Based on 1 normalized pattern(s):
licensed under the terms of the gnu general public license version 2
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 88 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190530000437.521539229@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
In early stage of firmware SDK, DICE seems to lose its backward
compatibility due to some registers on global address section. I found
this with Alesis Multimix 12 FireWire with ancient firmware (approx.
shipped version).
According to retrieved log from the unit, global section has 96 byte
space. On the other hand, current version of ALSA dice driver assumes
that all of supported unit has at least 100 byte space.
$ ./firewire-request /dev/fw1 read 0xffffe0000000 28
result: 000: 00 00 00 0a 00 00 00 18 00 00 00 22 00 00 00 8a
result: 010: 00 00 00 ac 00 00 01 12 00 00 00 00 00 00 00 00
result: 020: 00 00 00 00 00 00 00 00
This commit adds support for the ancient firmware. Check of global section
is loosened to accept the smaller space. The lack of information is
already compensated by hard-coded parameters.
I experienced that the latest version of Windows driver for this model
can't handle this unit, too. This means that TCAT releases firmware SDK
without backward compatibility for the ancient firmware.
Below list is a early history of driver/firmware package released by
Alesis. I investigated on wayback machine on Internet Archive:
* Unknown: PAL v1.0.41.2, firmware v1.0.3
* Mar 2006: PAL v1.54.0, firmware v1.0.4
* Dec 2006: PAL v2.0.0.2, firmware v2.0
* Jun 2007: PAL v3.0.41.5, firmware v2.0
* Jul 2007: PAL v3.0.56.2. firmware v2.0
* Jan 2008: PAL v3.0.81.1080, firmware v2.0
If I can assume that firmware version is the same as DICE version, DICE
version for the issued firmware may be v1.0.3. According to code base of
userspace driver project (FFADO), I can read DICE v1.0.4 supports global
space larger than 100 byte. I guess the smaller space of global section is
a feature of DICE v1.0.3.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
With former patchset, ALSA dice driver doesn't change clock parameters
anymore, while the driver still touch clock configuration for phase lock.
Although the locking status is in Dice notification, the driver doesn't
detect it. Usually, this causes no issues because in most case
NOTIFY_LOCK_CHG notification transfers after NOTIFY_CLOCK_ACCEPTED
notification, while it's better to detect locking status.
This commit changes notification mask just to detect lock status change.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
In former commits, probing process has no need to set sampling transfer
frequency. Although it's OK to drop a function to change the frequency
from this module, some models require it before streaming. This seems to
be due to phase lock of clock source.
This commit moves the function from transaction layer to stream layer, and
rename it according to the purpose.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Some users have reported that their Dice based models generate ETIMEDOUT
when starting PCM playback. It means that current timeout (=100msec) is
not enough for their models to transfer notifications.
This commit expands the timeout up to 2 sec. As a result, in a worst case,
any operations to start AMDTP streams takes 2 sec or more. Then, in
userspace, snd_pcm_hw_params(), snd_pcm_prepare(), snd_pcm_recover(),
snd_rawmidi_open(), snd_seq_connect_from() and snd_seq_connect_to() may
take the time.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
In previous commit, card registration is processed under situation
with few bus reset. There's no need to add a workaround of transaction
re-initialization at timeout.
This commit purges the re-initialization.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Before allocating an instance of sound card, ALSA dice driver checks
chip_ID_hi in Bus information block of Config ROM, then also checks
subaddresses. The former operation reads cache of Config ROM in Linux
FireWire subsystem, while the latter operation sends read transaction.
The latter can be merged into initialization of transaction system.
This commit splits these two operations to reduce needless transactions
in probe processing.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
This commit allows this driver to handle devices with non SYT-Match
sampling clock source.
When sampling clock source is SYT-Match mode, devices handle
'presentation timestamp' in received packets and generates sampling clock
according to the information. In this case, driver is synchronization master
and must transfer correct value in SYT field of each packets in outgoing
stream, then the outgoing stream is a master stream.
On the other hand, non SYT-Match mode, devices do this. So drivers must pick
up the value in SYT field of incoming packets and use the value for outgoing
stream. Currently firewire-lib module achieve this work.
Furthermore, without SYT-Match and internal clock source, the sampling rate
should be fixed for the other devices connected to the handled device. This
commit add a restriction of sampling rate at this situation.
With these implementations, this driver has no need to set clock source.
This commit remove set function.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Acked-by: Clemens Ladisch <clemens@ladisch.de>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
This commit adds a file with some helper functions for transaction, and move
some codes into the file with some arrangements.
For Dice chipset, well-known FCP or AV/C commands are not used to control
devices. It's achieved by read/write transactions into specific addresses.
Dice's address area is split into 5 areas. Each area has its own role. The
offset for each area can be got by reading head of the address area. By
reading these areas, drivers can get to know device status. By writing these
areas, drivers can change device status.
Dice has a specific mechanism called as 'notification'. When device status is
changed, Dice devices tells the event by sending transaction. This notification
is sent to an address which drivers register in advance. But this causes an
issue to drivers.
To handle the notification, drivers need to allocate its own callback function
to the address region in host controller. This region is exclusive. For the
other applications, drivers must give a mechanism to read the received
notification. For this purpose, Dice driver already implements hwdep interface.
Dice chipset doesn't allow drivers to register several addresses. In this
reason, when this driver is applied to a device, the other drivers should
_not_ try to register its own address to the device.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>