Split btrfs_submit_data_bio into one helper for reads and one for writes.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There is no exit block and cleanup and the function is reasonably short
so we can use inline return and not the goto. This makes the function
more straight forward.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Assign ->mirror_num and ->bi_status in btrfs_end_bioc instead of
duplicating the logic in the callers. Also remove the bio argument as
it always must be bioc->orig_bio and the now pointless bioc_error that
did nothing but assign bi_sector to the same value just sampled in the
caller.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that the new support is implemented, allow the ioctl to accept v2
and the compressed flag, and update the version in sysfs.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that all of the pieces are in place, we can use the ENCODED_WRITE
command to send compressed extents when appropriate.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For encoded writes in send v2, we will get the encoded data with
btrfs_encoded_read_regular_fill_pages(), which expects a list of raw
pages. To avoid extra buffers and copies, we should read directly into
the send buffer. Therefore, we need the raw pages for the send buffer.
We currently allocate the send buffer with kvmalloc(), which may return
a kmalloc'd buffer or a vmalloc'd buffer. For vmalloc, we can get the
pages with vmalloc_to_page(). For kmalloc, we could use virt_to_page().
However, the buffer size we use (144K) is not a power of two, which in
theory is not guaranteed to return a page-aligned buffer, and in
practice would waste a lot of memory due to rounding up to the next
power of two. 144K is large enough that it usually gets allocated with
vmalloc(), anyways. So, for send v2, replace kvmalloc() with vmalloc()
and save the pages in an array.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The length field of the send stream TLV header is 16 bits. This means
that the maximum amount of data that can be sent for one write is 64K
minus one. However, encoded writes must be able to send the maximum
compressed extent (128K) in one command, or more. To support this, send
stream version 2 encodes the DATA attribute differently: it has no
length field, and the length is implicitly up to the end of containing
command (which has a 32bit length field). Although this is necessary
for encoded writes, normal writes can benefit from it, too.
Also add a check to enforce that the DATA attribute is last. It is only
strictly necessary for v2, but we might as well make v1 consistent with
it.
For v2, let's bump up the send buffer to the maximum compressed extent
size plus 16K for the other metadata (144K total). Since this will most
likely be vmalloc'd (and always will be after the next commit), we round
it up to the next page since we might as well use the rest of the page
on systems with >16K pages.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This adds the definitions of the new commands for send stream version 2
and their respective attributes: fallocate, FS_IOC_SETFLAGS (a.k.a.
chattr), and encoded writes. It also documents two changes to the send
stream format in v2: the receiver shouldn't assume a maximum command
size, and the DATA attribute is encoded differently to allow for writes
larger than 64k. These will be implemented in subsequent changes, and
then the ioctl will accept the new version and flag.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit e77fbf9903 ("btrfs: send: prepare for v2 protocol") added
_BTRFS_SEND_C_MAX_V* macros equal to the maximum command number for the
version plus 1, but as written this creates gaps in the number space.
The maximum command number is currently 22, and __BTRFS_SEND_C_MAX_V1 is
accordingly 23. But then __BTRFS_SEND_C_MAX_V2 is 24, suggesting that v2
has a command numbered 23, and __BTRFS_SEND_C_MAX is 25, suggesting that
23 and 24 are valid commands.
Instead, let's explicitly number all of the commands, attributes, and
sentinel MAX constants.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We collect these statistics but have never exposed them in any way. I
also didn't find any patches that ever attempted to make use of them.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Adds write-only trigger to force new chunk allocation for a given block
group type. It is at
/sys/fs/btrfs/<uuid>/allocation/<type>/force_chunk_alloc
Note: this is now only for debugging and testing and is enabled with the
CONFIG_BTRFS_DEBUG configuration option. The transaction is
started from sysfs context and can be problematic in some cases.
Signed-off-by: Stefan Roesch <shr@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ Changes from the original submission:
- update changelog
- drop unnecessary error messages
- switch value to bool and use kstrtobool
- move BTRFS_ATTR_W definition
- add comment for using transaction
]
Signed-off-by: David Sterba <dsterba@suse.com>
Add new sysfs knob
/sys/fs/btrfs/<uuid>/allocation/<type>/chunk_size.
This allows to query the chunk size and also set the chunk size.
Constraints:
- can be changed by root only
- system chunk size can't be set
- maximum chunk size is 10% of the filesystem size
- final value is rounded down to a multiple of 256M
- cannot be set on zoned filesystem
Note, that rounding and the 10% clamp will result to a different value
on filesystems smaller than 10G, typically 768M.
Signed-off-by: Stefan Roesch <shr@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ Changes to original submission:
- document setting constraints
- drop read-only requirement
- drop unnecessary error messages
- fix return values of _store callback
- use memparse for the value
- fix rounding down to 256M
]
Signed-off-by: David Sterba <dsterba@suse.com>
The chunk size is stored in the btrfs_space_info structure. It is
initialized at the start and is then used.
A new API is added to update the current chunk size. This API is used
to be able to expose the chunk_size as a sysfs setting.
Signed-off-by: Stefan Roesch <shr@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ rename and merge helpers, switch atomic type to u64, style fixes ]
Signed-off-by: David Sterba <dsterba@suse.com>
While running generic/475 in a loop I got the following error
BTRFS critical (device dm-11): corrupt leaf: root=5 block=31096832 slot=69, bad key order, prev (263 96 531) current (263 96 524)
<snip>
item 65 key (263 96 517) itemoff 14132 itemsize 33
item 66 key (263 96 523) itemoff 14099 itemsize 33
item 67 key (263 96 525) itemoff 14066 itemsize 33
item 68 key (263 96 531) itemoff 14033 itemsize 33
item 69 key (263 96 524) itemoff 14000 itemsize 33
As you can see here we have 3 dir index keys with the dir index value of
523, 524, and 525 inserted between 517 and 524. This occurs because our
dir index insertion code will bulk insert all dir index items on the
node regardless of their actual key value.
This makes sense on a normally running system, because if there's a gap
in between the items there was a deletion before the item was inserted,
so there's not going to be an overlap of the dir index items that need
to be inserted and what exists on disk.
However during log replay this isn't necessarily true, we could have any
number of dir indexes in the tree already.
Fix this by seeing if we're replaying the log, and if we are simply skip
batching if there's a gap in the key space.
This file system was left broken from the fstest, I tested this patch
against the broken fs to make sure it replayed the log properly, and
then btrfs checked the file system after the log replay to verify
everything was ok.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Whenever we want to create a new dir index item (when creating an inode,
create a hard link, rename a file) we reserve 1 unit of metadata space
for it in a transaction (that's 256K for a node/leaf size of 16K), and
then create a delayed insertion item for it to be added later to the
subvolume's tree. That unit of metadata is kept until the delayed item
is inserted into the subvolume tree, which may take a while to happen
(in the worst case, it's done only when the transaction commits). If we
have multiple dir index items to insert for the same directory, say N
index items, and they all fit in a single leaf of metadata, then we are
holding N units of reserved metadata space when all we need is 1 unit.
This change addresses that, whenever a new delayed dir index item is
added, we release the unit of metadata the caller has reserved when it
started the transaction if adding that new dir index item does not
result in touching one more metadata leaf, otherwise the reservation
is kept by transferring it from the transaction block reserve to the
delayed items block reserve, just like before. Given that with a leaf
size of 16K we can have a few hundred dir index items in a single leaf
(the exact value depends on file name lengths), this reduces pressure on
metadata reservation by releasing unnecessary space much sooner.
The following fs_mark test showed some improvement when creating many
files in parallel on machine running a non debug kernel (debian's default
kernel config) with 12 cores:
$ cat test.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
MOUNT_OPTIONS="-o ssd"
FILES=100000
THREADS=$(nproc --all)
echo "performance" | \
tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
mkfs.btrfs -f $DEV
mount $MOUNT_OPTIONS $DEV $MNT
OPTS="-S 0 -L 10 -n $FILES -s 0 -t $THREADS -k"
for ((i = 1; i <= $THREADS; i++)); do
OPTS="$OPTS -d $MNT/d$i"
done
fs_mark $OPTS
umount $MNT
Before:
FSUse% Count Size Files/sec App Overhead
2 1200000 0 225991.3 5465891
4 2400000 0 345728.1 5512106
4 3600000 0 346959.5 5557653
8 4800000 0 329643.0 5587548
8 6000000 0 312657.4 5606717
8 7200000 0 281707.5 5727985
12 8400000 0 88309.8 5020422
12 9600000 0 85835.9 5207496
16 10800000 0 81039.2 5404964
16 12000000 0 58548.6 5842468
After:
FSUse% Count Size Files/sec App Overhead
2 1200000 0 230604.5 5778375
4 2400000 0 348908.3 5508072
4 3600000 0 357028.7 5484337
6 4800000 0 342898.3 5565703
6 6000000 0 314670.8 5751555
8 7200000 0 282548.2 5778177
12 8400000 0 90844.9 5306819
12 9600000 0 86963.1 5304689
16 10800000 0 89113.2 5455248
16 12000000 0 86693.5 5518933
The "after" results are after applying this patch and all the other
patches in the same patchset, which is comprised of the following
changes:
btrfs: balance btree dirty pages and delayed items after a rename
btrfs: free the path earlier when creating a new inode
btrfs: balance btree dirty pages and delayed items after clone and dedupe
btrfs: add assertions when deleting batches of delayed items
btrfs: deal with deletion errors when deleting delayed items
btrfs: refactor the delayed item deletion entry point
btrfs: improve batch deletion of delayed dir index items
btrfs: assert that delayed item is a dir index item when adding it
btrfs: improve batch insertion of delayed dir index items
btrfs: do not BUG_ON() on failure to reserve metadata for delayed item
btrfs: set delayed item type when initializing it
btrfs: reduce amount of reserved metadata for delayed item insertion
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently we set the type of a delayed item only after successfully
inserting it into its respective rbtree. This is fine, as the type
is not used anywhere before that point, but for the next patch in the
series, there will be the need to check the type of a delayed item
before inserting it into a rbtree.
So set the type of a delayed item immediately after allocating it.
This also makes the trivial wrappers for adding insertion and deletion
useless, so it removes them as well.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At btrfs_insert_delayed_dir_index(), we don't expect the metadata
reservation for the delayed dir index item insertion to fail, because the
caller is supposed to have reserved 1 unit of metadata space for that.
All callers are able to deal with an error in case that happens, so there
is no need for something so drastic as a BUG_ON() in case of failure.
Instead just emit a warning, so that's easily noticed during development
(fstests in particular), and return the error to the caller.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently we group delayed dir index items for insertion as a single batch
(a single btree operation) as long as their keys are sequential in the key
space.
For example we have delayed index items for the following index keys:
10, 11, 12, 15, 16, 20, 21
We end up building three batches:
1) First one for index keys 10, 11 and 12;
2) Second one for index keys 15 and 16;
3) Third one for index keys 20 and 21.
However, since the dir index numbers come from a monotonically increasing
counter and are never reused, we could group all these items into a single
batch. The existence of holes in the sequence happens only when we had
delayed dir index items for insertion that got deleted before they were
flushed to the subvolume's tree.
The delayed items are stored in a rbtree based on their key order, so
we can just group items into a batch as long as they all fit in a leaf,
and ignore if there's a gap (key offset, index number) between two
consecutive items. This is more efficient and reduces the amount of
time spent when running delayed items if there are gaps between dir
index items.
For example running the following test script:
$ cat test.sh
#!/bin/bash
DEV=/dev/sdj
MNT=/mnt/sdj
mkfs.btrfs -f $DEV
mount $DEV $MNT
NUM_FILES=100
mkdir $MNT/testdir
for ((i = 1; i <= $NUM_FILES; i++)); do
echo -n > $MNT/testdir/file_$i
done
# Now delete every other file, to create gaps in the dir index keys.
for ((i = 1; i <= $NUM_FILES; i += 2)); do
rm -f $MNT/testdir/file_$i
done
start=$(date +%s%N)
sync
end=$(date +%s%N)
dur=$(( (end - start) / 1000000 ))
echo -e "\nsync took $dur milliseconds"
umount $MNT
While having the following bpftrace script running in another shell:
$ cat bpf-delayed-items-inserts.sh
#!/usr/bin/bpftrace
/* Must add 'noinline' to btrfs_insert_delayed_items(). */
k:btrfs_insert_delayed_items
{
@start_insert_delayed_items[tid] = nsecs;
}
k:btrfs_insert_empty_items
/@start_insert_delayed_items[tid]/
{
@insert_batches = count();
}
kr:btrfs_insert_delayed_items
/@start_insert_delayed_items[tid]/
{
$dur = (nsecs - @start_insert_delayed_items[tid]) / 1000;
@btrfs_insert_delayed_items_total_time = sum($dur);
delete(@start_insert_delayed_items[tid]);
}
Before this change:
@btrfs_insert_delayed_items_total_time: 576
@insert_batches: 51
After this change:
@btrfs_insert_delayed_items_total_time: 174
@insert_batches: 2
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All delayed items are for dir index items, we don't support any other item
types at the moment. So simplify __btrfs_add_delayed_item() and add an
assertion for checking the item's key type. This also allows the next
change to be simpler and avoid to check key types. In case we add support
for different item types in the future, then we'll hit the assertion
during development and be able to adjust any code that is assuming delayed
items are always associated to dir index items.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently we group delayed dir index items for deletion in a single batch
(single btree operation) as long as they all exist in the same leaf and as
long as their keys are sequential in the key space. For example if we have
a leaf that has dir index items with offsets:
2, 3, 4, 6, 7, 10
And we have delayed dir index items for deleting all these indexes, and
no delayed items for any other index keys in between, then we end up
deleting in 3 batches:
1) First batch for indexes 2, 3 and 4;
2) Second batch for indexes 6 and 7;
3) Third batch for index 10.
This is a waste because we can delete all the index keys in a single
batch. What matters is that each consecutive delayed index key matches
each consecutive dir index key in a leaf.
So update the logic at btrfs_batch_delete_items() to check only for a
key match between delayed dir index items and dir index items in a leaf.
Also avoid the useless first iteration on comparing the key of the
first slot to delete with the key of the first delayed item, as it's
silly since they always match, as the delayed item's key was used for
the btree search that gave us the path we have.
This is more efficient and reduces runtime of running delayed items, as
well as lock contention on the subvolume's tree.
For example, the following test script:
$ cat test.sh
#!/bin/bash
DEV=/dev/sdj
MNT=/mnt/sdj
mkfs.btrfs -f $DEV
mount $DEV $MNT
NUM_FILES=1000
mkdir $MNT/testdir
for ((i = 1; i <= $NUM_FILES; i++)); do
echo -n > $MNT/testdir/file_$i
done
# Now delete every other file, to create gaps in the dir index keys.
for ((i = 1; i <= $NUM_FILES; i += 2)); do
rm -f $MNT/testdir/file_$i
done
# Sync to force any delayed items to be flushed to the tree.
sync
start=$(date +%s%N)
rm -fr $MNT/testdir
end=$(date +%s%N)
dur=$(( (end - start) / 1000000 ))
echo -e "\nrm -fr took $dur milliseconds"
umount $MNT
Running that test script while having the following bpftrace script
running in another shell:
$ cat bpf-measure.sh
#!/usr/bin/bpftrace
/* Add 'noinline' to btrfs_delete_delayed_items()'s definition. */
k:btrfs_delete_delayed_items
{
@start_delete_delayed_items[tid] = nsecs;
}
k:btrfs_del_items
/@start_delete_delayed_items[tid]/
{
@delete_batches = count();
}
kr:btrfs_delete_delayed_items
/@start_delete_delayed_items[tid]/
{
$dur = (nsecs - @start_delete_delayed_items[tid]) / 1000;
@btrfs_delete_delayed_items_total_time = sum($dur);
delete(@start_delete_delayed_items[tid]);
}
Before this change:
@btrfs_delete_delayed_items_total_time: 9563
@delete_batches: 1001
After this change:
@btrfs_delete_delayed_items_total_time: 7328
@delete_batches: 509
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The delayed item deletion entry point, btrfs_delete_delayed_items(), is a
bit convoluted for a few reasons:
1) It's really a loop disguised with labels and goto statements;
2) There's a 'delete_fail' label which isn't only for error cases, we can
jump to that label even if no error happened, if we simply don't have
more delayed items to delete;
3) Unnecessarily keeps track of the current and previous items for no
good reason, as after getting the next item and releasing the current
one, it just jumps to the 'again' label just to look again for the
first delayed item;
4) When a delayed item is not in the tree (because it was already deleted
before), it releases the item while holding a path locked, which is
not necessary and adds more contention to the tree, specially taking
into account that the path came from a deletion search, meaning we have
write locks for nodes at levels 2, 1 and 0. And releasing the item is
not computationally trivial (rb tree deletion, a kfree() and some
trivial things).
So refactor it to use a while loop and add some comments to make it more
obvious why we can have delayed items without a matching item in the tree
as well as why not keep the delayed node locked all the time when running
all its deletion items. This is also a preparation for some upcoming work
involving delayed items.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently, btrfs_delete_delayed_items() ignores any errors returned from
btrfs_batch_delete_items(). This looks fishy but it's not a problem at
the moment because:
1) Two of the errors returned from btrfs_batch_delete_items() are for
impossible cases, cases where a delayed item does not match any item
in the leaf the path points to - btrfs_delete_delayed_items() always
calls btrfs_batch_delete_items() with a path that points to a leaf
that contains an item matching a delayed item;
2) btrfs_batch_delete_items() may return an error from btrfs_del_items(),
in which case it does not release the delayed items of the batch.
At the moment this is harmless because btrfs_del_items() actually is
always able to delete items, even if it returns an error - when it
returns an error it's because it ended up with a leaf mostly empty
(less than 1/3 full) and failed to migrate items from that leaf into
its neighbour leaves - this is not critical, as all the items were
deleted, we just left the tree a bit unbalanced, but it's still a
valid tree and causes no harm, and future operations on the tree will
eventually balance it.
So even if we get an error from btrfs_del_items(), the delayed items
will not be released but the next time we run delayed items we will
find out, at btrfs_delete_delayed_items(), that they are not present
in the tree anymore and then release them.
This is all a bit subtle, and it's certainly prone to be a disaster in
case btrfs_del_items() changes one day and may return errors before being
able to delete all the requested items, in which case we could leave the
filesystem in an inconsistent state as we would commit a transaction
despite a failure from deleting items from the tree.
So make btrfs_delete_delayed_items() check for any errors from the call
to btrfs_batch_delete_items().
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are a few impossible cases that btrfs_batch_delete_items() tries to
deal with:
1) Getting a path pointing to a NULL leaf;
2) The leaf slot is pointing beyond the last item in the leaf;
3) We can't find a single item to delete.
The first case is impossible because the given path was returned by a
successful call to btrfs_search_slot(). Replace the BUG_ON() with an
ASSERT for this.
The second case is impossible because we are always called when a delayed
item matches an item in the given leaf. So add an ASSERT() for that and
if that condition is not satisfied, trigger a warning and return an error.
The third case is impossible exactly because of the same reason as the
second case. The given delayed item matches one item in the leaf, so we
know that our batch always has at least one item. Add an ASSERT to check
that, trigger a warning if that expectation fails and return an error.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When reflinking extents (clone and deduplication), we need to touch the
btree of the destination inode's subvolume, as well as potentially
create a delayed inode for the destination inode (if it was not created
before). However we are neither balancing the btree dirty pages nor the
delayed items after such operations, so if we have a task that is doing
a long series of clone or deduplication operations, it can result in
accumulation of too many btree dirty pages and delayed items.
So just call btrfs_btree_balance_dirty() after clone and deduplication,
just like we do for every other system call that results on modifying a
btree and adding delayed items.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When creating an inode, through btrfs_create_new_inode(), we release the
path we allocated before once we don't need it anymore. But we keep it
allocated until we return from that function, which is wasteful because
after we release the path we do several things that can allocate yet
another path: inheriting properties, setting the xattrs used by ACLs and
secutiry modules, adding an orphan item (O_TMPFILE case) or adding a
dir item (for the non-O_TMPFILE case).
So instead of releasing the path once we don't need it anymore, free it
instead. This way we avoid having two paths allocated until we return
from btrfs_create_new_inode().
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
A rename operation modifies a subvolume's btree, to remove the old dir
item, add the new dir item, remove an inode ref and add a new inode ref.
It can also create the delayed inode for the inodes involved in the
operation, and it creates two delayed dir index items, one to delete
the old name and another one to add the new name.
However we are neither balancing the btree dirty pages nor the delayed
items after a rename, which can result in accumulation of too many
btree dirty pages and delayed items, specially if a task is doing a
series of rename operations (for example it can happen for package
installations/upgrades through the zypper tool).
So just call btrfs_btree_balance_dirty() after a rename, just like we
do for every other system call that results on modifying a btree and
adding delayed items.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Add tracepoint for better insight to how the RAID56 data are submitted.
The output looks like this: (trace event header and UUID skipped)
raid56_read_partial: full_stripe=389152768 devid=3 type=DATA1 offset=32768 opf=0x0 physical=323059712 len=32768
raid56_read_partial: full_stripe=389152768 devid=1 type=DATA2 offset=0 opf=0x0 physical=67174400 len=65536
raid56_write_stripe: full_stripe=389152768 devid=3 type=DATA1 offset=0 opf=0x1 physical=323026944 len=32768
raid56_write_stripe: full_stripe=389152768 devid=2 type=PQ1 offset=0 opf=0x1 physical=323026944 len=32768
The above debug output is from a 32K data write into an empty RAID56
data chunk.
Some explanation on the event output:
full_stripe: the logical bytenr of the full stripe
devid: btrfs devid
type: raid stripe type.
DATA1: the first data stripe
DATA2: the second data stripe
PQ1: the P stripe
PQ2: the Q stripe
offset: the offset inside the stripe.
opf: the bio op type
physical: the physical offset the bio is for
len: the length of the bio
The first two lines are from partial RMW read, which is reading the
remaining data stripes from disks.
The last two lines are for full stripe RMW write, which is writing the
involved two 16K stripes (one for DATA1 stripe, one for P stripe).
The stripe for DATA2 doesn't need to be written.
There are 5 types of trace events:
- raid56_read_partial
Read remaining data for regular read/write path.
- raid56_write_stripe
Write the modified stripes for regular read/write path.
- raid56_scrub_read_recover
Read remaining data for scrub recovery path.
- raid56_scrub_write_stripe
Write the modified stripes for scrub path.
- raid56_scrub_read
Read remaining data for scrub path.
Also, since the trace events are included at super.c, we have to export
needed structure definitions to 'raid56.h' and include the header in
super.c, or we're unable to access those members.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ reformat comments ]
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
With added debugging, it turns out the following write sequence would
cause extra read which is unnecessary:
# xfs_io -f -s -c "pwrite -b 32k 0 32k" -c "pwrite -b 32k 32k 32k" \
-c "pwrite -b 32k 64k 32k" -c "pwrite -b 32k 96k 32k" \
$mnt/file
The debug message looks like this (btrfs header skipped):
partial rmw, full stripe=389152768 opf=0x0 devid=3 type=1 offset=32768 physical=323059712 len=32768
partial rmw, full stripe=389152768 opf=0x0 devid=1 type=2 offset=0 physical=67174400 len=65536
full stripe rmw, full stripe=389152768 opf=0x1 devid=3 type=1 offset=0 physical=323026944 len=32768
full stripe rmw, full stripe=389152768 opf=0x1 devid=2 type=-1 offset=0 physical=323026944 len=32768
partial rmw, full stripe=298844160 opf=0x0 devid=1 type=1 offset=32768 physical=22052864 len=32768
partial rmw, full stripe=298844160 opf=0x0 devid=2 type=2 offset=0 physical=277872640 len=65536
full stripe rmw, full stripe=298844160 opf=0x1 devid=1 type=1 offset=0 physical=22020096 len=32768
full stripe rmw, full stripe=298844160 opf=0x1 devid=3 type=-1 offset=0 physical=277872640 len=32768
partial rmw, full stripe=389152768 opf=0x0 devid=3 type=1 offset=0 physical=323026944 len=32768
partial rmw, full stripe=389152768 opf=0x0 devid=1 type=2 offset=0 physical=67174400 len=65536
^^^^
Still partial read, even 389152768 is already cached by the first.
write.
full stripe rmw, full stripe=389152768 opf=0x1 devid=3 type=1 offset=32768 physical=323059712 len=32768
full stripe rmw, full stripe=389152768 opf=0x1 devid=2 type=-1 offset=32768 physical=323059712 len=32768
partial rmw, full stripe=298844160 opf=0x0 devid=1 type=1 offset=0 physical=22020096 len=32768
partial rmw, full stripe=298844160 opf=0x0 devid=2 type=2 offset=0 physical=277872640 len=65536
^^^^
Still partial read for 298844160.
full stripe rmw, full stripe=298844160 opf=0x1 devid=1 type=1 offset=32768 physical=22052864 len=32768
full stripe rmw, full stripe=298844160 opf=0x1 devid=3 type=-1 offset=32768 physical=277905408 len=32768
This means every 32K writes, even they are in the same full stripe,
still trigger read for previously cached data.
This would cause extra RAID56 IO, making the btrfs raid56 cache useless.
[CAUSE]
Commit d4e28d9b5f ("btrfs: raid56: make steal_rbio() subpage
compatible") tries to make steal_rbio() subpage compatible, but during
that conversion, there is one thing missing.
We no longer rely on PageUptodate(rbio->stripe_pages[i]), but
rbio->stripe_nsectors[i].uptodate to determine if a sector is uptodate.
This means, previously if we switch the pointer, everything is done,
as the PageUptodate flag is still bound to that page.
But now we have to manually mark the involved sectors uptodate, or later
raid56_rmw_stripe() will find the stolen sector is not uptodate, and
assemble the read bio for it, wasting IO.
[FIX]
We can easily fix the bug, by also update the
rbio->stripe_sectors[].uptodate in steal_rbio().
With this fixed, now the same write pattern no longer leads to the same
unnecessary read:
partial rmw, full stripe=389152768 opf=0x0 devid=3 type=1 offset=32768 physical=323059712 len=32768
partial rmw, full stripe=389152768 opf=0x0 devid=1 type=2 offset=0 physical=67174400 len=65536
full stripe rmw, full stripe=389152768 opf=0x1 devid=3 type=1 offset=0 physical=323026944 len=32768
full stripe rmw, full stripe=389152768 opf=0x1 devid=2 type=-1 offset=0 physical=323026944 len=32768
partial rmw, full stripe=298844160 opf=0x0 devid=1 type=1 offset=32768 physical=22052864 len=32768
partial rmw, full stripe=298844160 opf=0x0 devid=2 type=2 offset=0 physical=277872640 len=65536
full stripe rmw, full stripe=298844160 opf=0x1 devid=1 type=1 offset=0 physical=22020096 len=32768
full stripe rmw, full stripe=298844160 opf=0x1 devid=3 type=-1 offset=0 physical=277872640 len=32768
^^^ No more partial read, directly into the write path.
full stripe rmw, full stripe=389152768 opf=0x1 devid=3 type=1 offset=32768 physical=323059712 len=32768
full stripe rmw, full stripe=389152768 opf=0x1 devid=2 type=-1 offset=32768 physical=323059712 len=32768
full stripe rmw, full stripe=298844160 opf=0x1 devid=1 type=1 offset=32768 physical=22052864 len=32768
full stripe rmw, full stripe=298844160 opf=0x1 devid=3 type=-1 offset=32768 physical=277905408 len=32768
Fixes: d4e28d9b5f ("btrfs: raid56: make steal_rbio() subpage compatible")
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Both memzero_page and memcpy_to_page already call flush_dcache_page so
we can remove the calls from btrfs code.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
If we have only 8K partial write at the beginning of a full RAID56
stripe, we will write the following contents:
0 8K 32K 64K
Disk 1 (data): |XX| | |
Disk 2 (data): | | |
Disk 3 (parity): |XXXXXXXXXXXXXXX|XXXXXXXXXXXXXXX|
|X| means the sector will be written back to disk.
Note that, although we won't write any sectors from disk 2, but we will
write the full 64KiB of parity to disk.
This behavior is fine for now, but not for the future (especially for
RAID56J, as we waste quite some space to journal the unused parity
stripes).
So here we will also utilize the btrfs_raid_bio::dbitmap, anytime we
queue a higher level bio into an rbio, we will update rbio::dbitmap to
indicate which vertical stripes we need to writeback.
And at finish_rmw(), we also check dbitmap to see if we need to write
any sector in the vertical stripe.
So after the patch, above example will only lead to the following
writeback pattern:
0 8K 32K 64K
Disk 1 (data): |XX| | |
Disk 2 (data): | | |
Disk 3 (parity): |XX| | |
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Previously we use "unsigned long *" for those two bitmaps.
But since we only support fixed stripe length (64KiB, already checked in
tree-checker), "unsigned long *" is really a waste of memory, while we
can just use "unsigned long".
This saves us 8 bytes in total for scrub_parity.
To be extra safe, add an ASSERT() making sure calclulated @nsectors is
always smaller than BITS_PER_LONG.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Previsouly we use "unsigned long *" for those two bitmaps.
But since we only support fixed stripe length (64KiB, already checked in
tree-checker), "unsigned long *" is really a waste of memory, while we
can just use "unsigned long".
This saves us 8 bytes in total for btrfs_raid_bio.
To be extra safe, add an ASSERT() making sure calculated
@stripe_nsectors is always smaller than BITS_PER_LONG.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This eliminates 2 labels and makes the code generally more streamlined.
Also rename the 'out_bargs' label to 'out_unlock' since bargs is going
to be freed under the 'out' label. This also fixes a memory leak since
bargs wasn't correctly freed in one of the condition which are now moved
in btrfs_try_lock_balance.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This function contains the factored out locking sequence of
btrfs_ioctl_balance. Having this piece of code separate helps to
simplify btrfs_ioctl_balance which has too complicated. This will be
used in the next patch to streamline the logic in btrfs_ioctl_balance.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Use the new btrfs_bio_for_each_sector iterator to simplify
btrfs_check_read_dio_bio.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Add a helper that works similar to __bio_for_each_segment, but instead of
iterating over PAGE_SIZE chunks it iterates over each sector.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
[hch: split from a larger patch, and iterate over the offset instead of
the offset bits]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add parameter comments ]
Signed-off-by: David Sterba <dsterba@suse.com>
Add a helper to find the csum for a byte offset into the csum buffer.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Untangle the goto and move the code it jumps to so it goes in the order
of the most likely states first.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
Add a helper to end I/O on a single sector, which will come in handy
with the new read repair code.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The function submit_data_read_repair() is only called for buffered data
read path, thus those members can be calculated using bvec directly:
- start
start = page_offset(bvec->bv_page) + bvec->bv_offset;
- end
end = start + bvec->bv_len - 1;
- page
page = bvec->bv_page;
- pgoff
pgoff = bvec->bv_offset;
Thus we can safely replace those 4 parameters with just one bio_vec.
Also remove the unused return value.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
[hch: also remove the return value]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Although we have several data csum verification code, we never have a
function really just to verify checksum for one sector.
Function check_data_csum() do extra work for error reporting, thus it
requires a lot of extra things like file offset, bio_offset etc.
Function btrfs_verify_data_csum() is even worse, it will utilize page
checked flag, which means it can not be utilized for direct IO pages.
Here we introduce a new helper, btrfs_check_sector_csum(), which really
only accept a sector in page, and expected checksum pointer.
We use this function to implement check_data_csum(), and export it for
incoming patch.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
[hch: keep passing the csum array as an arguments, as the callers want
to print it, rename per request]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The following functions do special handling for RAID56 chunks:
- btrfs_is_parity_mirror()
Check if the range is in RAID56 chunks.
- btrfs_full_stripe_len()
Either return sectorsize for non-RAID56 profiles or full stripe length
for RAID56 chunks.
But if a filesystem without any RAID56 chunks, it will not have RAID56
incompat flags, and we can skip the chunk tree looking up completely.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The <linux/mm.h> already provides the PAGE_ALIGNED macro. Let's
use it instead of IS_ALIGNED and passing PAGE_SIZE directly.
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Fanjun Kong <bh1scw@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Fix the comment to represent the actual logic used for sb_write_pointer
- Empty[0] && In use[1] should be an invalid state instead of returning
zone 0 wp
- Empty[0] && Full[1] should be returning zone 0 wp instead of zone 1 wp
- In use[0] && Empty[1] should be returning zone 0 wp instead of being an
invalid state
- In use[0] && Full[1] should be returning zone 0 wp instead of returning
zone 1 wp
- Full[0] && Empty[1] should be returning zone 1 wp instead of returning
zone 0 wp
- Full[0] && In use[1] should be returning zone 1 wp instead of returning
zone 0 wp
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Pankaj Raghav <p.raghav@samsung.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmLaEsMQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgprg0EADcHfSh4bM+37B1rHV3urn+Cmpei69/QUPo
XP9hLHFeNsokZC30JFaEN2oNiHic5oGOO9aoHSrWifnXGKScaN1ZmveGE5ctwA6B
n4mLKVjKNUAWzAG2MWFHCykxW2gXaLSfrMQNl/FIGrjnUwEVjS7b9BsORhSfeM86
AMl2he38Btr9n1PUw63RHf0tC/p0/nBg/dta95Bwu1cjhC/7gv3wBe739PKslo4c
oYimvLPobDkX60LcMXBsZbu9pwT7UR+WKcgOYtgqX9/Dq1G3KtO/mN+cOKJiTwAz
yStCQepnDqYHS9ltvBeh2a6BEtl09YFGMK8WkAVUPo21+AdmzZtAxAZtsuK9erSL
w9i3Z524rLR+PNjo0oW4QGIaLLPrQt152Q+KhCGtD69qdxf/BecO6jOiNMauWZjp
LWJW7I9bNQI8rxiSYIA4mgS8oS/8GXae2N+UYsjaMSXtJY1GMtO+ldI05y01rcJp
8/0MIqC3uhR5uFZ6VFLVGnzZuy0Tsw4KfN/Z/JMzTM5iWoCZvNXHgNTAnNbzLP6u
M3yUGlO3qEhg9UerqNSRi+rOyVNScXL6joP8nKjy+fSxOtS9uYegBKlL4fjrDAQr
fYuYnq+r9dk/Kqm6uQSuowZj8+nEwEEPbYErTLQT1GRO9A+/rIJ5a34FzKeRYWPU
bJAuWCu+BQ==
=lo96
-----END PGP SIGNATURE-----
Merge tag 'io_uring-5.19-2022-07-21' of git://git.kernel.dk/linux-block
Pull io_uring fixes from Jens Axboe:
"Fix for a bad kfree() introduced in this cycle, and a quick fix for
disabling buffer recycling for IORING_OP_READV.
The latter will get reworked for 5.20, but it gets the job done for
5.19"
* tag 'io_uring-5.19-2022-07-21' of git://git.kernel.dk/linux-block:
io_uring: do not recycle buffer in READV
io_uring: fix free of unallocated buffer list
READV cannot recycle buffers as it would lose some of the data required to
reimport that buffer.
Reported-by: Ammar Faizi <ammarfaizi2@gnuweeb.org>
Fixes: b66e65f414 ("io_uring: never call io_buffer_select() for a buffer re-select")
Signed-off-by: Dylan Yudaken <dylany@fb.com>
Link: https://lore.kernel.org/r/20220721131325.624788-1-dylany@fb.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmLRpPgACgkQxWXV+ddt
WDtu/BAAnfx7CXKIfWKpz6FZEio9Qb3mUHVOglyKzqR0qB72OdrC1dQMvEWPJc6h
N65di6+8tTNmRIlaFBMU0MDHODR2aDRpDtlR9eUzUuidTc4iOp1fi31uBwl31r7b
k8mCZBc/IAdfH13lBtcfkb2HGid7rik5ZC6Kx/glMcqh647QkSMAleupUsIYHKsK
IgcUWuN3wFIUK2WVgsja7+ljlwIHBHKRp9yrEYw+ef/B0NCNKvOnrIOPJzO7nxMP
1FbqJ6F7u7HjoMFcMwn5rbV/BoIwSSvXyKRqOW+EhGeQR/imVmkH9jXJ7wXdblSz
IvSqaZ0DaWWSvivdMpwbr8Z0Cu4iIYhVY6PSA0hukR63qB5GwKKJ6j1L0zoYoz8C
IDWJPW03FNRIu5ZOduvUQ3qG7jcJQZ3WPCCfrDST1cO2xHT/7f65Tjz4k0hvp4za
edITetC1mEv310CHeGsJaLxGYPNrRe38VZYPxgJ7yFpteGYjh0ZwsuyUHb4MH1no
JWwgElNW+m1BatdWSUBYk6xhqod1s2LOFPNqo7jNlv8I27hPViqCbBA2i9FlkXf+
FwL5kWyJXs69gfjUIj59381Z0U1VdA1tvU8GP2m2+JvIDS6ooAcZj7yEQ69mCZxi
2RFJIU0NFbnc/5j2ARSzOTGs9glDD0yffgXJM+cK+TWsQ3AC31I=
=/47A
-----END PGP SIGNATURE-----
Merge tag 'for-5.19-rc7-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs reverts from David Sterba:
"Due to a recent report [1] we need to revert the radix tree to xarray
conversion patches.
There's a problem with sleeping under spinlock, when xa_insert could
allocate memory under pressure. We use GFP_NOFS so this is a real
problem that we unfortunately did not discover during review.
I'm sorry to do such change at rc6 time but the revert is IMO the
safer option, there are patches to use mutex instead of the spin locks
but that would need more testing. The revert branch has been tested on
a few setups, all seem ok.
The conversion to xarray will be revisited in the future"
Link: https://lore.kernel.org/linux-btrfs/cover.1657097693.git.fdmanana@suse.com/ [1]
* tag 'for-5.19-rc7-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
Revert "btrfs: turn delayed_nodes_tree into an XArray"
Revert "btrfs: turn name_cache radix tree into XArray in send_ctx"
Revert "btrfs: turn fs_info member buffer_radix into XArray"
Revert "btrfs: turn fs_roots_radix in btrfs_fs_info into an XArray"
stable. Most of it is in netfs but I picked it up into ceph tree on
agreement with David.
-----BEGIN PGP SIGNATURE-----
iQFHBAABCAAxFiEEydHwtzie9C7TfviiSn/eOAIR84sFAmLRle4THGlkcnlvbW92
QGdtYWlsLmNvbQAKCRBKf944AhHziwNrB/wLIT7pDkZl2h1LclJS1WfgzgPkaOVq
sN8RO+QH3zIx5av/b3BH/R9Ilp2M4QjWr7f5y3emVZPxV9KQ2lrUj30XKecfIO4+
nGU3YunO+rfaUTyySJb06VFfhLpOjxjWGFEjgAO+exiWz4zl2h8dOXqYBTE/cStT
+721WZKYR25UK7c7kp/LgRC9QhjqH1MDm7wvPOAg6CR7mw2OiwjYD7o8Ou+zvGfp
6GimxbWouJNT+/xW2T3wIJsmQuwZbw4L4tsLSfhKTk57ooKtR1cdm0h/N7LM1bQa
fijU36LdGJGqKKF+kVJV73sNuPIZGY+KVS+ApiuOJ/LMDXxoeuiYtewT
=P3hf
-----END PGP SIGNATURE-----
Merge tag 'ceph-for-5.19-rc7' of https://github.com/ceph/ceph-client
Pull ceph fix from Ilya Dryomov:
"A folio locking fixup that Xiubo and David cooperated on, marked for
stable. Most of it is in netfs but I picked it up into ceph tree on
agreement with David"
* tag 'ceph-for-5.19-rc7' of https://github.com/ceph/ceph-client:
netfs: do not unlock and put the folio twice