Commit Graph

11488 Commits

Author SHA1 Message Date
Tejun Heo 3b7b314053 slub: make sysfs file removal asynchronous
Commit bf5eb3de38 ("slub: separate out sysfs_slab_release() from
sysfs_slab_remove()") made slub sysfs file removals synchronous to
kmem_cache shutdown.

Unfortunately, this created a possible ABBA deadlock between slab_mutex
and sysfs draining mechanism triggering the following lockdep warning.

  ======================================================
  [ INFO: possible circular locking dependency detected ]
  4.10.0-test+ #48 Not tainted
  -------------------------------------------------------
  rmmod/1211 is trying to acquire lock:
   (s_active#120){++++.+}, at: [<ffffffff81308073>] kernfs_remove+0x23/0x40

  but task is already holding lock:
   (slab_mutex){+.+.+.}, at: [<ffffffff8120f691>] kmem_cache_destroy+0x41/0x2d0

  which lock already depends on the new lock.

  the existing dependency chain (in reverse order) is:

  -> #1 (slab_mutex){+.+.+.}:
	 lock_acquire+0xf6/0x1f0
	 __mutex_lock+0x75/0x950
	 mutex_lock_nested+0x1b/0x20
	 slab_attr_store+0x75/0xd0
	 sysfs_kf_write+0x45/0x60
	 kernfs_fop_write+0x13c/0x1c0
	 __vfs_write+0x28/0x120
	 vfs_write+0xc8/0x1e0
	 SyS_write+0x49/0xa0
	 entry_SYSCALL_64_fastpath+0x1f/0xc2

  -> #0 (s_active#120){++++.+}:
	 __lock_acquire+0x10ed/0x1260
	 lock_acquire+0xf6/0x1f0
	 __kernfs_remove+0x254/0x320
	 kernfs_remove+0x23/0x40
	 sysfs_remove_dir+0x51/0x80
	 kobject_del+0x18/0x50
	 __kmem_cache_shutdown+0x3e6/0x460
	 kmem_cache_destroy+0x1fb/0x2d0
	 kvm_exit+0x2d/0x80 [kvm]
	 vmx_exit+0x19/0xa1b [kvm_intel]
	 SyS_delete_module+0x198/0x1f0
	 entry_SYSCALL_64_fastpath+0x1f/0xc2

  other info that might help us debug this:

   Possible unsafe locking scenario:

	 CPU0                    CPU1
	 ----                    ----
    lock(slab_mutex);
				 lock(s_active#120);
				 lock(slab_mutex);
    lock(s_active#120);

   *** DEADLOCK ***

  2 locks held by rmmod/1211:
   #0:  (cpu_hotplug.dep_map){++++++}, at: [<ffffffff810a7877>] get_online_cpus+0x37/0x80
   #1:  (slab_mutex){+.+.+.}, at: [<ffffffff8120f691>] kmem_cache_destroy+0x41/0x2d0

  stack backtrace:
  CPU: 3 PID: 1211 Comm: rmmod Not tainted 4.10.0-test+ #48
  Hardware name: Hewlett-Packard HP Compaq Pro 6300 SFF/339A, BIOS K01 v02.05 05/07/2012
  Call Trace:
   print_circular_bug+0x1be/0x210
   __lock_acquire+0x10ed/0x1260
   lock_acquire+0xf6/0x1f0
   __kernfs_remove+0x254/0x320
   kernfs_remove+0x23/0x40
   sysfs_remove_dir+0x51/0x80
   kobject_del+0x18/0x50
   __kmem_cache_shutdown+0x3e6/0x460
   kmem_cache_destroy+0x1fb/0x2d0
   kvm_exit+0x2d/0x80 [kvm]
   vmx_exit+0x19/0xa1b [kvm_intel]
   SyS_delete_module+0x198/0x1f0
   ? SyS_delete_module+0x5/0x1f0
   entry_SYSCALL_64_fastpath+0x1f/0xc2

It'd be the cleanest to deal with the issue by removing sysfs files
without holding slab_mutex before the rest of shutdown; however, given
the current code structure, it is pretty difficult to do so.

This patch punts sysfs file removal to a work item.  Before commit
bf5eb3de38, the removal was punted to a RCU delayed work item which is
executed after release.  Now, we're punting to a different work item on
shutdown which still maintains the goal removing the sysfs files earlier
when destroying kmem_caches.

Link: http://lkml.kernel.org/r/20170620204512.GI21326@htj.duckdns.org
Fixes: bf5eb3de38 ("slub: separate out sysfs_slab_release() from sysfs_slab_remove()")
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Tested-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-06-23 16:15:55 -07:00
Ard Biesheuvel 029c54b095 mm/vmalloc.c: huge-vmap: fail gracefully on unexpected huge vmap mappings
Existing code that uses vmalloc_to_page() may assume that any address
for which is_vmalloc_addr() returns true may be passed into
vmalloc_to_page() to retrieve the associated struct page.

This is not un unreasonable assumption to make, but on architectures
that have CONFIG_HAVE_ARCH_HUGE_VMAP=y, it no longer holds, and we need
to ensure that vmalloc_to_page() does not go off into the weeds trying
to dereference huge PUDs or PMDs as table entries.

Given that vmalloc() and vmap() themselves never create huge mappings or
deal with compound pages at all, there is no correct answer in this
case, so return NULL instead, and issue a warning.

When reading /proc/kcore on arm64, you will hit an oops as soon as you
hit the huge mappings used for the various segments that make up the
mapping of vmlinux.  With this patch applied, you will no longer hit the
oops, but the kcore contents willl be incorrect (these regions will be
zeroed out)

We are fixing this for kcore specifically, so it avoids vread() for
those regions.  At least one other problematic user exists, i.e.,
/dev/kmem, but that is currently broken on arm64 for other reasons.

Link: http://lkml.kernel.org/r/20170609082226.26152-1-ard.biesheuvel@linaro.org
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Laura Abbott <labbott@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: zhong jiang <zhongjiang@huawei.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-06-23 16:15:55 -07:00
David Rientjes c891d9f6bf mm, thp: remove cond_resched from __collapse_huge_page_copy
This is a partial revert of commit 338a16ba15 ("mm, thp: copying user
pages must schedule on collapse") which added a cond_resched() to
__collapse_huge_page_copy().

On x86 with CONFIG_HIGHPTE, __collapse_huge_page_copy is called in
atomic context and thus scheduling is not possible.  This is only a
possible config on arm and i386.

Although need_resched has been shown to be set for over 100 jiffies
while doing the iteration in __collapse_huge_page_copy, this is better
than doing

	if (in_atomic())
		cond_resched()

to cover only non-CONFIG_HIGHPTE configs.

Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1706191341550.97821@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Reported-by: Larry Finger <Larry.Finger@lwfinger.net>
Tested-by: Larry Finger <Larry.Finger@lwfinger.net>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-06-23 16:15:55 -07:00
Helge Deller bd726c90b6 Allow stack to grow up to address space limit
Fix expand_upwards() on architectures with an upward-growing stack (parisc,
metag and partly IA-64) to allow the stack to reliably grow exactly up to
the address space limit given by TASK_SIZE.

Signed-off-by: Helge Deller <deller@gmx.de>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-06-21 11:07:18 -07:00
Hugh Dickins f4cb767d76 mm: fix new crash in unmapped_area_topdown()
Trinity gets kernel BUG at mm/mmap.c:1963! in about 3 minutes of
mmap testing.  That's the VM_BUG_ON(gap_end < gap_start) at the
end of unmapped_area_topdown().  Linus points out how MAP_FIXED
(which does not have to respect our stack guard gap intentions)
could result in gap_end below gap_start there.  Fix that, and
the similar case in its alternative, unmapped_area().

Cc: stable@vger.kernel.org
Fixes: 1be7107fbe ("mm: larger stack guard gap, between vmas")
Reported-by: Dave Jones <davej@codemonkey.org.uk>
Debugged-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-06-21 10:56:11 -07:00
Hugh Dickins 1be7107fbe mm: larger stack guard gap, between vmas
Stack guard page is a useful feature to reduce a risk of stack smashing
into a different mapping. We have been using a single page gap which
is sufficient to prevent having stack adjacent to a different mapping.
But this seems to be insufficient in the light of the stack usage in
userspace. E.g. glibc uses as large as 64kB alloca() in many commonly
used functions. Others use constructs liks gid_t buffer[NGROUPS_MAX]
which is 256kB or stack strings with MAX_ARG_STRLEN.

This will become especially dangerous for suid binaries and the default
no limit for the stack size limit because those applications can be
tricked to consume a large portion of the stack and a single glibc call
could jump over the guard page. These attacks are not theoretical,
unfortunatelly.

Make those attacks less probable by increasing the stack guard gap
to 1MB (on systems with 4k pages; but make it depend on the page size
because systems with larger base pages might cap stack allocations in
the PAGE_SIZE units) which should cover larger alloca() and VLA stack
allocations. It is obviously not a full fix because the problem is
somehow inherent, but it should reduce attack space a lot.

One could argue that the gap size should be configurable from userspace,
but that can be done later when somebody finds that the new 1MB is wrong
for some special case applications.  For now, add a kernel command line
option (stack_guard_gap) to specify the stack gap size (in page units).

Implementation wise, first delete all the old code for stack guard page:
because although we could get away with accounting one extra page in a
stack vma, accounting a larger gap can break userspace - case in point,
a program run with "ulimit -S -v 20000" failed when the 1MB gap was
counted for RLIMIT_AS; similar problems could come with RLIMIT_MLOCK
and strict non-overcommit mode.

Instead of keeping gap inside the stack vma, maintain the stack guard
gap as a gap between vmas: using vm_start_gap() in place of vm_start
(or vm_end_gap() in place of vm_end if VM_GROWSUP) in just those few
places which need to respect the gap - mainly arch_get_unmapped_area(),
and and the vma tree's subtree_gap support for that.

Original-patch-by: Oleg Nesterov <oleg@redhat.com>
Original-patch-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Tested-by: Helge Deller <deller@gmx.de> # parisc
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-06-19 21:50:20 +08:00
zhongjiang d7143e3125 mm: correct the comment when reclaimed pages exceed the scanned pages
Commit e1587a4945 ("mm: vmpressure: fix sending wrong events on
underflow") declared that reclaimed pages exceed the scanned pages due
to the thp reclaim.

That is incorrect because THP will be spilt to normal page and loop
again, which will result in the scanned pages increment.

[akpm@linux-foundation.org: tweak comment text]
Link: http://lkml.kernel.org/r/1496824266-25235-1-git-send-email-zhongjiang@huawei.com
Signed-off-by: zhongjiang <zhongjiang@huawei.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-06-17 06:37:05 +09:00
Mark Rutland 3c226c637b mm: numa: avoid waiting on freed migrated pages
In do_huge_pmd_numa_page(), we attempt to handle a migrating thp pmd by
waiting until the pmd is unlocked before we return and retry.  However,
we can race with migrate_misplaced_transhuge_page():

    // do_huge_pmd_numa_page                // migrate_misplaced_transhuge_page()
    // Holds 0 refs on page                 // Holds 2 refs on page

    vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
    /* ... */
    if (pmd_trans_migrating(*vmf->pmd)) {
            page = pmd_page(*vmf->pmd);
            spin_unlock(vmf->ptl);
                                            ptl = pmd_lock(mm, pmd);
                                            if (page_count(page) != 2)) {
                                                    /* roll back */
                                            }
                                            /* ... */
                                            mlock_migrate_page(new_page, page);
                                            /* ... */
                                            spin_unlock(ptl);
                                            put_page(page);
                                            put_page(page); // page freed here
            wait_on_page_locked(page);
            goto out;
    }

This can result in the freed page having its waiters flag set
unexpectedly, which trips the PAGE_FLAGS_CHECK_AT_PREP checks in the
page alloc/free functions.  This has been observed on arm64 KVM guests.

We can avoid this by having do_huge_pmd_numa_page() take a reference on
the page before dropping the pmd lock, mirroring what we do in
__migration_entry_wait().

When we hit the race, migrate_misplaced_transhuge_page() will see the
reference and abort the migration, as it may do today in other cases.

Fixes: b8916634b7 ("mm: Prevent parallel splits during THP migration")
Link: http://lkml.kernel.org/r/1497349722-6731-2-git-send-email-will.deacon@arm.com
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Acked-by: Steve Capper <steve.capper@arm.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-06-17 06:37:05 +09:00
Yu Zhao ef70762948 swap: cond_resched in swap_cgroup_prepare()
I saw need_resched() warnings when swapping on large swapfile (TBs)
because continuously allocating many pages in swap_cgroup_prepare() took
too long.

We already cond_resched when freeing page in swap_cgroup_swapoff().  Do
the same for the page allocation.

Link: http://lkml.kernel.org/r/20170604200109.17606-1-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-06-17 06:37:05 +09:00
James Morse 7258ae5c5a mm/memory-failure.c: use compound_head() flags for huge pages
memory_failure() chooses a recovery action function based on the page
flags.  For huge pages it uses the tail page flags which don't have
anything interesting set, resulting in:

> Memory failure: 0x9be3b4: Unknown page state
> Memory failure: 0x9be3b4: recovery action for unknown page: Failed

Instead, save a copy of the head page's flags if this is a huge page,
this means if there are no relevant flags for this tail page, we use the
head pages flags instead.  This results in the me_huge_page() recovery
action being called:

> Memory failure: 0x9b7969: recovery action for huge page: Delayed

For hugepages that have not yet been allocated, this allows the hugepage
to be dequeued.

Fixes: 524fca1e73 ("HWPOISON: fix misjudgement of page_action() for errors on mlocked pages")
Link: http://lkml.kernel.org/r/20170524130204.21845-1-james.morse@arm.com
Signed-off-by: James Morse <james.morse@arm.com>
Tested-by: Punit Agrawal <punit.agrawal@arm.com>
Acked-by: Punit Agrawal <punit.agrawal@arm.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-06-17 06:37:05 +09:00
Michal Hocko 864b9a393d mm: consider memblock reservations for deferred memory initialization sizing
We have seen an early OOM killer invocation on ppc64 systems with
crashkernel=4096M:

	kthreadd invoked oom-killer: gfp_mask=0x16040c0(GFP_KERNEL|__GFP_COMP|__GFP_NOTRACK), nodemask=7, order=0, oom_score_adj=0
	kthreadd cpuset=/ mems_allowed=7
	CPU: 0 PID: 2 Comm: kthreadd Not tainted 4.4.68-1.gd7fe927-default #1
	Call Trace:
	  dump_stack+0xb0/0xf0 (unreliable)
	  dump_header+0xb0/0x258
	  out_of_memory+0x5f0/0x640
	  __alloc_pages_nodemask+0xa8c/0xc80
	  kmem_getpages+0x84/0x1a0
	  fallback_alloc+0x2a4/0x320
	  kmem_cache_alloc_node+0xc0/0x2e0
	  copy_process.isra.25+0x260/0x1b30
	  _do_fork+0x94/0x470
	  kernel_thread+0x48/0x60
	  kthreadd+0x264/0x330
	  ret_from_kernel_thread+0x5c/0xa4

	Mem-Info:
	active_anon:0 inactive_anon:0 isolated_anon:0
	 active_file:0 inactive_file:0 isolated_file:0
	 unevictable:0 dirty:0 writeback:0 unstable:0
	 slab_reclaimable:5 slab_unreclaimable:73
	 mapped:0 shmem:0 pagetables:0 bounce:0
	 free:0 free_pcp:0 free_cma:0
	Node 7 DMA free:0kB min:0kB low:0kB high:0kB active_anon:0kB inactive_anon:0kB active_file:0kB inactive_file:0kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present:52428800kB managed:110016kB mlocked:0kB dirty:0kB writeback:0kB mapped:0kB shmem:0kB slab_reclaimable:320kB slab_unreclaimable:4672kB kernel_stack:1152kB pagetables:0kB unstable:0kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB writeback_tmp:0kB pages_scanned:0 all_unreclaimable? yes
	lowmem_reserve[]: 0 0 0 0
	Node 7 DMA: 0*64kB 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 0*4096kB 0*8192kB 0*16384kB = 0kB
	0 total pagecache pages
	0 pages in swap cache
	Swap cache stats: add 0, delete 0, find 0/0
	Free swap  = 0kB
	Total swap = 0kB
	819200 pages RAM
	0 pages HighMem/MovableOnly
	817481 pages reserved
	0 pages cma reserved
	0 pages hwpoisoned

the reason is that the managed memory is too low (only 110MB) while the
rest of the the 50GB is still waiting for the deferred intialization to
be done.  update_defer_init estimates the initial memoty to initialize
to 2GB at least but it doesn't consider any memory allocated in that
range.  In this particular case we've had

	Reserving 4096MB of memory at 128MB for crashkernel (System RAM: 51200MB)

so the low 2GB is mostly depleted.

Fix this by considering memblock allocations in the initial static
initialization estimation.  Move the max_initialise to
reset_deferred_meminit and implement a simple memblock_reserved_memory
helper which iterates all reserved blocks and sums the size of all that
start below the given address.  The cumulative size is than added on top
of the initial estimation.  This is still not ideal because
reset_deferred_meminit doesn't consider holes and so reservation might
be above the initial estimation whihch we ignore but let's make the
logic simpler until we really need to handle more complicated cases.

Fixes: 3a80a7fa79 ("mm: meminit: initialise a subset of struct pages if CONFIG_DEFERRED_STRUCT_PAGE_INIT is set")
Link: http://lkml.kernel.org/r/20170531104010.GI27783@dhcp22.suse.cz
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Tested-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: <stable@vger.kernel.org>	[4.2+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-06-02 15:07:38 -07:00
James Morse 9a291a7c94 mm/hugetlb: report -EHWPOISON not -EFAULT when FOLL_HWPOISON is specified
KVM uses get_user_pages() to resolve its stage2 faults.  KVM sets the
FOLL_HWPOISON flag causing faultin_page() to return -EHWPOISON when it
finds a VM_FAULT_HWPOISON.  KVM handles these hwpoison pages as a
special case.  (check_user_page_hwpoison())

When huge pages are involved, this doesn't work so well.
get_user_pages() calls follow_hugetlb_page(), which stops early if it
receives VM_FAULT_HWPOISON from hugetlb_fault(), eventually returning
-EFAULT to the caller.  The step to map this to -EHWPOISON based on the
FOLL_ flags is missing.  The hwpoison special case is skipped, and
-EFAULT is returned to user-space, causing Qemu or kvmtool to exit.

Instead, move this VM_FAULT_ to errno mapping code into a header file
and use it from faultin_page() and follow_hugetlb_page().

With this, KVM works as expected.

This isn't a problem for arm64 today as we haven't enabled
MEMORY_FAILURE, but I can't see any reason this doesn't happen on x86
too, so I think this should be a fix.  This doesn't apply earlier than
stable's v4.11.1 due to all sorts of cleanup.

[james.morse@arm.com: add vm_fault_to_errno() call to faultin_page()]
suggested.
  Link: http://lkml.kernel.org/r/20170525171035.16359-1-james.morse@arm.com
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/20170524160900.28786-1-james.morse@arm.com
Signed-off-by: James Morse <james.morse@arm.com>
Acked-by: Punit Agrawal <punit.agrawal@arm.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: <stable@vger.kernel.org>	[4.11.1+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-06-02 15:07:38 -07:00
Yisheng Xie 70feee0e1e mlock: fix mlock count can not decrease in race condition
Kefeng reported that when running the follow test, the mlock count in
meminfo will increase permanently:

 [1] testcase
 linux:~ # cat test_mlockal
 grep Mlocked /proc/meminfo
  for j in `seq 0 10`
  do
 	for i in `seq 4 15`
 	do
 		./p_mlockall >> log &
 	done
 	sleep 0.2
 done
 # wait some time to let mlock counter decrease and 5s may not enough
 sleep 5
 grep Mlocked /proc/meminfo

 linux:~ # cat p_mlockall.c
 #include <sys/mman.h>
 #include <stdlib.h>
 #include <stdio.h>

 #define SPACE_LEN	4096

 int main(int argc, char ** argv)
 {
	 	int ret;
	 	void *adr = malloc(SPACE_LEN);
	 	if (!adr)
	 		return -1;

	 	ret = mlockall(MCL_CURRENT | MCL_FUTURE);
	 	printf("mlcokall ret = %d\n", ret);

	 	ret = munlockall();
	 	printf("munlcokall ret = %d\n", ret);

	 	free(adr);
	 	return 0;
	 }

In __munlock_pagevec() we should decrement NR_MLOCK for each page where
we clear the PageMlocked flag.  Commit 1ebb7cc6a5 ("mm: munlock: batch
NR_MLOCK zone state updates") has introduced a bug where we don't
decrement NR_MLOCK for pages where we clear the flag, but fail to
isolate them from the lru list (e.g.  when the pages are on some other
cpu's percpu pagevec).  Since PageMlocked stays cleared, the NR_MLOCK
accounting gets permanently disrupted by this.

Fix it by counting the number of page whose PageMlock flag is cleared.

Fixes: 1ebb7cc6a5 (" mm: munlock: batch NR_MLOCK zone state updates")
Link: http://lkml.kernel.org/r/1495678405-54569-1-git-send-email-xieyisheng1@huawei.com
Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com>
Reported-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Tested-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Joern Engel <joern@logfs.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michel Lespinasse <walken@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: zhongjiang <zhongjiang@huawei.com>
Cc: Hanjun Guo <guohanjun@huawei.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-06-02 15:07:38 -07:00
Punit Agrawal 30809f559a mm/migrate: fix refcount handling when !hugepage_migration_supported()
On failing to migrate a page, soft_offline_huge_page() performs the
necessary update to the hugepage ref-count.

But when !hugepage_migration_supported() , unmap_and_move_hugepage()
also decrements the page ref-count for the hugepage.  The combined
behaviour leaves the ref-count in an inconsistent state.

This leads to soft lockups when running the overcommitted hugepage test
from mce-tests suite.

  Soft offlining pfn 0x83ed600 at process virtual address 0x400000000000
  soft offline: 0x83ed600: migration failed 1, type 1fffc00000008008 (uptodate|head)
  INFO: rcu_preempt detected stalls on CPUs/tasks:
   Tasks blocked on level-0 rcu_node (CPUs 0-7): P2715
    (detected by 7, t=5254 jiffies, g=963, c=962, q=321)
    thugetlb_overco R  running task        0  2715   2685 0x00000008
    Call trace:
      dump_backtrace+0x0/0x268
      show_stack+0x24/0x30
      sched_show_task+0x134/0x180
      rcu_print_detail_task_stall_rnp+0x54/0x7c
      rcu_check_callbacks+0xa74/0xb08
      update_process_times+0x34/0x60
      tick_sched_handle.isra.7+0x38/0x70
      tick_sched_timer+0x4c/0x98
      __hrtimer_run_queues+0xc0/0x300
      hrtimer_interrupt+0xac/0x228
      arch_timer_handler_phys+0x3c/0x50
      handle_percpu_devid_irq+0x8c/0x290
      generic_handle_irq+0x34/0x50
      __handle_domain_irq+0x68/0xc0
      gic_handle_irq+0x5c/0xb0

Address this by changing the putback_active_hugepage() in
soft_offline_huge_page() to putback_movable_pages().

This only triggers on systems that enable memory failure handling
(ARCH_SUPPORTS_MEMORY_FAILURE) but not hugepage migration
(!ARCH_ENABLE_HUGEPAGE_MIGRATION).

I imagine this wasn't triggered as there aren't many systems running
this configuration.

[akpm@linux-foundation.org: remove dead comment, per Naoya]
Link: http://lkml.kernel.org/r/20170525135146.32011-1-punit.agrawal@arm.com
Reported-by: Manoj Iyer <manoj.iyer@canonical.com>
Tested-by: Manoj Iyer <manoj.iyer@canonical.com>
Suggested-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: <stable@vger.kernel.org>	[3.14+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-06-02 15:07:38 -07:00
Ross Zwisler d0f0931de9 mm: avoid spurious 'bad pmd' warning messages
When the pmd_devmap() checks were added by 5c7fb56e5e ("mm, dax:
dax-pmd vs thp-pmd vs hugetlbfs-pmd") to add better support for DAX huge
pages, they were all added to the end of if() statements after existing
pmd_trans_huge() checks.  So, things like:

  -       if (pmd_trans_huge(*pmd))
  +       if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd))

When further checks were added after pmd_trans_unstable() checks by
commit 7267ec008b ("mm: postpone page table allocation until we have
page to map") they were also added at the end of the conditional:

  +       if (pmd_trans_unstable(fe->pmd) || pmd_devmap(*fe->pmd))

This ordering is fine for pmd_trans_huge(), but doesn't work for
pmd_trans_unstable().  This is because DAX huge pages trip the bad_pmd()
check inside of pmd_none_or_trans_huge_or_clear_bad() (called by
pmd_trans_unstable()), which prints out a warning and returns 1.  So, we
do end up doing the right thing, but only after spamming dmesg with
suspicious looking messages:

  mm/pgtable-generic.c:39: bad pmd ffff8808daa49b88(84000001006000a5)

Reorder these checks in a helper so that pmd_devmap() is checked first,
avoiding the error messages, and add a comment explaining why the
ordering is important.

Fixes: commit 7267ec008b ("mm: postpone page table allocation until we have page to map")
Link: http://lkml.kernel.org/r/20170522215749.23516-1-ross.zwisler@linux.intel.com
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Pawel Lebioda <pawel.lebioda@intel.com>
Cc: "Darrick J. Wong" <darrick.wong@oracle.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Xiong Zhou <xzhou@redhat.com>
Cc: Eryu Guan <eguan@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-06-02 15:07:37 -07:00
Tetsuo Handa c288983ddd mm/page_alloc.c: make sure OOM victim can try allocations with no watermarks once
Roman Gushchin has reported that the OOM killer can trivially selects
next OOM victim when a thread doing memory allocation from page fault
path was selected as first OOM victim.

    allocate invoked oom-killer: gfp_mask=0x14280ca(GFP_HIGHUSER_MOVABLE|__GFP_ZERO), nodemask=(null),  order=0, oom_score_adj=0
    allocate cpuset=/ mems_allowed=0
    CPU: 1 PID: 492 Comm: allocate Not tainted 4.12.0-rc1-mm1+ #181
    Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
    Call Trace:
     oom_kill_process+0x219/0x3e0
     out_of_memory+0x11d/0x480
     __alloc_pages_slowpath+0xc84/0xd40
     __alloc_pages_nodemask+0x245/0x260
     alloc_pages_vma+0xa2/0x270
     __handle_mm_fault+0xca9/0x10c0
     handle_mm_fault+0xf3/0x210
     __do_page_fault+0x240/0x4e0
     trace_do_page_fault+0x37/0xe0
     do_async_page_fault+0x19/0x70
     async_page_fault+0x28/0x30
    ...
    Out of memory: Kill process 492 (allocate) score 899 or sacrifice child
    Killed process 492 (allocate) total-vm:2052368kB, anon-rss:1894576kB, file-rss:4kB, shmem-rss:0kB
    allocate: page allocation failure: order:0, mode:0x14280ca(GFP_HIGHUSER_MOVABLE|__GFP_ZERO), nodemask=(null)
    allocate cpuset=/ mems_allowed=0
    CPU: 1 PID: 492 Comm: allocate Not tainted 4.12.0-rc1-mm1+ #181
    Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
    Call Trace:
     __alloc_pages_slowpath+0xd32/0xd40
     __alloc_pages_nodemask+0x245/0x260
     alloc_pages_vma+0xa2/0x270
     __handle_mm_fault+0xca9/0x10c0
     handle_mm_fault+0xf3/0x210
     __do_page_fault+0x240/0x4e0
     trace_do_page_fault+0x37/0xe0
     do_async_page_fault+0x19/0x70
     async_page_fault+0x28/0x30
    ...
    oom_reaper: reaped process 492 (allocate), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB
    ...
    allocate invoked oom-killer: gfp_mask=0x0(), nodemask=(null),  order=0, oom_score_adj=0
    allocate cpuset=/ mems_allowed=0
    CPU: 1 PID: 492 Comm: allocate Not tainted 4.12.0-rc1-mm1+ #181
    Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
    Call Trace:
     oom_kill_process+0x219/0x3e0
     out_of_memory+0x11d/0x480
     pagefault_out_of_memory+0x68/0x80
     mm_fault_error+0x8f/0x190
     ? handle_mm_fault+0xf3/0x210
     __do_page_fault+0x4b2/0x4e0
     trace_do_page_fault+0x37/0xe0
     do_async_page_fault+0x19/0x70
     async_page_fault+0x28/0x30
    ...
    Out of memory: Kill process 233 (firewalld) score 10 or sacrifice child
    Killed process 233 (firewalld) total-vm:246076kB, anon-rss:20956kB, file-rss:0kB, shmem-rss:0kB

There is a race window that the OOM reaper completes reclaiming the
first victim's memory while nothing but mutex_trylock() prevents the
first victim from calling out_of_memory() from pagefault_out_of_memory()
after memory allocation for page fault path failed due to being selected
as an OOM victim.

This is a side effect of commit 9a67f6488e ("mm: consolidate
GFP_NOFAIL checks in the allocator slowpath") because that commit
silently changed the behavior from

    /* Avoid allocations with no watermarks from looping endlessly */

to

    /*
     * Give up allocations without trying memory reserves if selected
     * as an OOM victim
     */

in __alloc_pages_slowpath() by moving the location to check TIF_MEMDIE
flag.  I have noticed this change but I didn't post a patch because I
thought it is an acceptable change other than noise by warn_alloc()
because !__GFP_NOFAIL allocations are allowed to fail.  But we
overlooked that failing memory allocation from page fault path makes
difference due to the race window explained above.

While it might be possible to add a check to pagefault_out_of_memory()
that prevents the first victim from calling out_of_memory() or remove
out_of_memory() from pagefault_out_of_memory(), changing
pagefault_out_of_memory() does not suppress noise by warn_alloc() when
allocating thread was selected as an OOM victim.  There is little point
with printing similar backtraces and memory information from both
out_of_memory() and warn_alloc().

Instead, if we guarantee that current thread can try allocations with no
watermarks once when current thread looping inside
__alloc_pages_slowpath() was selected as an OOM victim, we can follow "who
can use memory reserves" rules and suppress noise by warn_alloc() and
prevent memory allocations from page fault path from calling
pagefault_out_of_memory().

If we take the comment literally, this patch would do

  -    if (test_thread_flag(TIF_MEMDIE))
  -        goto nopage;
  +    if (alloc_flags == ALLOC_NO_WATERMARKS || (gfp_mask & __GFP_NOMEMALLOC))
  +        goto nopage;

because gfp_pfmemalloc_allowed() returns false if __GFP_NOMEMALLOC is
given.  But if I recall correctly (I couldn't find the message), the
condition is meant to apply to only OOM victims despite the comment.
Therefore, this patch preserves TIF_MEMDIE check.

Fixes: 9a67f6488e ("mm: consolidate GFP_NOFAIL checks in the allocator slowpath")
Link: http://lkml.kernel.org/r/201705192112.IAF69238.OQOHSJLFOFFMtV@I-love.SAKURA.ne.jp
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Reported-by: Roman Gushchin <guro@fb.com>
Tested-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: <stable@vger.kernel.org>	[4.11]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-06-02 15:07:37 -07:00
Thomas Gleixner 478fe3037b slub/memcg: cure the brainless abuse of sysfs attributes
memcg_propagate_slab_attrs() abuses the sysfs attribute file functions
to propagate settings from the root kmem_cache to a newly created
kmem_cache.  It does that with:

     attr->show(root, buf);
     attr->store(new, buf, strlen(bug);

Aside of being a lazy and absurd hackery this is broken because it does
not check the return value of the show() function.

Some of the show() functions return 0 w/o touching the buffer.  That
means in such a case the store function is called with the stale content
of the previous show().  That causes nonsense like invoking
kmem_cache_shrink() on a newly created kmem_cache.  In the worst case it
would cause handing in an uninitialized buffer.

This should be rewritten proper by adding a propagate() callback to
those slub_attributes which must be propagated and avoid that insane
conversion to and from ASCII, but that's too large for a hot fix.

Check at least the return value of the show() function, so calling
store() with stale content is prevented.

Steven said:
 "It can cause a deadlock with get_online_cpus() that has been uncovered
  by recent cpu hotplug and lockdep changes that Thomas and Peter have
  been doing.

     Possible unsafe locking scenario:

           CPU0                    CPU1
           ----                    ----
      lock(cpu_hotplug.lock);
                                   lock(slab_mutex);
                                   lock(cpu_hotplug.lock);
      lock(slab_mutex);

     *** DEADLOCK ***"

Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1705201244540.2255@nanos
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reported-by: Steven Rostedt <rostedt@goodmis.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-06-02 15:07:37 -07:00
Michal Hocko 4f4f2ba9c5 mm: clarify why we want kmalloc before falling backto vmallock
While converting drm_[cm]alloc* helpers to kvmalloc* variants Chris
Wilson has wondered why we want to try kmalloc before vmalloc fallback
even for larger allocations requests.  Let's clarify that one larger
physically contiguous block is less likely to fragment memory than many
scattered pages which can prevent more large blocks from being created.

[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/20170517080932.21423-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Suggested-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-06-02 15:07:37 -07:00
Andrea Arcangeli a7306c3436 ksm: prevent crash after write_protect_page fails
"err" needs to be left set to -EFAULT if split_huge_page succeeds.
Otherwise if "err" gets clobbered with zero and write_protect_page
fails, try_to_merge_one_page() will succeed instead of returning -EFAULT
and then try_to_merge_with_ksm_page() will continue thinking kpage is a
PageKsm when in fact it's still an anonymous page.  Eventually it'll
crash in page_add_anon_rmap.

This has been reproduced on Fedora25 kernel but I can reproduce with
upstream too.

The bug was introduced in commit f765f54059 ("ksm: prepare to new THP
semantics") introduced in v4.5.

    page:fffff67546ce1cc0 count:4 mapcount:2 mapping:ffffa094551e36e1 index:0x7f0f46673
    flags: 0x2ffffc0004007c(referenced|uptodate|dirty|lru|active|swapbacked)
    page dumped because: VM_BUG_ON_PAGE(!PageLocked(page))
    page->mem_cgroup:ffffa09674bf0000
    ------------[ cut here ]------------
    kernel BUG at mm/rmap.c:1222!
    CPU: 1 PID: 76 Comm: ksmd Not tainted 4.9.3-200.fc25.x86_64 #1
    RIP: do_page_add_anon_rmap+0x1c4/0x240
    Call Trace:
      page_add_anon_rmap+0x18/0x20
      try_to_merge_with_ksm_page+0x50b/0x780
      ksm_scan_thread+0x1211/0x1410
      ? prepare_to_wait_event+0x100/0x100
      ? try_to_merge_with_ksm_page+0x780/0x780
      kthread+0xd9/0xf0
      ? kthread_park+0x60/0x60
      ret_from_fork+0x25/0x30

Fixes: f765f54059 ("ksm: prepare to new THP semantics")
Link: http://lkml.kernel.org/r/20170513131040.21732-1-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reported-by: Federico Simoncelli <fsimonce@redhat.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-06-02 15:07:37 -07:00
Minchan Kim 791b48b642 mm: vmscan: scan until it finds eligible pages
Although there are a ton of free swap and anonymous LRU page in elgible
zones, OOM happened.

  balloon invoked oom-killer: gfp_mask=0x17080c0(GFP_KERNEL_ACCOUNT|__GFP_ZERO|__GFP_NOTRACK), nodemask=(null),  order=0, oom_score_adj=0
  CPU: 7 PID: 1138 Comm: balloon Not tainted 4.11.0-rc6-mm1-zram-00289-ge228d67e9677-dirty #17
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
  Call Trace:
   oom_kill_process+0x21d/0x3f0
   out_of_memory+0xd8/0x390
   __alloc_pages_slowpath+0xbc1/0xc50
   __alloc_pages_nodemask+0x1a5/0x1c0
   pte_alloc_one+0x20/0x50
   __pte_alloc+0x1e/0x110
   __handle_mm_fault+0x919/0x960
   handle_mm_fault+0x77/0x120
   __do_page_fault+0x27a/0x550
   trace_do_page_fault+0x43/0x150
   do_async_page_fault+0x2c/0x90
   async_page_fault+0x28/0x30
  Mem-Info:
  active_anon:424716 inactive_anon:65314 isolated_anon:0
   active_file:52 inactive_file:46 isolated_file:0
   unevictable:0 dirty:27 writeback:0 unstable:0
   slab_reclaimable:3967 slab_unreclaimable:4125
   mapped:133 shmem:43 pagetables:1674 bounce:0
   free:4637 free_pcp:225 free_cma:0
  Node 0 active_anon:1698864kB inactive_anon:261256kB active_file:208kB inactive_file:184kB unevictable:0kB isolated(anon):0kB isolated(file):0kB mapped:532kB dirty:108kB writeback:0kB shmem:172kB writeback_tmp:0kB unstable:0kB all_unreclaimable? no
  DMA free:7316kB min:32kB low:44kB high:56kB active_anon:8064kB inactive_anon:0kB active_file:0kB inactive_file:0kB unevictable:0kB writepending:0kB present:15992kB managed:15908kB mlocked:0kB slab_reclaimable:464kB slab_unreclaimable:40kB kernel_stack:0kB pagetables:24kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB
  lowmem_reserve[]: 0 992 992 1952
  DMA32 free:9088kB min:2048kB low:3064kB high:4080kB active_anon:952176kB inactive_anon:0kB active_file:36kB inactive_file:0kB unevictable:0kB writepending:88kB present:1032192kB managed:1019388kB mlocked:0kB slab_reclaimable:13532kB slab_unreclaimable:16460kB kernel_stack:3552kB pagetables:6672kB bounce:0kB free_pcp:56kB local_pcp:24kB free_cma:0kB
  lowmem_reserve[]: 0 0 0 959
  Movable free:3644kB min:1980kB low:2960kB high:3940kB active_anon:738560kB inactive_anon:261340kB active_file:188kB inactive_file:640kB unevictable:0kB writepending:20kB present:1048444kB managed:1010816kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:0kB kernel_stack:0kB pagetables:0kB bounce:0kB free_pcp:832kB local_pcp:60kB free_cma:0kB
  lowmem_reserve[]: 0 0 0 0
  DMA: 1*4kB (E) 0*8kB 18*16kB (E) 10*32kB (E) 10*64kB (E) 9*128kB (ME) 8*256kB (E) 2*512kB (E) 2*1024kB (E) 0*2048kB 0*4096kB = 7524kB
  DMA32: 417*4kB (UMEH) 181*8kB (UMEH) 68*16kB (UMEH) 48*32kB (UMEH) 14*64kB (MH) 3*128kB (M) 1*256kB (H) 1*512kB (M) 2*1024kB (M) 0*2048kB 0*4096kB = 9836kB
  Movable: 1*4kB (M) 1*8kB (M) 1*16kB (M) 1*32kB (M) 0*64kB 1*128kB (M) 2*256kB (M) 4*512kB (M) 1*1024kB (M) 0*2048kB 0*4096kB = 3772kB
  378 total pagecache pages
  17 pages in swap cache
  Swap cache stats: add 17325, delete 17302, find 0/27
  Free swap  = 978940kB
  Total swap = 1048572kB
  524157 pages RAM
  0 pages HighMem/MovableOnly
  12629 pages reserved
  0 pages cma reserved
  0 pages hwpoisoned
  [ pid ]   uid  tgid total_vm      rss nr_ptes nr_pmds swapents oom_score_adj name
  [  433]     0   433     4904        5      14       3       82             0 upstart-udev-br
  [  438]     0   438    12371        5      27       3      191         -1000 systemd-udevd

With investigation, skipping page of isolate_lru_pages makes reclaim
void because it returns zero nr_taken easily so LRU shrinking is
effectively nothing and just increases priority aggressively.  Finally,
OOM happens.

The problem is that get_scan_count determines nr_to_scan with eligible
zones so although priority drops to zero, it couldn't reclaim any pages
if the LRU contains mostly ineligible pages.

get_scan_count:

        size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
	size = size >> sc->priority;

Assumes sc->priority is 0 and LRU list is as follows.

	N-N-N-N-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H

(Ie, small eligible pages are in the head of LRU but others are
 almost ineligible pages)

In that case, size becomes 4 so VM want to scan 4 pages but 4 pages from
tail of the LRU are not eligible pages.  If get_scan_count counts
skipped pages, it doesn't reclaim any pages remained after scanning 4
pages so it ends up OOM happening.

This patch makes isolate_lru_pages try to scan pages until it encounters
eligible zones's pages.

[akpm@linux-foundation.org: clean up mind-bending `for' statement.  Tweak comment text]
Fixes: 3db65812d6 ("Revert "mm, vmscan: account for skipped pages as a partial scan"")
Link: http://lkml.kernel.org/r/1494457232-27401-1-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-12 15:57:16 -07:00
David Rientjes 338a16ba15 mm, thp: copying user pages must schedule on collapse
We have encountered need_resched warnings in __collapse_huge_page_copy()
while doing {clear,copy}_user_highpage() over HPAGE_PMD_NR source pages.

mm->mmap_sem is held for write, but the iteration is well bounded.

Reschedule as needed.

Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1705101426380.109808@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-12 15:57:16 -07:00
Jan Kara cd656375f9 mm: fix data corruption due to stale mmap reads
Currently, we didn't invalidate page tables during invalidate_inode_pages2()
for DAX.  That could result in e.g. 2MiB zero page being mapped into
page tables while there were already underlying blocks allocated and
thus data seen through mmap were different from data seen by read(2).
The following sequence reproduces the problem:

 - open an mmap over a 2MiB hole

 - read from a 2MiB hole, faulting in a 2MiB zero page

 - write to the hole with write(3p). The write succeeds but we
   incorrectly leave the 2MiB zero page mapping intact.

 - via the mmap, read the data that was just written. Since the zero
   page mapping is still intact we read back zeroes instead of the new
   data.

Fix the problem by unconditionally calling invalidate_inode_pages2_range()
in dax_iomap_actor() for new block allocations and by properly
invalidating page tables in invalidate_inode_pages2_range() for DAX
mappings.

Fixes: c6dcf52c23
Link: http://lkml.kernel.org/r/20170510085419.27601-3-jack@suse.cz
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-12 15:57:15 -07:00
Ross Zwisler 4636e70bb0 dax: prevent invalidation of mapped DAX entries
Patch series "mm,dax: Fix data corruption due to mmap inconsistency",
v4.

This series fixes data corruption that can happen for DAX mounts when
page faults race with write(2) and as a result page tables get out of
sync with block mappings in the filesystem and thus data seen through
mmap is different from data seen through read(2).

The series passes testing with t_mmap_stale test program from Ross and
also other mmap related tests on DAX filesystem.

This patch (of 4):

dax_invalidate_mapping_entry() currently removes DAX exceptional entries
only if they are clean and unlocked.  This is done via:

  invalidate_mapping_pages()
    invalidate_exceptional_entry()
      dax_invalidate_mapping_entry()

However, for page cache pages removed in invalidate_mapping_pages()
there is an additional criteria which is that the page must not be
mapped.  This is noted in the comments above invalidate_mapping_pages()
and is checked in invalidate_inode_page().

For DAX entries this means that we can can end up in a situation where a
DAX exceptional entry, either a huge zero page or a regular DAX entry,
could end up mapped but without an associated radix tree entry.  This is
inconsistent with the rest of the DAX code and with what happens in the
page cache case.

We aren't able to unmap the DAX exceptional entry because according to
its comments invalidate_mapping_pages() isn't allowed to block, and
unmap_mapping_range() takes a write lock on the mapping->i_mmap_rwsem.

Since we essentially never have unmapped DAX entries to evict from the
radix tree, just remove dax_invalidate_mapping_entry().

Fixes: c6dcf52c23 ("mm: Invalidate DAX radix tree entries only if appropriate")
Link: http://lkml.kernel.org/r/20170510085419.27601-2-jack@suse.cz
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Reported-by: Jan Kara <jack@suse.cz>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: <stable@vger.kernel.org>    [4.10+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-12 15:57:15 -07:00
Michal Hocko 8594a21cf7 mm, vmalloc: fix vmalloc users tracking properly
Commit 1f5307b1e0 ("mm, vmalloc: properly track vmalloc users") has
pulled asm/pgtable.h include dependency to linux/vmalloc.h and that
turned out to be a bad idea for some architectures.  E.g.  m68k fails
with

   In file included from arch/m68k/include/asm/pgtable_mm.h:145:0,
                    from arch/m68k/include/asm/pgtable.h:4,
                    from include/linux/vmalloc.h:9,
                    from arch/m68k/kernel/module.c:9:
   arch/m68k/include/asm/mcf_pgtable.h: In function 'nocache_page':
>> arch/m68k/include/asm/mcf_pgtable.h:339:43: error: 'init_mm' undeclared (first use in this function)
    #define pgd_offset_k(address) pgd_offset(&init_mm, address)

as spotted by kernel build bot. nios2 fails for other reason

  In file included from include/asm-generic/io.h:767:0,
                   from arch/nios2/include/asm/io.h:61,
                   from include/linux/io.h:25,
                   from arch/nios2/include/asm/pgtable.h:18,
                   from include/linux/mm.h:70,
                   from include/linux/pid_namespace.h:6,
                   from include/linux/ptrace.h:9,
                   from arch/nios2/include/uapi/asm/elf.h:23,
                   from arch/nios2/include/asm/elf.h:22,
                   from include/linux/elf.h:4,
                   from include/linux/module.h:15,
                   from init/main.c:16:
  include/linux/vmalloc.h: In function '__vmalloc_node_flags':
  include/linux/vmalloc.h:99:40: error: 'PAGE_KERNEL' undeclared (first use in this function); did you mean 'GFP_KERNEL'?

which is due to the newly added #include <asm/pgtable.h>, which on nios2
includes <linux/io.h> and thus <asm/io.h> and <asm-generic/io.h> which
again includes <linux/vmalloc.h>.

Tweaking that around just turns out a bigger headache than necessary.
This patch reverts 1f5307b1e0 and reimplements the original fix in a
different way.  __vmalloc_node_flags can stay static inline which will
cover vmalloc* functions.  We only have one external user
(kvmalloc_node) and we can export __vmalloc_node_flags_caller and
provide the caller directly.  This is much simpler and it doesn't really
need any games with header files.

[akpm@linux-foundation.org: coding-style fixes]
[mhocko@kernel.org: revert old comment]
  Link: http://lkml.kernel.org/r/20170509211054.GB16325@dhcp22.suse.cz
Fixes: 1f5307b1e0 ("mm, vmalloc: properly track vmalloc users")
Link: http://lkml.kernel.org/r/20170509153702.GR6481@dhcp22.suse.cz
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Tobias Klauser <tklauser@distanz.ch>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-12 15:57:15 -07:00
SeongJae Park 835152a259 mm/khugepaged: add missed tracepoint for collapse_huge_page_swapin
One return case of `__collapse_huge_page_swapin()` does not invoke
tracepoint while every other return case does.  This commit adds a
tracepoint invocation for the case.

Link: http://lkml.kernel.org/r/20170507101813.30187-1-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sj38.park@gmail.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-12 15:57:15 -07:00
Reza Arbab 8d35bb3106 mm, vmstat: Remove spurious WARN() during zoneinfo print
After commit e2ecc8a79e ("mm, vmstat: print non-populated zones in
zoneinfo"), /proc/zoneinfo will show unpopulated zones.

A memoryless node, having no populated zones at all, was previously
ignored, but will now trigger the WARN() in is_zone_first_populated().

Remove this warning, as its only purpose was to warn of a situation that
has since been enabled.

Aside: The "per-node stats" are still printed under the first populated
zone, but that's not necessarily the first stanza any more.  I'm not
sure which criteria is more important with regard to not breaking
parsers, but it looks a little weird to the eye.

Fixes:  e2ecc8a79e ("mm, vmstat: print node-based stats in zoneinfo file")
Link: http://lkml.kernel.org/r/1493854905-10918-1-git-send-email-arbab@linux.vnet.ibm.com
Signed-off-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-12 15:57:15 -07:00
Michal Hocko 18365225f0 hwpoison, memcg: forcibly uncharge LRU pages
Laurent Dufour has noticed that hwpoinsoned pages are kept charged.  In
his particular case he has hit a bad_page("page still charged to
cgroup") when onlining a hwpoison page.  While this looks like something
that shouldn't happen in the first place because onlining hwpages and
returning them to the page allocator makes only little sense it shows a
real problem.

hwpoison pages do not get freed usually so we do not uncharge them (at
least not since commit 0a31bc97c8 ("mm: memcontrol: rewrite uncharge
API")).  Each charge pins memcg (since e8ea14cc6e ("mm: memcontrol:
take a css reference for each charged page")) as well and so the
mem_cgroup and the associated state will never go away.  Fix this leak
by forcibly uncharging a LRU hwpoisoned page in delete_from_lru_cache().
We also have to tweak uncharge_list because it cannot rely on zero ref
count for these pages.

[akpm@linux-foundation.org: coding-style fixes]
Fixes: 0a31bc97c8 ("mm: memcontrol: rewrite uncharge API")
Link: http://lkml.kernel.org/r/20170502185507.GB19165@dhcp22.suse.cz
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Tested-by: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Reviewed-by: Balbir Singh <bsingharora@gmail.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-12 15:57:15 -07:00
Linus Torvalds e47b40a235 arm64 2nd set of updates for 4.12:
- Silence module allocation failures when CONFIG_ARM*_MODULE_PLTS is
   enabled. This requires a check for __GFP_NOWARN in alloc_vmap_area()
 
 - Improve/sanitise user tagged pointers handling in the kernel
 
 - Inline asm fixes/cleanups
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJZFJszAAoJEGvWsS0AyF7xASwQAKsY72jJMu+FbLqzn9vS7Frx
 AGlx+M20odn6htFBBEDhaJQxFTFSfuBUNb6z4WmRsVVcVZ722EHsvEFFkHU4naR1
 lAdZ1iFNHBRwGxV/JwCt08JwG0ipuqvcuNQH7XaYeuqldQLWaVTf4cangH4cZGX4
 Fcl54DI7Nfy6QYBnfkBSzi6Pqjhkdn6vh1JlNvkX40BwkT6Zt9WryXzvCwQha9A0
 EsstRhBECK6yCSaBcp7MbwyRbpB56PyOxUaeRUNoPaag+bSa8xs65JFq/yvolmpa
 Cm1Bt/hlVHvi3rgMIYnm+z1C4IVgLA1ouEKYAGdq4IpWA46BsPxwOBmmYG/0qLqH
 b7F5my5W8bFm9w1LI9I9l4FwoM1BU7b+n8KOZDZGpgfTwy86jIODhb42e7E4vEtn
 yHCwwu688zkxoI+JTt7PvY3Oue69zkP1/kXUWt5SILKH5LFyweZvdGc+VCSeQoGo
 fjwlnxI0l12vYIt2RnZWGJcA+W/T1E4cPJtIvvid9U9uuXs3Vv/EQ3F5wgaXoPN2
 UDyJTxwrv/iT2yMoZmaaVh36+6UDUPV+b2alA9Wq/3996axGlzeI3go+cdhQXj+E
 8JFzWph+kIZqCnGUaWMt/FTphFhOHjMxC36WEgxVRQZigXrajdrKAgvCj+7n2Qtm
 X0wL+XDgsWA8yPgt4WLK
 =WZ6G
 -----END PGP SIGNATURE-----

Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux

Pull more arm64 updates from Catalin Marinas:

 - Silence module allocation failures when CONFIG_ARM*_MODULE_PLTS is
   enabled. This requires a check for __GFP_NOWARN in alloc_vmap_area()

 - Improve/sanitise user tagged pointers handling in the kernel

 - Inline asm fixes/cleanups

* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
  arm64: Silence first allocation with CONFIG_ARM64_MODULE_PLTS=y
  ARM: Silence first allocation with CONFIG_ARM_MODULE_PLTS=y
  mm: Silence vmap() allocation failures based on caller gfp_flags
  arm64: uaccess: suppress spurious clang warning
  arm64: atomic_lse: match asm register sizes
  arm64: armv8_deprecated: ensure extension of addr
  arm64: uaccess: ensure extension of access_ok() addr
  arm64: ensure extension of smp_store_release value
  arm64: xchg: hazard against entire exchange variable
  arm64: documentation: document tagged pointer stack constraints
  arm64: entry: improve data abort handling of tagged pointers
  arm64: hw_breakpoint: fix watchpoint matching for tagged pointers
  arm64: traps: fix userspace cache maintenance emulation on a tagged pointer
2017-05-11 11:27:54 -07:00
Florian Fainelli 03497d761c mm: Silence vmap() allocation failures based on caller gfp_flags
If the caller has set __GFP_NOWARN don't print the following message:
vmap allocation for size 15736832 failed: use vmalloc=<size> to increase
size.

This can happen with the ARM/Linux or ARM64/Linux module loader built
with CONFIG_ARM{,64}_MODULE_PLTS=y which does a first attempt at loading
a large module from module space, then falls back to vmalloc space.

Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-05-11 14:41:26 +01:00
Linus Torvalds de4d195308 Merge branch 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull RCU updates from Ingo Molnar:
 "The main changes are:

   - Debloat RCU headers

   - Parallelize SRCU callback handling (plus overlapping patches)

   - Improve the performance of Tree SRCU on a CPU-hotplug stress test

   - Documentation updates

   - Miscellaneous fixes"

* 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (74 commits)
  rcu: Open-code the rcu_cblist_n_lazy_cbs() function
  rcu: Open-code the rcu_cblist_n_cbs() function
  rcu: Open-code the rcu_cblist_empty() function
  rcu: Separately compile large rcu_segcblist functions
  srcu: Debloat the <linux/rcu_segcblist.h> header
  srcu: Adjust default auto-expediting holdoff
  srcu: Specify auto-expedite holdoff time
  srcu: Expedite first synchronize_srcu() when idle
  srcu: Expedited grace periods with reduced memory contention
  srcu: Make rcutorture writer stalls print SRCU GP state
  srcu: Exact tracking of srcu_data structures containing callbacks
  srcu: Make SRCU be built by default
  srcu: Fix Kconfig botch when SRCU not selected
  rcu: Make non-preemptive schedule be Tasks RCU quiescent state
  srcu: Expedite srcu_schedule_cbs_snp() callback invocation
  srcu: Parallelize callback handling
  kvm: Move srcu_struct fields to end of struct kvm
  rcu: Fix typo in PER_RCU_NODE_PERIOD header comment
  rcu: Use true/false in assignment to bool
  rcu: Use bool value directly
  ...
2017-05-10 10:30:46 -07:00
Linus Torvalds 339fbf6796 Merge branch 'work.iov_iter' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull vfs fix from Al Viro:
 "Braino fix for iov_iter_revert() misuse"

* 'work.iov_iter' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
  fix braino in generic_file_read_iter()
2017-05-09 09:01:21 -07:00
Linus Torvalds bf5f89463f Merge branch 'akpm' (patches from Andrew)
Merge more updates from Andrew Morton:

 - the rest of MM

 - various misc things

 - procfs updates

 - lib/ updates

 - checkpatch updates

 - kdump/kexec updates

 - add kvmalloc helpers, use them

 - time helper updates for Y2038 issues. We're almost ready to remove
   current_fs_time() but that awaits a btrfs merge.

 - add tracepoints to DAX

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (114 commits)
  drivers/staging/ccree/ssi_hash.c: fix build with gcc-4.4.4
  selftests/vm: add a test for virtual address range mapping
  dax: add tracepoint to dax_insert_mapping()
  dax: add tracepoint to dax_writeback_one()
  dax: add tracepoints to dax_writeback_mapping_range()
  dax: add tracepoints to dax_load_hole()
  dax: add tracepoints to dax_pfn_mkwrite()
  dax: add tracepoints to dax_iomap_pte_fault()
  mtd: nand: nandsim: convert to memalloc_noreclaim_*()
  treewide: convert PF_MEMALLOC manipulations to new helpers
  mm: introduce memalloc_noreclaim_{save,restore}
  mm: prevent potential recursive reclaim due to clearing PF_MEMALLOC
  mm/huge_memory.c: deposit a pgtable for DAX PMD faults when required
  mm/huge_memory.c: use zap_deposited_table() more
  time: delete CURRENT_TIME_SEC and CURRENT_TIME
  gfs2: replace CURRENT_TIME with current_time
  apparmorfs: replace CURRENT_TIME with current_time()
  lustre: replace CURRENT_TIME macro
  fs: ubifs: replace CURRENT_TIME_SEC with current_time
  fs: ufs: use ktime_get_real_ts64() for birthtime
  ...
2017-05-08 18:17:56 -07:00
Vlastimil Babka 499118e966 mm: introduce memalloc_noreclaim_{save,restore}
The previous patch ("mm: prevent potential recursive reclaim due to
clearing PF_MEMALLOC") has shown that simply setting and clearing
PF_MEMALLOC in current->flags can result in wrongly clearing a
pre-existing PF_MEMALLOC flag and potentially lead to recursive reclaim.
Let's introduce helpers that support proper nesting by saving the
previous stat of the flag, similar to the existing memalloc_noio_* and
memalloc_nofs_* helpers.  Convert existing setting/clearing of
PF_MEMALLOC within mm to the new helpers.

There are no known issues with the converted code, but the change makes
it more robust.

Link: http://lkml.kernel.org/r/20170405074700.29871-3-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Suggested-by: Michal Hocko <mhocko@suse.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Boris Brezillon <boris.brezillon@free-electrons.com>
Cc: Chris Leech <cleech@redhat.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Lee Duncan <lduncan@suse.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Richard Weinberger <richard@nod.at>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-08 17:15:15 -07:00
Vlastimil Babka 62be1511b1 mm: prevent potential recursive reclaim due to clearing PF_MEMALLOC
Patch series "more robust PF_MEMALLOC handling"

This series aims to unify the setting and clearing of PF_MEMALLOC, which
prevents recursive reclaim.  There are some places that clear the flag
unconditionally from current->flags, which may result in clearing a
pre-existing flag.  This already resulted in a bug report that Patch 1
fixes (without the new helpers, to make backporting easier).  Patch 2
introduces the new helpers, modelled after existing memalloc_noio_* and
memalloc_nofs_* helpers, and converts mm core to use them.  Patches 3
and 4 convert non-mm code.

This patch (of 4):

__alloc_pages_direct_compact() sets PF_MEMALLOC to prevent deadlock
during page migration by lock_page() (see the comment in
__unmap_and_move()).  Then it unconditionally clears the flag, which can
clear a pre-existing PF_MEMALLOC flag and result in recursive reclaim.
This was not a problem until commit a8161d1ed6 ("mm, page_alloc:
restructure direct compaction handling in slowpath"), because direct
compation was called only after direct reclaim, which was skipped when
PF_MEMALLOC flag was set.

Even now it's only a theoretical issue, as the new callsite of
__alloc_pages_direct_compact() is reached only for costly orders and
when gfp_pfmemalloc_allowed() is true, which means either
__GFP_NOMEMALLOC is in gfp_flags or in_interrupt() is true.  There is no
such known context, but let's play it safe and make
__alloc_pages_direct_compact() robust for cases where PF_MEMALLOC is
already set.

Fixes: a8161d1ed6 ("mm, page_alloc: restructure direct compaction handling in slowpath")
Link: http://lkml.kernel.org/r/20170405074700.29871-2-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Boris Brezillon <boris.brezillon@free-electrons.com>
Cc: Chris Leech <cleech@redhat.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Lee Duncan <lduncan@suse.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-08 17:15:15 -07:00
Oliver O'Halloran 3b6521f535 mm/huge_memory.c: deposit a pgtable for DAX PMD faults when required
Although all architectures use a deposited page table for THP on
anonymous VMAs, some architectures (s390 and powerpc) require the
deposited storage even for file backed VMAs due to quirks of their MMUs.

This patch adds support for depositing a table in DAX PMD fault handling
path for archs that require it.  Other architectures should see no
functional changes.

Link: http://lkml.kernel.org/r/20170411174233.21902-3-oohall@gmail.com
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: linux-nvdimm@ml01.01.org
Cc: Oliver O'Halloran <oohall@gmail.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-08 17:15:15 -07:00
Oliver O'Halloran c14a6eb44d mm/huge_memory.c: use zap_deposited_table() more
Depending on the flags of the PMD being zapped there may or may not be a
deposited pgtable to be freed.  In two of the three cases this is open
coded while the third uses the zap_deposited_table() helper.  This patch
converts the others to use the helper to clean things up a bit.

Link: http://lkml.kernel.org/r/20170411174233.21902-2-oohall@gmail.com
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: linux-nvdimm@ml01.01.org
Cc: Oliver O'Halloran <oohall@gmail.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-08 17:15:15 -07:00
Tetsuo Handa c718a97514 fs: semove set but not checked AOP_FLAG_UNINTERRUPTIBLE flag
Commit afddba49d1 ("fs: introduce write_begin, write_end, and
perform_write aops") introduced AOP_FLAG_UNINTERRUPTIBLE flag which was
checked in pagecache_write_begin(), but that check was removed by
4e02ed4b4a ("fs: remove prepare_write/commit_write").

Between these two commits, commit d9414774dc ("cifs: Convert cifs to
new aops.") added a check in cifs_write_begin(), but that check was soon
removed by commit a98ee8c1c7 ("[CIFS] fix regression in
cifs_write_begin/cifs_write_end").

Therefore, AOP_FLAG_UNINTERRUPTIBLE flag is checked nowhere.  Let's
remove this flag.  This patch has no functionality changes.

Link: http://lkml.kernel.org/r/1489294781-53494-1-git-send-email-penguin-kernel@I-love.SAKURA.ne.jp
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Reviewed-by: Jeff Layton <jlayton@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Nick Piggin <npiggin@gmail.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-08 17:15:14 -07:00
Michal Hocko 19809c2da2 mm, vmalloc: use __GFP_HIGHMEM implicitly
__vmalloc* allows users to provide gfp flags for the underlying
allocation.  This API is quite popular

  $ git grep "=[[:space:]]__vmalloc\|return[[:space:]]*__vmalloc" | wc -l
  77

The only problem is that many people are not aware that they really want
to give __GFP_HIGHMEM along with other flags because there is really no
reason to consume precious lowmemory on CONFIG_HIGHMEM systems for pages
which are mapped to the kernel vmalloc space.  About half of users don't
use this flag, though.  This signals that we make the API unnecessarily
too complex.

This patch simply uses __GFP_HIGHMEM implicitly when allocating pages to
be mapped to the vmalloc space.  Current users which add __GFP_HIGHMEM
are simplified and drop the flag.

Link: http://lkml.kernel.org/r/20170307141020.29107-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Cristopher Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-08 17:15:13 -07:00
Huang Ying 54f180d3c1 mm, swap: use kvzalloc to allocate some swap data structures
Now vzalloc() is used in swap code to allocate various data structures,
such as swap cache, swap slots cache, cluster info, etc.  Because the
size may be too large on some system, so that normal kzalloc() may fail.
But using kzalloc() has some advantages, for example, less memory
fragmentation, less TLB pressure, etc.  So change the data structure
allocation in swap code to use kvzalloc() which will try kzalloc()
firstly, and fallback to vzalloc() if kzalloc() failed.

In general, although kmalloc() will reduce the number of high-order
pages in short term, vmalloc() will cause more pain for memory
fragmentation in the long term.  And the swap data structure allocation
that is changed in this patch is expected to be long term allocation.

From Dave Hansen:
 "for example, we have a two-page data structure. vmalloc() takes two
  effectively random order-0 pages, probably from two different 2M pages
  and pins them. That "kills" two 2M pages. kmalloc(), allocating two
  *contiguous* pages, will not cross a 2M boundary. That means it will
  only "kill" the possibility of a single 2M page. More 2M pages == less
  fragmentation.

The allocation in this patch occurs during swap on time, which is
usually done during system boot, so usually we have high opportunity to
allocate the contiguous pages successfully.

The allocation for swap_map[] in struct swap_info_struct is not changed,
because that is usually quite large and vmalloc_to_page() is used for
it.  That makes it a little harder to change.

Link: http://lkml.kernel.org/r/20170407064911.25447-1-ying.huang@intel.com
Signed-off-by: Huang Ying <ying.huang@intel.com>
Acked-by: Tim Chen <tim.c.chen@intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-08 17:15:13 -07:00
Michal Hocko 752ade68cb treewide: use kv[mz]alloc* rather than opencoded variants
There are many code paths opencoding kvmalloc.  Let's use the helper
instead.  The main difference to kvmalloc is that those users are
usually not considering all the aspects of the memory allocator.  E.g.
allocation requests <= 32kB (with 4kB pages) are basically never failing
and invoke OOM killer to satisfy the allocation.  This sounds too
disruptive for something that has a reasonable fallback - the vmalloc.
On the other hand those requests might fallback to vmalloc even when the
memory allocator would succeed after several more reclaim/compaction
attempts previously.  There is no guarantee something like that happens
though.

This patch converts many of those places to kv[mz]alloc* helpers because
they are more conservative.

Link: http://lkml.kernel.org/r/20170306103327.2766-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> # Xen bits
Acked-by: Kees Cook <keescook@chromium.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Andreas Dilger <andreas.dilger@intel.com> # Lustre
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com> # KVM/s390
Acked-by: Dan Williams <dan.j.williams@intel.com> # nvdim
Acked-by: David Sterba <dsterba@suse.com> # btrfs
Acked-by: Ilya Dryomov <idryomov@gmail.com> # Ceph
Acked-by: Tariq Toukan <tariqt@mellanox.com> # mlx4
Acked-by: Leon Romanovsky <leonro@mellanox.com> # mlx5
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Anton Vorontsov <anton@enomsg.org>
Cc: Colin Cross <ccross@android.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: Kent Overstreet <kent.overstreet@gmail.com>
Cc: Santosh Raspatur <santosh@chelsio.com>
Cc: Hariprasad S <hariprasad@chelsio.com>
Cc: Yishai Hadas <yishaih@mellanox.com>
Cc: Oleg Drokin <oleg.drokin@intel.com>
Cc: "Yan, Zheng" <zyan@redhat.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: David Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-08 17:15:13 -07:00
Michal Hocko 6c5ab6511f mm: support __GFP_REPEAT in kvmalloc_node for >32kB
vhost code uses __GFP_REPEAT when allocating vhost_virtqueue resp.
vhost_vsock because it would really like to prefer kmalloc to the
vmalloc fallback - see 23cc5a991c ("vhost-net: extend device
allocation to vmalloc") for more context.  Michael Tsirkin has also
noted:

 "__GFP_REPEAT overhead is during allocation time. Using vmalloc means
  all accesses are slowed down. Allocation is not on data path, accesses
  are."

The similar applies to other vhost_kvzalloc users.

Let's teach kvmalloc_node to handle __GFP_REPEAT properly.  There are
two things to be careful about.  First we should prevent from the OOM
killer and so have to involve __GFP_NORETRY by default and secondly
override __GFP_REPEAT for !costly order requests as the __GFP_REPEAT is
ignored for !costly orders.

Supporting __GFP_REPEAT like semantic for !costly request is possible it
would require changes in the page allocator.  This is out of scope of
this patch.

This patch shouldn't introduce any functional change.

Link: http://lkml.kernel.org/r/20170306103032.2540-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Cc: David Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-08 17:15:12 -07:00
Michal Hocko 1f5307b1e0 mm, vmalloc: properly track vmalloc users
__vmalloc_node_flags used to be static inline but this has changed by
"mm: introduce kv[mz]alloc helpers" because kvmalloc_node needs to use
it as well and the code is outside of the vmalloc proper.  I haven't
realized that changing this will lead to a subtle bug though.  The
function is responsible to track the caller as well.  This caller is
then printed by /proc/vmallocinfo.  If __vmalloc_node_flags is not
inline then we would get only direct users of __vmalloc_node_flags as
callers (e.g.  v[mz]alloc) which reduces usefulness of this debugging
feature considerably.  It simply doesn't help to see that the given
range belongs to vmalloc as a caller:

  0xffffc90002c79000-0xffffc90002c7d000   16384 vmalloc+0x16/0x18 pages=3 vmalloc N0=3
  0xffffc90002c81000-0xffffc90002c85000   16384 vmalloc+0x16/0x18 pages=3 vmalloc N1=3
  0xffffc90002c8d000-0xffffc90002c91000   16384 vmalloc+0x16/0x18 pages=3 vmalloc N1=3
  0xffffc90002c95000-0xffffc90002c99000   16384 vmalloc+0x16/0x18 pages=3 vmalloc N1=3

We really want to catch the _caller_ of the vmalloc function.  Fix this
issue by making __vmalloc_node_flags static inline again.

Link: http://lkml.kernel.org/r/20170502134657.12381-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-08 17:15:12 -07:00
Michal Hocko a7c3e901a4 mm: introduce kv[mz]alloc helpers
Patch series "kvmalloc", v5.

There are many open coded kmalloc with vmalloc fallback instances in the
tree.  Most of them are not careful enough or simply do not care about
the underlying semantic of the kmalloc/page allocator which means that
a) some vmalloc fallbacks are basically unreachable because the kmalloc
part will keep retrying until it succeeds b) the page allocator can
invoke a really disruptive steps like the OOM killer to move forward
which doesn't sound appropriate when we consider that the vmalloc
fallback is available.

As it can be seen implementing kvmalloc requires quite an intimate
knowledge if the page allocator and the memory reclaim internals which
strongly suggests that a helper should be implemented in the memory
subsystem proper.

Most callers, I could find, have been converted to use the helper
instead.  This is patch 6.  There are some more relying on __GFP_REPEAT
in the networking stack which I have converted as well and Eric Dumazet
was not opposed [2] to convert them as well.

[1] http://lkml.kernel.org/r/20170130094940.13546-1-mhocko@kernel.org
[2] http://lkml.kernel.org/r/1485273626.16328.301.camel@edumazet-glaptop3.roam.corp.google.com

This patch (of 9):

Using kmalloc with the vmalloc fallback for larger allocations is a
common pattern in the kernel code.  Yet we do not have any common helper
for that and so users have invented their own helpers.  Some of them are
really creative when doing so.  Let's just add kv[mz]alloc and make sure
it is implemented properly.  This implementation makes sure to not make
a large memory pressure for > PAGE_SZE requests (__GFP_NORETRY) and also
to not warn about allocation failures.  This also rules out the OOM
killer as the vmalloc is a more approapriate fallback than a disruptive
user visible action.

This patch also changes some existing users and removes helpers which
are specific for them.  In some cases this is not possible (e.g.
ext4_kvmalloc, libcfs_kvzalloc) because those seems to be broken and
require GFP_NO{FS,IO} context which is not vmalloc compatible in general
(note that the page table allocation is GFP_KERNEL).  Those need to be
fixed separately.

While we are at it, document that __vmalloc{_node} about unsupported gfp
mask because there seems to be a lot of confusion out there.
kvmalloc_node will warn about GFP_KERNEL incompatible (which are not
superset) flags to catch new abusers.  Existing ones would have to die
slowly.

[sfr@canb.auug.org.au: f2fs fixup]
  Link: http://lkml.kernel.org/r/20170320163735.332e64b7@canb.auug.org.au
Link: http://lkml.kernel.org/r/20170306103032.2540-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Reviewed-by: Andreas Dilger <adilger@dilger.ca>	[ext4 part]
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: David Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-08 17:15:12 -07:00
Vlastimil Babka baf6a9a1db mm, compaction: finish whole pageblock to reduce fragmentation
The main goal of direct compaction is to form a high-order page for
allocation, but it should also help against long-term fragmentation when
possible.

Most lower-than-pageblock-order compactions are for non-movable
allocations, which means that if we compact in a movable pageblock and
terminate as soon as we create the high-order page, it's unlikely that
the fallback heuristics will claim the whole block.  Instead there might
be a single unmovable page in a pageblock full of movable pages, and the
next unmovable allocation might pick another pageblock and increase
long-term fragmentation.

To help against such scenarios, this patch changes the termination
criteria for compaction so that the current pageblock is finished even
though the high-order page already exists.  Note that it might be
possible that the high-order page formed elsewhere in the zone due to
parallel activity, but this patch doesn't try to detect that.

This is only done with sync compaction, because async compaction is
limited to pageblock of the same migratetype, where it cannot result in
a migratetype fallback.  (Async compaction also eagerly skips
order-aligned blocks where isolation fails, which is against the goal of
migrating away as much of the pageblock as possible.)

As a result of this patch, long-term memory fragmentation should be
reduced.

In testing based on 4.9 kernel with stress-highalloc from mmtests
configured for order-4 GFP_KERNEL allocations, this patch has reduced
the number of unmovable allocations falling back to movable pageblocks
by 20%.  The number

Link: http://lkml.kernel.org/r/20170307131545.28577-9-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-08 17:15:10 -07:00
Vlastimil Babka 282722b0d2 mm, compaction: restrict async compaction to pageblocks of same migratetype
The migrate scanner in async compaction is currently limited to
MIGRATE_MOVABLE pageblocks.  This is a heuristic intended to reduce
latency, based on the assumption that non-MOVABLE pageblocks are
unlikely to contain movable pages.

However, with the exception of THP's, most high-order allocations are
not movable.  Should the async compaction succeed, this increases the
chance that the non-MOVABLE allocations will fallback to a MOVABLE
pageblock, making the long-term fragmentation worse.

This patch attempts to help the situation by changing async direct
compaction so that the migrate scanner only scans the pageblocks of the
requested migratetype.  If it's a non-MOVABLE type and there are such
pageblocks that do contain movable pages, chances are that the
allocation can succeed within one of such pageblocks, removing the need
for a fallback.  If that fails, the subsequent sync attempt will ignore
this restriction.

In testing based on 4.9 kernel with stress-highalloc from mmtests
configured for order-4 GFP_KERNEL allocations, this patch has reduced
the number of unmovable allocations falling back to movable pageblocks
by 30%.  The number of movable allocations falling back is reduced by
12%.

Link: http://lkml.kernel.org/r/20170307131545.28577-8-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-08 17:15:10 -07:00
Vlastimil Babka d39773a062 mm, compaction: add migratetype to compact_control
Preparation patch.  We are going to need migratetype at lower layers
than compact_zone() and compact_finished().

Link: http://lkml.kernel.org/r/20170307131545.28577-7-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-08 17:15:10 -07:00
Vlastimil Babka b682debd97 mm, compaction: change migrate_async_suitable() to suitable_migration_source()
Preparation for making the decisions more complex and depending on
compact_control flags.  No functional change.

Link: http://lkml.kernel.org/r/20170307131545.28577-6-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-08 17:15:10 -07:00
Vlastimil Babka 02aa0cdd72 mm, page_alloc: count movable pages when stealing from pageblock
When stealing pages from pageblock of a different migratetype, we count
how many free pages were stolen, and change the pageblock's migratetype
if more than half of the pageblock was free.  This might be too
conservative, as there might be other pages that are not free, but were
allocated with the same migratetype as our allocation requested.

While we cannot determine the migratetype of allocated pages precisely
(at least without the page_owner functionality enabled), we can count
pages that compaction would try to isolate for migration - those are
either on LRU or __PageMovable().  The rest can be assumed to be
MIGRATE_RECLAIMABLE or MIGRATE_UNMOVABLE, which we cannot easily
distinguish.  This counting can be done as part of free page stealing
with little additional overhead.

The page stealing code is changed so that it considers free pages plus
pages of the "good" migratetype for the decision whether to change
pageblock's migratetype.

The result should be more accurate migratetype of pageblocks wrt the
actual pages in the pageblocks, when stealing from semi-occupied
pageblocks.  This should help the efficiency of page grouping by
mobility.

In testing based on 4.9 kernel with stress-highalloc from mmtests
configured for order-4 GFP_KERNEL allocations, this patch has reduced
the number of unmovable allocations falling back to movable pageblocks
by 47%.  The number of movable allocations falling back to other
pageblocks are increased by 55%, but these events don't cause permanent
fragmentation, so the tradeoff should be positive.  Later patches also
offset the movable fallback increase to some extent.

[akpm@linux-foundation.org: merge fix]
Link: http://lkml.kernel.org/r/20170307131545.28577-5-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-08 17:15:10 -07:00
Vlastimil Babka 3bc48f96cf mm, page_alloc: split smallest stolen page in fallback
The __rmqueue_fallback() function is called when there's no free page of
requested migratetype, and we need to steal from a different one.

There are various heuristics to make this event infrequent and reduce
permanent fragmentation.  The main one is to try stealing from a
pageblock that has the most free pages, and possibly steal them all at
once and convert the whole pageblock.  Precise searching for such
pageblock would be expensive, so instead the heuristics walks the free
lists from MAX_ORDER down to requested order and assumes that the block
with highest-order free page is likely to also have the most free pages
in total.

Chances are that together with the highest-order page, we steal also
pages of lower orders from the same block.  But then we still split the
highest order page.  This is wasteful and can contribute to
fragmentation instead of avoiding it.

This patch thus changes __rmqueue_fallback() to just steal the page(s)
and put them on the freelist of the requested migratetype, and only
report whether it was successful.  Then we pick (and eventually split)
the smallest page with __rmqueue_smallest().  This all happens under
zone lock, so nobody can steal it from us in the process.  This should
reduce fragmentation due to fallbacks.  At worst we are only stealing a
single highest-order page and waste some cycles by moving it between
lists and then removing it, but fallback is not exactly hot path so that
should not be a concern.  As a side benefit the patch removes some
duplicate code by reusing __rmqueue_smallest().

[vbabka@suse.cz: fix endless loop in the modified __rmqueue()]
  Link: http://lkml.kernel.org/r/59d71b35-d556-4fc9-ee2e-1574259282fd@suse.cz
Link: http://lkml.kernel.org/r/20170307131545.28577-4-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-08 17:15:09 -07:00
Vlastimil Babka 228d7e3390 mm, compaction: remove redundant watermark check in compact_finished()
When detecting whether compaction has succeeded in forming a high-order
page, __compact_finished() employs a watermark check, followed by an own
search for a suitable page in the freelists.  This is not ideal for two
reasons:

 - The watermark check also searches high-order freelists, but has a
   less strict criteria wrt fallback. It's therefore redundant and waste
   of cycles. This was different in the past when high-order watermark
   check attempted to apply reserves to high-order pages.

 - The watermark check might actually fail due to lack of order-0 pages.
   Compaction can't help with that, so there's no point in continuing
   because of that. It's possible that high-order page still exists and
   it terminates.

This patch therefore removes the watermark check.  This should save some
cycles and terminate compaction sooner in some cases.

Link: http://lkml.kernel.org/r/20170307131545.28577-3-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-08 17:15:09 -07:00