Commit Graph

158 Commits

Author SHA1 Message Date
Baolin Wang 457db29bfc security: Introduce security_settime64()
security_settime() uses a timespec, which is not year 2038 safe
on 32bit systems. Thus this patch introduces the security_settime64()
function with timespec64 type. We also convert the cap_settime() helper
function to use the 64bit types.

This patch then moves security_settime() to the header file as an
inline helper function so that existing users can be iteratively
converted.

None of the existing hooks is using the timespec argument and therefor
the patch is not making any functional changes.

Cc: Serge Hallyn <serge.hallyn@canonical.com>,
Cc: James Morris <james.l.morris@oracle.com>,
Cc: "Serge E. Hallyn" <serge@hallyn.com>,
Cc: Paul Moore <pmoore@redhat.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Kees Cook <keescook@chromium.org>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Reviewed-by: James Morris <james.l.morris@oracle.com>
Signed-off-by: Baolin Wang <baolin.wang@linaro.org>
[jstultz: Reworded commit message]
Signed-off-by: John Stultz <john.stultz@linaro.org>
2016-04-22 11:48:30 -07:00
Al Viro ce23e64013 ->getxattr(): pass dentry and inode as separate arguments
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-04-11 00:48:00 -04:00
Jann Horn caaee6234d ptrace: use fsuid, fsgid, effective creds for fs access checks
By checking the effective credentials instead of the real UID / permitted
capabilities, ensure that the calling process actually intended to use its
credentials.

To ensure that all ptrace checks use the correct caller credentials (e.g.
in case out-of-tree code or newly added code omits the PTRACE_MODE_*CREDS
flag), use two new flags and require one of them to be set.

The problem was that when a privileged task had temporarily dropped its
privileges, e.g.  by calling setreuid(0, user_uid), with the intent to
perform following syscalls with the credentials of a user, it still passed
ptrace access checks that the user would not be able to pass.

While an attacker should not be able to convince the privileged task to
perform a ptrace() syscall, this is a problem because the ptrace access
check is reused for things in procfs.

In particular, the following somewhat interesting procfs entries only rely
on ptrace access checks:

 /proc/$pid/stat - uses the check for determining whether pointers
     should be visible, useful for bypassing ASLR
 /proc/$pid/maps - also useful for bypassing ASLR
 /proc/$pid/cwd - useful for gaining access to restricted
     directories that contain files with lax permissions, e.g. in
     this scenario:
     lrwxrwxrwx root root /proc/13020/cwd -> /root/foobar
     drwx------ root root /root
     drwxr-xr-x root root /root/foobar
     -rw-r--r-- root root /root/foobar/secret

Therefore, on a system where a root-owned mode 6755 binary changes its
effective credentials as described and then dumps a user-specified file,
this could be used by an attacker to reveal the memory layout of root's
processes or reveal the contents of files he is not allowed to access
(through /proc/$pid/cwd).

[akpm@linux-foundation.org: fix warning]
Signed-off-by: Jann Horn <jann@thejh.net>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: Casey Schaufler <casey@schaufler-ca.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Morris <james.l.morris@oracle.com>
Cc: "Serge E. Hallyn" <serge.hallyn@ubuntu.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Willy Tarreau <w@1wt.eu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-20 17:09:18 -08:00
Andy Lutomirski 746bf6d642 capabilities: add a securebit to disable PR_CAP_AMBIENT_RAISE
Per Andrew Morgan's request, add a securebit to allow admins to disable
PR_CAP_AMBIENT_RAISE.  This securebit will prevent processes from adding
capabilities to their ambient set.

For simplicity, this disables PR_CAP_AMBIENT_RAISE entirely rather than
just disabling setting previously cleared bits.

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Andrew G. Morgan <morgan@kernel.org>
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Serge Hallyn <serge.hallyn@canonical.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Aaron Jones <aaronmdjones@gmail.com>
Cc: Ted Ts'o <tytso@mit.edu>
Cc: Andrew G. Morgan <morgan@kernel.org>
Cc: Mimi Zohar <zohar@linux.vnet.ibm.com>
Cc: Austin S Hemmelgarn <ahferroin7@gmail.com>
Cc: Markku Savela <msa@moth.iki.fi>
Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: James Morris <james.l.morris@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-04 16:54:41 -07:00
Andy Lutomirski 58319057b7 capabilities: ambient capabilities
Credit where credit is due: this idea comes from Christoph Lameter with
a lot of valuable input from Serge Hallyn.  This patch is heavily based
on Christoph's patch.

===== The status quo =====

On Linux, there are a number of capabilities defined by the kernel.  To
perform various privileged tasks, processes can wield capabilities that
they hold.

Each task has four capability masks: effective (pE), permitted (pP),
inheritable (pI), and a bounding set (X).  When the kernel checks for a
capability, it checks pE.  The other capability masks serve to modify
what capabilities can be in pE.

Any task can remove capabilities from pE, pP, or pI at any time.  If a
task has a capability in pP, it can add that capability to pE and/or pI.
If a task has CAP_SETPCAP, then it can add any capability to pI, and it
can remove capabilities from X.

Tasks are not the only things that can have capabilities; files can also
have capabilities.  A file can have no capabilty information at all [1].
If a file has capability information, then it has a permitted mask (fP)
and an inheritable mask (fI) as well as a single effective bit (fE) [2].
File capabilities modify the capabilities of tasks that execve(2) them.

A task that successfully calls execve has its capabilities modified for
the file ultimately being excecuted (i.e.  the binary itself if that
binary is ELF or for the interpreter if the binary is a script.) [3] In
the capability evolution rules, for each mask Z, pZ represents the old
value and pZ' represents the new value.  The rules are:

  pP' = (X & fP) | (pI & fI)
  pI' = pI
  pE' = (fE ? pP' : 0)
  X is unchanged

For setuid binaries, fP, fI, and fE are modified by a moderately
complicated set of rules that emulate POSIX behavior.  Similarly, if
euid == 0 or ruid == 0, then fP, fI, and fE are modified differently
(primary, fP and fI usually end up being the full set).  For nonroot
users executing binaries with neither setuid nor file caps, fI and fP
are empty and fE is false.

As an extra complication, if you execute a process as nonroot and fE is
set, then the "secure exec" rules are in effect: AT_SECURE gets set,
LD_PRELOAD doesn't work, etc.

This is rather messy.  We've learned that making any changes is
dangerous, though: if a new kernel version allows an unprivileged
program to change its security state in a way that persists cross
execution of a setuid program or a program with file caps, this
persistent state is surprisingly likely to allow setuid or file-capped
programs to be exploited for privilege escalation.

===== The problem =====

Capability inheritance is basically useless.

If you aren't root and you execute an ordinary binary, fI is zero, so
your capabilities have no effect whatsoever on pP'.  This means that you
can't usefully execute a helper process or a shell command with elevated
capabilities if you aren't root.

On current kernels, you can sort of work around this by setting fI to
the full set for most or all non-setuid executable files.  This causes
pP' = pI for nonroot, and inheritance works.  No one does this because
it's a PITA and it isn't even supported on most filesystems.

If you try this, you'll discover that every nonroot program ends up with
secure exec rules, breaking many things.

This is a problem that has bitten many people who have tried to use
capabilities for anything useful.

===== The proposed change =====

This patch adds a fifth capability mask called the ambient mask (pA).
pA does what most people expect pI to do.

pA obeys the invariant that no bit can ever be set in pA if it is not
set in both pP and pI.  Dropping a bit from pP or pI drops that bit from
pA.  This ensures that existing programs that try to drop capabilities
still do so, with a complication.  Because capability inheritance is so
broken, setting KEEPCAPS, using setresuid to switch to nonroot uids, and
then calling execve effectively drops capabilities.  Therefore,
setresuid from root to nonroot conditionally clears pA unless
SECBIT_NO_SETUID_FIXUP is set.  Processes that don't like this can
re-add bits to pA afterwards.

The capability evolution rules are changed:

  pA' = (file caps or setuid or setgid ? 0 : pA)
  pP' = (X & fP) | (pI & fI) | pA'
  pI' = pI
  pE' = (fE ? pP' : pA')
  X is unchanged

If you are nonroot but you have a capability, you can add it to pA.  If
you do so, your children get that capability in pA, pP, and pE.  For
example, you can set pA = CAP_NET_BIND_SERVICE, and your children can
automatically bind low-numbered ports.  Hallelujah!

Unprivileged users can create user namespaces, map themselves to a
nonzero uid, and create both privileged (relative to their namespace)
and unprivileged process trees.  This is currently more or less
impossible.  Hallelujah!

You cannot use pA to try to subvert a setuid, setgid, or file-capped
program: if you execute any such program, pA gets cleared and the
resulting evolution rules are unchanged by this patch.

Users with nonzero pA are unlikely to unintentionally leak that
capability.  If they run programs that try to drop privileges, dropping
privileges will still work.

It's worth noting that the degree of paranoia in this patch could
possibly be reduced without causing serious problems.  Specifically, if
we allowed pA to persist across executing non-pA-aware setuid binaries
and across setresuid, then, naively, the only capabilities that could
leak as a result would be the capabilities in pA, and any attacker
*already* has those capabilities.  This would make me nervous, though --
setuid binaries that tried to privilege-separate might fail to do so,
and putting CAP_DAC_READ_SEARCH or CAP_DAC_OVERRIDE into pA could have
unexpected side effects.  (Whether these unexpected side effects would
be exploitable is an open question.) I've therefore taken the more
paranoid route.  We can revisit this later.

An alternative would be to require PR_SET_NO_NEW_PRIVS before setting
ambient capabilities.  I think that this would be annoying and would
make granting otherwise unprivileged users minor ambient capabilities
(CAP_NET_BIND_SERVICE or CAP_NET_RAW for example) much less useful than
it is with this patch.

===== Footnotes =====

[1] Files that are missing the "security.capability" xattr or that have
unrecognized values for that xattr end up with has_cap set to false.
The code that does that appears to be complicated for no good reason.

[2] The libcap capability mask parsers and formatters are dangerously
misleading and the documentation is flat-out wrong.  fE is *not* a mask;
it's a single bit.  This has probably confused every single person who
has tried to use file capabilities.

[3] Linux very confusingly processes both the script and the interpreter
if applicable, for reasons that elude me.  The results from thinking
about a script's file capabilities and/or setuid bits are mostly
discarded.

Preliminary userspace code is here, but it needs updating:
https://git.kernel.org/cgit/linux/kernel/git/luto/util-linux-playground.git/commit/?h=cap_ambient&id=7f5afbd175d2

Here is a test program that can be used to verify the functionality
(from Christoph):

/*
 * Test program for the ambient capabilities. This program spawns a shell
 * that allows running processes with a defined set of capabilities.
 *
 * (C) 2015 Christoph Lameter <cl@linux.com>
 * Released under: GPL v3 or later.
 *
 *
 * Compile using:
 *
 *	gcc -o ambient_test ambient_test.o -lcap-ng
 *
 * This program must have the following capabilities to run properly:
 * Permissions for CAP_NET_RAW, CAP_NET_ADMIN, CAP_SYS_NICE
 *
 * A command to equip the binary with the right caps is:
 *
 *	setcap cap_net_raw,cap_net_admin,cap_sys_nice+p ambient_test
 *
 *
 * To get a shell with additional caps that can be inherited by other processes:
 *
 *	./ambient_test /bin/bash
 *
 *
 * Verifying that it works:
 *
 * From the bash spawed by ambient_test run
 *
 *	cat /proc/$$/status
 *
 * and have a look at the capabilities.
 */

#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <cap-ng.h>
#include <sys/prctl.h>
#include <linux/capability.h>

/*
 * Definitions from the kernel header files. These are going to be removed
 * when the /usr/include files have these defined.
 */
#define PR_CAP_AMBIENT 47
#define PR_CAP_AMBIENT_IS_SET 1
#define PR_CAP_AMBIENT_RAISE 2
#define PR_CAP_AMBIENT_LOWER 3
#define PR_CAP_AMBIENT_CLEAR_ALL 4

static void set_ambient_cap(int cap)
{
	int rc;

	capng_get_caps_process();
	rc = capng_update(CAPNG_ADD, CAPNG_INHERITABLE, cap);
	if (rc) {
		printf("Cannot add inheritable cap\n");
		exit(2);
	}
	capng_apply(CAPNG_SELECT_CAPS);

	/* Note the two 0s at the end. Kernel checks for these */
	if (prctl(PR_CAP_AMBIENT, PR_CAP_AMBIENT_RAISE, cap, 0, 0)) {
		perror("Cannot set cap");
		exit(1);
	}
}

int main(int argc, char **argv)
{
	int rc;

	set_ambient_cap(CAP_NET_RAW);
	set_ambient_cap(CAP_NET_ADMIN);
	set_ambient_cap(CAP_SYS_NICE);

	printf("Ambient_test forking shell\n");
	if (execv(argv[1], argv + 1))
		perror("Cannot exec");

	return 0;
}

Signed-off-by: Christoph Lameter <cl@linux.com> # Original author
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Serge E. Hallyn <serge.hallyn@ubuntu.com>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Aaron Jones <aaronmdjones@gmail.com>
Cc: Ted Ts'o <tytso@mit.edu>
Cc: Andrew G. Morgan <morgan@kernel.org>
Cc: Mimi Zohar <zohar@linux.vnet.ibm.com>
Cc: Austin S Hemmelgarn <ahferroin7@gmail.com>
Cc: Markku Savela <msa@moth.iki.fi>
Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: James Morris <james.l.morris@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-04 16:54:41 -07:00
Casey Schaufler b1d9e6b064 LSM: Switch to lists of hooks
Instead of using a vector of security operations
with explicit, special case stacking of the capability
and yama hooks use lists of hooks with capability and
yama hooks included as appropriate.

The security_operations structure is no longer required.
Instead, there is a union of the function pointers that
allows all the hooks lists to use a common mechanism for
list management while retaining typing. Each module
supplies an array describing the hooks it provides instead
of a sparsely populated security_operations structure.
The description includes the element that gets put on
the hook list, avoiding the issues surrounding individual
element allocation.

The method for registering security modules is changed to
reflect the information available. The method for removing
a module, currently only used by SELinux, has also changed.
It should be generic now, however if there are potential
race conditions based on ordering of hook removal that needs
to be addressed by the calling module.

The security hooks are called from the lists and the first
failure is returned.

Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
Acked-by: John Johansen <john.johansen@canonical.com>
Acked-by: Kees Cook <keescook@chromium.org>
Acked-by: Paul Moore <paul@paul-moore.com>
Acked-by:  Stephen Smalley <sds@tycho.nsa.gov>
Acked-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: James Morris <james.l.morris@oracle.com>
2015-05-12 15:00:41 +10:00
David Howells c6f493d631 VFS: security/: d_backing_inode() annotations
most of the ->d_inode uses there refer to the same inode IO would
go to, i.e. d_backing_inode()

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-04-15 15:06:56 -04:00
Al Viro f4a4a8b125 file->f_path.dentry is pinned down for as long as the file is open...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-01-25 23:16:27 -05:00
Al Viro b583043e99 kill f_dentry uses
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2014-11-19 13:01:25 -05:00
Eric Paris 7d8b6c6375 CAPABILITIES: remove undefined caps from all processes
This is effectively a revert of 7b9a7ec565
plus fixing it a different way...

We found, when trying to run an application from an application which
had dropped privs that the kernel does security checks on undefined
capability bits.  This was ESPECIALLY difficult to debug as those
undefined bits are hidden from /proc/$PID/status.

Consider a root application which drops all capabilities from ALL 4
capability sets.  We assume, since the application is going to set
eff/perm/inh from an array that it will clear not only the defined caps
less than CAP_LAST_CAP, but also the higher 28ish bits which are
undefined future capabilities.

The BSET gets cleared differently.  Instead it is cleared one bit at a
time.  The problem here is that in security/commoncap.c::cap_task_prctl()
we actually check the validity of a capability being read.  So any task
which attempts to 'read all things set in bset' followed by 'unset all
things set in bset' will not even attempt to unset the undefined bits
higher than CAP_LAST_CAP.

So the 'parent' will look something like:
CapInh:	0000000000000000
CapPrm:	0000000000000000
CapEff:	0000000000000000
CapBnd:	ffffffc000000000

All of this 'should' be fine.  Given that these are undefined bits that
aren't supposed to have anything to do with permissions.  But they do...

So lets now consider a task which cleared the eff/perm/inh completely
and cleared all of the valid caps in the bset (but not the invalid caps
it couldn't read out of the kernel).  We know that this is exactly what
the libcap-ng library does and what the go capabilities library does.
They both leave you in that above situation if you try to clear all of
you capapabilities from all 4 sets.  If that root task calls execve()
the child task will pick up all caps not blocked by the bset.  The bset
however does not block bits higher than CAP_LAST_CAP.  So now the child
task has bits in eff which are not in the parent.  These are
'meaningless' undefined bits, but still bits which the parent doesn't
have.

The problem is now in cred_cap_issubset() (or any operation which does a
subset test) as the child, while a subset for valid cap bits, is not a
subset for invalid cap bits!  So now we set durring commit creds that
the child is not dumpable.  Given it is 'more priv' than its parent.  It
also means the parent cannot ptrace the child and other stupidity.

The solution here:
1) stop hiding capability bits in status
	This makes debugging easier!

2) stop giving any task undefined capability bits.  it's simple, it you
don't put those invalid bits in CAP_FULL_SET you won't get them in init
and you won't get them in any other task either.
	This fixes the cap_issubset() tests and resulting fallout (which
	made the init task in a docker container untraceable among other
	things)

3) mask out undefined bits when sys_capset() is called as it might use
~0, ~0 to denote 'all capabilities' for backward/forward compatibility.
	This lets 'capsh --caps="all=eip" -- -c /bin/bash' run.

4) mask out undefined bit when we read a file capability off of disk as
again likely all bits are set in the xattr for forward/backward
compatibility.
	This lets 'setcap all+pe /bin/bash; /bin/bash' run

Signed-off-by: Eric Paris <eparis@redhat.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Andrew Vagin <avagin@openvz.org>
Cc: Andrew G. Morgan <morgan@kernel.org>
Cc: Serge E. Hallyn <serge.hallyn@canonical.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Steve Grubb <sgrubb@redhat.com>
Cc: Dan Walsh <dwalsh@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: James Morris <james.l.morris@oracle.com>
2014-07-24 21:53:47 +10:00
Tetsuo Handa 6d6f332842 commoncap: don't alloc the credential unless needed in cap_task_prctl
In function cap_task_prctl(), we would allocate a credential
unconditionally and then check if we support the requested function.
If not we would release this credential with abort_creds() by using
RCU method. But on some archs such as powerpc, the sys_prctl is heavily
used to get/set the floating point exception mode. So the unnecessary
allocating/releasing of credential not only introduce runtime overhead
but also do cause OOM due to the RCU implementation.

This patch removes abort_creds() from cap_task_prctl() by calling
prepare_creds() only when we need to modify it.

Reported-by: Kevin Hao <haokexin@gmail.com>
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Reviewed-by: Paul Moore <paul@paul-moore.com>
Acked-by: Serge E. Hallyn <serge.hallyn@ubuntu.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: James Morris <james.l.morris@oracle.com>
2014-07-24 21:12:30 +10:00
Serge Hallyn f54fb863c6 capabilities: allow nice if we are privileged
We allow task A to change B's nice level if it has a supserset of
B's privileges, or of it has CAP_SYS_NICE.  Also allow it if A has
CAP_SYS_NICE with respect to B - meaning it is root in the same
namespace, or it created B's namespace.

Signed-off-by: Serge Hallyn <serge.hallyn@canonical.com>
Reviewed-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2013-08-30 23:44:09 -07:00
Eric W. Biederman 160da84dbb userns: Allow PR_CAPBSET_DROP in a user namespace.
As the capabilites and capability bounding set are per user namespace
properties it is safe to allow changing them with just CAP_SETPCAP
permission in the user namespace.

Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Tested-by: Richard Weinberger <richard@nod.at>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2013-08-30 17:30:39 -07:00
Al Viro 182be68478 kill f_vfsmnt
very few users left...

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-02-26 02:46:10 -05:00
Eric W. Biederman 520d9eabce Fix cap_capable to only allow owners in the parent user namespace to have caps.
Andy Lutomirski pointed out that the current behavior of allowing the
owner of a user namespace to have all caps when that owner is not in a
parent user namespace is wrong.  Add a test to ensure the owner of a user
namespace is in the parent of the user namespace to fix this bug.

Thankfully this bug did not apply to the initial user namespace, keeping
the mischief that can be caused by this bug quite small.

This is bug was introduced in v3.5 by commit 783291e690
"Simplify the user_namespace by making userns->creator a kuid."
But did not matter until the permisions required to create
a user namespace were relaxed allowing a user namespace to be created
inside of a user namespace.

The bug made it possible for the owner of a user namespace to be
present in a child user namespace.  Since the owner of a user nameapce
is granted all capabilities it became possible for users in a
grandchild user namespace to have all privilges over their parent user
namspace.

Reorder the checks in cap_capable.  This should make the common case
faster and make it clear that nothing magic happens in the initial
user namespace.  The reordering is safe because cred->user_ns
can only be in targ_ns or targ_ns->parent but not both.

Add a comment a the top of the loop to make the logic of
the code clear.

Add a distinct variable ns that changes as we walk up
the user namespace hierarchy to make it clear which variable
is changing.

Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2012-12-14 13:50:32 -08:00
Al Viro e5467859f7 split ->file_mmap() into ->mmap_addr()/->mmap_file()
... i.e. file-dependent and address-dependent checks.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2012-05-31 13:11:54 -04:00
Al Viro d007794a18 split cap_mmap_addr() out of cap_file_mmap()
... switch callers.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2012-05-31 13:10:54 -04:00
Linus Torvalds 644473e9c6 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull user namespace enhancements from Eric Biederman:
 "This is a course correction for the user namespace, so that we can
  reach an inexpensive, maintainable, and reasonably complete
  implementation.

  Highlights:
   - Config guards make it impossible to enable the user namespace and
     code that has not been converted to be user namespace safe.

   - Use of the new kuid_t type ensures the if you somehow get past the
     config guards the kernel will encounter type errors if you enable
     user namespaces and attempt to compile in code whose permission
     checks have not been updated to be user namespace safe.

   - All uids from child user namespaces are mapped into the initial
     user namespace before they are processed.  Removing the need to add
     an additional check to see if the user namespace of the compared
     uids remains the same.

   - With the user namespaces compiled out the performance is as good or
     better than it is today.

   - For most operations absolutely nothing changes performance or
     operationally with the user namespace enabled.

   - The worst case performance I could come up with was timing 1
     billion cache cold stat operations with the user namespace code
     enabled.  This went from 156s to 164s on my laptop (or 156ns to
     164ns per stat operation).

   - (uid_t)-1 and (gid_t)-1 are reserved as an internal error value.
     Most uid/gid setting system calls treat these value specially
     anyway so attempting to use -1 as a uid would likely cause
     entertaining failures in userspace.

   - If setuid is called with a uid that can not be mapped setuid fails.
     I have looked at sendmail, login, ssh and every other program I
     could think of that would call setuid and they all check for and
     handle the case where setuid fails.

   - If stat or a similar system call is called from a context in which
     we can not map a uid we lie and return overflowuid.  The LFS
     experience suggests not lying and returning an error code might be
     better, but the historical precedent with uids is different and I
     can not think of anything that would break by lying about a uid we
     can't map.

   - Capabilities are localized to the current user namespace making it
     safe to give the initial user in a user namespace all capabilities.

  My git tree covers all of the modifications needed to convert the core
  kernel and enough changes to make a system bootable to runlevel 1."

Fix up trivial conflicts due to nearby independent changes in fs/stat.c

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (46 commits)
  userns:  Silence silly gcc warning.
  cred: use correct cred accessor with regards to rcu read lock
  userns: Convert the move_pages, and migrate_pages permission checks to use uid_eq
  userns: Convert cgroup permission checks to use uid_eq
  userns: Convert tmpfs to use kuid and kgid where appropriate
  userns: Convert sysfs to use kgid/kuid where appropriate
  userns: Convert sysctl permission checks to use kuid and kgids.
  userns: Convert proc to use kuid/kgid where appropriate
  userns: Convert ext4 to user kuid/kgid where appropriate
  userns: Convert ext3 to use kuid/kgid where appropriate
  userns: Convert ext2 to use kuid/kgid where appropriate.
  userns: Convert devpts to use kuid/kgid where appropriate
  userns: Convert binary formats to use kuid/kgid where appropriate
  userns: Add negative depends on entries to avoid building code that is userns unsafe
  userns: signal remove unnecessary map_cred_ns
  userns: Teach inode_capable to understand inodes whose uids map to other namespaces.
  userns: Fail exec for suid and sgid binaries with ids outside our user namespace.
  userns: Convert stat to return values mapped from kuids and kgids
  userns: Convert user specfied uids and gids in chown into kuids and kgid
  userns: Use uid_eq gid_eq helpers when comparing kuids and kgids in the vfs
  ...
2012-05-23 17:42:39 -07:00
James Morris 898bfc1d46 Linux 3.4-rc5
-----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.18 (GNU/Linux)
 
 iQEcBAABAgAGBQJPnb50AAoJEHm+PkMAQRiGAE0H/A4zFZIUGmF3miKPDYmejmrZ
 oVDYxVAu6JHjHWhu8E3VsinvyVscowjV8dr15eSaQzmDmRkSHAnUQ+dB7Di7jLC2
 MNopxsWjwyZ8zvvr3rFR76kjbWKk/1GYytnf7GPZLbJQzd51om2V/TY/6qkwiDSX
 U8Tt7ihSgHAezefqEmWp2X/1pxDCEt+VFyn9vWpkhgdfM1iuzF39MbxSZAgqDQ/9
 JJrBHFXhArqJguhENwL7OdDzkYqkdzlGtS0xgeY7qio2CzSXxZXK4svT6FFGA8Za
 xlAaIvzslDniv3vR2ZKd6wzUwFHuynX222hNim3QMaYdXm012M+Nn1ufKYGFxI0=
 =4d4w
 -----END PGP SIGNATURE-----

Merge tag 'v3.4-rc5' into next

Linux 3.4-rc5

Merge to pull in prerequisite change for Smack:
86812bb0de

Requested by Casey.
2012-05-04 12:46:40 +10:00
Eric W. Biederman 18815a1808 userns: Convert capabilities related permsion checks
- Use uid_eq when comparing kuids
  Use gid_eq when comparing kgids
- Use make_kuid(user_ns, 0) to talk about the user_namespace root uid

Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2012-05-03 03:28:40 -07:00
Eric W. Biederman 078de5f706 userns: Store uid and gid values in struct cred with kuid_t and kgid_t types
cred.h and a few trivial users of struct cred are changed.  The rest of the users
of struct cred are left for other patches as there are too many changes to make
in one go and leave the change reviewable.  If the user namespace is disabled and
CONFIG_UIDGID_STRICT_TYPE_CHECKS are disabled the code will contiue to compile
and behave correctly.

Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2012-05-03 03:28:38 -07:00
Eric W. Biederman 783291e690 userns: Simplify the user_namespace by making userns->creator a kuid.
- Transform userns->creator from a user_struct reference to a simple
  kuid_t, kgid_t pair.

  In cap_capable this allows the check to see if we are the creator of
  a namespace to become the classic suser style euid permission check.

  This allows us to remove the need for a struct cred in the mapping
  functions and still be able to dispaly the user namespace creators
  uid and gid as 0.

- Remove the now unnecessary delayed_work in free_user_ns.

  All that is left for free_user_ns to do is to call kmem_cache_free
  and put_user_ns.  Those functions can be called in any context
  so call them directly from free_user_ns removing the need for delayed work.

Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2012-04-26 02:00:59 -07:00
Jonghwan Choi 51b79bee62 security: fix compile error in commoncap.c
Add missing "personality.h"
security/commoncap.c: In function 'cap_bprm_set_creds':
security/commoncap.c:510: error: 'PER_CLEAR_ON_SETID' undeclared (first use in this function)
security/commoncap.c:510: error: (Each undeclared identifier is reported only once
security/commoncap.c:510: error: for each function it appears in.)

Signed-off-by: Jonghwan Choi <jhbird.choi@samsung.com>
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
2012-04-19 12:56:39 +10:00
Eric Paris d52fc5dde1 fcaps: clear the same personality flags as suid when fcaps are used
If a process increases permissions using fcaps all of the dangerous
personality flags which are cleared for suid apps should also be cleared.
Thus programs given priviledge with fcaps will continue to have address space
randomization enabled even if the parent tried to disable it to make it
easier to attack.

Signed-off-by: Eric Paris <eparis@redhat.com>
Reviewed-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
2012-04-18 12:37:56 +10:00
Andy Lutomirski 259e5e6c75 Add PR_{GET,SET}_NO_NEW_PRIVS to prevent execve from granting privs
With this change, calling
  prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0)
disables privilege granting operations at execve-time.  For example, a
process will not be able to execute a setuid binary to change their uid
or gid if this bit is set.  The same is true for file capabilities.

Additionally, LSM_UNSAFE_NO_NEW_PRIVS is defined to ensure that
LSMs respect the requested behavior.

To determine if the NO_NEW_PRIVS bit is set, a task may call
  prctl(PR_GET_NO_NEW_PRIVS, 0, 0, 0, 0);
It returns 1 if set and 0 if it is not set. If any of the arguments are
non-zero, it will return -1 and set errno to -EINVAL.
(PR_SET_NO_NEW_PRIVS behaves similarly.)

This functionality is desired for the proposed seccomp filter patch
series.  By using PR_SET_NO_NEW_PRIVS, it allows a task to modify the
system call behavior for itself and its child tasks without being
able to impact the behavior of a more privileged task.

Another potential use is making certain privileged operations
unprivileged.  For example, chroot may be considered "safe" if it cannot
affect privileged tasks.

Note, this patch causes execve to fail when PR_SET_NO_NEW_PRIVS is
set and AppArmor is in use.  It is fixed in a subsequent patch.

Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Will Drewry <wad@chromium.org>
Acked-by: Eric Paris <eparis@redhat.com>
Acked-by: Kees Cook <keescook@chromium.org>

v18: updated change desc
v17: using new define values as per 3.4
Signed-off-by: James Morris <james.l.morris@oracle.com>
2012-04-14 11:13:18 +10:00
Eric W. Biederman aeb3ae9da9 userns: Add an explicit reference to the parent user namespace
I am about to remove the struct user_namespace reference from struct user_struct.
So keep an explicit track of the parent user namespace.

Take advantage of this new reference and replace instances of user_ns->creator->user_ns
with user_ns->parent.

Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2012-04-07 16:55:52 -07:00
Eric W. Biederman c4a4d60379 userns: Use cred->user_ns instead of cred->user->user_ns
Optimize performance and prepare for the removal of the user_ns reference
from user_struct.  Remove the slow long walk through cred->user->user_ns and
instead go straight to cred->user_ns.

Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2012-04-07 16:55:51 -07:00
Al Viro 4040153087 security: trim security.h
Trim security.h

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: James Morris <jmorris@namei.org>
2012-02-14 10:45:42 +11:00
Linus Torvalds c49c41a413 Merge branch 'for-linus' of git://selinuxproject.org/~jmorris/linux-security
* 'for-linus' of git://selinuxproject.org/~jmorris/linux-security:
  capabilities: remove __cap_full_set definition
  security: remove the security_netlink_recv hook as it is equivalent to capable()
  ptrace: do not audit capability check when outputing /proc/pid/stat
  capabilities: remove task_ns_* functions
  capabitlies: ns_capable can use the cap helpers rather than lsm call
  capabilities: style only - move capable below ns_capable
  capabilites: introduce new has_ns_capabilities_noaudit
  capabilities: call has_ns_capability from has_capability
  capabilities: remove all _real_ interfaces
  capabilities: introduce security_capable_noaudit
  capabilities: reverse arguments to security_capable
  capabilities: remove the task from capable LSM hook entirely
  selinux: sparse fix: fix several warnings in the security server cod
  selinux: sparse fix: fix warnings in netlink code
  selinux: sparse fix: eliminate warnings for selinuxfs
  selinux: sparse fix: declare selinux_disable() in security.h
  selinux: sparse fix: move selinux_complete_init
  selinux: sparse fix: make selinux_secmark_refcount static
  SELinux: Fix RCU deref check warning in sel_netport_insert()

Manually fix up a semantic mis-merge wrt security_netlink_recv():

 - the interface was removed in commit fd77846152 ("security: remove
   the security_netlink_recv hook as it is equivalent to capable()")

 - a new user of it appeared in commit a38f7907b9 ("crypto: Add
   userspace configuration API")

causing no automatic merge conflict, but Eric Paris pointed out the
issue.
2012-01-14 18:36:33 -08:00
Eric Paris fd77846152 security: remove the security_netlink_recv hook as it is equivalent to capable()
Once upon a time netlink was not sync and we had to get the effective
capabilities from the skb that was being received.  Today we instead get
the capabilities from the current task.  This has rendered the entire
purpose of the hook moot as it is now functionally equivalent to the
capable() call.

Signed-off-by: Eric Paris <eparis@redhat.com>
2012-01-05 18:53:01 -05:00
Eric Paris 6a9de49115 capabilities: remove the task from capable LSM hook entirely
The capabilities framework is based around credentials, not necessarily the
current task.  Yet we still passed the current task down into LSMs from the
security_capable() LSM hook as if it was a meaningful portion of the security
decision.  This patch removes the 'generic' passing of current and instead
forces individual LSMs to use current explicitly if they think it is
appropriate.  In our case those LSMs are SELinux and AppArmor.

I believe the AppArmor use of current is incorrect, but that is wholely
unrelated to this patch.  This patch does not change what AppArmor does, it
just makes it clear in the AppArmor code that it is doing it.

The SELinux code still uses current in it's audit message, which may also be
wrong and needs further investigation.  Again this is NOT a change, it may
have always been wrong, this patch just makes it clear what is happening.

Signed-off-by: Eric Paris <eparis@redhat.com>
2012-01-05 18:52:53 -05:00
Serge Hallyn 7d8db1808a capabilities: initialize has_cap
Initialize has_cap in cap_bprm_set_creds()

Reported-by: Andrew G. Morgan <morgan@kernel.org>
Signed-off-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: James Morris <jmorris@namei.org>
2011-08-16 09:20:45 +10:00
Zhi Li 4d49f6710b capabilities: do not grant full privs for setuid w/ file caps + no effective caps
A task (when !SECURE_NOROOT) which executes a setuid-root binary will
obtain root privileges while executing that binary.  If the binary also
has effective capabilities set, then only those capabilities will be
granted.  The rationale is that the same binary can carry both setuid-root
and the minimal file capability set, so that on a filesystem not
supporting file caps the binary can still be executed with privilege,
while on a filesystem supporting file caps it will run with minimal
privilege.

This special case currently does NOT happen if there are file capabilities
but no effective capabilities.  Since capability-aware programs can very
well start with empty pE but populated pP and move those caps to pE when
needed.  In other words, if the file has file capabilities but NOT
effective capabilities, then we should do the same thing as if there
were file capabilities, and not grant full root privileges.

This patchset does that.

(Changelog by Serge Hallyn).

Signed-off-by: Zhi Li <lizhi1215@gmail.com>
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: James Morris <jmorris@namei.org>
2011-08-12 15:06:57 +10:00
Eric Paris 4bf2ea77db capabilities: do not special case exec of init
When the global init task is exec'd we have special case logic to make sure
the pE is not reduced.  There is no reason for this.  If init wants to drop
it's pE is should be allowed to do so.  Remove this special logic.

Signed-off-by: Eric Paris <eparis@redhat.com>
Acked-by: Serge Hallyn <serge@hallyn.com>
Acked-by: David Howells <dhowells@redhat.com>
Acked-by: Andrew G. Morgan <morgan@kernel.org>
Signed-off-by: James Morris <jmorris@namei.org>
2011-04-04 10:31:06 +10:00
Serge E. Hallyn 8409cca705 userns: allow ptrace from non-init user namespaces
ptrace is allowed to tasks in the same user namespace according to the
usual rules (i.e.  the same rules as for two tasks in the init user
namespace).  ptrace is also allowed to a user namespace to which the
current task the has CAP_SYS_PTRACE capability.

Changelog:
	Dec 31: Address feedback by Eric:
		. Correct ptrace uid check
		. Rename may_ptrace_ns to ptrace_capable
		. Also fix the cap_ptrace checks.
	Jan  1: Use const cred struct
	Jan 11: use task_ns_capable() in place of ptrace_capable().
	Feb 23: same_or_ancestore_user_ns() was not an appropriate
		check to constrain cap_issubset.  Rather, cap_issubset()
		only is meaningful when both capsets are in the same
		user_ns.

Signed-off-by: Serge E. Hallyn <serge.hallyn@canonical.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Acked-by: Daniel Lezcano <daniel.lezcano@free.fr>
Acked-by: David Howells <dhowells@redhat.com>
Cc: James Morris <jmorris@namei.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-23 19:47:05 -07:00
Serge E. Hallyn 3486740a4f userns: security: make capabilities relative to the user namespace
- Introduce ns_capable to test for a capability in a non-default
  user namespace.
- Teach cap_capable to handle capabilities in a non-default
  user namespace.

The motivation is to get to the unprivileged creation of new
namespaces.  It looks like this gets us 90% of the way there, with
only potential uid confusion issues left.

I still need to handle getting all caps after creation but otherwise I
think I have a good starter patch that achieves all of your goals.

Changelog:
	11/05/2010: [serge] add apparmor
	12/14/2010: [serge] fix capabilities to created user namespaces
	Without this, if user serge creates a user_ns, he won't have
	capabilities to the user_ns he created.  THis is because we
	were first checking whether his effective caps had the caps
	he needed and returning -EPERM if not, and THEN checking whether
	he was the creator.  Reverse those checks.
	12/16/2010: [serge] security_real_capable needs ns argument in !security case
	01/11/2011: [serge] add task_ns_capable helper
	01/11/2011: [serge] add nsown_capable() helper per Bastian Blank suggestion
	02/16/2011: [serge] fix a logic bug: the root user is always creator of
		    init_user_ns, but should not always have capabilities to
		    it!  Fix the check in cap_capable().
	02/21/2011: Add the required user_ns parameter to security_capable,
		    fixing a compile failure.
	02/23/2011: Convert some macros to functions as per akpm comments.  Some
		    couldn't be converted because we can't easily forward-declare
		    them (they are inline if !SECURITY, extern if SECURITY).  Add
		    a current_user_ns function so we can use it in capability.h
		    without #including cred.h.  Move all forward declarations
		    together to the top of the #ifdef __KERNEL__ section, and use
		    kernel-doc format.
	02/23/2011: Per dhowells, clean up comment in cap_capable().
	02/23/2011: Per akpm, remove unreachable 'return -EPERM' in cap_capable.

(Original written and signed off by Eric;  latest, modified version
acked by him)

[akpm@linux-foundation.org: fix build]
[akpm@linux-foundation.org: export current_user_ns() for ecryptfs]
[serge.hallyn@canonical.com: remove unneeded extra argument in selinux's task_has_capability]
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Serge E. Hallyn <serge.hallyn@canonical.com>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Acked-by: Daniel Lezcano <daniel.lezcano@free.fr>
Acked-by: David Howells <dhowells@redhat.com>
Cc: James Morris <jmorris@namei.org>
Signed-off-by: Serge E. Hallyn <serge.hallyn@canonical.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-23 19:47:02 -07:00
Linus Torvalds 7a6362800c Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next-2.6
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next-2.6: (1480 commits)
  bonding: enable netpoll without checking link status
  xfrm: Refcount destination entry on xfrm_lookup
  net: introduce rx_handler results and logic around that
  bonding: get rid of IFF_SLAVE_INACTIVE netdev->priv_flag
  bonding: wrap slave state work
  net: get rid of multiple bond-related netdevice->priv_flags
  bonding: register slave pointer for rx_handler
  be2net: Bump up the version number
  be2net: Copyright notice change. Update to Emulex instead of ServerEngines
  e1000e: fix kconfig for crc32 dependency
  netfilter ebtables: fix xt_AUDIT to work with ebtables
  xen network backend driver
  bonding: Improve syslog message at device creation time
  bonding: Call netif_carrier_off after register_netdevice
  bonding: Incorrect TX queue offset
  net_sched: fix ip_tos2prio
  xfrm: fix __xfrm_route_forward()
  be2net: Fix UDP packet detected status in RX compl
  Phonet: fix aligned-mode pipe socket buffer header reserve
  netxen: support for GbE port settings
  ...

Fix up conflicts in drivers/staging/brcm80211/brcmsmac/wl_mac80211.c
with the staging updates.
2011-03-16 16:29:25 -07:00
Patrick McHardy 01a16b21d6 netlink: kill eff_cap from struct netlink_skb_parms
Netlink message processing in the kernel is synchronous these days,
capabilities can be checked directly in security_netlink_recv() from
the current process.

Signed-off-by: Patrick McHardy <kaber@trash.net>
Reviewed-by: James Morris <jmorris@namei.org>
[chrisw: update to include pohmelfs and uvesafb]
Signed-off-by: Chris Wright <chrisw@sous-sol.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2011-03-03 13:32:07 -08:00
Richard Cochran 1e6d767924 time: Correct the *settime* parameters
Both settimeofday() and clock_settime() promise with a 'const'
attribute not to alter the arguments passed in. This patch adds the
missing 'const' attribute into the various kernel functions
implementing these calls.

Signed-off-by: Richard Cochran <richard.cochran@omicron.at>
Acked-by: John Stultz <johnstul@us.ibm.com>
LKML-Reference: <20110201134417.545698637@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2011-02-02 15:28:11 +01:00
Eric Paris 12b3052c3e capabilities/syslog: open code cap_syslog logic to fix build failure
The addition of CONFIG_SECURITY_DMESG_RESTRICT resulted in a build
failure when CONFIG_PRINTK=n.  This is because the capabilities code
which used the new option was built even though the variable in question
didn't exist.

The patch here fixes this by moving the capabilities checks out of the
LSM and into the caller.  All (known) LSMs should have been calling the
capabilities hook already so it actually makes the code organization
better to eliminate the hook altogether.

Signed-off-by: Eric Paris <eparis@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-11-15 15:40:01 -08:00
Dan Rosenberg eaf06b241b Restrict unprivileged access to kernel syslog
The kernel syslog contains debugging information that is often useful
during exploitation of other vulnerabilities, such as kernel heap
addresses.  Rather than futilely attempt to sanitize hundreds (or
thousands) of printk statements and simultaneously cripple useful
debugging functionality, it is far simpler to create an option that
prevents unprivileged users from reading the syslog.

This patch, loosely based on grsecurity's GRKERNSEC_DMESG, creates the
dmesg_restrict sysctl.  When set to "0", the default, no restrictions are
enforced.  When set to "1", only users with CAP_SYS_ADMIN can read the
kernel syslog via dmesg(8) or other mechanisms.

[akpm@linux-foundation.org: explain the config option in kernel.txt]
Signed-off-by: Dan Rosenberg <drosenberg@vsecurity.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Acked-by: Eugene Teo <eugeneteo@kernel.org>
Acked-by: Kees Cook <kees.cook@canonical.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-11-12 07:55:32 -08:00
KOSAKI Motohiro b0ae198113 security: remove unused parameter from security_task_setscheduler()
All security modules shouldn't change sched_param parameter of
security_task_setscheduler().  This is not only meaningless, but also
make a harmful result if caller pass a static variable.

This patch remove policy and sched_param parameter from
security_task_setscheduler() becuase none of security module is
using it.

Cc: James Morris <jmorris@namei.org>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: James Morris <jmorris@namei.org>
2010-10-21 10:12:44 +11:00
David Howells d7627467b7 Make do_execve() take a const filename pointer
Make do_execve() take a const filename pointer so that kernel_execve() compiles
correctly on ARM:

arch/arm/kernel/sys_arm.c:88: warning: passing argument 1 of 'do_execve' discards qualifiers from pointer target type

This also requires the argv and envp arguments to be consted twice, once for
the pointer array and once for the strings the array points to.  This is
because do_execve() passes a pointer to the filename (now const) to
copy_strings_kernel().  A simpler alternative would be to cast the filename
pointer in do_execve() when it's passed to copy_strings_kernel().

do_execve() may not change any of the strings it is passed as part of the argv
or envp lists as they are some of them in .rodata, so marking these strings as
const should be fine.

Further kernel_execve() and sys_execve() need to be changed to match.

This has been test built on x86_64, frv, arm and mips.

Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Ralf Baechle <ralf@linux-mips.org>
Acked-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-17 18:07:43 -07:00
Justin P. Mattock c5b60b5e67 security: whitespace coding style fixes
Whitespace coding style fixes.

Signed-off-by: Justin P. Mattock <justinmattock@gmail.com>
Signed-off-by: James Morris <jmorris@namei.org>
2010-04-23 10:10:23 +10:00
wzt.wzt@gmail.com 6f262d8e1a Security: Fix the comment of cap_file_mmap()
In the comment of cap_file_mmap(), replace mmap_min_addr to be dac_mmap_min_addr.

Signed-off-by: Zhitong Wang <zhitong.wangzt@alibaba-inc.com>
Acked-by: Eric Paris <eparis@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2010-04-20 08:47:11 +10:00
Kees Cook f40a70861a syslog: clean up needless comment
Drop my typoed comment as it is both unhelpful and redundant.

Signed-off-by: Kees Cook <kees.cook@canonical.com>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
2010-02-05 17:48:51 +11:00
Kees Cook d78ca3cd73 syslog: use defined constants instead of raw numbers
Right now the syslog "type" action are just raw numbers which makes
the source difficult to follow.  This patch replaces the raw numbers
with defined constants for some level of sanity.

Signed-off-by: Kees Cook <kees.cook@canonical.com>
Acked-by: John Johansen <john.johansen@canonical.com>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
2010-02-04 14:20:41 +11:00
Kees Cook 002345925e syslog: distinguish between /proc/kmsg and syscalls
This allows the LSM to distinguish between syslog functions originating
from /proc/kmsg access and direct syscalls.  By default, the commoncaps
will now no longer require CAP_SYS_ADMIN to read an opened /proc/kmsg
file descriptor.  For example the kernel syslog reader can now drop
privileges after opening /proc/kmsg, instead of staying privileged with
CAP_SYS_ADMIN.  MAC systems that implement security_syslog have unchanged
behavior.

Signed-off-by: Kees Cook <kees.cook@canonical.com>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Acked-by: John Johansen <john.johansen@canonical.com>
Signed-off-by: James Morris <jmorris@namei.org>
2010-02-04 14:20:12 +11:00
Serge E. Hallyn b3a222e52e remove CONFIG_SECURITY_FILE_CAPABILITIES compile option
As far as I know, all distros currently ship kernels with default
CONFIG_SECURITY_FILE_CAPABILITIES=y.  Since having the option on
leaves a 'no_file_caps' option to boot without file capabilities,
the main reason to keep the option is that turning it off saves
you (on my s390x partition) 5k.  In particular, vmlinux sizes
came to:

without patch fscaps=n:		 	53598392
without patch fscaps=y:		 	53603406
with this patch applied:		53603342

with the security-next tree.

Against this we must weigh the fact that there is no simple way for
userspace to figure out whether file capabilities are supported,
while things like per-process securebits, capability bounding
sets, and adding bits to pI if CAP_SETPCAP is in pE are not supported
with SECURITY_FILE_CAPABILITIES=n, leaving a bit of a problem for
applications wanting to know whether they can use them and/or why
something failed.

It also adds another subtly different set of semantics which we must
maintain at the risk of severe security regressions.

So this patch removes the SECURITY_FILE_CAPABILITIES compile
option.  It drops the kernel size by about 50k over the stock
SECURITY_FILE_CAPABILITIES=y kernel, by removing the
cap_limit_ptraced_target() function.

Changelog:
	Nov 20: remove cap_limit_ptraced_target() as it's logic
		was ifndef'ed.

Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Acked-by: Andrew G. Morgan" <morgan@kernel.org>
Signed-off-by: James Morris <jmorris@namei.org>
2009-11-24 15:06:47 +11:00
James Morris 3e1c2515ac security: remove root_plug
Remove the root_plug example LSM code.  It's unmaintained and
    increasingly broken in various ways.

    Made at the 2009 Kernel Summit in Tokyo!

    Acked-by: Greg Kroah-Hartman <gregkh@suse.de>
    Signed-off-by: James Morris <jmorris@namei.org>
2009-10-20 14:26:16 +09:00
Eric Paris a2551df7ec Security/SELinux: seperate lsm specific mmap_min_addr
Currently SELinux enforcement of controls on the ability to map low memory
is determined by the mmap_min_addr tunable.  This patch causes SELinux to
ignore the tunable and instead use a seperate Kconfig option specific to how
much space the LSM should protect.

The tunable will now only control the need for CAP_SYS_RAWIO and SELinux
permissions will always protect the amount of low memory designated by
CONFIG_LSM_MMAP_MIN_ADDR.

This allows users who need to disable the mmap_min_addr controls (usual reason
being they run WINE as a non-root user) to do so and still have SELinux
controls preventing confined domains (like a web server) from being able to
map some area of low memory.

Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2009-08-06 09:02:23 +10:00
Eric Paris 7c73875e7d Capabilities: move cap_file_mmap to commoncap.c
Currently we duplicate the mmap_min_addr test in cap_file_mmap and in
security_file_mmap if !CONFIG_SECURITY.  This patch moves cap_file_mmap
into commoncap.c and then calls that function directly from
security_file_mmap ifndef CONFIG_SECURITY like all of the other capability
checks are done.

Signed-off-by: Eric Paris <eparis@redhat.com>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
2009-08-06 09:02:17 +10:00
Ingo Molnar 9e48858f7d security: rename ptrace_may_access => ptrace_access_check
The ->ptrace_may_access() methods are named confusingly - the real
ptrace_may_access() returns a bool, while these security checks have
a retval convention.

Rename it to ptrace_access_check, to reduce the confusion factor.

[ Impact: cleanup, no code changed ]

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: James Morris <jmorris@namei.org>
2009-06-25 00:18:05 +10:00
James Morris d254117099 Merge branch 'master' into next 2009-05-08 17:56:47 +10:00
Serge E. Hallyn 5bf37ec3e0 cap_prctl: don't set error to 0 at 'no_change'
One-liner: capsh --print is broken without this patch.

In certain cases, cap_prctl returns error > 0 for success.  However,
the 'no_change' label was always setting error to 0.  As a result,
for example, 'prctl(CAP_BSET_READ, N)' would always return 0.
It should return 1 if a process has N in its bounding set (as
by default it does).

I'm keeping the no_change label even though it's now functionally
the same as 'error'.

Signed-off-by: Serge Hallyn <serue@us.ibm.com>
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2009-04-09 09:12:03 +10:00
Serge E. Hallyn b5f22a59c0 don't raise all privs on setuid-root file with fE set (v2)
Distributions face a backward compatibility problem with starting to use
file capabilities.  For instance, removing setuid root from ping and
doing setcap cap_net_raw=pe means that booting with an older kernel
or one compiled without file capabilities means ping won't work for
non-root users.

In order to replace the setuid root bit on a capability-unaware
program, one has to set the effective, or legacy, file capability,
which makes the capability effective immediately.  This patch
uses the legacy bit as a queue to not automatically add full
privilege to a setuid-root program.

So, with this patch, an ordinary setuid-root program will run with
privilege.  But if /bin/ping has both setuid-root and cap_net_raw in
fP and fE, then ping (when run by non-root user) will not run
with only cap_net_raw.

Changelog:
	Apr 2 2009: Print a message once when such a binary is loaded,
		as per James Morris' suggestion.
	Apr 2 2009: Fix the condition to only catch uid!=0 && euid==0.

Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Acked-by: Casey Schaufler <casey@schaufler-ca.com>
Signed-off-by: James Morris <jmorris@namei.org>
2009-04-03 11:49:31 +11:00
James Morris ac8cc0fa53 Merge branch 'next' into for-linus 2009-01-07 09:58:22 +11:00
David Howells 3699c53c48 CRED: Fix regression in cap_capable() as shown up by sys_faccessat() [ver #3]
Fix a regression in cap_capable() due to:

	commit 3b11a1dece
	Author: David Howells <dhowells@redhat.com>
	Date:   Fri Nov 14 10:39:26 2008 +1100

	    CRED: Differentiate objective and effective subjective credentials on a task

The problem is that the above patch allows a process to have two sets of
credentials, and for the most part uses the subjective credentials when
accessing current's creds.

There is, however, one exception: cap_capable(), and thus capable(), uses the
real/objective credentials of the target task, whether or not it is the current
task.

Ordinarily this doesn't matter, since usually the two cred pointers in current
point to the same set of creds.  However, sys_faccessat() makes use of this
facility to override the credentials of the calling process to make its test,
without affecting the creds as seen from other processes.

One of the things sys_faccessat() does is to make an adjustment to the
effective capabilities mask, which cap_capable(), as it stands, then ignores.

The affected capability check is in generic_permission():

	if (!(mask & MAY_EXEC) || execute_ok(inode))
		if (capable(CAP_DAC_OVERRIDE))
			return 0;

This change passes the set of credentials to be tested down into the commoncap
and SELinux code.  The security functions called by capable() and
has_capability() select the appropriate set of credentials from the process
being checked.

This can be tested by compiling the following program from the XFS testsuite:

/*
 *  t_access_root.c - trivial test program to show permission bug.
 *
 *  Written by Michael Kerrisk - copyright ownership not pursued.
 *  Sourced from: http://linux.derkeiler.com/Mailing-Lists/Kernel/2003-10/6030.html
 */
#include <limits.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/stat.h>

#define UID 500
#define GID 100
#define PERM 0
#define TESTPATH "/tmp/t_access"

static void
errExit(char *msg)
{
    perror(msg);
    exit(EXIT_FAILURE);
} /* errExit */

static void
accessTest(char *file, int mask, char *mstr)
{
    printf("access(%s, %s) returns %d\n", file, mstr, access(file, mask));
} /* accessTest */

int
main(int argc, char *argv[])
{
    int fd, perm, uid, gid;
    char *testpath;
    char cmd[PATH_MAX + 20];

    testpath = (argc > 1) ? argv[1] : TESTPATH;
    perm = (argc > 2) ? strtoul(argv[2], NULL, 8) : PERM;
    uid = (argc > 3) ? atoi(argv[3]) : UID;
    gid = (argc > 4) ? atoi(argv[4]) : GID;

    unlink(testpath);

    fd = open(testpath, O_RDWR | O_CREAT, 0);
    if (fd == -1) errExit("open");

    if (fchown(fd, uid, gid) == -1) errExit("fchown");
    if (fchmod(fd, perm) == -1) errExit("fchmod");
    close(fd);

    snprintf(cmd, sizeof(cmd), "ls -l %s", testpath);
    system(cmd);

    if (seteuid(uid) == -1) errExit("seteuid");

    accessTest(testpath, 0, "0");
    accessTest(testpath, R_OK, "R_OK");
    accessTest(testpath, W_OK, "W_OK");
    accessTest(testpath, X_OK, "X_OK");
    accessTest(testpath, R_OK | W_OK, "R_OK | W_OK");
    accessTest(testpath, R_OK | X_OK, "R_OK | X_OK");
    accessTest(testpath, W_OK | X_OK, "W_OK | X_OK");
    accessTest(testpath, R_OK | W_OK | X_OK, "R_OK | W_OK | X_OK");

    exit(EXIT_SUCCESS);
} /* main */

This can be run against an Ext3 filesystem as well as against an XFS
filesystem.  If successful, it will show:

	[root@andromeda src]# ./t_access_root /tmp/xxx 0 4043 4043
	---------- 1 dhowells dhowells 0 2008-12-31 03:00 /tmp/xxx
	access(/tmp/xxx, 0) returns 0
	access(/tmp/xxx, R_OK) returns 0
	access(/tmp/xxx, W_OK) returns 0
	access(/tmp/xxx, X_OK) returns -1
	access(/tmp/xxx, R_OK | W_OK) returns 0
	access(/tmp/xxx, R_OK | X_OK) returns -1
	access(/tmp/xxx, W_OK | X_OK) returns -1
	access(/tmp/xxx, R_OK | W_OK | X_OK) returns -1

If unsuccessful, it will show:

	[root@andromeda src]# ./t_access_root /tmp/xxx 0 4043 4043
	---------- 1 dhowells dhowells 0 2008-12-31 02:56 /tmp/xxx
	access(/tmp/xxx, 0) returns 0
	access(/tmp/xxx, R_OK) returns -1
	access(/tmp/xxx, W_OK) returns -1
	access(/tmp/xxx, X_OK) returns -1
	access(/tmp/xxx, R_OK | W_OK) returns -1
	access(/tmp/xxx, R_OK | X_OK) returns -1
	access(/tmp/xxx, W_OK | X_OK) returns -1
	access(/tmp/xxx, R_OK | W_OK | X_OK) returns -1

I've also tested the fix with the SELinux and syscalls LTP testsuites.

Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: J. Bruce Fields <bfields@citi.umich.edu>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
2009-01-07 09:38:48 +11:00
James Morris 29881c4502 Revert "CRED: Fix regression in cap_capable() as shown up by sys_faccessat() [ver #2]"
This reverts commit 14eaddc967.

David has a better version to come.
2009-01-07 09:21:54 +11:00
Al Viro acfa4380ef inode->i_op is never NULL
We used to have rather schizophrenic set of checks for NULL ->i_op even
though it had been eliminated years ago.  You'd need to go out of your
way to set it to NULL explicitly _and_ a bunch of code would die on
such inodes anyway.  After killing two remaining places that still
did that bogosity, all that crap can go away.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2009-01-05 11:54:28 -05:00
David Howells 14eaddc967 CRED: Fix regression in cap_capable() as shown up by sys_faccessat() [ver #2]
Fix a regression in cap_capable() due to:

	commit 5ff7711e635b32f0a1e558227d030c7e45b4a465
	Author: David Howells <dhowells@redhat.com>
	Date:   Wed Dec 31 02:52:28 2008 +0000

	    CRED: Differentiate objective and effective subjective credentials on a task

The problem is that the above patch allows a process to have two sets of
credentials, and for the most part uses the subjective credentials when
accessing current's creds.

There is, however, one exception: cap_capable(), and thus capable(), uses the
real/objective credentials of the target task, whether or not it is the current
task.

Ordinarily this doesn't matter, since usually the two cred pointers in current
point to the same set of creds.  However, sys_faccessat() makes use of this
facility to override the credentials of the calling process to make its test,
without affecting the creds as seen from other processes.

One of the things sys_faccessat() does is to make an adjustment to the
effective capabilities mask, which cap_capable(), as it stands, then ignores.

The affected capability check is in generic_permission():

	if (!(mask & MAY_EXEC) || execute_ok(inode))
		if (capable(CAP_DAC_OVERRIDE))
			return 0;

This change splits capable() from has_capability() down into the commoncap and
SELinux code.  The capable() security op now only deals with the current
process, and uses the current process's subjective creds.  A new security op -
task_capable() - is introduced that can check any task's objective creds.

strictly the capable() security op is superfluous with the presence of the
task_capable() op, however it should be faster to call the capable() op since
two fewer arguments need be passed down through the various layers.

This can be tested by compiling the following program from the XFS testsuite:

/*
 *  t_access_root.c - trivial test program to show permission bug.
 *
 *  Written by Michael Kerrisk - copyright ownership not pursued.
 *  Sourced from: http://linux.derkeiler.com/Mailing-Lists/Kernel/2003-10/6030.html
 */
#include <limits.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/stat.h>

#define UID 500
#define GID 100
#define PERM 0
#define TESTPATH "/tmp/t_access"

static void
errExit(char *msg)
{
    perror(msg);
    exit(EXIT_FAILURE);
} /* errExit */

static void
accessTest(char *file, int mask, char *mstr)
{
    printf("access(%s, %s) returns %d\n", file, mstr, access(file, mask));
} /* accessTest */

int
main(int argc, char *argv[])
{
    int fd, perm, uid, gid;
    char *testpath;
    char cmd[PATH_MAX + 20];

    testpath = (argc > 1) ? argv[1] : TESTPATH;
    perm = (argc > 2) ? strtoul(argv[2], NULL, 8) : PERM;
    uid = (argc > 3) ? atoi(argv[3]) : UID;
    gid = (argc > 4) ? atoi(argv[4]) : GID;

    unlink(testpath);

    fd = open(testpath, O_RDWR | O_CREAT, 0);
    if (fd == -1) errExit("open");

    if (fchown(fd, uid, gid) == -1) errExit("fchown");
    if (fchmod(fd, perm) == -1) errExit("fchmod");
    close(fd);

    snprintf(cmd, sizeof(cmd), "ls -l %s", testpath);
    system(cmd);

    if (seteuid(uid) == -1) errExit("seteuid");

    accessTest(testpath, 0, "0");
    accessTest(testpath, R_OK, "R_OK");
    accessTest(testpath, W_OK, "W_OK");
    accessTest(testpath, X_OK, "X_OK");
    accessTest(testpath, R_OK | W_OK, "R_OK | W_OK");
    accessTest(testpath, R_OK | X_OK, "R_OK | X_OK");
    accessTest(testpath, W_OK | X_OK, "W_OK | X_OK");
    accessTest(testpath, R_OK | W_OK | X_OK, "R_OK | W_OK | X_OK");

    exit(EXIT_SUCCESS);
} /* main */

This can be run against an Ext3 filesystem as well as against an XFS
filesystem.  If successful, it will show:

	[root@andromeda src]# ./t_access_root /tmp/xxx 0 4043 4043
	---------- 1 dhowells dhowells 0 2008-12-31 03:00 /tmp/xxx
	access(/tmp/xxx, 0) returns 0
	access(/tmp/xxx, R_OK) returns 0
	access(/tmp/xxx, W_OK) returns 0
	access(/tmp/xxx, X_OK) returns -1
	access(/tmp/xxx, R_OK | W_OK) returns 0
	access(/tmp/xxx, R_OK | X_OK) returns -1
	access(/tmp/xxx, W_OK | X_OK) returns -1
	access(/tmp/xxx, R_OK | W_OK | X_OK) returns -1

If unsuccessful, it will show:

	[root@andromeda src]# ./t_access_root /tmp/xxx 0 4043 4043
	---------- 1 dhowells dhowells 0 2008-12-31 02:56 /tmp/xxx
	access(/tmp/xxx, 0) returns 0
	access(/tmp/xxx, R_OK) returns -1
	access(/tmp/xxx, W_OK) returns -1
	access(/tmp/xxx, X_OK) returns -1
	access(/tmp/xxx, R_OK | W_OK) returns -1
	access(/tmp/xxx, R_OK | X_OK) returns -1
	access(/tmp/xxx, W_OK | X_OK) returns -1
	access(/tmp/xxx, R_OK | W_OK | X_OK) returns -1

I've also tested the fix with the SELinux and syscalls LTP testsuites.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2009-01-05 11:17:04 +11:00
Eric Paris e50a906e02 capabilities: define get_vfs_caps_from_disk when file caps are not enabled
When CONFIG_SECURITY_FILE_CAPABILITIES is not set the audit system may
try to call into the capabilities function vfs_cap_from_file.  This
patch defines that function so kernels can build and work.

Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-15 08:50:52 +11:00
David Howells 1d045980e1 CRED: Prettify commoncap.c
Prettify commoncap.c.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Reviewed-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 10:39:24 +11:00
David Howells a6f76f23d2 CRED: Make execve() take advantage of copy-on-write credentials
Make execve() take advantage of copy-on-write credentials, allowing it to set
up the credentials in advance, and then commit the whole lot after the point
of no return.

This patch and the preceding patches have been tested with the LTP SELinux
testsuite.

This patch makes several logical sets of alteration:

 (1) execve().

     The credential bits from struct linux_binprm are, for the most part,
     replaced with a single credentials pointer (bprm->cred).  This means that
     all the creds can be calculated in advance and then applied at the point
     of no return with no possibility of failure.

     I would like to replace bprm->cap_effective with:

	cap_isclear(bprm->cap_effective)

     but this seems impossible due to special behaviour for processes of pid 1
     (they always retain their parent's capability masks where normally they'd
     be changed - see cap_bprm_set_creds()).

     The following sequence of events now happens:

     (a) At the start of do_execve, the current task's cred_exec_mutex is
     	 locked to prevent PTRACE_ATTACH from obsoleting the calculation of
     	 creds that we make.

     (a) prepare_exec_creds() is then called to make a copy of the current
     	 task's credentials and prepare it.  This copy is then assigned to
     	 bprm->cred.

  	 This renders security_bprm_alloc() and security_bprm_free()
     	 unnecessary, and so they've been removed.

     (b) The determination of unsafe execution is now performed immediately
     	 after (a) rather than later on in the code.  The result is stored in
     	 bprm->unsafe for future reference.

     (c) prepare_binprm() is called, possibly multiple times.

     	 (i) This applies the result of set[ug]id binaries to the new creds
     	     attached to bprm->cred.  Personality bit clearance is recorded,
     	     but now deferred on the basis that the exec procedure may yet
     	     fail.

         (ii) This then calls the new security_bprm_set_creds().  This should
	     calculate the new LSM and capability credentials into *bprm->cred.

	     This folds together security_bprm_set() and parts of
	     security_bprm_apply_creds() (these two have been removed).
	     Anything that might fail must be done at this point.

         (iii) bprm->cred_prepared is set to 1.

	     bprm->cred_prepared is 0 on the first pass of the security
	     calculations, and 1 on all subsequent passes.  This allows SELinux
	     in (ii) to base its calculations only on the initial script and
	     not on the interpreter.

     (d) flush_old_exec() is called to commit the task to execution.  This
     	 performs the following steps with regard to credentials:

	 (i) Clear pdeath_signal and set dumpable on certain circumstances that
	     may not be covered by commit_creds().

         (ii) Clear any bits in current->personality that were deferred from
             (c.i).

     (e) install_exec_creds() [compute_creds() as was] is called to install the
     	 new credentials.  This performs the following steps with regard to
     	 credentials:

         (i) Calls security_bprm_committing_creds() to apply any security
             requirements, such as flushing unauthorised files in SELinux, that
             must be done before the credentials are changed.

	     This is made up of bits of security_bprm_apply_creds() and
	     security_bprm_post_apply_creds(), both of which have been removed.
	     This function is not allowed to fail; anything that might fail
	     must have been done in (c.ii).

         (ii) Calls commit_creds() to apply the new credentials in a single
             assignment (more or less).  Possibly pdeath_signal and dumpable
             should be part of struct creds.

	 (iii) Unlocks the task's cred_replace_mutex, thus allowing
	     PTRACE_ATTACH to take place.

         (iv) Clears The bprm->cred pointer as the credentials it was holding
             are now immutable.

         (v) Calls security_bprm_committed_creds() to apply any security
             alterations that must be done after the creds have been changed.
             SELinux uses this to flush signals and signal handlers.

     (f) If an error occurs before (d.i), bprm_free() will call abort_creds()
     	 to destroy the proposed new credentials and will then unlock
     	 cred_replace_mutex.  No changes to the credentials will have been
     	 made.

 (2) LSM interface.

     A number of functions have been changed, added or removed:

     (*) security_bprm_alloc(), ->bprm_alloc_security()
     (*) security_bprm_free(), ->bprm_free_security()

     	 Removed in favour of preparing new credentials and modifying those.

     (*) security_bprm_apply_creds(), ->bprm_apply_creds()
     (*) security_bprm_post_apply_creds(), ->bprm_post_apply_creds()

     	 Removed; split between security_bprm_set_creds(),
     	 security_bprm_committing_creds() and security_bprm_committed_creds().

     (*) security_bprm_set(), ->bprm_set_security()

     	 Removed; folded into security_bprm_set_creds().

     (*) security_bprm_set_creds(), ->bprm_set_creds()

     	 New.  The new credentials in bprm->creds should be checked and set up
     	 as appropriate.  bprm->cred_prepared is 0 on the first call, 1 on the
     	 second and subsequent calls.

     (*) security_bprm_committing_creds(), ->bprm_committing_creds()
     (*) security_bprm_committed_creds(), ->bprm_committed_creds()

     	 New.  Apply the security effects of the new credentials.  This
     	 includes closing unauthorised files in SELinux.  This function may not
     	 fail.  When the former is called, the creds haven't yet been applied
     	 to the process; when the latter is called, they have.

 	 The former may access bprm->cred, the latter may not.

 (3) SELinux.

     SELinux has a number of changes, in addition to those to support the LSM
     interface changes mentioned above:

     (a) The bprm_security_struct struct has been removed in favour of using
     	 the credentials-under-construction approach.

     (c) flush_unauthorized_files() now takes a cred pointer and passes it on
     	 to inode_has_perm(), file_has_perm() and dentry_open().

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 10:39:24 +11:00
David Howells d84f4f992c CRED: Inaugurate COW credentials
Inaugurate copy-on-write credentials management.  This uses RCU to manage the
credentials pointer in the task_struct with respect to accesses by other tasks.
A process may only modify its own credentials, and so does not need locking to
access or modify its own credentials.

A mutex (cred_replace_mutex) is added to the task_struct to control the effect
of PTRACE_ATTACHED on credential calculations, particularly with respect to
execve().

With this patch, the contents of an active credentials struct may not be
changed directly; rather a new set of credentials must be prepared, modified
and committed using something like the following sequence of events:

	struct cred *new = prepare_creds();
	int ret = blah(new);
	if (ret < 0) {
		abort_creds(new);
		return ret;
	}
	return commit_creds(new);

There are some exceptions to this rule: the keyrings pointed to by the active
credentials may be instantiated - keyrings violate the COW rule as managing
COW keyrings is tricky, given that it is possible for a task to directly alter
the keys in a keyring in use by another task.

To help enforce this, various pointers to sets of credentials, such as those in
the task_struct, are declared const.  The purpose of this is compile-time
discouragement of altering credentials through those pointers.  Once a set of
credentials has been made public through one of these pointers, it may not be
modified, except under special circumstances:

  (1) Its reference count may incremented and decremented.

  (2) The keyrings to which it points may be modified, but not replaced.

The only safe way to modify anything else is to create a replacement and commit
using the functions described in Documentation/credentials.txt (which will be
added by a later patch).

This patch and the preceding patches have been tested with the LTP SELinux
testsuite.

This patch makes several logical sets of alteration:

 (1) execve().

     This now prepares and commits credentials in various places in the
     security code rather than altering the current creds directly.

 (2) Temporary credential overrides.

     do_coredump() and sys_faccessat() now prepare their own credentials and
     temporarily override the ones currently on the acting thread, whilst
     preventing interference from other threads by holding cred_replace_mutex
     on the thread being dumped.

     This will be replaced in a future patch by something that hands down the
     credentials directly to the functions being called, rather than altering
     the task's objective credentials.

 (3) LSM interface.

     A number of functions have been changed, added or removed:

     (*) security_capset_check(), ->capset_check()
     (*) security_capset_set(), ->capset_set()

     	 Removed in favour of security_capset().

     (*) security_capset(), ->capset()

     	 New.  This is passed a pointer to the new creds, a pointer to the old
     	 creds and the proposed capability sets.  It should fill in the new
     	 creds or return an error.  All pointers, barring the pointer to the
     	 new creds, are now const.

     (*) security_bprm_apply_creds(), ->bprm_apply_creds()

     	 Changed; now returns a value, which will cause the process to be
     	 killed if it's an error.

     (*) security_task_alloc(), ->task_alloc_security()

     	 Removed in favour of security_prepare_creds().

     (*) security_cred_free(), ->cred_free()

     	 New.  Free security data attached to cred->security.

     (*) security_prepare_creds(), ->cred_prepare()

     	 New. Duplicate any security data attached to cred->security.

     (*) security_commit_creds(), ->cred_commit()

     	 New. Apply any security effects for the upcoming installation of new
     	 security by commit_creds().

     (*) security_task_post_setuid(), ->task_post_setuid()

     	 Removed in favour of security_task_fix_setuid().

     (*) security_task_fix_setuid(), ->task_fix_setuid()

     	 Fix up the proposed new credentials for setuid().  This is used by
     	 cap_set_fix_setuid() to implicitly adjust capabilities in line with
     	 setuid() changes.  Changes are made to the new credentials, rather
     	 than the task itself as in security_task_post_setuid().

     (*) security_task_reparent_to_init(), ->task_reparent_to_init()

     	 Removed.  Instead the task being reparented to init is referred
     	 directly to init's credentials.

	 NOTE!  This results in the loss of some state: SELinux's osid no
	 longer records the sid of the thread that forked it.

     (*) security_key_alloc(), ->key_alloc()
     (*) security_key_permission(), ->key_permission()

     	 Changed.  These now take cred pointers rather than task pointers to
     	 refer to the security context.

 (4) sys_capset().

     This has been simplified and uses less locking.  The LSM functions it
     calls have been merged.

 (5) reparent_to_kthreadd().

     This gives the current thread the same credentials as init by simply using
     commit_thread() to point that way.

 (6) __sigqueue_alloc() and switch_uid()

     __sigqueue_alloc() can't stop the target task from changing its creds
     beneath it, so this function gets a reference to the currently applicable
     user_struct which it then passes into the sigqueue struct it returns if
     successful.

     switch_uid() is now called from commit_creds(), and possibly should be
     folded into that.  commit_creds() should take care of protecting
     __sigqueue_alloc().

 (7) [sg]et[ug]id() and co and [sg]et_current_groups.

     The set functions now all use prepare_creds(), commit_creds() and
     abort_creds() to build and check a new set of credentials before applying
     it.

     security_task_set[ug]id() is called inside the prepared section.  This
     guarantees that nothing else will affect the creds until we've finished.

     The calling of set_dumpable() has been moved into commit_creds().

     Much of the functionality of set_user() has been moved into
     commit_creds().

     The get functions all simply access the data directly.

 (8) security_task_prctl() and cap_task_prctl().

     security_task_prctl() has been modified to return -ENOSYS if it doesn't
     want to handle a function, or otherwise return the return value directly
     rather than through an argument.

     Additionally, cap_task_prctl() now prepares a new set of credentials, even
     if it doesn't end up using it.

 (9) Keyrings.

     A number of changes have been made to the keyrings code:

     (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have
     	 all been dropped and built in to the credentials functions directly.
     	 They may want separating out again later.

     (b) key_alloc() and search_process_keyrings() now take a cred pointer
     	 rather than a task pointer to specify the security context.

     (c) copy_creds() gives a new thread within the same thread group a new
     	 thread keyring if its parent had one, otherwise it discards the thread
     	 keyring.

     (d) The authorisation key now points directly to the credentials to extend
     	 the search into rather pointing to the task that carries them.

     (e) Installing thread, process or session keyrings causes a new set of
     	 credentials to be created, even though it's not strictly necessary for
     	 process or session keyrings (they're shared).

(10) Usermode helper.

     The usermode helper code now carries a cred struct pointer in its
     subprocess_info struct instead of a new session keyring pointer.  This set
     of credentials is derived from init_cred and installed on the new process
     after it has been cloned.

     call_usermodehelper_setup() allocates the new credentials and
     call_usermodehelper_freeinfo() discards them if they haven't been used.  A
     special cred function (prepare_usermodeinfo_creds()) is provided
     specifically for call_usermodehelper_setup() to call.

     call_usermodehelper_setkeys() adjusts the credentials to sport the
     supplied keyring as the new session keyring.

(11) SELinux.

     SELinux has a number of changes, in addition to those to support the LSM
     interface changes mentioned above:

     (a) selinux_setprocattr() no longer does its check for whether the
     	 current ptracer can access processes with the new SID inside the lock
     	 that covers getting the ptracer's SID.  Whilst this lock ensures that
     	 the check is done with the ptracer pinned, the result is only valid
     	 until the lock is released, so there's no point doing it inside the
     	 lock.

(12) is_single_threaded().

     This function has been extracted from selinux_setprocattr() and put into
     a file of its own in the lib/ directory as join_session_keyring() now
     wants to use it too.

     The code in SELinux just checked to see whether a task shared mm_structs
     with other tasks (CLONE_VM), but that isn't good enough.  We really want
     to know if they're part of the same thread group (CLONE_THREAD).

(13) nfsd.

     The NFS server daemon now has to use the COW credentials to set the
     credentials it is going to use.  It really needs to pass the credentials
     down to the functions it calls, but it can't do that until other patches
     in this series have been applied.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 10:39:23 +11:00
David Howells c69e8d9c01 CRED: Use RCU to access another task's creds and to release a task's own creds
Use RCU to access another task's creds and to release a task's own creds.
This means that it will be possible for the credentials of a task to be
replaced without another task (a) requiring a full lock to read them, and (b)
seeing deallocated memory.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 10:39:19 +11:00
David Howells 86a264abe5 CRED: Wrap current->cred and a few other accessors
Wrap current->cred and a few other accessors to hide their actual
implementation.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 10:39:18 +11:00
David Howells b6dff3ec5e CRED: Separate task security context from task_struct
Separate the task security context from task_struct.  At this point, the
security data is temporarily embedded in the task_struct with two pointers
pointing to it.

Note that the Alpha arch is altered as it refers to (E)UID and (E)GID in
entry.S via asm-offsets.

With comment fixes Signed-off-by: Marc Dionne <marc.c.dionne@gmail.com>

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 10:39:16 +11:00
David Howells 15a2460ed0 CRED: Constify the kernel_cap_t arguments to the capset LSM hooks
Constify the kernel_cap_t arguments to the capset LSM hooks.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 10:39:15 +11:00
David Howells 1cdcbec1a3 CRED: Neuter sys_capset()
Take away the ability for sys_capset() to affect processes other than current.

This means that current will not need to lock its own credentials when reading
them against interference by other processes.

This has effectively been the case for a while anyway, since:

 (1) Without LSM enabled, sys_capset() is disallowed.

 (2) With file-based capabilities, sys_capset() is neutered.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Acked-by: Andrew G. Morgan <morgan@kernel.org>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 10:39:14 +11:00
David Howells b103c59883 CRED: Wrap task credential accesses in the capabilities code
Wrap access to task credentials so that they can be separated more easily from
the task_struct during the introduction of COW creds.

Change most current->(|e|s|fs)[ug]id to current_(|e|s|fs)[ug]id().

Change some task->e?[ug]id to task_e?[ug]id().  In some places it makes more
sense to use RCU directly rather than a convenient wrapper; these will be
addressed by later patches.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Cc: Andrew G. Morgan <morgan@kernel.org>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 10:39:11 +11:00
Eric Paris 06112163f5 Add a new capable interface that will be used by systems that use audit to
make an A or B type decision instead of a security decision.  Currently
this is the case at least for filesystems when deciding if a process can use
the reserved 'root' blocks and for the case of things like the oom
algorithm determining if processes are root processes and should be less
likely to be killed.  These types of security system requests should not be
audited or logged since they are not really security decisions.  It would be
possible to solve this problem like the vm_enough_memory security check did
by creating a new LSM interface and moving all of the policy into that
interface but proves the needlessly bloat the LSM and provide complex
indirection.

This merely allows those decisions to be made where they belong and to not
flood logs or printk with denials for thing that are not security decisions.

Signed-off-by: Eric Paris <eparis@redhat.com>
Acked-by:  Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-11 22:02:50 +11:00
Eric Paris 3fc689e96c Any time fcaps or a setuid app under SECURE_NOROOT is used to result in a
non-zero pE we will crate a new audit record which contains the entire set
of known information about the executable in question, fP, fI, fE, fversion
and includes the process's pE, pI, pP.  Before and after the bprm capability
are applied.  This record type will only be emitted from execve syscalls.

an example of making ping use fcaps instead of setuid:

setcap "cat_net_raw+pe" /bin/ping

type=SYSCALL msg=audit(1225742021.015:236): arch=c000003e syscall=59 success=yes exit=0 a0=1457f30 a1=14606b0 a2=1463940 a3=321b770a70 items=2 ppid=2929 pid=2963 auid=0 uid=500 gid=500 euid=500 suid=500 fsuid=500 egid=500 sgid=500 fsgid=500 tty=pts0 ses=3 comm="ping" exe="/bin/ping" subj=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 key=(null)
type=UNKNOWN[1321] msg=audit(1225742021.015:236): fver=2 fp=0000000000002000 fi=0000000000000000 fe=1 old_pp=0000000000000000 old_pi=0000000000000000 old_pe=0000000000000000 new_pp=0000000000002000 new_pi=0000000000000000 new_pe=0000000000002000
type=EXECVE msg=audit(1225742021.015:236): argc=2 a0="ping" a1="127.0.0.1"
type=CWD msg=audit(1225742021.015:236):  cwd="/home/test"
type=PATH msg=audit(1225742021.015:236): item=0 name="/bin/ping" inode=49256 dev=fd:00 mode=0100755 ouid=0 ogid=0 rdev=00:00 obj=system_u:object_r:ping_exec_t:s0 cap_fp=0000000000002000 cap_fe=1 cap_fver=2
type=PATH msg=audit(1225742021.015:236): item=1 name=(null) inode=507915 dev=fd:00 mode=0100755 ouid=0 ogid=0 rdev=00:00 obj=system_u:object_r:ld_so_t:s0

Signed-off-by: Eric Paris <eparis@redhat.com>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-11 21:48:18 +11:00
Eric Paris c0b004413a This patch add a generic cpu endian caps structure and externally available
functions which retrieve fcaps information from disk.  This information is
necessary so fcaps information can be collected and recorded by the audit
system.

Signed-off-by: Eric Paris <eparis@redhat.com>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-11 21:48:10 +11:00
Serge E. Hallyn 1f29fae297 file capabilities: add no_file_caps switch (v4)
Add a no_file_caps boot option when file capabilities are
compiled into the kernel (CONFIG_SECURITY_FILE_CAPABILITIES=y).

This allows distributions to ship a kernel with file capabilities
compiled in, without forcing users to use (and understand and
trust) them.

When no_file_caps is specified at boot, then when a process executes
a file, any file capabilities stored with that file will not be
used in the calculation of the process' new capability sets.

This means that booting with the no_file_caps boot option will
not be the same as booting a kernel with file capabilities
compiled out - in particular a task with  CAP_SETPCAP will not
have any chance of passing capabilities to another task (which
isn't "really" possible anyway, and which may soon by killed
altogether by David Howells in any case), and it will instead
be able to put new capabilities in its pI.  However since fI
will always be empty and pI is masked with fI, it gains the
task nothing.

We also support the extra prctl options, setting securebits and
dropping capabilities from the per-process bounding set.

The other remaining difference is that killpriv, task_setscheduler,
setioprio, and setnice will continue to be hooked.  That will
be noticable in the case where a root task changed its uid
while keeping some caps, and another task owned by the new uid
tries to change settings for the more privileged task.

Changelog:
	Nov 05 2008: (v4) trivial port on top of always-start-\
		with-clear-caps patch
	Sep 23 2008: nixed file_caps_enabled when file caps are
		not compiled in as it isn't used.
		Document no_file_caps in kernel-parameters.txt.

Signed-off-by: Serge Hallyn <serue@us.ibm.com>
Acked-by: Andrew G. Morgan <morgan@kernel.org>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-06 07:14:51 +08:00
Serge Hallyn 3318a386e4 file caps: always start with clear bprm->caps_*
While Linux doesn't honor setuid on scripts.  However, it mistakenly
behaves differently for file capabilities.

This patch fixes that behavior by making sure that get_file_caps()
begins with empty bprm->caps_*.  That way when a script is loaded,
its bprm->caps_* may be filled when binfmt_misc calls prepare_binprm(),
but they will be cleared again when binfmt_elf calls prepare_binprm()
next to read the interpreter's file capabilities.

Signed-off-by: Serge Hallyn <serue@us.ibm.com>
Acked-by: David Howells <dhowells@redhat.com>
Acked-by: Andrew G. Morgan <morgan@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-11-01 09:49:45 -07:00
Serge E. Hallyn de45e806a8 file capabilities: uninline cap_safe_nice
This reduces the kernel size by 289 bytes.

Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Acked-by: Andrew G. Morgan <morgan@kernel.org>
Signed-off-by: James Morris <jmorris@namei.org>
2008-09-27 15:07:56 +10:00
David Howells 5cd9c58fbe security: Fix setting of PF_SUPERPRIV by __capable()
Fix the setting of PF_SUPERPRIV by __capable() as it could corrupt the flags
the target process if that is not the current process and it is trying to
change its own flags in a different way at the same time.

__capable() is using neither atomic ops nor locking to protect t->flags.  This
patch removes __capable() and introduces has_capability() that doesn't set
PF_SUPERPRIV on the process being queried.

This patch further splits security_ptrace() in two:

 (1) security_ptrace_may_access().  This passes judgement on whether one
     process may access another only (PTRACE_MODE_ATTACH for ptrace() and
     PTRACE_MODE_READ for /proc), and takes a pointer to the child process.
     current is the parent.

 (2) security_ptrace_traceme().  This passes judgement on PTRACE_TRACEME only,
     and takes only a pointer to the parent process.  current is the child.

     In Smack and commoncap, this uses has_capability() to determine whether
     the parent will be permitted to use PTRACE_ATTACH if normal checks fail.
     This does not set PF_SUPERPRIV.

Two of the instances of __capable() actually only act on current, and so have
been changed to calls to capable().

Of the places that were using __capable():

 (1) The OOM killer calls __capable() thrice when weighing the killability of a
     process.  All of these now use has_capability().

 (2) cap_ptrace() and smack_ptrace() were using __capable() to check to see
     whether the parent was allowed to trace any process.  As mentioned above,
     these have been split.  For PTRACE_ATTACH and /proc, capable() is now
     used, and for PTRACE_TRACEME, has_capability() is used.

 (3) cap_safe_nice() only ever saw current, so now uses capable().

 (4) smack_setprocattr() rejected accesses to tasks other than current just
     after calling __capable(), so the order of these two tests have been
     switched and capable() is used instead.

 (5) In smack_file_send_sigiotask(), we need to allow privileged processes to
     receive SIGIO on files they're manipulating.

 (6) In smack_task_wait(), we let a process wait for a privileged process,
     whether or not the process doing the waiting is privileged.

I've tested this with the LTP SELinux and syscalls testscripts.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Acked-by: Casey Schaufler <casey@schaufler-ca.com>
Acked-by: Andrew G. Morgan <morgan@kernel.org>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: James Morris <jmorris@namei.org>
2008-08-14 22:59:43 +10:00
Andrew G. Morgan 5459c164f0 security: protect legacy applications from executing with insufficient privilege
When cap_bset suppresses some of the forced (fP) capabilities of a file,
it is generally only safe to execute the program if it understands how to
recognize it doesn't have enough privilege to work correctly.  For legacy
applications (fE!=0), which have no non-destructive way to determine that
they are missing privilege, we fail to execute (EPERM) any executable that
requires fP capabilities, but would otherwise get pP' < fP.  This is a
fail-safe permission check.

For some discussion of why it is problematic for (legacy) privileged
applications to run with less than the set of capabilities requested for
them, see:

 http://userweb.kernel.org/~morgan/sendmail-capabilities-war-story.html

With this iteration of this support, we do not include setuid-0 based
privilege protection from the bounding set.  That is, the admin can still
(ab)use the bounding set to suppress the privileges of a setuid-0 program.

[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: cleanup]
Signed-off-by: Andrew G. Morgan <morgan@kernel.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 10:47:22 -07:00
Stephen Smalley 006ebb40d3 Security: split proc ptrace checking into read vs. attach
Enable security modules to distinguish reading of process state via
proc from full ptrace access by renaming ptrace_may_attach to
ptrace_may_access and adding a mode argument indicating whether only
read access or full attach access is requested.  This allows security
modules to permit access to reading process state without granting
full ptrace access.  The base DAC/capability checking remains unchanged.

Read access to /proc/pid/mem continues to apply a full ptrace attach
check since check_mem_permission() already requires the current task
to already be ptracing the target.  The other ptrace checks within
proc for elements like environ, maps, and fds are changed to pass the
read mode instead of attach.

In the SELinux case, we model such reading of process state as a
reading of a proc file labeled with the target process' label.  This
enables SELinux policy to permit such reading of process state without
permitting control or manipulation of the target process, as there are
a number of cases where programs probe for such information via proc
but do not need to be able to control the target (e.g. procps,
lsof, PolicyKit, ConsoleKit).  At present we have to choose between
allowing full ptrace in policy (more permissive than required/desired)
or breaking functionality (or in some cases just silencing the denials
via dontaudit rules but this can hide genuine attacks).

This version of the patch incorporates comments from Casey Schaufler
(change/replace existing ptrace_may_attach interface, pass access
mode), and Chris Wright (provide greater consistency in the checking).

Note that like their predecessors __ptrace_may_attach and
ptrace_may_attach, the __ptrace_may_access and ptrace_may_access
interfaces use different return value conventions from each other (0
or -errno vs. 1 or 0).  I retained this difference to avoid any
changes to the caller logic but made the difference clearer by
changing the latter interface to return a bool rather than an int and
by adding a comment about it to ptrace.h for any future callers.

Signed-off-by:  Stephen Smalley <sds@tycho.nsa.gov>
Acked-by: Chris Wright <chrisw@sous-sol.org>
Signed-off-by: James Morris <jmorris@namei.org>
2008-07-14 15:01:47 +10:00
Andrew G. Morgan 1209726ce9 security: filesystem capabilities: fix CAP_SETPCAP handling
The filesystem capability support meaning for CAP_SETPCAP is less powerful
than the non-filesystem capability support.  As such, when filesystem
capabilities are configured, we should not permit CAP_SETPCAP to 'enhance'
the current process through strace manipulation of a child process.

Signed-off-by: Andrew G. Morgan <morgan@kernel.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-04 10:40:08 -07:00
David Howells 8f0cfa52a1 xattr: add missing consts to function arguments
Add missing consts to xattr function arguments.

Signed-off-by: David Howells <dhowells@redhat.com>
Cc: Andreas Gruenbacher <agruen@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-29 08:06:06 -07:00
Andrew G. Morgan 3898b1b4eb capabilities: implement per-process securebits
Filesystem capability support makes it possible to do away with (set)uid-0
based privilege and use capabilities instead.  That is, with filesystem
support for capabilities but without this present patch, it is (conceptually)
possible to manage a system with capabilities alone and never need to obtain
privilege via (set)uid-0.

Of course, conceptually isn't quite the same as currently possible since few
user applications, certainly not enough to run a viable system, are currently
prepared to leverage capabilities to exercise privilege.  Further, many
applications exist that may never get upgraded in this way, and the kernel
will continue to want to support their setuid-0 base privilege needs.

Where pure-capability applications evolve and replace setuid-0 binaries, it is
desirable that there be a mechanisms by which they can contain their
privilege.  In addition to leveraging the per-process bounding and inheritable
sets, this should include suppressing the privilege of the uid-0 superuser
from the process' tree of children.

The feature added by this patch can be leveraged to suppress the privilege
associated with (set)uid-0.  This suppression requires CAP_SETPCAP to
initiate, and only immediately affects the 'current' process (it is inherited
through fork()/exec()).  This reimplementation differs significantly from the
historical support for securebits which was system-wide, unwieldy and which
has ultimately withered to a dead relic in the source of the modern kernel.

With this patch applied a process, that is capable(CAP_SETPCAP), can now drop
all legacy privilege (through uid=0) for itself and all subsequently
fork()'d/exec()'d children with:

  prctl(PR_SET_SECUREBITS, 0x2f);

This patch represents a no-op unless CONFIG_SECURITY_FILE_CAPABILITIES is
enabled at configure time.

[akpm@linux-foundation.org: fix uninitialised var warning]
[serue@us.ibm.com: capabilities: use cap_task_prctl when !CONFIG_SECURITY]
Signed-off-by: Andrew G. Morgan <morgan@kernel.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Reviewed-by: James Morris <jmorris@namei.org>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Paul Moore <paul.moore@hp.com>
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 08:58:26 -07:00
Harvey Harrison dd6f953adb security: replace remaining __FUNCTION__ occurrences
__FUNCTION__ is gcc-specific, use __func__

Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com>
Cc: James Morris <jmorris@namei.org>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: James Morris <jmorris@namei.org>
2008-04-18 20:26:07 +10:00
Serge Hallyn aedb60a67c file capabilities: remove cap_task_kill()
The original justification for cap_task_kill() was as follows:

	check_kill_permission() does appropriate uid equivalence checks.
	However with file capabilities it becomes possible for an
	unprivileged user to execute a file with file capabilities
	resulting in a more privileged task with the same uid.

However now that cap_task_kill() always returns 0 (permission
granted) when p->uid==current->uid, the whole hook is worthless,
and only likely to create more subtle problems in the corner cases
where it might still be called but return -EPERM.  Those cases
are basically when uids are different but euid/suid is equivalent
as per the check in check_kill_permission().

One example of a still-broken application is 'at' for non-root users.

This patch removes cap_task_kill().

Signed-off-by: Serge Hallyn <serge@hallyn.com>
Acked-by: Andrew G. Morgan <morgan@kernel.org>
Earlier-version-tested-by: Luiz Fernando N. Capitulino <lcapitulino@mandriva.com.br>
Acked-by: Casey Schaufler <casey@schaufler-ca.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-03-20 09:46:36 -07:00
Serge E. Hallyn 094972840f file capabilities: simplify signal check
Simplify the uid equivalence check in cap_task_kill().  Anyone can kill a
process owned by the same uid.

Without this patch wireshark is reported to fail.

Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Signed-off-by: Andrew G. Morgan <morgan@kernel.org>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-23 17:12:13 -08:00
Serge E. Hallyn 3b7391de67 capabilities: introduce per-process capability bounding set
The capability bounding set is a set beyond which capabilities cannot grow.
 Currently cap_bset is per-system.  It can be manipulated through sysctl,
but only init can add capabilities.  Root can remove capabilities.  By
default it includes all caps except CAP_SETPCAP.

This patch makes the bounding set per-process when file capabilities are
enabled.  It is inherited at fork from parent.  Noone can add elements,
CAP_SETPCAP is required to remove them.

One example use of this is to start a safer container.  For instance, until
device namespaces or per-container device whitelists are introduced, it is
best to take CAP_MKNOD away from a container.

The bounding set will not affect pP and pE immediately.  It will only
affect pP' and pE' after subsequent exec()s.  It also does not affect pI,
and exec() does not constrain pI'.  So to really start a shell with no way
of regain CAP_MKNOD, you would do

	prctl(PR_CAPBSET_DROP, CAP_MKNOD);
	cap_t cap = cap_get_proc();
	cap_value_t caparray[1];
	caparray[0] = CAP_MKNOD;
	cap_set_flag(cap, CAP_INHERITABLE, 1, caparray, CAP_DROP);
	cap_set_proc(cap);
	cap_free(cap);

The following test program will get and set the bounding
set (but not pI).  For instance

	./bset get
		(lists capabilities in bset)
	./bset drop cap_net_raw
		(starts shell with new bset)
		(use capset, setuid binary, or binary with
		file capabilities to try to increase caps)

************************************************************
cap_bound.c
************************************************************
 #include <sys/prctl.h>
 #include <linux/capability.h>
 #include <sys/types.h>
 #include <unistd.h>
 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>

 #ifndef PR_CAPBSET_READ
 #define PR_CAPBSET_READ 23
 #endif

 #ifndef PR_CAPBSET_DROP
 #define PR_CAPBSET_DROP 24
 #endif

int usage(char *me)
{
	printf("Usage: %s get\n", me);
	printf("       %s drop <capability>\n", me);
	return 1;
}

 #define numcaps 32
char *captable[numcaps] = {
	"cap_chown",
	"cap_dac_override",
	"cap_dac_read_search",
	"cap_fowner",
	"cap_fsetid",
	"cap_kill",
	"cap_setgid",
	"cap_setuid",
	"cap_setpcap",
	"cap_linux_immutable",
	"cap_net_bind_service",
	"cap_net_broadcast",
	"cap_net_admin",
	"cap_net_raw",
	"cap_ipc_lock",
	"cap_ipc_owner",
	"cap_sys_module",
	"cap_sys_rawio",
	"cap_sys_chroot",
	"cap_sys_ptrace",
	"cap_sys_pacct",
	"cap_sys_admin",
	"cap_sys_boot",
	"cap_sys_nice",
	"cap_sys_resource",
	"cap_sys_time",
	"cap_sys_tty_config",
	"cap_mknod",
	"cap_lease",
	"cap_audit_write",
	"cap_audit_control",
	"cap_setfcap"
};

int getbcap(void)
{
	int comma=0;
	unsigned long i;
	int ret;

	printf("i know of %d capabilities\n", numcaps);
	printf("capability bounding set:");
	for (i=0; i<numcaps; i++) {
		ret = prctl(PR_CAPBSET_READ, i);
		if (ret < 0)
			perror("prctl");
		else if (ret==1)
			printf("%s%s", (comma++) ? ", " : " ", captable[i]);
	}
	printf("\n");
	return 0;
}

int capdrop(char *str)
{
	unsigned long i;

	int found=0;
	for (i=0; i<numcaps; i++) {
		if (strcmp(captable[i], str) == 0) {
			found=1;
			break;
		}
	}
	if (!found)
		return 1;
	if (prctl(PR_CAPBSET_DROP, i)) {
		perror("prctl");
		return 1;
	}
	return 0;
}

int main(int argc, char *argv[])
{
	if (argc<2)
		return usage(argv[0]);
	if (strcmp(argv[1], "get")==0)
		return getbcap();
	if (strcmp(argv[1], "drop")!=0 || argc<3)
		return usage(argv[0]);
	if (capdrop(argv[2])) {
		printf("unknown capability\n");
		return 1;
	}
	return execl("/bin/bash", "/bin/bash", NULL);
}
************************************************************

[serue@us.ibm.com: fix typo]
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Signed-off-by: Andrew G. Morgan <morgan@kernel.org>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Casey Schaufler <casey@schaufler-ca.com>a
Signed-off-by: "Serge E. Hallyn" <serue@us.ibm.com>
Tested-by: Jiri Slaby <jirislaby@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 09:44:20 -08:00
Andrew Morgan e338d263a7 Add 64-bit capability support to the kernel
The patch supports legacy (32-bit) capability userspace, and where possible
translates 32-bit capabilities to/from userspace and the VFS to 64-bit
kernel space capabilities.  If a capability set cannot be compressed into
32-bits for consumption by user space, the system call fails, with -ERANGE.

FWIW libcap-2.00 supports this change (and earlier capability formats)

 http://www.kernel.org/pub/linux/libs/security/linux-privs/kernel-2.6/

[akpm@linux-foundation.org: coding-syle fixes]
[akpm@linux-foundation.org: use get_task_comm()]
[ezk@cs.sunysb.edu: build fix]
[akpm@linux-foundation.org: do not initialise statics to 0 or NULL]
[akpm@linux-foundation.org: unused var]
[serue@us.ibm.com: export __cap_ symbols]
Signed-off-by: Andrew G. Morgan <morgan@kernel.org>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: James Morris <jmorris@namei.org>
Cc: Casey Schaufler <casey@schaufler-ca.com>
Signed-off-by: Erez Zadok <ezk@cs.sunysb.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 09:44:20 -08:00
Andrew Morton 8f6936f4d2 revert "capabilities: clean up file capability reading"
Revert b68680e473 to make way for the next
patch: "Add 64-bit capability support to the kernel".

We want to keep the vfs_cap_data.data[] structure, using two 'data's for
64-bit caps (and later three for 96-bit caps), whereas
b68680e473 had gotten rid of the 'data' struct
made its members inline.

The 64-bit caps patch keeps the stack abuse fix at get_file_caps(), which was
the more important part of that patch.

[akpm@linux-foundation.org: coding-style fixes]
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Serge Hallyn <serue@us.ibm.com>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: James Morris <jmorris@namei.org>
Cc: Casey Schaufler <casey@schaufler-ca.com>
Cc: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 09:44:20 -08:00
Andrew G. Morgan a6dbb1ef2f Fix filesystem capability support
In linux-2.6.24-rc1, security/commoncap.c:cap_inh_is_capped() was
introduced. It has the exact reverse of its intended behavior. This
led to an unintended privilege esculation involving a process'
inheritable capability set.

To be exposed to this bug, you need to have Filesystem Capabilities
enabled and in use. That is:

- CONFIG_SECURITY_FILE_CAPABILITIES must be defined for the buggy code
  to be compiled in.

- You also need to have files on your system marked with fI bits raised.

Signed-off-by: Andrew G. Morgan <morgan@kernel.org>

Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@akpm@linux-foundation.org>
2008-01-21 19:39:41 -08:00
Serge E. Hallyn 8ec2328f11 file capabilities: don't prevent signaling setuid root programs
An unprivileged process must be able to kill a setuid root program started
by the same user.  This is legacy behavior needed for instance for xinit to
kill X when the window manager exits.

When an unprivileged user runs a setuid root program in !SECURE_NOROOT
mode, fP, fI, and fE are set full on, so pP' and pE' are full on.  Then
cap_task_kill() prevents the user from signaling the setuid root task.
This is a change in behavior compared to when
!CONFIG_SECURITY_FILE_CAPABILITIES.

This patch introduces a special check into cap_task_kill() just to check
whether a non-root user is signaling a setuid root program started by the
same user.  If so, then signal is allowed.

Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Cc: Andrew Morgan <morgan@kernel.org>
Cc: Stephen Smalley <sds@epoch.ncsc.mil>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: James Morris <jmorris@namei.org>
Cc: Casey Schaufler <casey@schaufler-ca.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-11-29 09:24:53 -08:00
Serge E. Hallyn 91ad997a34 file capabilities: allow sigcont within session
Fix http://bugzilla.kernel.org/show_bug.cgi?id=9247

Allow sigcont to be sent to a process with greater capabilities if it is in
the same session.  Otherwise, a shell from which I've started a root shell
and done 'suspend' can't be restarted by the parent shell.

Also don't do file-capabilities signaling checks when uids for the
processes don't match, since the standard check_kill_permission will have
done those checks.

[akpm@linux-foundation.org: coding-style cleanups]
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Acked-by: Andrew Morgan <morgan@kernel.org>
Cc: Chris Wright <chrisw@sous-sol.org>
Tested-by: "Theodore Ts'o" <tytso@mit.edu>
Cc: Stephen Smalley <sds@epoch.ncsc.mil>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: James Morris <jmorris@namei.org>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-11-14 18:45:44 -08:00
Serge E. Hallyn b68680e473 capabilities: clean up file capability reading
Simplify the vfs_cap_data structure.

Also fix get_file_caps which was declaring
__le32 v1caps[XATTR_CAPS_SZ] on the stack, but
XATTR_CAPS_SZ is already * sizeof(__le32).

[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Cc: Andrew Morgan <morgan@kernel.org>
Cc: Chris Wright <chrisw@sous-sol.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-22 08:13:18 -07:00
Serge E. Hallyn b460cbc581 pid namespaces: define is_global_init() and is_container_init()
is_init() is an ambiguous name for the pid==1 check.  Split it into
is_global_init() and is_container_init().

A cgroup init has it's tsk->pid == 1.

A global init also has it's tsk->pid == 1 and it's active pid namespace
is the init_pid_ns.  But rather than check the active pid namespace,
compare the task structure with 'init_pid_ns.child_reaper', which is
initialized during boot to the /sbin/init process and never changes.

Changelog:

	2.6.22-rc4-mm2-pidns1:
	- Use 'init_pid_ns.child_reaper' to determine if a given task is the
	  global init (/sbin/init) process. This would improve performance
	  and remove dependence on the task_pid().

	2.6.21-mm2-pidns2:

	- [Sukadev Bhattiprolu] Changed is_container_init() calls in {powerpc,
	  ppc,avr32}/traps.c for the _exception() call to is_global_init().
	  This way, we kill only the cgroup if the cgroup's init has a
	  bug rather than force a kernel panic.

[akpm@linux-foundation.org: fix comment]
[sukadev@us.ibm.com: Use is_global_init() in arch/m32r/mm/fault.c]
[bunk@stusta.de: kernel/pid.c: remove unused exports]
[sukadev@us.ibm.com: Fix capability.c to work with threaded init]
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Signed-off-by: Sukadev Bhattiprolu <sukadev@us.ibm.com>
Acked-by: Pavel Emelianov <xemul@openvz.org>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Herbert Poetzel <herbert@13thfloor.at>
Cc: Kirill Korotaev <dev@sw.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 11:53:37 -07:00
Andrew Morgan 72c2d5823f V3 file capabilities: alter behavior of cap_setpcap
The non-filesystem capability meaning of CAP_SETPCAP is that a process, p1,
can change the capabilities of another process, p2.  This is not the
meaning that was intended for this capability at all, and this
implementation came about purely because, without filesystem capabilities,
there was no way to use capabilities without one process bestowing them on
another.

Since we now have a filesystem support for capabilities we can fix the
implementation of CAP_SETPCAP.

The most significant thing about this change is that, with it in effect, no
process can set the capabilities of another process.

The capabilities of a program are set via the capability convolution
rules:

   pI(post-exec) = pI(pre-exec)
   pP(post-exec) = (X(aka cap_bset) & fP) | (pI(post-exec) & fI)
   pE(post-exec) = fE ? pP(post-exec) : 0

at exec() time.  As such, the only influence the pre-exec() program can
have on the post-exec() program's capabilities are through the pI
capability set.

The correct implementation for CAP_SETPCAP (and that enabled by this patch)
is that it can be used to add extra pI capabilities to the current process
- to be picked up by subsequent exec()s when the above convolution rules
are applied.

Here is how it works:

Let's say we have a process, p. It has capability sets, pE, pP and pI.
Generally, p, can change the value of its own pI to pI' where

   (pI' & ~pI) & ~pP = 0.

That is, the only new things in pI' that were not present in pI need to
be present in pP.

The role of CAP_SETPCAP is basically to permit changes to pI beyond
the above:

   if (pE & CAP_SETPCAP) {
      pI' = anything; /* ie., even (pI' & ~pI) & ~pP != 0  */
   }

This capability is useful for things like login, which (say, via
pam_cap) might want to raise certain inheritable capabilities for use
by the children of the logged-in user's shell, but those capabilities
are not useful to or needed by the login program itself.

One such use might be to limit who can run ping. You set the
capabilities of the 'ping' program to be "= cap_net_raw+i", and then
only shells that have (pI & CAP_NET_RAW) will be able to run
it. Without CAP_SETPCAP implemented as described above, login(pam_cap)
would have to also have (pP & CAP_NET_RAW) in order to raise this
capability and pass it on through the inheritable set.

Signed-off-by: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Casey Schaufler <casey@schaufler-ca.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-18 14:37:24 -07:00
Adrian Bunk cbfee34520 security/ cleanups
This patch contains the following cleanups that are now possible:
- remove the unused security_operations->inode_xattr_getsuffix
- remove the no longer used security_operations->unregister_security
- remove some no longer required exit code
- remove a bunch of no longer used exports

Signed-off-by: Adrian Bunk <bunk@kernel.org>
Acked-by: James Morris <jmorris@namei.org>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 08:43:07 -07:00
Serge E. Hallyn b53767719b Implement file posix capabilities
Implement file posix capabilities.  This allows programs to be given a
subset of root's powers regardless of who runs them, without having to use
setuid and giving the binary all of root's powers.

This version works with Kaigai Kohei's userspace tools, found at
http://www.kaigai.gr.jp/index.php.  For more information on how to use this
patch, Chris Friedhoff has posted a nice page at
http://www.friedhoff.org/fscaps.html.

Changelog:
	Nov 27:
	Incorporate fixes from Andrew Morton
	(security-introduce-file-caps-tweaks and
	security-introduce-file-caps-warning-fix)
	Fix Kconfig dependency.
	Fix change signaling behavior when file caps are not compiled in.

	Nov 13:
	Integrate comments from Alexey: Remove CONFIG_ ifdef from
	capability.h, and use %zd for printing a size_t.

	Nov 13:
	Fix endianness warnings by sparse as suggested by Alexey
	Dobriyan.

	Nov 09:
	Address warnings of unused variables at cap_bprm_set_security
	when file capabilities are disabled, and simultaneously clean
	up the code a little, by pulling the new code into a helper
	function.

	Nov 08:
	For pointers to required userspace tools and how to use
	them, see http://www.friedhoff.org/fscaps.html.

	Nov 07:
	Fix the calculation of the highest bit checked in
	check_cap_sanity().

	Nov 07:
	Allow file caps to be enabled without CONFIG_SECURITY, since
	capabilities are the default.
	Hook cap_task_setscheduler when !CONFIG_SECURITY.
	Move capable(TASK_KILL) to end of cap_task_kill to reduce
	audit messages.

	Nov 05:
	Add secondary calls in selinux/hooks.c to task_setioprio and
	task_setscheduler so that selinux and capabilities with file
	cap support can be stacked.

	Sep 05:
	As Seth Arnold points out, uid checks are out of place
	for capability code.

	Sep 01:
	Define task_setscheduler, task_setioprio, cap_task_kill, and
	task_setnice to make sure a user cannot affect a process in which
	they called a program with some fscaps.

	One remaining question is the note under task_setscheduler: are we
	ok with CAP_SYS_NICE being sufficient to confine a process to a
	cpuset?

	It is a semantic change, as without fsccaps, attach_task doesn't
	allow CAP_SYS_NICE to override the uid equivalence check.  But since
	it uses security_task_setscheduler, which elsewhere is used where
	CAP_SYS_NICE can be used to override the uid equivalence check,
	fixing it might be tough.

	     task_setscheduler
		 note: this also controls cpuset:attach_task.  Are we ok with
		     CAP_SYS_NICE being used to confine to a cpuset?
	     task_setioprio
	     task_setnice
		 sys_setpriority uses this (through set_one_prio) for another
		 process.  Need same checks as setrlimit

	Aug 21:
	Updated secureexec implementation to reflect the fact that
	euid and uid might be the same and nonzero, but the process
	might still have elevated caps.

	Aug 15:
	Handle endianness of xattrs.
	Enforce capability version match between kernel and disk.
	Enforce that no bits beyond the known max capability are
	set, else return -EPERM.
	With this extra processing, it may be worth reconsidering
	doing all the work at bprm_set_security rather than
	d_instantiate.

	Aug 10:
	Always call getxattr at bprm_set_security, rather than
	caching it at d_instantiate.

[morgan@kernel.org: file-caps clean up for linux/capability.h]
[bunk@kernel.org: unexport cap_inode_killpriv]
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 08:43:07 -07:00
James Morris 20510f2f4e security: Convert LSM into a static interface
Convert LSM into a static interface, as the ability to unload a security
module is not required by in-tree users and potentially complicates the
overall security architecture.

Needlessly exported LSM symbols have been unexported, to help reduce API
abuse.

Parameters for the capability and root_plug modules are now specified
at boot.

The SECURITY_FRAMEWORK_VERSION macro has also been removed.

In a nutshell, there is no safe way to unload an LSM.  The modular interface
is thus unecessary and broken infrastructure.  It is used only by out-of-tree
modules, which are often binary-only, illegal, abusive of the API and
dangerous, e.g.  silently re-vectoring SELinux.

[akpm@linux-foundation.org: cleanups]
[akpm@linux-foundation.org: USB Kconfig fix]
[randy.dunlap@oracle.com: fix LSM kernel-doc]
Signed-off-by: James Morris <jmorris@namei.org>
Acked-by: Chris Wright <chrisw@sous-sol.org>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: "Serge E. Hallyn" <serue@us.ibm.com>
Acked-by: Arjan van de Ven <arjan@infradead.org>
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 08:43:07 -07:00
Alan Cox 34b4e4aa3c fix NULL pointer dereference in __vm_enough_memory()
The new exec code inserts an accounted vma into an mm struct which is not
current->mm.  The existing memory check code has a hard coded assumption
that this does not happen as does the security code.

As the correct mm is known we pass the mm to the security method and the
helper function.  A new security test is added for the case where we need
to pass the mm and the existing one is modified to pass current->mm to
avoid the need to change large amounts of code.

(Thanks to Tobias for fixing rejects and testing)

Signed-off-by: Alan Cox <alan@redhat.com>
Cc: WU Fengguang <wfg@mail.ustc.edu.cn>
Cc: James Morris <jmorris@redhat.com>
Cc: Tobias Diedrich <ranma+kernel@tdiedrich.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-08-22 19:52:45 -07:00
Kawai, Hidehiro 6c5d523826 coredump masking: reimplementation of dumpable using two flags
This patch changes mm_struct.dumpable to a pair of bit flags.

set_dumpable() converts three-value dumpable to two flags and stores it into
lower two bits of mm_struct.flags instead of mm_struct.dumpable.
get_dumpable() behaves in the opposite way.

[akpm@linux-foundation.org: export set_dumpable]
Signed-off-by: Hidehiro Kawai <hidehiro.kawai.ez@hitachi.com>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Cc: David Howells <dhowells@redhat.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 10:04:46 -07:00