550-1-git-send-email-xlpang@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-06-08 10:31:58 +02:00
Luca Abeni daec579836 sched/deadline: Reclaim bandwidth not used by dl tasks
This commit introduces a per-runqueue "extra utilization" that can be
reclaimed by deadline tasks. In this way, the maximum fraction of CPU
time that can reclaimed by deadline tasks is fixed (and configurable)
and does not depend on the total deadline utilization.
The GRUB accounting rule is modified to add this "extra utilization"
to the inactive utilization of the runqueue, and to avoid reclaiming
more than a maximum fraction of the CPU time.

Tested-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Luca Abeni <luca.abeni@santannapisa.it>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Claudio Scordino <claudio@evidence.eu.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mathieu Poirier <mathieu.poirier@linaro.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tommaso Cucinotta <tommaso.cucinotta@sssup.it>
Link: http://lkml.kernel.org/r/1495138417-6203-10-git-send-email-luca.abeni@santannapisa.it
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-06-08 10:31:55 +02:00
Luca Abeni 9f0d1a5077 sched/deadline: Base GRUB reclaiming on the inactive utilization
Instead of decreasing the runtime as "dq = -Uact dt" (eventually
divided by the maximum utilization available for deadline tasks),
decrease it as "dq = -max{u, (1 - Uinact)} dt", where u is the task
utilization and Uinact is the "inactive utilization".
In this way, the maximum fraction of CPU time that can be reclaimed
is given by the total utilization of deadline tasks.
This approach solves a fairness issue with "traditional" global GRUB
reclaiming: using the traditional GRUB algorithm, if tasks are
allocated to the various cores in a non-uniform way, the
reclaiming mechanism allows some tasks to reclaim more time than
others. This issue is visible starting 11 time-consuming tasks with
runtime 10ms and period 30ms (total utilization 3.666) on a 4-cores
system: some tasks will receive much more than the reserved runtime
(thanks to the reclaiming mechanism), while other tasks will receive
less than the reserved runtime.

Tested-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Luca Abeni <luca.abeni@santannapisa.it>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Claudio Scordino <claudio@evidence.eu.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mathieu Poirier <mathieu.poirier@linaro.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tommaso Cucinotta <tommaso.cucinotta@sssup.it>
Link: http://lkml.kernel.org/r/1495138417-6203-9-git-send-email-luca.abeni@santannapisa.it
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-06-08 10:31:54 +02:00
Luca Abeni 8fd27231c3 sched/deadline: Track the "total rq utilization" too
The total rq utilization is defined as the sum of the utilisations of
tasks that are "assigned" to a runqueue, independently from their state
(TASK_RUNNING or blocked)

Tested-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Luca Abeni <luca.abeni@santannapisa.it>
Signed-off-by: Claudio Scordino <claudio@evidence.eu.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mathieu Poirier <mathieu.poirier@linaro.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tommaso Cucinotta <tommaso.cucinotta@sssup.it>
Link: http://lkml.kernel.org/r/1495138417-6203-8-git-send-email-luca.abeni@santannapisa.it
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-06-08 10:31:53 +02:00
Luca Abeni 2d4283e9d5 sched/deadline: Make GRUB a task's flag
This patch introduces the SCHED_FLAG_RECLAIM flag to specify
that a DL task is allowed to reclaim unused CPU time (using
the GRUB algorithm).

Tested-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Luca Abeni <luca.abeni@santannapisa.it>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Claudio Scordino <claudio@evidence.eu.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mathieu Poirier <mathieu.poirier@linaro.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tommaso Cucinotta <tommaso.cucinotta@sssup.it>
Link: http://lkml.kernel.org/r/1495138417-6203-7-git-send-email-luca.abeni@santannapisa.it
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-06-08 10:31:52 +02:00
Luca Abeni 4da3abcefe sched/deadline: Do not reclaim the whole CPU bandwidth
Original GRUB tends to reclaim 100% of the CPU time... And this
allows a CPU hog to starve non-deadline tasks.
To address this issue, allow the scheduler to reclaim only a
specified fraction of CPU time, stored in the new "bw_ratio"
field of the dl runqueue structure.

Tested-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Luca Abeni <luca.abeni@santannapisa.it>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Claudio Scordino <claudio@evidence.eu.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mathieu Poirier <mathieu.poirier@linaro.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tommaso Cucinotta <tommaso.cucinotta@sssup.it>
Link: http://lkml.kernel.org/r/1495138417-6203-6-git-send-email-luca.abeni@santannapisa.it
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-06-08 10:31:51 +02:00
Luca Abeni c52f14d384 sched/deadline: Implement GRUB accounting
According to the GRUB (Greedy Reclaimation of Unused Bandwidth)
reclaiming algorithm, the runtime is not decreased as "dq = -dt",
but as "dq = -Uact dt" (where Uact is the per-runqueue active
utilization).
Hence, this commit modifies the runtime accounting rule in
update_curr_dl() to implement the GRUB rule.

Tested-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Luca Abeni <luca.abeni@santannapisa.it>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Claudio Scordino <claudio@evidence.eu.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mathieu Poirier <mathieu.poirier@linaro.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tommaso Cucinotta <tommaso.cucinotta@sssup.it>
Link: http://lkml.kernel.org/r/1495138417-6203-5-git-send-email-luca.abeni@santannapisa.it
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-06-08 10:31:51 +02:00
Luca Abeni 387e31300b sched/deadline: Fix the update of the total -deadline utilization
Now that the inactive timer can be armed to fire at the 0-lag time,
it is possible to use inactive_task_timer() to update the total
-deadline utilization (dl_b->total_bw) at the correct time, fixing
dl_overflow() and __setparam_dl().

Tested-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Luca Abeni <luca.abeni@santannapisa.it>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Claudio Scordino <claudio@evidence.eu.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mathieu Poirier <mathieu.poirier@linaro.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tommaso Cucinotta <tommaso.cucinotta@sssup.it>
Link: http://lkml.kernel.org/r/1495138417-6203-4-git-send-email-luca.abeni@santannapisa.it
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-06-08 10:31:50 +02:00
Luca Abeni 209a0cbda7 sched/deadline: Improve the tracking of active utilization
This patch implements a more theoretically sound algorithm for
tracking active utilization: instead of decreasing it when a
task blocks, use a timer (the "inactive timer", named after the
"Inactive" task state of the GRUB algorithm) to decrease the
active utilization at the so called "0-lag time".

Tested-by: Claudio Scordino <claudio@evidence.eu.com>
Tested-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Luca Abeni <luca.abeni@santannapisa.it>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mathieu Poirier <mathieu.poirier@linaro.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tommaso Cucinotta <tommaso.cucinotta@sssup.it>
Link: http://lkml.kernel.org/r/1495138417-6203-3-git-send-email-luca.abeni@santannapisa.it
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-06-08 10:31:49 +02:00
Luca Abeni e36d8677bf sched/deadline: Track the active utilization
Active utilization is defined as the total utilization of active
(TASK_RUNNING) tasks queued on a runqueue. Hence, it is increased
when a task wakes up and is decreased when a task blocks.

When a task is migrated from CPUi to CPUj, immediately subtract the
task's utilization from CPUi and add it to CPUj. This mechanism is
implemented by modifying the pull and push functions.
Note: this is not fully correct from the theoretical point of view
(the utilization should be removed from CPUi only at the 0 lag
time), a more theoretically sound solution is presented in the
next patches.

Tested-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Luca Abeni <luca.abeni@unitn.it>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@arm.com>
Cc: Claudio Scordino <claudio@evidence.eu.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mathieu Poirier <mathieu.poirier@linaro.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tommaso Cucinotta <tommaso.cucinotta@sssup.it>
Link: http://lkml.kernel.org/r/1495138417-6203-2-git-send-email-luca.abeni@santannapisa.it
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-06-08 10:27:56 +02:00