Improve performance of the sske operation by using the nonquiescing
variant if the affected page has no mappings established. On machines
with no support for the new sske variant the mask bit will be ignored.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Linus asked for a cleanup of __page_set_anon_rmap to make
it look more like the cleaner huge pages version.
Factor out the duplicated PageAnon check into a single check
at the beginning of the function.
Remove obsolete comments and rewrite them into standard English.
No functional changes.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
2.6.36-rc1 commit 21d0d443cd "rmap:
resurrect page_address_in_vma anon_vma check" was right to resurrect
that check; but now that it's comparing anon_vma->roots instead of
just anon_vmas, there's a danger of oopsing on a NULL anon_vma.
In most cases no NULL anon_vma ever gets here; but it turns out that
occasionally KSM, when enabled on a forked or forking process, will
itself call page_address_in_vma() on a "half-KSM" page left over from
an earlier failed attempt to merge - whose page_anon_vma() is NULL.
It's my bug that those should be getting here at all: I thought they
were already dealt with, this oops proves me wrong, I'll fix it in
the next release - such pages are effectively pinned until their
process exits, since rmap cannot find their ptes (though swapoff can).
For now just work around it by making page_address_in_vma() safe (and
add a comment on why that check is wanted anyway). A similar check
in __page_check_anon_rmap() is safe because do_page_add_anon_rmap()
already excluded KSM pages.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Confirming page lock is held in hugetlb_add_anon_rmap() may be useful
to detect possible future problems.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch applies Andrea's fix given by the following patch into hugepage
rmapping code:
commit 288468c334
Author: Andrea Arcangeli <aarcange@redhat.com>
Date: Mon Aug 9 17:19:09 2010 -0700
This patch uses anon_vma->root and avoids unnecessary overwriting when
anon_vma is already set up.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After several hours, kbuild tests hang with anon_vma_prepare() spinning on
a newly allocated anon_vma's lock - on a box with CONFIG_TREE_PREEMPT_RCU=y
(which makes this very much more likely, but it could happen without).
The ever-subtle page_lock_anon_vma() now needs a further twist: since
anon_vma_prepare() and anon_vma_fork() are liable to change the ->root
of a reused anon_vma structure at any moment, page_lock_anon_vma()
needs to check page_mapped() again before succeeding, otherwise
page_unlock_anon_vma() might address a different root->lock.
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch adds reverse mapping feature for hugepage by introducing
mapcount for shared/private-mapped hugepage and anon_vma for
private-mapped hugepage.
While hugepage is not currently swappable, reverse mapping can be useful
for memory error handler.
Without this patch, memory error handler cannot identify processes
using the bad hugepage nor unmap it from them. That is:
- for shared hugepage:
we can collect processes using a hugepage through pagecache,
but can not unmap the hugepage because of the lack of mapcount.
- for privately mapped hugepage:
we can neither collect processes nor unmap the hugepage.
This patch solves these problems.
This patch include the bug fix given by commit 23be7468e8, so reverts it.
Dependency:
"hugetlb: move definition of is_vm_hugetlb_page() to hugepage_inline.h"
ChangeLog since May 24.
- create hugetlb_inline.h and move is_vm_hugetlb_index() in it.
- move functions setting up anon_vma for hugepage into mm/rmap.c.
ChangeLog since May 13.
- rebased to 2.6.34
- fix logic error (in case that private mapping and shared mapping coexist)
- move is_vm_hugetlb_page() into include/linux/mm.h to use this function
from linear_page_index()
- define and use linear_hugepage_index() instead of compound_order()
- use page_move_anon_rmap() in hugetlb_cow()
- copy exclusive switch of __set_page_anon_rmap() into hugepage counterpart.
- revert commit 24be7468 completely
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Acked-by: Fengguang Wu <fengguang.wu@intel.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
On swapin it is fairly common for a page to be owned exclusively by one
process. In that case we want to add the page to the anon_vma of that
process's VMA, instead of to the root anon_vma.
This will reduce the amount of rmap searching that the swapout code needs
to do.
Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Verify the refcounting doesn't go wrong, and resurrect the check in
__page_check_anon_rmap as in old anon-vma code.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With root anon-vma it's trivial to keep doing the usual check as in
old-anon-vma code.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Always use anon_vma->root pointer instead of anon_vma_chain.prev.
Also optimize the map-paths, if a mapping is already established no need
to overwrite it with root anon-vma list, we can keep the more finegrined
anon-vma and skip the overwrite: see the PageAnon check in !exclusive
case. This is also the optimization that hidden the ksm bug as this tends
to make ksm_might_need_to_copy skip the copy, but only the proper fix to
ksm_might_need_to_copy guarantees not triggering the ksm bug unless ksm is
in use. this is an optimization only...
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
[kamezawa.hiroyu@jp.fujitsu.com: fix false positive BUG_ON in __page_set_anon_rmap]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make sure to always add new VMAs at the end of the list. This is
important so rmap_walk does not miss a VMA that was created during the
rmap_walk.
The old code got this right most of the time due to luck, but was buggy
when anon_vma_prepare reused a mergeable anon_vma.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
KSM reference counts can cause an anon_vma to exist after the processe it
belongs to have already exited. Because the anon_vma lock now lives in
the root anon_vma, we need to ensure that the root anon_vma stays around
until after all the "child" anon_vmas have been freed.
The obvious way to do this is to have a "child" anon_vma take a reference
to the root in anon_vma_fork. When the anon_vma is freed at munmap or
process exit, we drop the refcount in anon_vma_unlink and possibly free
the root anon_vma.
The KSM anon_vma reference count function also needs to be modified to
deal with the possibility of freeing 2 levels of anon_vma. The easiest
way to do this is to break out the KSM magic and make it generic.
When compiling without CONFIG_KSM, this code is compiled out.
Signed-off-by: Rik van Riel <riel@redhat.com>
Tested-by: Larry Woodman <lwoodman@redhat.com>
Acked-by: Larry Woodman <lwoodman@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Tested-by: Dave Young <hidave.darkstar@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Track the root (oldest) anon_vma in each anon_vma tree. Because we only
take the lock on the root anon_vma, we cannot use the lock on higher-up
anon_vmas to lock anything. This makes it impossible to do an indirect
lookup of the root anon_vma, since the data structures could go away from
under us.
However, a direct pointer is safe because the root anon_vma is always the
last one that gets freed on munmap or exit, by virtue of the same_vma list
order and unlink_anon_vmas walking the list forward.
[akpm@linux-foundation.org: fix typo]
Signed-off-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Tested-by: Larry Woodman <lwoodman@redhat.com>
Acked-by: Larry Woodman <lwoodman@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Subsitute a direct call of spin_lock(anon_vma->lock) with an inline
function doing exactly the same.
This makes it easier to do the substitution to the root anon_vma lock in a
following patch.
We will deal with the handful of special locks (nested, dec_and_lock, etc)
separately.
Signed-off-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Tested-by: Larry Woodman <lwoodman@redhat.com>
Acked-by: Larry Woodman <lwoodman@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Page migration requires rmap to be able to find all ptes mapping a page
at all times, otherwise the migration entry can be instantiated, but it
is possible to leave one behind if the second rmap_walk fails to find
the page. If this page is later faulted, migration_entry_to_page() will
call BUG because the page is locked indicating the page was migrated by
the migration PTE not cleaned up. For example
kernel BUG at include/linux/swapops.h:105!
invalid opcode: 0000 [#1] PREEMPT SMP
...
Call Trace:
[<ffffffff810e951a>] handle_mm_fault+0x3f8/0x76a
[<ffffffff8130c7a2>] do_page_fault+0x44a/0x46e
[<ffffffff813099b5>] page_fault+0x25/0x30
[<ffffffff8114de33>] load_elf_binary+0x152a/0x192b
[<ffffffff8111329b>] search_binary_handler+0x173/0x313
[<ffffffff81114896>] do_execve+0x219/0x30a
[<ffffffff8100a5c6>] sys_execve+0x43/0x5e
[<ffffffff8100320a>] stub_execve+0x6a/0xc0
RIP [<ffffffff811094ff>] migration_entry_wait+0xc1/0x129
There is a race between shift_arg_pages and migration that triggers this
bug. A temporary stack is setup during exec and later moved. If
migration moves a page in the temporary stack and the VMA is then removed
before migration completes, the migration PTE may not be found leading to
a BUG when the stack is faulted.
This patch causes pages within the temporary stack during exec to be
skipped by migration. It does this by marking the VMA covering the
temporary stack with an otherwise impossible combination of VMA flags.
These flags are cleared when the temporary stack is moved to its final
location.
[kamezawa.hiroyu@jp.fujitsu.com: idea for having migration skip temporary stacks]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For clarity of review, KSM and page migration have separate refcounts on
the anon_vma. While clear, this is a waste of memory. This patch gets
KSM and page migration to share their toys in a spirit of harmony.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patchset is a memory compaction mechanism that reduces external
fragmentation memory by moving GFP_MOVABLE pages to a fewer number of
pageblocks. The term "compaction" was chosen as there are is a number of
mechanisms that are not mutually exclusive that can be used to defragment
memory. For example, lumpy reclaim is a form of defragmentation as was
slub "defragmentation" (really a form of targeted reclaim). Hence, this
is called "compaction" to distinguish it from other forms of
defragmentation.
In this implementation, a full compaction run involves two scanners
operating within a zone - a migration and a free scanner. The migration
scanner starts at the beginning of a zone and finds all movable pages
within one pageblock_nr_pages-sized area and isolates them on a
migratepages list. The free scanner begins at the end of the zone and
searches on a per-area basis for enough free pages to migrate all the
pages on the migratepages list. As each area is respectively migrated or
exhausted of free pages, the scanners are advanced one area. A compaction
run completes within a zone when the two scanners meet.
This method is a bit primitive but is easy to understand and greater
sophistication would require maintenance of counters on a per-pageblock
basis. This would have a big impact on allocator fast-paths to improve
compaction which is a poor trade-off.
It also does not try relocate virtually contiguous pages to be physically
contiguous. However, assuming transparent hugepages were in use, a
hypothetical khugepaged might reuse compaction code to isolate free pages,
split them and relocate userspace pages for promotion.
Memory compaction can be triggered in one of three ways. It may be
triggered explicitly by writing any value to /proc/sys/vm/compact_memory
and compacting all of memory. It can be triggered on a per-node basis by
writing any value to /sys/devices/system/node/nodeN/compact where N is the
node ID to be compacted. When a process fails to allocate a high-order
page, it may compact memory in an attempt to satisfy the allocation
instead of entering direct reclaim. Explicit compaction does not finish
until the two scanners meet and direct compaction ends if a suitable page
becomes available that would meet watermarks.
The series is in 14 patches. The first three are not "core" to the series
but are important pre-requisites.
Patch 1 reference counts anon_vma for rmap_walk_anon(). Without this
patch, it's possible to use anon_vma after free if the caller is
not holding a VMA or mmap_sem for the pages in question. While
there should be no existing user that causes this problem,
it's a requirement for memory compaction to be stable. The patch
is at the start of the series for bisection reasons.
Patch 2 merges the KSM and migrate counts. It could be merged with patch 1
but would be slightly harder to review.
Patch 3 skips over unmapped anon pages during migration as there are no
guarantees about the anon_vma existing. There is a window between
when a page was isolated and migration started during which anon_vma
could disappear.
Patch 4 notes that PageSwapCache pages can still be migrated even if they
are unmapped.
Patch 5 allows CONFIG_MIGRATION to be set without CONFIG_NUMA
Patch 6 exports a "unusable free space index" via debugfs. It's
a measure of external fragmentation that takes the size of the
allocation request into account. It can also be calculated from
userspace so can be dropped if requested
Patch 7 exports a "fragmentation index" which only has meaning when an
allocation request fails. It determines if an allocation failure
would be due to a lack of memory or external fragmentation.
Patch 8 moves the definition for LRU isolation modes for use by compaction
Patch 9 is the compaction mechanism although it's unreachable at this point
Patch 10 adds a means of compacting all of memory with a proc trgger
Patch 11 adds a means of compacting a specific node with a sysfs trigger
Patch 12 adds "direct compaction" before "direct reclaim" if it is
determined there is a good chance of success.
Patch 13 adds a sysctl that allows tuning of the threshold at which the
kernel will compact or direct reclaim
Patch 14 temporarily disables compaction if an allocation failure occurs
after compaction.
Testing of compaction was in three stages. For the test, debugging,
preempt, the sleep watchdog and lockdep were all enabled but nothing nasty
popped out. min_free_kbytes was tuned as recommended by hugeadm to help
fragmentation avoidance and high-order allocations. It was tested on X86,
X86-64 and PPC64.
Ths first test represents one of the easiest cases that can be faced for
lumpy reclaim or memory compaction.
1. Machine freshly booted and configured for hugepage usage with
a) hugeadm --create-global-mounts
b) hugeadm --pool-pages-max DEFAULT:8G
c) hugeadm --set-recommended-min_free_kbytes
d) hugeadm --set-recommended-shmmax
The min_free_kbytes here is important. Anti-fragmentation works best
when pageblocks don't mix. hugeadm knows how to calculate a value that
will significantly reduce the worst of external-fragmentation-related
events as reported by the mm_page_alloc_extfrag tracepoint.
2. Load up memory
a) Start updatedb
b) Create in parallel a X files of pagesize*128 in size. Wait
until files are created. By parallel, I mean that 4096 instances
of dd were launched, one after the other using &. The crude
objective being to mix filesystem metadata allocations with
the buffer cache.
c) Delete every second file so that pageblocks are likely to
have holes
d) kill updatedb if it's still running
At this point, the system is quiet, memory is full but it's full with
clean filesystem metadata and clean buffer cache that is unmapped.
This is readily migrated or discarded so you'd expect lumpy reclaim
to have no significant advantage over compaction but this is at
the POC stage.
3. In increments, attempt to allocate 5% of memory as hugepages.
Measure how long it took, how successful it was, how many
direct reclaims took place and how how many compactions. Note
the compaction figures might not fully add up as compactions
can take place for orders other than the hugepage size
X86 vanilla compaction
Final page count 913 916 (attempted 1002)
pages reclaimed 68296 9791
X86-64 vanilla compaction
Final page count: 901 902 (attempted 1002)
Total pages reclaimed: 112599 53234
PPC64 vanilla compaction
Final page count: 93 94 (attempted 110)
Total pages reclaimed: 103216 61838
There was not a dramatic improvement in success rates but it wouldn't be
expected in this case either. What was important is that fewer pages were
reclaimed in all cases reducing the amount of IO required to satisfy a
huge page allocation.
The second tests were all performance related - kernbench, netperf, iozone
and sysbench. None showed anything too remarkable.
The last test was a high-order allocation stress test. Many kernel
compiles are started to fill memory with a pressured mix of unmovable and
movable allocations. During this, an attempt is made to allocate 90% of
memory as huge pages - one at a time with small delays between attempts to
avoid flooding the IO queue.
vanilla compaction
Percentage of request allocated X86 98 99
Percentage of request allocated X86-64 95 98
Percentage of request allocated PPC64 55 70
This patch:
rmap_walk_anon() does not use page_lock_anon_vma() for looking up and
locking an anon_vma and it does not appear to have sufficient locking to
ensure the anon_vma does not disappear from under it.
This patch copies an approach used by KSM to take a reference on the
anon_vma while pages are being migrated. This should prevent rmap_walk()
running into nasty surprises later because anon_vma has been freed.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently page_address_in_vma() compares vma->anon_vma and
page_anon_vma(page) for parameter check, but in 2.6.34 a vma can have
multiple anon_vmas with anon_vma_chain, so current check does not work.
(For anonymous page shared by multiple processes, some verified (page,vma)
pairs return -EFAULT wrongly.)
We can go to checking all anon_vmas in the "same_vma" chain, but it needs
to meet lock requirement. Instead, we can remove anon_vma check safely
because page_address_in_vma() assumes that page and vma are already
checked to belong to the identical process.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If find_mergeable_anon_vma() succeeds but another thread installs
->anon_vma before we take ptl, then allocated == NULL but avc should be
freed. Change the code to check avc != NULL to detect this case.
Also, a couple of whitespace changes to make the critical section more
visible.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Pete Zaitcev <zaitcev@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The recent anon_vma fixes cause many anonymous pages to end up
in the parent process anon_vma, even when the page is exclusively
owned by the current process.
Adding exclusively owned anonymous pages to the top anon_vma
reduces rmap scanning overhead, especially in workloads with
forking servers.
This patch adds a parameter to __page_set_anon_rmap that can
be used to indicate whether or not the added page is exclusively
owned by the current process.
Pages added through page_add_new_anon_rmap are exclusively
owned by the current process, and can be added to the top
anon_vma.
Pages added through page_add_anon_rmap can be either shared
or exclusively owned, so we do the conservative thing and
add it to the oldest anon_vma.
A next step would be to add the exclusive parameter to
page_add_anon_rmap, to be used from functions where we do
know for sure whether a page is exclusively owned.
Signed-off-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Lightly-tested-by: Borislav Petkov <bp@alien8.de>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
[ Edited to look nicer - Linus ]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Otherwise we might be mapping in a page in a new mapping, but that page
(through the swapcache) would later be mapped into an old mapping too.
The page->mapping must be the case that works for everybody, not just
the mapping that happened to page it in first.
Here's the scenario:
- page gets allocated/mapped by process A. Let's call the anon_vma we
associate the page with 'A' to keep it easy to track.
- Process A forks, creating process B. The anon_vma in B is 'B', and has
a chain that looks like 'B' -> 'A'. Everything is fine.
- Swapping happens. The page (with mapping pointing to 'A') gets swapped
out (perhaps not to disk - it's enough to assume that it's just not
mapped any more, and lives entirely in the swap-cache)
- Process B pages it in, which goes like this:
do_swap_page ->
page = lookup_swap_cache(entry);
...
set_pte_at(mm, address, page_table, pte);
page_add_anon_rmap(page, vma, address);
And think about what happens here!
In particular, what happens is that this will now be the "first"
mapping of that page, so page_add_anon_rmap() used to do
if (first)
__page_set_anon_rmap(page, vma, address);
and notice what anon_vma it will use? It will use the anon_vma for
process B!
What happens then? Trivial: process 'A' also pages it in (nothing
happens, it's not the first mapping), and then process 'B' execve's
or exits or unmaps, making anon_vma B go away.
End result: process A has a page that points to anon_vma B, but
anon_vma B does not exist any more. This can go on forever. Forget
about RCU grace periods, forget about locking, forget anything like
that. The bug is simply that page->mapping points to an anon_vma
that was correct at one point, but was _not_ the one that was shared
by all users of that possible mapping.
Changing it to always use the deepest anon_vma in the anonvma chain gets
us to the safest model.
This can be improved in certain cases: if we know the page is private to
just this particular mapping (for example, it's a new page, or it is the
only swapcache entry), we could pick the top (most specific) anon_vma.
But that's a future optimization. Make it _work_ reliably first.
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Tested-by: Borislav Petkov <bp@alien8.de> [ "What do you know, I think you fixed it!" ]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We want to walk the chain in reverse order when cloning it, so that the
order of the result chain will be the same as the order in the source
chain. When we add entries to the chain, they go at the head of the
chain, so we want to add the source head last.
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Tested-by: Borislav Petkov <bp@alien8.de> [ "No, it still oopses" ]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix a memory leak in anon_vma_fork(), where we fail to tear down the
anon_vmas attached to the new VMA in case setting up the new anon_vma
fails.
This bug also has the potential to leave behind anon_vma_chain structs
with pointers to invalid memory.
Reported-by: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The VM currently assumes that an inactive, mapped and referenced file page
is in use and promotes it to the active list.
However, every mapped file page starts out like this and thus a problem
arises when workloads create a stream of such pages that are used only for
a short time. By flooding the active list with those pages, the VM
quickly gets into trouble finding eligible reclaim canditates. The result
is long allocation latencies and eviction of the wrong pages.
This patch reuses the PG_referenced page flag (used for unmapped file
pages) to implement a usage detection that scales with the speed of LRU
list cycling (i.e. memory pressure).
If the scanner encounters those pages, the flag is set and the page cycled
again on the inactive list. Only if it returns with another page table
reference it is activated. Otherwise it is reclaimed as 'not recently
used cache'.
This effectively changes the minimum lifetime of a used-once mapped file
page from a full memory cycle to an inactive list cycle, which allows it
to occur in linear streams without affecting the stable working set of the
system.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: OSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When a VMA is in an inconsistent state during setup or teardown, the worst
that can happen is that the rmap code will not be able to find the page.
The mapping is in the process of being torn down (PTEs just got
invalidated by munmap), or set up (no PTEs have been instantiated yet).
It is also impossible for the rmap code to follow a pointer to an already
freed VMA, because the rmap code holds the anon_vma->lock, which the VMA
teardown code needs to take before the VMA is removed from the anon_vma
chain.
Hence, we should not need the VM_LOCK_RMAP locking at all.
Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When the parent process breaks the COW on a page, both the original which
is mapped at child and the new page which is mapped parent end up in that
same anon_vma. Generally this won't be a problem, but for some workloads
it could preserve the O(N) rmap scanning complexity.
A simple fix is to ensure that, when a page which is mapped child gets
reused in do_wp_page, because we already are the exclusive owner, the page
gets moved to our own exclusive child's anon_vma.
Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When an anonymous page is inherited from a parent process, the
vma->anon_vma can differ from the page anon_vma. This can trip up
__page_check_anon_rmap, which is indirectly called from do_swap_page().
Remove that obsolete check to prevent an oops.
Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The old anon_vma code can lead to scalability issues with heavily forking
workloads. Specifically, each anon_vma will be shared between the parent
process and all its child processes.
In a workload with 1000 child processes and a VMA with 1000 anonymous
pages per process that get COWed, this leads to a system with a million
anonymous pages in the same anon_vma, each of which is mapped in just one
of the 1000 processes. However, the current rmap code needs to walk them
all, leading to O(N) scanning complexity for each page.
This can result in systems where one CPU is walking the page tables of
1000 processes in page_referenced_one, while all other CPUs are stuck on
the anon_vma lock. This leads to catastrophic failure for a benchmark
like AIM7, where the total number of processes can reach in the tens of
thousands. Real workloads are still a factor 10 less process intensive
than AIM7, but they are catching up.
This patch changes the way anon_vmas and VMAs are linked, which allows us
to associate multiple anon_vmas with a VMA. At fork time, each child
process gets its own anon_vmas, in which its COWed pages will be
instantiated. The parents' anon_vma is also linked to the VMA, because
non-COWed pages could be present in any of the children.
This reduces rmap scanning complexity to O(1) for the pages of the 1000
child processes, with O(N) complexity for at most 1/N pages in the system.
This reduces the average scanning cost in heavily forking workloads from
O(N) to 2.
The only real complexity in this patch stems from the fact that linking a
VMA to anon_vmas now involves memory allocations. This means vma_adjust
can fail, if it needs to attach a VMA to anon_vma structures. This in
turn means error handling needs to be added to the calling functions.
A second source of complexity is that, because there can be multiple
anon_vmas, the anon_vma linking in vma_adjust can no longer be done under
"the" anon_vma lock. To prevent the rmap code from walking up an
incomplete VMA, this patch introduces the VM_LOCK_RMAP VMA flag. This bit
flag uses the same slot as the NOMMU VM_MAPPED_COPY, with an ifdef in mm.h
to make sure it is impossible to compile a kernel that needs both symbolic
values for the same bitflag.
Some test results:
Without the anon_vma changes, when AIM7 hits around 9.7k users (on a test
box with 16GB RAM and not quite enough IO), the system ends up running
>99% in system time, with every CPU on the same anon_vma lock in the
pageout code.
With these changes, AIM7 hits the cross-over point around 29.7k users.
This happens with ~99% IO wait time, there never seems to be any spike in
system time. The anon_vma lock contention appears to be resolved.
[akpm@linux-foundation.org: cleanups]
Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A frequent questions from users about memory management is what numbers of
swap ents are user for processes. And this information will give some
hints to oom-killer.
Besides we can count the number of swapents per a process by scanning
/proc/<pid>/smaps, this is very slow and not good for usual process
information handler which works like 'ps' or 'top'. (ps or top is now
enough slow..)
This patch adds a counter of swapents to mm_counter and update is at each
swap events. Information is exported via /proc/<pid>/status file as
[kamezawa@bluextal memory]$ cat /proc/self/status
Name: cat
State: R (running)
Tgid: 2910
Pid: 2910
PPid: 2823
TracerPid: 0
Uid: 500 500 500 500
Gid: 500 500 500 500
FDSize: 256
Groups: 500
VmPeak: 82696 kB
VmSize: 82696 kB
VmLck: 0 kB
VmHWM: 432 kB
VmRSS: 432 kB
VmData: 172 kB
VmStk: 84 kB
VmExe: 48 kB
VmLib: 1568 kB
VmPTE: 40 kB
VmSwap: 0 kB <=============== this.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Presently, per-mm statistics counter is defined by macro in sched.h
This patch modifies it to
- defined in mm.h as inlinf functions
- use array instead of macro's name creation.
This patch is for reducing patch size in future patch to modify
implementation of per-mm counter.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In global VM, FILE_MAPPED is used but memcg uses MAPPED_FILE. This makes
grep difficult. Replace memcg's MAPPED_FILE with FILE_MAPPED
And in global VM, mapped shared memory is accounted into FILE_MAPPED.
But memcg doesn't. fix it.
Note:
page_is_file_cache() just checks SwapBacked or not.
So, we need to check PageAnon.
Cc: Balbir Singh <balbir@in.ibm.com>
Reviewed-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
SWAP_MLOCK mean "We marked the page as PG_MLOCK, please move it to
unevictable-lru". So, following code is easy confusable.
if (vma->vm_flags & VM_LOCKED) {
ret = SWAP_MLOCK;
goto out_unmap;
}
Plus, if the VMA doesn't have VM_LOCKED, We don't need to check
the needed of calling mlock_vma_page().
Also, add some commentary to try_to_unmap_one().
Acked-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A side-effect of making ksm pages swappable is that they have to be placed
on the LRUs: which then exposes them to isolate_lru_page() and hence to
page migration.
Add rmap_walk() for remove_migration_ptes() to use: rmap_walk_anon() and
rmap_walk_file() in rmap.c, but rmap_walk_ksm() in ksm.c. Perhaps some
consolidation with existing code is possible, but don't attempt that yet
(try_to_unmap needs to handle nonlinears, but migration pte removal does
not).
rmap_walk() is sadly less general than it appears: rmap_walk_anon(), like
remove_anon_migration_ptes() which it replaces, avoids calling
page_lock_anon_vma(), because that includes a page_mapped() test which
fails when all migration ptes are in place. That was valid when NUMA page
migration was introduced (holding mmap_sem provided the missing guarantee
that anon_vma's slab had not already been destroyed), but I believe not
valid in the memory hotremove case added since.
For now do the same as before, and consider the best way to fix that
unlikely race later on. When fixed, we can probably use rmap_walk() on
hwpoisoned ksm pages too: for now, they remain among hwpoison's various
exceptions (its PageKsm test comes before the page is locked, but its
page_lock_anon_vma fails safely if an anon gets upgraded).
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Chris Wright <chrisw@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When ksm pages were unswappable, it made no sense to include them in mem
cgroup accounting; but now that they are swappable (although I see no
strict logical connection) the principle of least surprise implies that
they should be accounted (with the usual dissatisfaction, that a shared
page is accounted to only one of the cgroups using it).
This patch was intended to add mem cgroup accounting where necessary; but
turned inside out, it now avoids allocating a ksm page, instead upgrading
an anon page to ksm - which brings its existing mem cgroup accounting with
it. Thus mem cgroups don't appear in the patch at all.
This upgrade from PageAnon to PageKsm takes place under page lock (via a
somewhat hacky NULL kpage interface), and audit showed only one place
which needed to cope with the race - page_referenced() is sometimes used
without page lock, so page_lock_anon_vma() needs an ACCESS_ONCE() to be
sure of getting anon_vma and flags together (no problem if the page goes
ksm an instant after, the integrity of that anon_vma list is unaffected).
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Chris Wright <chrisw@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For full functionality, page_referenced_one() and try_to_unmap_one() need
to know the vma: to pass vma down to arch-dependent flushes, or to observe
VM_LOCKED or VM_EXEC. But KSM keeps no record of vma: nor can it, since
vmas get split and merged without its knowledge.
Instead, note page's anon_vma in its rmap_item when adding to stable tree:
all the vmas which might map that page are listed by its anon_vma.
page_referenced_ksm() and try_to_unmap_ksm() then traverse the anon_vma,
first to find the probable vma, that which matches rmap_item's mm; but if
that is not enough to locate all instances, traverse again to try the
others. This catches those occasions when fork has duplicated a pte of a
ksm page, but ksmd has not yet come around to assign it an rmap_item.
But each rmap_item in the stable tree which refers to an anon_vma needs to
take a reference to it. Andrea's anon_vma design cleverly avoided a
reference count (an anon_vma was free when its list of vmas was empty),
but KSM now needs to add that. Is a 32-bit count sufficient? I believe
so - the anon_vma is only free when both count is 0 and list is empty.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Chris Wright <chrisw@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Initial implementation for swapping out KSM's shared pages: add
page_referenced_ksm() and try_to_unmap_ksm(), which rmap.c calls when
faced with a PageKsm page.
Most of what's needed can be got from the rmap_items listed from the
stable_node of the ksm page, without discovering the actual vma: so in
this patch just fake up a struct vma for page_referenced_one() or
try_to_unmap_one(), then refine that in the next patch.
Add VM_NONLINEAR to ksm_madvise()'s list of exclusions: it has always been
implicit there (being only set with VM_SHARED, already excluded), but
let's make it explicit, to help justify the lack of nonlinear unmap.
Rely on the page lock to protect against concurrent modifications to that
page's node of the stable tree.
The awkward part is not swapout but swapin: do_swap_page() and
page_add_anon_rmap() now have to allow for new possibilities - perhaps a
ksm page still in swapcache, perhaps a swapcache page associated with one
location in one anon_vma now needed for another location or anon_vma.
(And the vma might even be no longer VM_MERGEABLE when that happens.)
ksm_might_need_to_copy() checks for that case, and supplies a duplicate
page when necessary, simply leaving it to a subsequent pass of ksmd to
rediscover the identity and merge them back into one ksm page.
Disappointingly primitive: but the alternative would have to accumulate
unswappable info about the swapped out ksm pages, limiting swappability.
Remove page_add_ksm_rmap(): page_add_anon_rmap() now has to allow for the
particular case it was handling, so just use it instead.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Chris Wright <chrisw@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
KSM swapping will know where page_referenced_one() and try_to_unmap_one()
should look. It could hack page->index to get them to do what it wants,
but it seems cleaner now to pass the address down to them.
Make the same change to page_mkclean_one(), since it follows the same
pattern; but there's no real need in its case.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove three degrees of obfuscation, left over from when we had
CONFIG_UNEVICTABLE_LRU. MLOCK_PAGES is CONFIG_HAVE_MLOCKED_PAGE_BIT is
CONFIG_HAVE_MLOCK is CONFIG_MMU. rmap.o (and memory-failure.o) are only
built when CONFIG_MMU, so don't need such conditions at all.
Somehow, I feel no compulsion to remove the CONFIG_HAVE_MLOCK* lines from
169 defconfigs: leave those to evolve in due course.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Nick Piggin <npiggin@suse.de>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There's contorted mlock/munlock handling in try_to_unmap_anon() and
try_to_unmap_file(), which we'd prefer not to repeat for KSM swapping.
Simplify it by moving it all down into try_to_unmap_one().
One thing is then lost, try_to_munlock()'s distinction between when no vma
holds the page mlocked, and when a vma does mlock it, but we could not get
mmap_sem to set the page flag. But its only caller takes no interest in
that distinction (and is better testing SWAP_MLOCK anyway), so let's keep
the code simple and return SWAP_AGAIN for both cases.
try_to_unmap_file()'s TTU_MUNLOCK nonlinear handling was particularly
amusing: once unravelled, it turns out to have been choosing between two
different ways of doing the same nothing. Ah, no, one way was actually
returning SWAP_FAIL when it meant to return SWAP_SUCCESS.
[kosaki.motohiro@jp.fujitsu.com: comment adding to mlocking in try_to_unmap_one]
[akpm@linux-foundation.org: remove test of MLOCK_PAGES]
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andi Kleen <andi@firstfloor.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
At present we define PageAnon(page) by the low PAGE_MAPPING_ANON bit set
in page->mapping, with the higher bits a pointer to the anon_vma; and have
defined PageKsm(page) as that with NULL anon_vma.
But KSM swapping will need to store a pointer there: so in preparation for
that, now define PAGE_MAPPING_FLAGS as the low two bits, including
PAGE_MAPPING_KSM (always set along with PAGE_MAPPING_ANON, until some
other use for the bit emerges).
Declare page_rmapping(page) to return the pointer part of page->mapping,
and page_anon_vma(page) to return the anon_vma pointer when that's what it
is. Use these in a few appropriate places: notably, unuse_vma() has been
testing page->mapping, but is better to be testing page_anon_vma() (cases
may be added in which flag bits are set without any pointer).
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When the code jumps to the `out', `referenced' is still zero. So there is
no need to check it.
Signed-off-by: Huang Shijie <shijie8@gmail.com>
Acked-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Just simplify the code when `mlocked' is true.
Signed-off-by: Huang Shijie <shijie8@gmail.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix the comment for try_to_unmap_anon() with the new arguments.
Signed-off-by: Huang Shijie <shijie8@gmail.com>
Acked-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Swap is duplicated (reference count incremented by one) whenever the same
swap page is inserted into another mm (when forking finds a swap entry in
place of a pte, or when reclaim unmaps a pte to insert the swap entry).
swap_info_struct's vmalloc'ed swap_map is the array of these reference
counts: but what happens when the unsigned short (or unsigned char since
the preceding patch) is full? (and its high bit is kept for a cache flag)
We then lose track of it, never freeing, leaving it in use until swapoff:
at which point we _hope_ that a single pass will have found all instances,
assume there are no more, and will lose user data if we're wrong.
Swapping of KSM pages has not yet been enabled; but it is implemented,
and makes it very easy for a user to overflow the maximum swap count:
possible with ordinary process pages, but unlikely, even when pid_max
has been raised from PID_MAX_DEFAULT.
This patch implements swap count continuations: when the count overflows,
a continuation page is allocated and linked to the original vmalloc'ed
map page, and this used to hold the continuation counts for that entry
and its neighbours. These continuation pages are seldom referenced:
the common paths all work on the original swap_map, only referring to
a continuation page when the low "digit" of a count is incremented or
decremented through SWAP_MAP_MAX.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The page_address_in_vma() is not only used in unuse_vma().
Signed-off-by: Huang Shijie <shijie8@gmail.com>
Acked-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'hwpoison' of git://git.kernel.org/pub/scm/linux/kernel/git/ak/linux-mce-2.6: (21 commits)
HWPOISON: Enable error_remove_page on btrfs
HWPOISON: Add simple debugfs interface to inject hwpoison on arbitary PFNs
HWPOISON: Add madvise() based injector for hardware poisoned pages v4
HWPOISON: Enable error_remove_page for NFS
HWPOISON: Enable .remove_error_page for migration aware file systems
HWPOISON: The high level memory error handler in the VM v7
HWPOISON: Add PR_MCE_KILL prctl to control early kill behaviour per process
HWPOISON: shmem: call set_page_dirty() with locked page
HWPOISON: Define a new error_remove_page address space op for async truncation
HWPOISON: Add invalidate_inode_page
HWPOISON: Refactor truncate to allow direct truncating of page v2
HWPOISON: check and isolate corrupted free pages v2
HWPOISON: Handle hardware poisoned pages in try_to_unmap
HWPOISON: Use bitmask/action code for try_to_unmap behaviour
HWPOISON: x86: Add VM_FAULT_HWPOISON handling to x86 page fault handler v2
HWPOISON: Add poison check to page fault handling
HWPOISON: Add basic support for poisoned pages in fault handler v3
HWPOISON: Add new SIGBUS error codes for hardware poison signals
HWPOISON: Add support for poison swap entries v2
HWPOISON: Export some rmap vma locking to outside world
...
page_dup_rmap(), used on each mapped page when forking, was originally
just an inline atomic_inc of mapcount. 2.6.22 added CONFIG_DEBUG_VM
out-of-line checks to it, which would need to be ever-so-slightly
complicated to allow for the PageKsm() we're about to define.
But I think these checks never caught anything. And if it's coding errors
we're worried about, such checks should be in page_remove_rmap() too, not
just when forking; whereas if it's pagetable corruption we're worried
about, then they shouldn't be limited to CONFIG_DEBUG_VM.
Oh, just revert page_dup_rmap() to an inline atomic_inc of mapcount.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: Chris Wright <chrisw@redhat.com>
Signed-off-by: Izik Eidus <ieidus@redhat.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Avi Kivity <avi@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add the high level memory handler that poisons pages
that got corrupted by hardware (typically by a two bit flip in a DIMM
or a cache) on the Linux level. The goal is to prevent everyone
from accessing these pages in the future.
This done at the VM level by marking a page hwpoisoned
and doing the appropriate action based on the type of page
it is.
The code that does this is portable and lives in mm/memory-failure.c
To quote the overview comment:
High level machine check handler. Handles pages reported by the
hardware as being corrupted usually due to a 2bit ECC memory or cache
failure.
This focuses on pages detected as corrupted in the background.
When the current CPU tries to consume corruption the currently
running process can just be killed directly instead. This implies
that if the error cannot be handled for some reason it's safe to
just ignore it because no corruption has been consumed yet. Instead
when that happens another machine check will happen.
Handles page cache pages in various states. The tricky part
here is that we can access any page asynchronous to other VM
users, because memory failures could happen anytime and anywhere,
possibly violating some of their assumptions. This is why this code
has to be extremely careful. Generally it tries to use normal locking
rules, as in get the standard locks, even if that means the
error handling takes potentially a long time.
Some of the operations here are somewhat inefficient and have non
linear algorithmic complexity, because the data structures have not
been optimized for this case. This is in particular the case
for the mapping from a vma to a process. Since this case is expected
to be rare we hope we can get away with this.
There are in principle two strategies to kill processes on poison:
- just unmap the data and wait for an actual reference before
killing
- kill as soon as corruption is detected.
Both have advantages and disadvantages and should be used
in different situations. Right now both are implemented and can
be switched with a new sysctl vm.memory_failure_early_kill
The default is early kill.
The patch does some rmap data structure walking on its own to collect
processes to kill. This is unusual because normally all rmap data structure
knowledge is in rmap.c only. I put it here for now to keep
everything together and rmap knowledge has been seeping out anyways
Includes contributions from Johannes Weiner, Chris Mason, Fengguang Wu,
Nick Piggin (who did a lot of great work) and others.
Cc: npiggin@suse.de
Cc: riel@redhat.com
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Hidehiro Kawai <hidehiro.kawai.ez@hitachi.com>
When a page has the poison bit set replace the PTE with a poison entry.
This causes the right error handling to be done later when a process runs
into it.
v2: add a new flag to not do that (needed for the memory-failure handler
later) (Fengguang)
v3: remove unnecessary is_migration_entry() test (Fengguang, Minchan)
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
try_to_unmap currently has multiple modi (migration, munlock, normal unmap)
which are selected by magic flag variables. The logic is not very straight
forward, because each of these flag change multiple behaviours (e.g.
migration turns off aging, not only sets up migration ptes etc.)
Also the different flags interact in magic ways.
A later patch in this series adds another mode to try_to_unmap, so
this becomes quickly unmanageable.
Replace the different flags with a action code (migration, munlock, munmap)
and some additional flags as modifiers (ignore mlock, ignore aging).
This makes the logic more straight forward and allows easier extension
to new behaviours. Change all the caller to declare what they want to
do.
This patch is supposed to be a nop in behaviour. If anyone can prove
it is not that would be a bug.
Cc: Lee.Schermerhorn@hp.com
Cc: npiggin@suse.de
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Needed for later patch that walks rmap entries on its own.
This used to be very frowned upon, but memory-failure.c does
some rather specialized rmap walking and rmap has been stable
for quite some time, so I think it's ok now to export it.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
An mlocked page might lose the isolatation race. This causes the page to
clear PG_mlocked while it remains in a VM_LOCKED vma. This means it can
be put onto the [in]active list. We can rescue it by using try_to_unmap()
in shrink_page_list().
But now, As Wu Fengguang pointed out, vmscan has a bug. If the page has
PG_referenced, it can't reach try_to_unmap() in shrink_page_list() but is
put into the active list. If the page is referenced repeatedly, it can
remain on the [in]active list without being moving to the unevictable
list.
This patch fixes it.
Reported-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: KOSAKI Motohiro <<kosaki.motohiro@jp.fujitsu.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add file RSS tracking per memory cgroup
We currently don't track file RSS, the RSS we report is actually anon RSS.
All the file mapped pages, come in through the page cache and get
accounted there. This patch adds support for accounting file RSS pages.
It should
1. Help improve the metrics reported by the memory resource controller
2. Will form the basis for a future shared memory accounting heuristic
that has been proposed by Kamezawa.
Unfortunately, we cannot rename the existing "rss" keyword used in
memory.stat to "anon_rss". We however, add "mapped_file" data and hope to
educate the end user through documentation.
[hugh.dickins@tiscali.co.uk: fix mem_cgroup_update_mapped_file_stat oops]
Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Li Zefan <lizf@cn.fujitsu.cn>
Cc: Paul Menage <menage@google.com>
Cc: Dhaval Giani <dhaval@linux.vnet.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Collect vma->vm_flags of the VMAs that actually referenced the page.
This is preparing for more informed reclaim heuristics, eg. to protect
executable file pages more aggressively. For now only the VM_EXEC bit
will be used by the caller.
Thanks to Johannes, Peter and Minchan for all the good tips.
Acked-by: Peter Zijlstra <peterz@infradead.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
My old address will shut down in a few days time: remove it from the tree,
and add a tmpfs (shmem filesystem) maintainer entry with the new address.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When I tested following program, I found that the mlocked counter
is strange. It cannot free some mlocked pages.
It is because try_to_unmap_file() doesn't check real
page mappings in vmas.
That is because the goal of an address_space for a file is to find all
processes into which the file's specific interval is mapped. It is
related to the file's interval, not to pages.
Even if the page isn't really mapped by the vma, it returns SWAP_MLOCK
since the vma has VM_LOCKED, then calls try_to_mlock_page. After this the
mlocked counter is increased again.
COWed anon page in a file-backed vma could be a such case. This patch
resolves it.
-- my test program --
int main()
{
mlockall(MCL_CURRENT);
return 0;
}
-- before --
root@barrios-target-linux:~# cat /proc/meminfo | egrep 'Mlo|Unev'
Unevictable: 0 kB
Mlocked: 0 kB
-- after --
root@barrios-target-linux:~# cat /proc/meminfo | egrep 'Mlo|Unev'
Unevictable: 8 kB
Mlocked: 8 kB
Signed-off-by: MinChan Kim <minchan.kim@gmail.com>
Acked-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Tested-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove page_remove_rmap()'s vma arg, which was only for the Eeek message.
And remove the BUG_ON(page_mapcount(page) == 0) from CONFIG_DEBUG_VM's
page_dup_rmap(): we're trying to be more resilient about that than BUGs.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that bad pages are kept out of circulation, there is no need for the
infamous page_remove_rmap() BUG() - once that page is freed, its negative
mapcount will issue a "Bad page state" message and the page won't be
freed. Removing the BUG() allows more info, on subsequent pages, to be
gathered.
We do have more info about the page at this point than bad_page() can know
- notably, what the pmd is, which might pinpoint something like low 64kB
corruption - but page_remove_rmap() isn't given the address to find that.
In practice, there is only one call to page_remove_rmap() which has ever
reported anything, that from zap_pte_range() (usually on exit, sometimes
on munmap). It has all the info, so remove page_remove_rmap()'s "Eeek"
message and leave it all to zap_pte_range().
mm/memory.c already has a hardly used print_bad_pte() function, showing
some of the appropriate info: extend it to show what we want for the rmap
case: pte info, page info (when there is a page) and vma info to compare.
zap_pte_range() already knows the pmd, but print_bad_pte() is easier to
use if it works that out for itself.
Some of this info is also shown in bad_page()'s "Bad page state" message.
Keep them separate, but adjust them to match each other as far as
possible. Say "Bad page map" in print_bad_pte(), and add a TAINT_BAD_PAGE
there too.
print_bad_pte() show current->comm unconditionally (though it should get
repeated in the usually irrelevant stack trace): sorry, I misled Nick
Piggin to make it conditional on vm_mm == current->mm, but current->mm is
already NULL in the exit case. Usually current->comm is good, though
exceptionally it may not be that of the mm (when "swapoff" for example).
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Moving lru_cache_add_active_or_unevictable() into page_add_new_anon_rmap()
was good but stupid: we can and should SetPageSwapBacked() there too; and
we know for sure that this anonymous, swap-backed page is not file cache.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
page_lock_anon_vma() and page_unlock_anon_vma() were made available to
show_page_path() in vmscan.c; but now that has been removed, make them
static in rmap.c again, they're better kept private if possible.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
lru_cache_add_active_or_unevictable() and page_add_new_anon_rmap() always
appear together. Save some symbol table space and some jumping around by
removing lru_cache_add_active_or_unevictable(), folding its code into
page_add_new_anon_rmap(): like how we add file pages to lru just after
adding them to page cache.
Remove the nearby "TODO: is this safe?" comments (yes, it is safe), and
change page_add_new_anon_rmap()'s address BUG_ON to VM_BUG_ON as
originally intended.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
File pages mapped only in sequentially read mappings are perfect reclaim
canditates.
This patch makes these mappings behave like weak references, their pages
will be reclaimed unless they have a strong reference from a normal
mapping as well.
It changes the reclaim and the unmap path where they check if the page has
been referenced. In both cases, accesses through sequentially read
mappings will be ignored.
Benchmark results from KOSAKI Motohiro:
http://marc.info/?l=linux-mm&m=122485301925098&w=2
Signed-off-by: Johannes Weiner <hannes@saeurebad.de>
Signed-off-by: Rik van Riel <riel@redhat.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
#ifdef in *.c file decrease source readability a bit. removing is better.
This patch doesn't have any functional change.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch makes the needlessly global anon_vma_cachep static.
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are not-on-LRU pages which can be mapped and they are not worth to
be accounted. (becasue we can't shrink them and need dirty codes to
handle specical case) We'd like to make use of usual objrmap/radix-tree's
protcol and don't want to account out-of-vm's control pages.
When special_mapping_fault() is called, page->mapping is tend to be NULL
and it's charged as Anonymous page. insert_page() also handles some
special pages from drivers.
This patch is for avoiding to account special pages.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch adds a function to scan individual or all zones' unevictable
lists and move any pages that have become evictable onto the respective
zone's inactive list, where shrink_inactive_list() will deal with them.
Adds sysctl to scan all nodes, and per node attributes to individual
nodes' zones.
Kosaki: If evictable page found in unevictable lru when write
/proc/sys/vm/scan_unevictable_pages, print filename and file offset of
these pages.
[akpm@linux-foundation.org: fix one CONFIG_MMU=n build error]
[kosaki.motohiro@jp.fujitsu.com: adapt vmscan-unevictable-lru-scan-sysctl.patch to new sysfs API]
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make sure that mlocked pages also live on the unevictable LRU, so kswapd
will not scan them over and over again.
This is achieved through various strategies:
1) add yet another page flag--PG_mlocked--to indicate that
the page is locked for efficient testing in vmscan and,
optionally, fault path. This allows early culling of
unevictable pages, preventing them from getting to
page_referenced()/try_to_unmap(). Also allows separate
accounting of mlock'd pages, as Nick's original patch
did.
Note: Nick's original mlock patch used a PG_mlocked
flag. I had removed this in favor of the PG_unevictable
flag + an mlock_count [new page struct member]. I
restored the PG_mlocked flag to eliminate the new
count field.
2) add the mlock/unevictable infrastructure to mm/mlock.c,
with internal APIs in mm/internal.h. This is a rework
of Nick's original patch to these files, taking into
account that mlocked pages are now kept on unevictable
LRU list.
3) update vmscan.c:page_evictable() to check PageMlocked()
and, if vma passed in, the vm_flags. Note that the vma
will only be passed in for new pages in the fault path;
and then only if the "cull unevictable pages in fault
path" patch is included.
4) add try_to_unlock() to rmap.c to walk a page's rmap and
ClearPageMlocked() if no other vmas have it mlocked.
Reuses as much of try_to_unmap() as possible. This
effectively replaces the use of one of the lru list links
as an mlock count. If this mechanism let's pages in mlocked
vmas leak through w/o PG_mlocked set [I don't know that it
does], we should catch them later in try_to_unmap(). One
hopes this will be rare, as it will be relatively expensive.
Original mm/internal.h, mm/rmap.c and mm/mlock.c changes:
Signed-off-by: Nick Piggin <npiggin@suse.de>
splitlru: introduce __get_user_pages():
New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS.
because current get_user_pages() can't grab PROT_NONE pages theresore it
cause PROT_NONE pages can't munlock.
[akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch]
[akpm@linux-foundation.org: untangle patch interdependencies]
[akpm@linux-foundation.org: fix things after out-of-order merging]
[hugh@veritas.com: fix page-flags mess]
[lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm']
[kosaki.motohiro@jp.fujitsu.com: build fix]
[kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments]
[kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The anon_vma code is very subtle, and we end up doing optimistic lookups
of anon_vmas under RCU in page_lock_anon_vma() with no locking. Other
CPU's can also see the newly allocated entry immediately after we've
exposed it by setting "vma->anon_vma" to the new value.
We protect against the anon_vma being destroyed by having the SLAB
marked as SLAB_DESTROY_BY_RCU, so the RCU lookup can depend on the
allocation not being destroyed - but it might still be free'd and
re-allocated here to a new vma.
As a result, we should not do the anon_vma list ops on a newly allocated
vma without proper locking.
Acked-by: Nick Piggin <npiggin@suse.de>
Acked-by: Hugh Dickins <hugh@veritas.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is a race with dirty page accounting where a page may not properly
be accounted for.
clear_page_dirty_for_io() calls page_mkclean; then TestClearPageDirty.
page_mkclean walks the rmaps for that page, and for each one it cleans and
write protects the pte if it was dirty. It uses page_check_address to
find the pte. That function has a shortcut to avoid the ptl if the pte is
not present. Unfortunately, the pte can be switched to not-present then
back to present by other code while holding the page table lock -- this
should not be a signal for page_mkclean to ignore that pte, because it may
be dirty.
For example, powerpc64's set_pte_at will clear a previously present pte
before setting it to the desired value. There may also be other code in
core mm or in arch which do similar things.
The consequence of the bug is loss of data integrity due to msync, and
loss of dirty page accounting accuracy. XIP's __xip_unmap could easily
also be unreliable (depending on the exact XIP locking scheme), which can
lead to data corruption.
Fix this by having an option to always take ptl to check the pte in
page_check_address.
It's possible to retain this optimization for page_referenced and
try_to_unmap.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Jared Hulbert <jaredeh@gmail.com>
Cc: Carsten Otte <cotte@freenet.de>
Cc: Hugh Dickins <hugh@veritas.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a comment to s390's page_test_dirty/page_clear_dirty/page_set_dirty
dance in page_remove_rmap(): I was wrong to think the PageSwapCache test
could be avoided, and would like a comment in there to remind me. And
mention s390, to help us remember that this block is not really common.
Also move down the "It would be tidy to reset PageAnon" comment: it does
not belong to s390's block, and it would be unwise to reset PageAnon
before we're done with testing it.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Converting page lock to new locking bitops requires a change of page flag
operation naming, so we might as well convert it to something nicer
(!TestSetPageLocked_Lock => trylock_page, SetPageLocked => set_page_locked).
This also facilitates lockdeping of page lock.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For anonymous pages without a swap cache backing the check in
page_remove_rmap for the physical dirty bit in page_remove_rmap is
unnecessary. The instructions that are used to check and reset the dirty
bit are expensive. Removing the check noticably speeds up process exit.
In addition the clearing of the dirty bit in __SetPageUptodate is
pointless as well. With these two changes there is no storage key
operation for an anonymous page anymore if it does not hit the swap
space.
The micro benchmark which repeatedly executes an empty shell script
gets about 5% faster.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Kmem cache passed to constructor is only needed for constructors that are
themselves multiplexeres. Nobody uses this "feature", nor does anybody uses
passed kmem cache in non-trivial way, so pass only pointer to object.
Non-trivial places are:
arch/powerpc/mm/init_64.c
arch/powerpc/mm/hugetlbpage.c
This is flag day, yes.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Acked-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jon Tollefson <kniht@linux.vnet.ibm.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Matt Mackall <mpm@selenic.com>
[akpm@linux-foundation.org: fix arch/powerpc/mm/hugetlbpage.c]
[akpm@linux-foundation.org: fix mm/slab.c]
[akpm@linux-foundation.org: fix ubifs]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Nothing in the tree uses nopage any more. Remove support for it in the
core mm code and documentation (and a few stray references to it in
comments).
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch changes the s390 memory management defintions to use the pgste field
for dirty and reference bit tracking of host and guest code. Usually on s390,
dirty and referenced are tracked in storage keys, which belong to the physical
page. This changes with virtualization: The guest and host dirty/reference bits
are defined to be the logical OR of the values for the mapping and the physical
page. This patch implements the necessary changes in pgtable.h for s390.
There is a common code change in mm/rmap.c, the call to
page_test_and_clear_young must be moved. This is a no-op for all
architecture but s390. page_referenced checks the referenced bits for
the physiscal page and for all mappings:
o The physical page is checked with page_test_and_clear_young.
o The mappings are checked with ptep_test_and_clear_young and friends.
Without pgstes (the current implementation on Linux s390) the physical page
check is implemented but the mapping callbacks are no-ops because dirty
and referenced are not tracked in the s390 page tables. The pgstes introduces
guest and host dirty and reference bits for s390 in the host mapping. These
mapping must be checked before page_test_and_clear_young resets the reference
bit.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Carsten Otte <cotte@de.ibm.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
Correct kernel-doc function names and parameters in rmap.c.
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
vm_match_cgroup is a perverse name for a macro to match mm with cgroup: rename
it mm_match_cgroup, matching mm_init_cgroup and mm_free_cgroup.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hirokazu Takahashi <taka@valinux.co.jp>
Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp>
Cc: Paul Menage <menage@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mm_cgroup() is exclusively used to test whether an mm's mem_cgroup pointer
is pointing to a specific cgroup. Instead of returning the pointer, we can
just do the test itself in a new macro:
vm_match_cgroup(mm, cgroup)
returns non-zero if the mm's mem_cgroup points to cgroup. Otherwise it
returns zero.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make page_referenced() cgroup aware. Without this patch, page_referenced()
can cause a page to be skipped while reclaiming pages. This patch ensures
that other cgroups do not hold pages in a particular cgroup hostage. It
is required to ensure that shared pages are freed from a cgroup when they
are not actively referenced from the cgroup that brought them in
Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Pavel Emelianov <xemul@openvz.org>
Cc: Paul Menage <menage@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Kirill Korotaev <dev@sw.ru>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: David Rientjes <rientjes@google.com>
Cc: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add the accounting hooks. The accounting is carried out for RSS and Page
Cache (unmapped) pages. There is now a common limit and accounting for both.
The RSS accounting is accounted at page_add_*_rmap() and page_remove_rmap()
time. Page cache is accounted at add_to_page_cache(),
__delete_from_page_cache(). Swap cache is also accounted for.
Each page's page_cgroup is protected with the last bit of the
page_cgroup pointer, this makes handling of race conditions involving
simultaneous mappings of a page easier. A reference count is kept in the
page_cgroup to deal with cases where a page might be unmapped from the RSS
of all tasks, but still lives in the page cache.
Credits go to Vaidyanathan Srinivasan for helping with reference counting work
of the page cgroup. Almost all of the page cache accounting code has help
from Vaidyanathan Srinivasan.
[hugh@veritas.com: fix swapoff breakage]
[akpm@linux-foundation.org: fix locking]
Signed-off-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Pavel Emelianov <xemul@openvz.org>
Cc: Paul Menage <menage@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Kirill Korotaev <dev@sw.ru>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: David Rientjes <rientjes@google.com>
Cc: <Valdis.Kletnieks@vt.edu>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
try_to_unmap always fails on a page found in a VM_LOCKED vma (unless
migrating), and recycles it back to the active list. But if it's an
anonymous page, we've already allocated swap to it: just wasting swap.
Spot locked pages in page_referenced_one and treat them as referenced.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Tested-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Ethan Solomita <solo@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Most pagecache (and some other) radix tree insertions have the great
opportunity to preallocate a few nodes with relaxed gfp flags. But the
preallocation is squandered when it comes time to allocate a node, we
default to first attempting a GFP_ATOMIC allocation -- that doesn't
normally fail, but it can eat into atomic memory reserves that we don't
need to be using.
Another upshot of this is that it removes the sometimes highly contended
zone->lock from underneath tree_lock. Pagecache insertions are always
performed with a radix tree preload, and after this change, such a
situation will never fall back to kmem_cache_alloc within
radix_tree_node_alloc.
David Miller reports seeing this allocation fail on a highly threaded
sparc64 system:
[527319.459981] dd: page allocation failure. order:0, mode:0x20
[527319.460403] Call Trace:
[527319.460568] [00000000004b71e0] __slab_alloc+0x1b0/0x6a8
[527319.460636] [00000000004b7bbc] kmem_cache_alloc+0x4c/0xa8
[527319.460698] [000000000055309c] radix_tree_node_alloc+0x20/0x90
[527319.460763] [0000000000553238] radix_tree_insert+0x12c/0x260
[527319.460830] [0000000000495cd0] add_to_page_cache+0x38/0xb0
[527319.460893] [00000000004e4794] mpage_readpages+0x6c/0x134
[527319.460955] [000000000049c7fc] __do_page_cache_readahead+0x170/0x280
[527319.461028] [000000000049cc88] ondemand_readahead+0x208/0x214
[527319.461094] [0000000000496018] do_generic_mapping_read+0xe8/0x428
[527319.461152] [0000000000497948] generic_file_aio_read+0x108/0x170
[527319.461217] [00000000004badac] do_sync_read+0x88/0xd0
[527319.461292] [00000000004bb5cc] vfs_read+0x78/0x10c
[527319.461361] [00000000004bb920] sys_read+0x34/0x60
[527319.461424] [0000000000406294] linux_sparc_syscall32+0x3c/0x40
The calltrace is significant: __do_page_cache_readahead allocates a number
of pages with GFP_KERNEL, and hence it should have reclaimed sufficient
memory to satisfy GFP_ATOMIC allocations. However after the list of pages
goes to mpage_readpages, there can be significant intervals (including disk
IO) before all the pages are inserted into the radix-tree. So the reserves
can easily be depleted at that point. The patch is confirmed to fix the
problem.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: "David S. Miller" <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
page_mkclean used to call page_clear_dirty for every given page. This
is different to all other architectures, where the dirty bit in the
PTEs is only resetted, if page_mapping() returns a non-NULL pointer.
We can move the page_test_dirty/page_clear_dirty sequence into the
2nd if to avoid unnecessary iske/sske sequences, which are expensive.
This change also helps kvm for s390 as the host must transfer the
dirty bit into the guest status bits. By moving the page_clear_dirty
operation into the 2nd if, the vm will only call page_clear_dirty
for pages where it walks the mapping anyway. There it calls
ptep_clear_flush for writable ptes, so we can transfer the dirty bit
to the guest.
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
We hit the BUG_ON() in mm/rmap.c:vma_address() when trying to migrate via
mbind(MPOL_MF_MOVE) a non-anon region that spans multiple vmas. For
anon-regions, we just fail to migrate any pages beyond the 1st vma in the
range.
This occurs because do_mbind() collects a list of pages to migrate by
calling check_range(). check_range() walks the task's mm, spanning vmas as
necessary, to collect the migratable pages into a list. Then, do_mbind()
calls migrate_pages() passing the list of pages, a function to allocate new
pages based on vma policy [new_vma_page()], and a pointer to the first vma
of the range.
For each page in the list, new_vma_page() calls page_address_in_vma()
passing the page and the vma [first in range] to obtain the address to get
for alloc_page_vma(). The page address is needed to get interleaving
policy correct. If the pages in the list come from multiple vmas,
eventually, new_page_address() will pass that page to page_address_in_vma()
with the incorrect vma. For !PageAnon pages, this will result in a bug
check in rmap.c:vma_address(). For anon pages, vma_address() will just
return EFAULT and fail the migration.
This patch modifies new_vma_page() to check the return value from
page_address_in_vma(). If the return value is EFAULT, new_vma_page()
searchs forward via vm_next for the vma that maps the page--i.e., that does
not return EFAULT. This assumes that the pages in the list handed to
migrate_pages() is in address order. This is currently case. The patch
documents this assumption in a new comment block for new_vma_page().
If new_vma_page() cannot locate the vma mapping the page in a forward
search in the mm, it will pass a NULL vma to alloc_page_vma(). This will
result in the allocation using the task policy, if any, else system default
policy. This situation is unlikely, but the patch documents this behavior
with a comment.
Note, this patch results in restarting from the first vma in a multi-vma
range each time new_vma_page() is called. If this is not acceptable, we
can make the vma argument a pointer, both in new_vma_page() and it's caller
unmap_and_move() so that the value held by the loop in migrate_pages()
always passes down the last vma in which a page was found. This will
require changes to all new_page_t functions passed to migrate_pages(). Is
this necessary?
For this patch to work, we can't bug check in vma_address() for pages
outside the argument vma. This patch removes the BUG_ON(). All other
callers [besides new_vma_page()] already check the return status.
Tested on x86_64, 4 node NUMA platform.
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
zone->lock is quite an "inner" lock and mostly constrained to page alloc as
well, so like slab locks, it probably isn't something that is critically
important to document here. However unlike slab locks, zone lock could be
used more widely in future, and page_alloc.c might possibly have more
business to do tricky things with pagecache than does slab. So... I don't
think it hurts to document it.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Slab constructors currently have a flags parameter that is never used. And
the order of the arguments is opposite to other slab functions. The object
pointer is placed before the kmem_cache pointer.
Convert
ctor(void *object, struct kmem_cache *s, unsigned long flags)
to
ctor(struct kmem_cache *s, void *object)
throughout the kernel
[akpm@linux-foundation.org: coupla fixes]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Current ia64 kernel flushes icache by lazy_mmu_prot_update() *after*
set_pte(). This is too late. This patch removes lazy_mmu_prot_update and
add modfied set_pte() for flushing if necessary.
This patch flush icache of a page when
new pte has exec bit.
&& new pte has present bit
&& new pte is user's page.
&& (old *ptep is not present
|| new pte's pfn is not same to old *ptep's ptn)
&& new pte's page has no Pg_arch_1 bit.
Pg_arch_1 is set when a page is cache consistent.
I think this condition checks are much easier to understand than considering
"Where sync_icache_dcache() should be inserted ?".
pte_user() for ia64 was removed by http://lkml.org/lkml/2007/6/12/67 as
clean-up. So, I added it again.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Slab destructors were no longer supported after Christoph's
c59def9f22 change. They've been
BUGs for both slab and slub, and slob never supported them
either.
This rips out support for the dtor pointer from kmem_cache_create()
completely and fixes up every single callsite in the kernel (there were
about 224, not including the slab allocator definitions themselves,
or the documentation references).
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Nonlinear mappings are (AFAIKS) simply a virtual memory concept that encodes
the virtual address -> file offset differently from linear mappings.
->populate is a layering violation because the filesystem/pagecache code
should need to know anything about the virtual memory mapping. The hitch here
is that the ->nopage handler didn't pass down enough information (ie. pgoff).
But it is more logical to pass pgoff rather than have the ->nopage function
calculate it itself anyway (because that's a similar layering violation).
Having the populate handler install the pte itself is likewise a nasty thing
to be doing.
This patch introduces a new fault handler that replaces ->nopage and
->populate and (later) ->nopfn. Most of the old mechanism is still in place
so there is a lot of duplication and nice cleanups that can be removed if
everyone switches over.
The rationale for doing this in the first place is that nonlinear mappings are
subject to the pagefault vs invalidate/truncate race too, and it seemed stupid
to duplicate the synchronisation logic rather than just consolidate the two.
After this patch, MAP_NONBLOCK no longer sets up ptes for pages present in
pagecache. Seems like a fringe functionality anyway.
NOPAGE_REFAULT is removed. This should be implemented with ->fault, and no
users have hit mainline yet.
[akpm@linux-foundation.org: cleanup]
[randy.dunlap@oracle.com: doc. fixes for readahead]
[akpm@linux-foundation.org: build fix]
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Mark Fasheh <mark.fasheh@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
validate_anon_vma gave a useful check on the integrity of the anon_vma list
when Andrea was developing obj rmap; but it was not enabled in SLES9
itself, nor in mainline, until Nick changed commented-out RMAP_DEBUG to
configurable CONFIG_DEBUG_VM in 2.6.17. Now Petr Vandrovec reports that
its BUG_ON(mapcount > 100000) can easily crash a CONFIG_DEBUG_VM=y system.
That limit was just an arbitrary number to protect against an infinite
loop. We could raise it to something enormous (depending on sizeof struct
vma and size of memory?); but I rather think validate_anon_vma has outlived
its usefulness, and is better just removed - which gives a magnificent
performance boost to anything like Petr's test program ;)
Of course, a very long anon_vma list is bad news for preemption latency,
and I believe there has been one recent report of such: let's not forget
that, but validate_anon_vma only makes it worse not better.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Cc: Petr Vandrovec <petr@vmware.com>
Acked-by: Nick Piggin <npiggin@suse.de>
Cc: Andrea Arcangeli <andrea@suse.de>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Re-introduce rmap verification patches that Hugh removed when he removed
PG_map_lock. PG_map_lock actually isn't needed to synchronise access to
anonymous pages, because PG_locked and PTL together already do.
These checks were important in discovering and fixing a rare rmap corruption
in SLES9.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
SLAB_CTOR_CONSTRUCTOR is always specified. No point in checking it.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Jens Axboe <jens.axboe@oracle.com>
Cc: Steven French <sfrench@us.ibm.com>
Cc: Michael Halcrow <mhalcrow@us.ibm.com>
Cc: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp>
Cc: Miklos Szeredi <miklos@szeredi.hu>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Roman Zippel <zippel@linux-m68k.org>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Dave Kleikamp <shaggy@austin.ibm.com>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Cc: "J. Bruce Fields" <bfields@fieldses.org>
Cc: Anton Altaparmakov <aia21@cantab.net>
Cc: Mark Fasheh <mark.fasheh@oracle.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Jan Kara <jack@ucw.cz>
Cc: David Chinner <dgc@sgi.com>
Cc: "David S. Miller" <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>