ocfs2_free_path() was called by ocfs2_merge_rec_left() even if a call of
the ocfs2_get_left_path() function failed.
Return from this implementation directly after corresponding
exception handling.
Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Joel Becker <jlbec@evilplan.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
ocfs2_free_path() was called in some cases by
ocfs2_figure_merge_contig_type() during error handling even if the passed
variables "left_path" and "right_path" contained still a null pointer.
Corresponding implementation details could be improved by adjustments for
jump labels according to the current Linux coding style convention.
Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Joel Becker <jlbec@evilplan.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kfree() was called in a few cases by ocfs2_convert_inline_data_to_extents()
during error handling even if the passed variable "pages" contained a
null pointer.
* Return from this implementation directly after failure detection for
the function call "kcalloc".
* Corresponding details could be improved by the introduction of another
jump label.
Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Joel Becker <jlbec@evilplan.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kfree(), ocfs2_free_path() and __ocfs2_free_slot_info() test whether their
argument is NULL and then return immediately. Thus the test around their
calls is not needed.
This issue was detected by using the Coccinelle software.
Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Joel Becker <jlbec@evilplan.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Similar to ocfs2_write_end_nolock() which is metioned at commit
136f49b917 ("ocfs2: fix journal commit deadlock"), we should unlock
pages before ocfs2_commit_trans() in ocfs2_convert_inline_data_to_extents.
Otherwise, it will cause a deadlock with journal commit threads.
Signed-off-by: Alex Chen <alex.chen@huawei.com>
Reviewed-by: Joseph Qi <joseph.qi@huawei.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When running ocfs2 test suite multiple nodes reflink stress test, for a
4 nodes cluster, every unlink() for refcounted file needs about 700s.
The slow unlink is caused by the contention of refcount tree lock since
all nodes are unlink files using the same refcount tree. When the
unlinking file have many extents(over 1600 in our test), most of the
extents has refcounted flag set. In ocfs2_commit_truncate(), it will
execute the following call trace for every extents. This means it needs
get and released refcount tree lock about 1600 times. And when several
nodes are do this at the same time, the performance will be very low.
ocfs2_remove_btree_range()
-- ocfs2_lock_refcount_tree()
---- ocfs2_refcount_lock()
------ __ocfs2_cluster_lock()
ocfs2_refcount_lock() is costly, move it to ocfs2_commit_truncate() to
do lock/unlock once can improve a lot performance.
Signed-off-by: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Wengang <wen.gang.wang@oracle.com>
Reviewed-by: Mark Fasheh <mfasheh@suse.de>
Cc: Joel Becker <jlbec@evilplan.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
ocfs2_search_extent_list may return -1, so we should check the return
value in ocfs2_split_and_insert, otherwise it may cause array index out of
bound.
And ocfs2_search_extent_list can only return value less than
el->l_next_free_rec, so check if it is equal or larger than
le16_to_cpu(el->l_next_free_rec) is meaningless.
Signed-off-by: Yingtai Xie <xieyingtai@huawei.com>
Signed-off-by: Joseph Qi <joseph.qi@huawei.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Revert commit 75f82eaa50 ("ocfs2: fix NULL pointer dereference when
dismount and ocfs2rec simultaneously") because it may cause a umount
hang while shutting down the truncate log.
fix NULL pointer dereference when dismount and ocfs2rec simultaneously
The situation is as followes:
ocfs2_dismout_volume
-> ocfs2_recovery_exit
-> free osb->recovery_map
-> ocfs2_truncate_shutdown
-> lock global bitmap inode
-> ocfs2_wait_for_recovery
-> check whether osb->recovery_map->rm_used is zero
Because osb->recovery_map is already freed, rm_used can be any other
values, so it may yield umount hang.
To prevent NULL pointer dereference while getting sys_root_inode, we use
a osb_tl_disable flag to disable schedule osb_truncate_log_wq after
truncate log shutdown.
Signed-off-by: joyce.xue <xuejiufei@huawei.com>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Joel Becker <jlbec@evilplan.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Ensure that ocfs2_update_inode_fsync_trans() is called any time we touch
an inode in a given transaction. This is a follow-on to the previous
patch to reduce lock contention and deadlocking during an fsync
operation.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Mark Fasheh <mfasheh@suse.de>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Wengang <wen.gang.wang@oracle.com>
Cc: Greg Marsden <greg.marsden@oracle.com>
Cc: Srinivas Eeda <srinivas.eeda@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, ocfs2_sync_file grabs i_mutex and forces the current journal
transaction to complete. This isn't terribly efficient, since sync_file
really only needs to wait for the last transaction involving that inode
to complete, and this doesn't require i_mutex.
Therefore, implement the necessary bits to track the newest tid
associated with an inode, and teach sync_file to wait for that instead
of waiting for everything in the journal to commit. Furthermore, only
issue the flush request to the drive if jbd2 hasn't already done so.
This also eliminates the deadlock between ocfs2_file_aio_write() and
ocfs2_sync_file(). aio_write takes i_mutex then calls
ocfs2_aiodio_wait() to wait for unaligned dio writes to finish.
However, if that dio completion involves calling fsync, then we can get
into trouble when some ocfs2_sync_file tries to take i_mutex.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Mark Fasheh <mfasheh@suse.de>
Cc: Joel Becker <jlbec@evilplan.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The issue scenario is as following:
- Create a small file and fallocate a large disk space for a file with
FALLOC_FL_KEEP_SIZE option.
- ftruncate the file back to the original size again. but the disk free
space is not changed back. This is a real bug that be fixed in this
patch.
In order to solve the issue above, we modified ocfs2_setattr(), if
attr->ia_size != i_size_read(inode), It calls ocfs2_truncate_file(), and
truncate disk space to attr->ia_size.
Signed-off-by: Younger Liu <younger.liu@huawei.com>
Reviewed-by: Jie Liu <jeff.liu@oracle.com>
Tested-by: Jie Liu <jeff.liu@oracle.com>
Cc: Joel Becker <jlbec@evilplan.org>
Reviewed-by: Mark Fasheh <mfasheh@suse.de>
Cc: Sunil Mushran <sunil.mushran@gmail.com>
Reviewed-by: Jensen <shencanquan@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Even if using the same jbd2 handle, we cannot rollback a transaction.
So once some error occurs after successfully allocating clusters, the
allocated clusters will never be used and it means they are lost. For
example, call ocfs2_claim_clusters successfully when expanding a file,
but failed in ocfs2_insert_extent. So we need free the allocated
clusters if they are not used indeed.
Signed-off-by: Zongxun Wang <wangzongxun@huawei.com>
Signed-off-by: Joseph Qi <joseph.qi@huawei.com>
Acked-by: Joel Becker <jlbec@evilplan.org>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Li Zefan <lizefan@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For FITRIM ioctl(2), we should not keep silence if the given range
length ls less than a block size as there is no data blocks would be
discareded. Hence it should return EINVAL instead. This issue can be
verified via xfstests/generic/288 which is used for FITRIM argument
handling tests.
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Joel Becker <jlbec@evilplan.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The only reason for sb_getblk() failing is if it can't allocate the
buffer_head. So return ENOMEM instead when it fails.
[joseph.qi@huawei.com: ocfs2_symlink_get_block() and ocfs2_read_blocks_sync() and ocfs2_read_blocks() need the same change]
Signed-off-by: Rui Xiang <rui.xiang@huawei.com>
Reviewed-by: Jie Liu <jeff.liu@oracle.com>
Reviewed-by: Mark Fasheh <mfasheh@suse.de>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Joseph Qi <joseph.qi@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In ocfs2_remove_btree_range, when calling ocfs2_lock_refcount_tree and
ocfs2_prepare_refcount_change_for_del failed, it goes to out and then
tries to call mutex_unlock without mutex_lock before. And when calling
ocfs2_reserve_blocks_for_rec_trunc failed, it should free ref_tree
before return.
Signed-off-by: Joseph Qi <joseph.qi@huawei.com>
Reviewed-by: Jie Liu <jeff.liu@oracle.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are three cases found that in error cases, journal transactions are not
committed nor aborted. We should take care of these case by committing the
transactions. Otherwise, there would left a journal handle which will lead to
, in same process context, the comming ocfs2_start_trans() gets wrong credits.
Signed-off-by: Wengang Wang <wen.gang.wang@oracle.com>
Signed-off-by: Joel Becker <jlbec@evilplan.org>
Add ocfs2_trim_fs to support trimming freed clusters in the
volume. A range will be given and all the freed clusters greater
than minlen will be discarded to the block layer.
Signed-off-by: Tao Ma <boyu.mt@taobao.com>
Signed-off-by: Joel Becker <jlbec@evilplan.org>
Since all 4 files, localalloc.c, suballoc.c, alloc.c and
resize.c, which use DISK_ALLOC are changed to trace events,
Remove masklog DISK_ALLOC totally.
Signed-off-by: Tao Ma <boyu.mt@taobao.com>
This is the first try of replacing debug mlog(0,...) to
trace events. Wengang has did some work in his original
patch
http://oss.oracle.com/pipermail/ocfs2-devel/2009-November/005513.html
But he didn't finished it.
So this patch removes all mlog(0,...) from alloc.c and adds
the corresponding trace events. Different mlogs have different
solutions.
1. Some are replaced with trace event directly.
2. Some are replaced and some new parameters are added since
I think we need to know the btree owner in that case.
3. Some are combined into one trace events.
4. Some redundant mlogs are removed.
What's more, it defines some event classes so that we can use
them later.
Cc: Wengang Wang <wen.gang.wang@oracle.com>
Signed-off-by: Tao Ma <boyu.mt@taobao.com>
mlog_exit is used to record the exit status of a function.
But because it is added in so many functions, if we enable it,
the system logs get filled up quickly and cause too much I/O.
So actually no one can open it for a production system or even
for a test.
This patch just try to remove it or change it. So:
1. if all the error paths already use mlog_errno, it is just removed.
Otherwise, it will be replaced by mlog_errno.
2. if it is used to print some return value, it is replaced with
mlog(0,...).
mlog_exit_ptr is changed to mlog(0.
All those mlog(0,...) will be replaced with trace events later.
Signed-off-by: Tao Ma <boyu.mt@taobao.com>
ENTRY is used to record the entry of a function.
But because it is added in so many functions, if we enable it,
the system logs get filled up quickly and cause too much I/O.
So actually no one can open it for a production system or even
for a test.
So for mlog_entry_void, we just remove it.
for mlog_entry(...), we replace it with mlog(0,...), and they
will be replace by trace event later.
Signed-off-by: Tao Ma <boyu.mt@taobao.com>
Tristan Ye has done some refactoring against our truncate
process, so some functions like ocfs2_prepare_truncate and
ocfs2_free_truncate_context are no use and we'd better
remove them.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Recently, one of our colleagues meet with a problem that if we
write/delete a 32mb files repeatly, we will get an ENOSPC in
the end. And the corresponding bug is 1288.
http://oss.oracle.com/bugzilla/show_bug.cgi?id=1288
The real problem is that although we have freed the clusters,
they are in truncate log and they will be summed up so that
we can free them once in a whole.
So this patch just try to resolve it. In case we see -ENOSPC
in ocfs2_write_begin_no_lock, we will check whether the truncate
log has enough clusters for our need, if yes, we will try to
flush the truncate log at that point and try again. This method
is inspired by Mark Fasheh <mfasheh@suse.com>. Thanks.
Cc: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
We cannot call grab_cache_page() when holding filesystem locks or with
a transaction started as grab_cache_page() calls page allocation with
GFP_KERNEL flag and thus page reclaim can recurse back into the filesystem
causing deadlocks or various assertion failures. We have to use
find_or_create_page() instead and pass it GFP_NOFS as we do with other
allocations.
Acked-by: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Tao Ma <tao.ma@oracle.com>
The original idea to pull ocfs2_find_cpos_for_left_leaf() out of
alloc.c is to benefit punching-holes optimization patch, it however,
can also be referred by other funcs in the future who want to do the
same job.
Signed-off-by: Tristan Ye <tristan.ye@oracle.com>
Acked-by: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Truncate is just a special case of punching holes(from new i_size to
end), we therefore could take advantage of the existing
ocfs2_remove_btree_range() to reduce the comlexity and redundancy in
alloc.c. The goal here is to make truncate more generic and
straightforward.
Several functions only used by ocfs2_commit_truncate() will smiply be
removed.
ocfs2_remove_btree_range() was originally used by the hole punching
code, which didn't take refcount trees into account (definitely a bug).
We therefore need to change that func a bit to handle refcount trees.
It must take the refcount lock, calculate and reserve blocks for
refcount tree changes, and decrease refcounts at the end. We replace
ocfs2_lock_allocators() here by adding a new func
ocfs2_reserve_blocks_for_rec_trunc() which accepts some extra blocks to
reserve. This will not hurt any other code using
ocfs2_remove_btree_range() (such as dir truncate and hole punching).
I merged the following steps into one patch since they may be
logically doing one thing, though I know it looks a little bit fat
to review.
1). Remove redundant code used by ocfs2_commit_truncate(), since we're
moving to ocfs2_remove_btree_range anyway.
2). Add a new func ocfs2_reserve_blocks_for_rec_trunc() for purpose of
accepting some extra blocks to reserve.
3). Change ocfs2_prepare_refcount_change_for_del() a bit to fit our
needs. It's safe to do this since it's only being called by
truncate.
4). Change ocfs2_remove_btree_range() a bit to take refcount case into
account.
5). Finally, we change ocfs2_commit_truncate() to call
ocfs2_remove_btree_range() in a proper way.
The patch has been tested normally for sanity check, stress tests
with heavier workload will be expected.
Based on this patch, fixing the punching holes bug will be fairly easy.
Signed-off-by: Tristan Ye <tristan.ye@oracle.com>
Acked-by: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
In ocfs2, we use ocfs2_extend_trans() to extend a journal handle's
blocks. But if jbd2_journal_extend() fails, it will only restart
with the the new number of blocks. This tends to be awkward since
in most cases we want additional reserved blocks. It makes our code
harder to mantain since the caller can't be sure all the original
blocks will not be accessed and dirtied again. There are 15 callers
of ocfs2_extend_trans() in fs/ocfs2, and 12 of them have to add
h_buffer_credits before they call ocfs2_extend_trans(). This makes
ocfs2_extend_trans() really extend atop the original block count.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
jbd[2]_journal_dirty_metadata() only returns 0. It's been returning 0
since before the kernel moved to git. There is no point in checking
this error.
ocfs2_journal_dirty() has been faithfully returning the status since the
beginning. All over ocfs2, we have blocks of code checking this can't
fail status. In the past few years, we've tried to avoid adding these
checks, because they are pointless. But anyone who looks at our code
assumes they are needed.
Finally, ocfs2_journal_dirty() is made a void function. All error
checking is removed from other files. We'll BUG_ON() the status of
jbd2_journal_dirty_metadata() just in case they change it someday. They
won't.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
In case the block we are going to free is allocated from
a discontiguous block group, we have to use suballoc_loc
to be the right group.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Get the suballoc_loc from ocfs2_claim_new_inode() or
ocfs2_claim_metadata(). Store it on the appropriate field of the block
we just allocated.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
They all take an ocfs2_alloc_context, which has the allocation inode.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Tao Ma <tao.ma@oracle.com>
* 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs-2.6: (33 commits)
quota: stop using QUOTA_OK / NO_QUOTA
dquot: cleanup dquot initialize routine
dquot: move dquot initialization responsibility into the filesystem
dquot: cleanup dquot drop routine
dquot: move dquot drop responsibility into the filesystem
dquot: cleanup dquot transfer routine
dquot: move dquot transfer responsibility into the filesystem
dquot: cleanup inode allocation / freeing routines
dquot: cleanup space allocation / freeing routines
ext3: add writepage sanity checks
ext3: Truncate allocated blocks if direct IO write fails to update i_size
quota: Properly invalidate caches even for filesystems with blocksize < pagesize
quota: generalize quota transfer interface
quota: sb_quota state flags cleanup
jbd: Delay discarding buffers in journal_unmap_buffer
ext3: quota_write cross block boundary behaviour
quota: drop permission checks from xfs_fs_set_xstate/xfs_fs_set_xquota
quota: split out compat_sys_quotactl support from quota.c
quota: split out netlink notification support from quota.c
quota: remove invalid optimization from quota_sync_all
...
Fixed trivial conflicts in fs/namei.c and fs/ufs/inode.c
Get rid of the alloc_space, free_space, reserve_space, claim_space and
release_rsv dquot operations - they are always called from the filesystem
and if a filesystem really needs their own (which none currently does)
it can just call into it's own routine directly.
Move shared logic into the common __dquot_alloc_space,
dquot_claim_space_nodirty and __dquot_free_space low-level methods,
and rationalize the wrappers around it to move as much as possible
code into the common block for CONFIG_QUOTA vs not. Also rename
all these helpers to be named dquot_* instead of vfs_dq_*.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
This patch add extent block (metadata) stealing mechanism for
extent allocation. This mechanism is same as the inode stealing.
if no room in slot specific extent_alloc, we will try to
allocate extent block from the next slot.
Signed-off-by: Tiger Yang <tiger.yang@oracle.com>
Acked-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
* 'upstream-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jlbec/ocfs2:
ocfs2: Set i_nlink properly during reflink.
ocfs2: Add reflinked file's inode to inode hash eariler.
ocfs2: refcounttree.c cleanup.
ocfs2: Find proper end cpos for a leaf refcount block.
do_sync_mapping_range(..., SYNC_FILE_RANGE_WRITE) is a very awkward way
to perform a filemap_fdatawrite_range.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
ocfs2 refcount tree is stored as an extent tree while
the leaf ocfs2_refcount_rec points to a refcount block.
The following step can trip a kernel panic.
mkfs.ocfs2 -b 512 -C 1M --fs-features=refcount $DEVICE
mount -t ocfs2 $DEVICE $MNT_DIR
FILE_NAME=$RANDOM
FILE_NAME_1=$RANDOM
FILE_REF="${FILE_NAME}_ref"
FILE_REF_1="${FILE_NAME}_ref_1"
for((i=0;i<305;i++))
do
# /mnt/1048576 is a file with 1048576 sizes.
cat /mnt/1048576 >> $MNT_DIR/$FILE_NAME
cat /mnt/1048576 >> $MNT_DIR/$FILE_NAME_1
done
for((i=0;i<3;i++))
do
cat /mnt/1048576 >> $MNT_DIR/$FILE_NAME
done
for((i=0;i<2;i++))
do
cat /mnt/1048576 >> $MNT_DIR/$FILE_NAME
cat /mnt/1048576 >> $MNT_DIR/$FILE_NAME_1
done
cat /mnt/1048576 >> $MNT_DIR/$FILE_NAME
for((i=0;i<11;i++))
do
cat /mnt/1048576 >> $MNT_DIR/$FILE_NAME
cat /mnt/1048576 >> $MNT_DIR/$FILE_NAME_1
done
reflink $MNT_DIR/$FILE_NAME $MNT_DIR/$FILE_REF
# write_f is a program which will write some bytes to a file at offset.
# write_f -f file_name -l offset -w write_bytes.
./write_f -f $MNT_DIR/$FILE_REF -l $[310*1048576] -w 4096
./write_f -f $MNT_DIR/$FILE_REF -l $[306*1048576] -w 4096
./write_f -f $MNT_DIR/$FILE_REF -l $[311*1048576] -w 4096
./write_f -f $MNT_DIR/$FILE_NAME -l $[310*1048576] -w 4096
./write_f -f $MNT_DIR/$FILE_NAME -l $[311*1048576] -w 4096
reflink $MNT_DIR/$FILE_NAME $MNT_DIR/$FILE_REF_1
./write_f -f $MNT_DIR/$FILE_NAME -l $[311*1048576] -w 4096
#kernel panic here.
The reason is that if the ocfs2_extent_rec is the last record
in a leaf extent block, the old solution fails to find the
suitable end cpos. So this patch try to walk through the b-tree,
find the next sub root and get the c_pos the next sub-tree starts
from.
btw, I have runned tristan's test case against the patched kernel
for several days and this type of kernel panic never happens again.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
In ocfs2_extend_rotate_transaction, op_credits is the orignal
credits in the handle and we only want to extend the credits
for the rotation, but the old solution always double it. It
is harmless for some minor operations, but for actions like
reflink we may rotate tree many times and cause the credits
increase dramatically. So this patch try to only increase
the desired credits.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
During CoW, if the old extent record is refcounted, we allocate
som new clusters and do CoW. Actually we can have some improvement
here. If the old extent has refcount=1, that means now it is only
used by this file. So we don't need to allocate new clusters, just
remove the refcounted flag and it is OK. We also have to remove
it from the refcount tree while not deleting it.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
This patch try CoW support for a refcounted record.
the whole process will be:
1. Calculate how many clusters we need to CoW and where we start.
Extents that are not completely encompassed by the write will
be broken on 1MB boundaries.
2. Do CoW for the clusters with the help of page cache.
3. Change the b-tree structure with the new allocated clusters.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Add 'Decrement refcount for delete' in to the normal truncate
process. So for a refcounted extent record, call refcount rec
decrementation instead of cluster free.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Given a physical cpos and length, decrement the refcount
in the tree. If the refcount for any portion of the extent goes
to zero, that portion is queued for freeing.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Now fs/ocfs2/alloc.c has more than 7000 lines. It contains our
basic b-tree operation. Although we have already make our b-tree
operation generic, the basic structrue ocfs2_path which is used
to iterate one b-tree branch is still static and limited to only
used in alloc.c. As refcount tree need them and I don't want to
add any more b-tree unrelated code to alloc.c, export them out.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Add refcount b-tree as a new extent tree so that it can
use the b-tree to store and maniuplate ocfs2_refcount_rec.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
ocfs2_mark_extent_written actually does the following things:
1. check the parameters.
2. initialize the left_path and split_rec.
3. call __ocfs2_mark_extent_written. it will do:
1) check the flags of unwritten
2) do the real split work.
The whole process is packed tightly somehow. So this patch
will abstract 2 different functions so that future b-tree
operation can work with it.
1. __ocfs2_split_extent will accept path and split_rec and do
the real split work.
2. ocfs2_change_extent_flag will accept a new flag and initialize
path and split_rec.
So now ocfs2_mark_extent_written will do:
1. check the parameters.
2. call ocfs2_change_extent_flag.
1) initalize the left_path and split_rec.
2) check whether the new flags conflict with the old one.
3) call __ocfs2_split_extent to do the split.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Add a new operation eo_ocfs2_extent_contig int the extent tree's
operations vector. So that with the new refcount tree, We want
this so that refcount trees can always return CONTIG_NONE and
prevent extent merging.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
With this commit, extent tree operations are divorced from inodes and
rely on ocfs2_caching_info. Phew!
Signed-off-by: Joel Becker <joel.becker@oracle.com>
We only allow unwritten extents on data, so the toplevel
ocfs2_mark_extent_written() can use an inode all it wants. But the
subfunction isn't even using the inode argument.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
ocfs2_insert_extent() wants to insert a record into the extent map if
it's an inode data extent. But since many btrees can call that
function, let's make it an op on ocfs2_extent_tree. Other tree types
can leave it empty.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
ocfs2_remove_extent() wants to truncate the extent map if it's
truncating an inode data extent. But since many btrees can call that
function, let's make it an op on ocfs2_extent_tree. Other tree types
can leave it empty.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
ocfs2_grow_branch() not really using it other than to pass it to the
subfunctions ocfs2_shift_tree_depth(), ocfs2_find_branch_target(), and
ocfs2_add_branch(). The first two weren't it either, so they drop the
argument. ocfs2_add_branch() only passed it to
ocfs2_adjust_rightmost_branch(), which drops the inode argument and uses
the ocfs2_extent_tree as well.
ocfs2_append_rec_to_path() can be take an ocfs2_extent_tree instead of
the inode. The function ocfs2_adjust_rightmost_records() goes along for
the ride.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
It already gets ocfs2_extent_tree, so we can just use that. This chains
to the same modification for ocfs2_remove_rightmost_path() and
ocfs2_rotate_rightmost_leaf_left().
Signed-off-by: Joel Becker <joel.becker@oracle.com>
It already has struct ocfs2_extent_tree, which has the caching info. So
we don't need to pass it struct inode.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
It already has struct ocfs2_extent_tree, which has the caching info. So
we don't need to pass it struct inode.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Get rid of the inode argument. Use extent_tree instead. This means a
few more functions have to pass an extent_tree around.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Pass the ocfs2_extent_list down through ocfs2_rotate_tree_right() and
get rid of struct inode in ocfs2_rotate_subtree_root_right().
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Pass struct ocfs2_extent_tree into ocfs2_create_new_meta_bhs(). It no
longer needs struct inode or ocfs2_super.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
ocfs2_find_path and ocfs2_find_leaf() walk our btrees, reading extent
blocks. They need struct ocfs2_caching_info for that, but not struct
inode.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
extent blocks belong to btrees on more than just inodes, so we want to
pass the ocfs2_caching_info structure directly to
ocfs2_read_extent_block(). A number of places in alloc.c can now drop
struct inode from their argument list.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
What do we cache? Metadata blocks. What are most of our non-inode metadata
blocks? Extent blocks for our btrees. struct ocfs2_extent_tree is the
main structure for managing those. So let's store the associated
ocfs2_caching_info there.
This means that ocfs2_et_root_journal_access() doesn't need struct inode
anymore, and any place that has an et can refer to et->et_ci instead of
INODE_CACHE(inode).
Signed-off-by: Joel Becker <joel.becker@oracle.com>
The next step in divorcing metadata I/O management from struct inode is
to pass struct ocfs2_caching_info to the journal functions. Thus the
journal locks a metadata cache with the cache io_lock function. It also
can compare ci_last_trans and ci_created_trans directly.
This is a large patch because of all the places we change
ocfs2_journal_access..(handle, inode, ...) to
ocfs2_journal_access..(handle, INODE_CACHE(inode), ...).
Signed-off-by: Joel Becker <joel.becker@oracle.com>
We are really passing the inode into the ocfs2_read/write_blocks()
functions to get at the metadata cache. This commit passes the cache
directly into the metadata block functions, divorcing them from the
inode.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
In ocfs2_do_truncate, we forget to release last_eb_bh which
will cause memleak. So call brelse in the end.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
In ocfs2_adjust_adjacent_records, we will adjust adjacent records
according to the extent_list in the lower level. But actually
the lower level tree will either be a leaf or a branch. If we only
use ocfs2_is_empty_extent we will meet with some problem if the lower
tree is a branch (tree_depth > 1). So use !ocfs2_rec_clusters instead.
And actually only the leaf record can have holes. So add a BUG_ON
for non-leaf branch.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
In normal tree rotation left process, we will never touch the tree
branch above subtree_index and ocfs2_extend_rotate_transaction doesn't
reserve the credits for them either.
But when we want to delete the rightmost extent block, we have to update
the rightmost records for all the rightmost branch(See
ocfs2_update_edge_lengths), so we have to allocate extra credits for them.
What's more, we have to access them also.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
In ocfs2_add_branch, we use the rightmost rec of the leaf extent block
to generate the e_cpos for the newly added branch. In the most case, it
is OK but if the parent extent block's rightmost rec covers more clusters
than the leaf does, it will cause kernel panic if we insert some clusters
in it. The message is something like:
(7445,1):ocfs2_insert_at_leaf:3775 ERROR: bug expression:
le16_to_cpu(el->l_next_free_rec) >= le16_to_cpu(el->l_count)
(7445,1):ocfs2_insert_at_leaf:3775 ERROR: inode 66053, depth 0, count 28,
next free 28, rec.cpos 270, rec.clusters 1, insert.cpos 275, insert.clusters 1
[<fa7ad565>] ? ocfs2_do_insert_extent+0xb58/0xda0 [ocfs2]
[<fa7b08f2>] ? ocfs2_insert_extent+0x5bd/0x6ba [ocfs2]
[<fa7b1b8b>] ? ocfs2_add_clusters_in_btree+0x37f/0x564 [ocfs2]
...
The panic can be easily reproduced by the following small test case
(with bs=512, cs=4K, and I remove all the error handling so that it looks
clear enough for reading).
int main(int argc, char **argv)
{
int fd, i;
char buf[5] = "test";
fd = open(argv[1], O_RDWR|O_CREAT);
for (i = 0; i < 30; i++) {
lseek(fd, 40960 * i, SEEK_SET);
write(fd, buf, 5);
}
ftruncate(fd, 1146880);
lseek(fd, 1126400, SEEK_SET);
write(fd, buf, 5);
close(fd);
return 0;
}
The reason of the panic is that:
the 30 writes and the ftruncate makes the file's extent list looks like:
Tree Depth: 1 Count: 19 Next Free Rec: 1
## Offset Clusters Block#
0 0 280 86183
SubAlloc Bit: 7 SubAlloc Slot: 0
Blknum: 86183 Next Leaf: 0
CRC32: 00000000 ECC: 0000
Tree Depth: 0 Count: 28 Next Free Rec: 28
## Offset Clusters Block# Flags
0 0 1 143368 0x0
1 10 1 143376 0x0
...
26 260 1 143576 0x0
27 270 1 143584 0x0
Now another write at 1126400(275 cluster) whiich will write at the gap
between 271 and 280 will trigger ocfs2_add_branch, but the result after
the function looks like:
Tree Depth: 1 Count: 19 Next Free Rec: 2
## Offset Clusters Block#
0 0 280 86183
1 271 0 143592
So the extent record is intersected and make the following operation bug out.
This patch just try to remove the gap before we add the new branch, so that
the root(branch) rightmost rec will cover the same right position. So in the
above case, before adding branch the tree will be changed to
Tree Depth: 1 Count: 19 Next Free Rec: 1
## Offset Clusters Block#
0 0 271 86183
SubAlloc Bit: 7 SubAlloc Slot: 0
Blknum: 86183 Next Leaf: 0
CRC32: 00000000 ECC: 0000
Tree Depth: 0 Count: 28 Next Free Rec: 28
## Offset Clusters Block# Flags
0 0 1 143368 0x0
1 10 1 143376 0x0
...
26 260 1 143576 0x0
27 270 1 143584 0x0
And after branch add, the tree looks like
Tree Depth: 1 Count: 19 Next Free Rec: 2
## Offset Clusters Block#
0 0 271 86183
1 271 0 143592
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Acked-by: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
This patch makes use of Ocfs2's flexible btree code to add an additional
tree to directory inodes. The new tree stores an array of small,
fixed-length records in each leaf block. Each record stores a hash value,
and pointer to a block in the traditional (unindexed) directory tree where a
dirent with the given name hash resides. Lookup exclusively uses this tree
to find dirents, thus providing us with constant time name lookups.
Some of the hashing code was copied from ext3. Unfortunately, it has lots of
unfixed checkpatch errors. I left that as-is so that tracking changes would
be easier.
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Acked-by: Joel Becker <joel.becker@oracle.com>
We need to use le32_to_cpu to test rec->e_cpos in
ocfs2_dinode_insert_check.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Acked-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
In __ocfs2_mark_extent_written, when we meet with the situation
of c_split_covers_rec, the old solution just replace the extent
record and forget to access and dirty the buffer_head. This will
cause a problem when the unwritten extent is in an extent block.
So access and dirty it.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
We weren't reclaiming the clusters which get free'd from this function,
so any user punching holes in a file would still have those bytes accounted
against him/her. Add the call to vfs_dq_free_space_nodirty() to fix this.
Interestingly enough, the journal credits calculation already took this into
account.
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Acked-by: Jan Kara <jack@suse.cz>
In commit "ocfs2: Use metadata-specific ocfs2_journal_access_*()
functions", the wrong buffer_head is accessed. So change it
to the right buffer_head.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Acked-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>