Now that we have KTHREAD_IS_PER_CPU to denote the critical per-cpu
tasks to retain during CPU offline, we can relax the warning in
set_cpus_allowed_ptr(). Any spurious kthread that wants to get on at
the last minute will get pushed off before it can run.
While during CPU online there is no harm, and actual benefit, to
allowing kthreads back on early, it simplifies hotplug code and fixes
a number of outstanding races.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Lai jiangshan <jiangshanlai@gmail.com>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Tested-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/20210121103507.240724591@infradead.org
Prior to commit 1cf12e08bc ("sched/hotplug: Consolidate task
migration on CPU unplug") we'd leave any task on the dying CPU and
break affinity and force them off at the very end.
This scheme had to change in order to enable migrate_disable(). One
cannot wait for migrate_disable() to complete while stuck in
stop_machine(). Furthermore, since we need at the very least: idle,
hotplug and stop threads at any point before stop_machine, we can't
break affinity and/or push those away.
Under the assumption that all per-cpu kthreads are sanely handled by
CPU hotplug, the new code no long breaks affinity or migrates any of
them (which then includes the critical ones above).
However, there's an important difference between per-cpu kthreads and
kthreads that happen to have a single CPU affinity which is lost. The
latter class very much relies on the forced affinity breaking and
migration semantics previously provided.
Use the new kthread_is_per_cpu() infrastructure to tighten
is_per_cpu_kthread() and fix the hot-unplug problems stemming from the
change.
Fixes: 1cf12e08bc ("sched/hotplug: Consolidate task migration on CPU unplug")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Tested-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/20210121103507.102416009@infradead.org
In preparation of using the balance_push state in ttwu() we need it to
provide a reliable and consistent state.
The immediate problem is that rq->balance_callback gets cleared every
schedule() and then re-set in the balance_push_callback() itself. This
is not a reliable signal, so add a variable that stays set during the
entire time.
Also move setting it before the synchronize_rcu() in
sched_cpu_deactivate(), such that we get guaranteed visibility to
ttwu(), which is a preempt-disable region.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Tested-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/20210121103506.966069627@infradead.org
We don't need to push away tasks when we come online, mark the push
complete right before the CPU dies.
XXX hotplug state machine has trouble with rollback here.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Tested-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/20210121103506.415606087@infradead.org
Since commit
1cf12e08bc ("sched/hotplug: Consolidate task migration on CPU unplug")
tasks are expected to move themselves out of a out-going CPU. For most
tasks this will be done automagically via BALANCE_PUSH, but percpu kthreads
will have to cooperate and move themselves away one way or another.
Currently, some percpu kthreads (workqueues being a notable exemple) do not
cooperate nicely and can end up on an out-going CPU at the time
sched_cpu_dying() is invoked.
Print the dying rq's tasks to shed some light on the stragglers.
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Tested-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/20210113183141.11974-1-valentin.schneider@arm.com
- Rework the passive-mode "fast switch" path in the intel_pstate
driver to allow it receive the minimum (required) and target
(desired) performance information from the schedutil governor so
as to avoid running some workloads too fast (Rafael Wysocki).
- Make the intel_pstate driver allow the policy max limit to be
increased after the guaranteed performance value for the given
CPU has increased (Rafael Wysocki).
- Clean up the handling of CPU coordination types in the CPPC
cpufreq driver and make it export frequency domains information
to user space via sysfs (Ionela Voinescu).
- Fix the ACPI code handling processor objects to use a correct
coordination type when it fails to map frequency domains and drop
a redundant CPU map initialization from it (Ionela Voinescu, Punit
Agrawal).
-----BEGIN PGP SIGNATURE-----
iQJGBAABCAAwFiEE4fcc61cGeeHD/fCwgsRv/nhiVHEFAl/iJwASHHJqd0Byand5
c29ja2kubmV0AAoJEILEb/54YlRxYw0P/30oAyf2ooGkGu16mhUWaa5chZ7iLB0i
tIhyv5uGX7n1UKNCY4ji5V//cIwv3eGOpw1KTzO4bTbi48Y0WdzblSOPNuZGuycD
GnDpPjtFrI5w19PMzn1tIEOX7pvl1GKg4QumGVCLt2xO6TGuaLAjXmfjO0+VG3Nz
XnhBQ3fS8SLm/8ox9BT7z1ODocPW5gRgQdtVUVvaXqDsGdy5FV0Jlg62JyqnJ2fR
rPwzIvyFAQELSdJGKPT+kUrhj1PKOH1P/3x5/E1EHGUhsOEwBvwWHHkHgTTEpKH5
MsUlYw3rOI6Y/ZoIgrlROFg5UwA4DP7f8k1Hca4jbyP4PKY1Pv/AsOSn8UJ2W4hd
v9h6clqLlu514Q9SLWjpX/WT2Uz5Nht/Y82NTOQeIZXjoAb2Jhb87C+mxO0GyaK2
X3Ipx2lL1Op3DkblERfubUoFlxay8Ld+EI0bG4uDccyI812sPR6mfQXsLQk29tjH
pSslQexjxF44109wHq8issXfvWD7CtzmOZoWk0WaStYhAU8K/b9wzFzBVQBfQdpS
cguS4DuLdl9etyRge9KFCxkq18F/gVRBAzmV6zyS6Cf4h+c0TyR5rp+7vWIjJyws
AGv8RbGdGeZG3T1hV6LJRU63h50PVbtAGqOuDcFaPlfZSD5g44QrkaS7+J0PNaPK
PKsB+zc9h2IW
=AcdB
-----END PGP SIGNATURE-----
Merge tag 'pm-5.11-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull more power management updates from Rafael Wysocki:
"These update the CPPC cpufreq driver and intel_pstate (which involves
updating the cpufreq core and the schedutil governor) and make
janitorial changes in the ACPI code handling processor objects.
Specifics:
- Rework the passive-mode "fast switch" path in the intel_pstate
driver to allow it receive the minimum (required) and target
(desired) performance information from the schedutil governor so as
to avoid running some workloads too fast (Rafael Wysocki).
- Make the intel_pstate driver allow the policy max limit to be
increased after the guaranteed performance value for the given CPU
has increased (Rafael Wysocki).
- Clean up the handling of CPU coordination types in the CPPC cpufreq
driver and make it export frequency domains information to user
space via sysfs (Ionela Voinescu).
- Fix the ACPI code handling processor objects to use a correct
coordination type when it fails to map frequency domains and drop a
redundant CPU map initialization from it (Ionela Voinescu, Punit
Agrawal)"
* tag 'pm-5.11-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm:
cpufreq: intel_pstate: Use most recent guaranteed performance values
cpufreq: intel_pstate: Implement the ->adjust_perf() callback
cpufreq: Add special-purpose fast-switching callback for drivers
cpufreq: schedutil: Add util to struct sg_cpu
cppc_cpufreq: replace per-cpu data array with a list
cppc_cpufreq: expose information on frequency domains
cppc_cpufreq: clarify support for coordination types
cppc_cpufreq: use policy->cpu as driver of frequency setting
ACPI: processor: fix NONE coordination for domain mapping failure
* pm-cpufreq:
cpufreq: intel_pstate: Use most recent guaranteed performance values
cpufreq: intel_pstate: Implement the ->adjust_perf() callback
cpufreq: Add special-purpose fast-switching callback for drivers
cpufreq: schedutil: Add util to struct sg_cpu
cppc_cpufreq: replace per-cpu data array with a list
cppc_cpufreq: expose information on frequency domains
cppc_cpufreq: clarify support for coordination types
cppc_cpufreq: use policy->cpu as driver of frequency setting
ACPI: processor: fix NONE coordination for domain mapping failure
ACPI: processor: Drop duplicate setting of shared_cpu_map
* PSCI relay at EL2 when "protected KVM" is enabled
* New exception injection code
* Simplification of AArch32 system register handling
* Fix PMU accesses when no PMU is enabled
* Expose CSV3 on non-Meltdown hosts
* Cache hierarchy discovery fixes
* PV steal-time cleanups
* Allow function pointers at EL2
* Various host EL2 entry cleanups
* Simplification of the EL2 vector allocation
s390:
* memcg accouting for s390 specific parts of kvm and gmap
* selftest for diag318
* new kvm_stat for when async_pf falls back to sync
x86:
* Tracepoints for the new pagetable code from 5.10
* Catch VFIO and KVM irqfd events before userspace
* Reporting dirty pages to userspace with a ring buffer
* SEV-ES host support
* Nested VMX support for wait-for-SIPI activity state
* New feature flag (AVX512 FP16)
* New system ioctl to report Hyper-V-compatible paravirtualization features
Generic:
* Selftest improvements
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAl/bdL4UHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroNgQQgAnTH6rhXa++Zd5F0EM2NwXwz3iEGb
lOq1DZSGjs6Eekjn8AnrWbmVQr+CBCuGU9MrxpSSzNDK/awryo3NwepOWAZw9eqk
BBCVwGBbJQx5YrdgkGC0pDq2sNzcpW/VVB3vFsmOxd9eHblnuKSIxEsCCXTtyqIt
XrLpQ1UhvI4yu102fDNhuFw2EfpzXm+K0Lc0x6idSkdM/p7SyeOxiv8hD4aMr6+G
bGUQuMl4edKZFOWFigzr8NovQAvDHZGrwfihu2cLRYKLhV97QuWVmafv/yYfXcz2
drr+wQCDNzDOXyANnssmviazrhOX0QmTAhbIXGGX/kTxYKcfPi83ZLoI3A==
=ISud
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"Much x86 work was pushed out to 5.12, but ARM more than made up for it.
ARM:
- PSCI relay at EL2 when "protected KVM" is enabled
- New exception injection code
- Simplification of AArch32 system register handling
- Fix PMU accesses when no PMU is enabled
- Expose CSV3 on non-Meltdown hosts
- Cache hierarchy discovery fixes
- PV steal-time cleanups
- Allow function pointers at EL2
- Various host EL2 entry cleanups
- Simplification of the EL2 vector allocation
s390:
- memcg accouting for s390 specific parts of kvm and gmap
- selftest for diag318
- new kvm_stat for when async_pf falls back to sync
x86:
- Tracepoints for the new pagetable code from 5.10
- Catch VFIO and KVM irqfd events before userspace
- Reporting dirty pages to userspace with a ring buffer
- SEV-ES host support
- Nested VMX support for wait-for-SIPI activity state
- New feature flag (AVX512 FP16)
- New system ioctl to report Hyper-V-compatible paravirtualization features
Generic:
- Selftest improvements"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (171 commits)
KVM: SVM: fix 32-bit compilation
KVM: SVM: Add AP_JUMP_TABLE support in prep for AP booting
KVM: SVM: Provide support to launch and run an SEV-ES guest
KVM: SVM: Provide an updated VMRUN invocation for SEV-ES guests
KVM: SVM: Provide support for SEV-ES vCPU loading
KVM: SVM: Provide support for SEV-ES vCPU creation/loading
KVM: SVM: Update ASID allocation to support SEV-ES guests
KVM: SVM: Set the encryption mask for the SVM host save area
KVM: SVM: Add NMI support for an SEV-ES guest
KVM: SVM: Guest FPU state save/restore not needed for SEV-ES guest
KVM: SVM: Do not report support for SMM for an SEV-ES guest
KVM: x86: Update __get_sregs() / __set_sregs() to support SEV-ES
KVM: SVM: Add support for CR8 write traps for an SEV-ES guest
KVM: SVM: Add support for CR4 write traps for an SEV-ES guest
KVM: SVM: Add support for CR0 write traps for an SEV-ES guest
KVM: SVM: Add support for EFER write traps for an SEV-ES guest
KVM: SVM: Support string IO operations for an SEV-ES guest
KVM: SVM: Support MMIO for an SEV-ES guest
KVM: SVM: Create trace events for VMGEXIT MSR protocol processing
KVM: SVM: Create trace events for VMGEXIT processing
...
- Use local_clock() instead of jiffies in the cpufreq statistics to
improve accuracy (Viresh Kumar).
- Fix up OPP usage in the cpufreq-dt and qcom-cpufreq-nvmem cpufreq
drivers (Viresh Kumar).
- Clean up the cpufreq core, the intel_pstate driver and the
schedutil cpufreq governor (Rafael Wysocki).
- Fix up error code paths in the sti-cpufreq and mediatek cpufreq
drivers (Yangtao Li, Qinglang Miao).
- Fix cpufreq_online() to return error codes instead of success (0)
in all cases when it fails (Wang ShaoBo).
- Add mt8167 support to the mediatek cpufreq driver and blacklist
mt8516 in the cpufreq-dt-platdev driver (Fabien Parent).
- Modify the tegra194 cpufreq driver to always return values from
the frequency table as the current frequency and clean up that
driver (Sumit Gupta, Jon Hunter).
- Modify the arm_scmi cpufreq driver to allow it to discover the
power scale present in the performance protocol and provide this
information to the Energy Model (Lukasz Luba).
- Add missing MODULE_DEVICE_TABLE to several cpufreq drivers (Pali
Rohár).
- Clean up the CPPC cpufreq driver (Ionela Voinescu).
- Fix NVMEM_IMX_OCOTP dependency in the imx cpufreq driver (Arnd
Bergmann).
- Rework the poling interval selection for the polling state in
cpuidle (Mel Gorman).
- Enable suspend-to-idle for PSCI OSI mode in the PSCI cpuidle
driver (Ulf Hansson).
- Modify the OPP framework to support empty (node-less) OPP tables
in DT for passing dependency information (Nicola Mazzucato).
- Fix potential lockdep issue in the OPP core and clean up the OPP
core (Viresh Kumar).
- Modify dev_pm_opp_put_regulators() to accept a NULL argument and
update its users accordingly (Viresh Kumar).
- Add frequency changes tracepoint to devfreq (Matthias Kaehlcke).
- Add support for governor feature flags to devfreq, make devfreq
sysfs file permissions depend on the governor and clean up the
devfreq core (Chanwoo Choi).
- Clean up the tegra20 devfreq driver and deprecate it to allow
another driver based on EMC_STAT to be used instead of it (Dmitry
Osipenko).
- Add interconnect support to the tegra30 devfreq driver, allow it
to take the interconnect and OPP information from DT and clean it
up ((Dmitry Osipenko).
- Add interconnect support to the exynos-bus devfreq driver along
with interconnect properties documentation (Sylwester Nawrocki).
- Add suport for AMD Fam17h and Fam19h processors to the RAPL power
capping driver (Victor Ding, Kim Phillips).
- Fix handling of overly long constraint names in the powercap
framework (Lukasz Luba).
- Fix the wakeup configuration handling for bridges in the ACPI
device power management core (Rafael Wysocki).
- Add support for using an abstract scale for power units in the
Energy Model (EM) and document it (Lukasz Luba).
- Add em_cpu_energy() micro-optimization to the EM (Pavankumar
Kondeti).
- Modify the generic power domains (genpd) framwework to support
suspend-to-idle (Ulf Hansson).
- Fix creation of debugfs nodes in genpd (Thierry Strudel).
- Clean up genpd (Lina Iyer).
- Clean up the core system-wide suspend code and make it print
driver flags for devices with debug enabled (Alex Shi, Patrice
Chotard, Chen Yu).
- Modify the ACPI system reboot code to make it prepare for system
power off to avoid confusing the platform firmware (Kai-Heng Feng).
- Update the pm-graph (multiple changes, mostly usability-related)
and cpupower (online and offline CPU information support) PM
utilities (Todd Brandt, Brahadambal Srinivasan).
-----BEGIN PGP SIGNATURE-----
iQJGBAABCAAwFiEE4fcc61cGeeHD/fCwgsRv/nhiVHEFAl/Y8mcSHHJqd0Byand5
c29ja2kubmV0AAoJEILEb/54YlRxjY4QAKsNFJeEtjGCxq7MxQIML3QLAsdJM9of
9kkY9skMEw4v1TRmyy7sW9jZW2pLSRcLJwWRKWu4143qUS3YUp2DQ0lqX4WyXoWu
BhnkhkMUl6iCeBO8CWnt8zsTuqSa20A13sL9LyqN1+7OZKHD8StbT4hKjBncdNNN
4aDj+1uAPyOgj2iCUZuHQ8DtpBvOLjgTh367vbhbufjeJ//8/9+R7s4Xzrj7wtmv
JlE0LDgvge9QeGTpjhxQJzn0q2/H5fg9jbmjPXUfbHJNuyKhrqnmjGyrN5m256JI
8DqGqQtJpmFp7Ihrur3uKTk3gWO05YwJ1FdeEooAKEjEMObm5xuYhKVRoDhmlJAu
G6ui+OAUvNR0FffJtbzvWe/pLovLGOEOHdvTrZxUF8Abo6br3untTm8rKTi1fhaF
wWndSMw0apGsPzCx5T+bE7AbJz2QHFpLhaVAutenuCzNI8xoMlxNKEzsaVz/+FqL
Pq/PdFaM4vNlMbv7hkb/fujkCs/v3EcX2ihzvt7I2o8dBS0D1X8A4mnuWJmiGslw
1ftbJ6M9XacwkPBTHPgeXxJh2C1yxxe5VQ9Z5fWWi7sPOUeJnUwxKaluv+coFndQ
sO6JxsPQ4hQihg8yOxLEkL6Wn68sZlmp+u2Oj+TPFAsAGANIA8rJlBPo1ppJWvdQ
j1OCIc/qzwpH
=BVdX
-----END PGP SIGNATURE-----
Merge tag 'pm-5.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management updates from Rafael Wysocki:
"These update cpufreq (core and drivers), cpuidle (polling state
implementation and the PSCI driver), the OPP (operating performance
points) framework, devfreq (core and drivers), the power capping RAPL
(Running Average Power Limit) driver, the Energy Model support, the
generic power domains (genpd) framework, the ACPI device power
management, the core system-wide suspend code and power management
utilities.
Specifics:
- Use local_clock() instead of jiffies in the cpufreq statistics to
improve accuracy (Viresh Kumar).
- Fix up OPP usage in the cpufreq-dt and qcom-cpufreq-nvmem cpufreq
drivers (Viresh Kumar).
- Clean up the cpufreq core, the intel_pstate driver and the
schedutil cpufreq governor (Rafael Wysocki).
- Fix up error code paths in the sti-cpufreq and mediatek cpufreq
drivers (Yangtao Li, Qinglang Miao).
- Fix cpufreq_online() to return error codes instead of success (0)
in all cases when it fails (Wang ShaoBo).
- Add mt8167 support to the mediatek cpufreq driver and blacklist
mt8516 in the cpufreq-dt-platdev driver (Fabien Parent).
- Modify the tegra194 cpufreq driver to always return values from the
frequency table as the current frequency and clean up that driver
(Sumit Gupta, Jon Hunter).
- Modify the arm_scmi cpufreq driver to allow it to discover the
power scale present in the performance protocol and provide this
information to the Energy Model (Lukasz Luba).
- Add missing MODULE_DEVICE_TABLE to several cpufreq drivers (Pali
Rohár).
- Clean up the CPPC cpufreq driver (Ionela Voinescu).
- Fix NVMEM_IMX_OCOTP dependency in the imx cpufreq driver (Arnd
Bergmann).
- Rework the poling interval selection for the polling state in
cpuidle (Mel Gorman).
- Enable suspend-to-idle for PSCI OSI mode in the PSCI cpuidle driver
(Ulf Hansson).
- Modify the OPP framework to support empty (node-less) OPP tables in
DT for passing dependency information (Nicola Mazzucato).
- Fix potential lockdep issue in the OPP core and clean up the OPP
core (Viresh Kumar).
- Modify dev_pm_opp_put_regulators() to accept a NULL argument and
update its users accordingly (Viresh Kumar).
- Add frequency changes tracepoint to devfreq (Matthias Kaehlcke).
- Add support for governor feature flags to devfreq, make devfreq
sysfs file permissions depend on the governor and clean up the
devfreq core (Chanwoo Choi).
- Clean up the tegra20 devfreq driver and deprecate it to allow
another driver based on EMC_STAT to be used instead of it (Dmitry
Osipenko).
- Add interconnect support to the tegra30 devfreq driver, allow it to
take the interconnect and OPP information from DT and clean it up
(Dmitry Osipenko).
- Add interconnect support to the exynos-bus devfreq driver along
with interconnect properties documentation (Sylwester Nawrocki).
- Add suport for AMD Fam17h and Fam19h processors to the RAPL power
capping driver (Victor Ding, Kim Phillips).
- Fix handling of overly long constraint names in the powercap
framework (Lukasz Luba).
- Fix the wakeup configuration handling for bridges in the ACPI
device power management core (Rafael Wysocki).
- Add support for using an abstract scale for power units in the
Energy Model (EM) and document it (Lukasz Luba).
- Add em_cpu_energy() micro-optimization to the EM (Pavankumar
Kondeti).
- Modify the generic power domains (genpd) framwework to support
suspend-to-idle (Ulf Hansson).
- Fix creation of debugfs nodes in genpd (Thierry Strudel).
- Clean up genpd (Lina Iyer).
- Clean up the core system-wide suspend code and make it print driver
flags for devices with debug enabled (Alex Shi, Patrice Chotard,
Chen Yu).
- Modify the ACPI system reboot code to make it prepare for system
power off to avoid confusing the platform firmware (Kai-Heng Feng).
- Update the pm-graph (multiple changes, mostly usability-related)
and cpupower (online and offline CPU information support) PM
utilities (Todd Brandt, Brahadambal Srinivasan)"
* tag 'pm-5.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (86 commits)
cpufreq: Fix cpufreq_online() return value on errors
cpufreq: Fix up several kerneldoc comments
cpufreq: stats: Use local_clock() instead of jiffies
cpufreq: schedutil: Simplify sugov_update_next_freq()
cpufreq: intel_pstate: Simplify intel_cpufreq_update_pstate()
PM: domains: create debugfs nodes when adding power domains
opp: of: Allow empty opp-table with opp-shared
dt-bindings: opp: Allow empty OPP tables
media: venus: dev_pm_opp_put_*() accepts NULL argument
drm/panfrost: dev_pm_opp_put_*() accepts NULL argument
drm/lima: dev_pm_opp_put_*() accepts NULL argument
PM / devfreq: exynos: dev_pm_opp_put_*() accepts NULL argument
cpufreq: qcom-cpufreq-nvmem: dev_pm_opp_put_*() accepts NULL argument
cpufreq: dt: dev_pm_opp_put_regulators() accepts NULL argument
opp: Allow dev_pm_opp_put_*() APIs to accept NULL opp_table
opp: Don't create an OPP table from dev_pm_opp_get_opp_table()
cpufreq: dt: Don't (ab)use dev_pm_opp_get_opp_table() to create OPP table
opp: Reduce the size of critical section in _opp_kref_release()
PM / EM: Micro optimization in em_cpu_energy
cpufreq: arm_scmi: Discover the power scale in performance protocol
...
Core:
- Consolidation and robustness changes for irq time accounting
- Cleanup and consolidation of irq stats
- Remove the fasteoi IPI flow which has been proved useless
- Provide an interface for converting legacy interrupt mechanism into
irqdomains
Drivers:
The rare event of not having completely new chip driver code, just new
DT bindings and extensions of existing drivers to accomodate new
variants!
- Preliminary support for managed interrupts on platform devices
- Correctly identify allocation of MSIs proxyied by another device
- Generalise the Ocelot support to new SoCs
- Improve GICv4.1 vcpu entry, matching the corresponding KVM optimisation
- Work around spurious interrupts on Qualcomm PDC
- Random fixes and cleanups
Thanks,
tglx
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl/YwZgTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoW4CD/90rTi1OQrMe3nb5okVjUZmktz/K3BN
Cl5+evFiXiNoH+yJSMIVP+8eMAtBH6RgoaD0EUtSYmgzb9h/JRRQYwtPxobXcMb2
2xcWyLPJkVJL431JKNM8BBRYjLA2VnQ6Ia+Kx3BxqpgKXn5+cEMh1dwIy27Ll2rj
+2NHAQe1sHL7o/KcCDhYqbVIDjw5K/d7YPwjEuPeEoNv1DOxrOCdCEfgFN0jBtRE
CoaRTBskeAaHIzHNp47Mxyz43g4tA/D8kB68X0OjpEykVkPUbgNK1FHSwaPbIsFT
FTSPU3zg8Q6DZ+RGyjNJykIFgUbirlJxARk2c6Ct8Kc3DN6K1jQt4EsU7CXRCc98
BTBjUNeFeNj3irZ4GHhyMKOQJCA1Z5nCRfBUGiW6gK8183us3BLfH5DM1zEsAYUh
DCp+UKsLuXhbB80EWq7kl82/2mNGZ8En8EerE6XJA7Z3JN8FplOHEuLezYYzwzbb
RIes971Vc50J2u2Wf/M2c3PDz3D/4FzfwUeA4LJfTnmOL09RYZ8CsqSckpx4ku/F
XiBnjwtGEpDXWJ8z13DC7yONrxFGByV19+sqHTBlub5DmIs0gXjhC0dKAPAruUIS
iCC+Vx6xLgOpTDu8shFsjibbi9Hb6vuZrF2Te+WR5Rf7d80C0J4b5K5PS4daUjr6
IuD2tz+3CtPjHw==
=iytv
-----END PGP SIGNATURE-----
Merge tag 'irq-core-2020-12-15' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull irq updates from Thomas Gleixner:
"Generic interrupt and irqchips subsystem updates. Unusually, there is
not a single completely new irq chip driver, just new DT bindings and
extensions of existing drivers to accomodate new variants!
Core:
- Consolidation and robustness changes for irq time accounting
- Cleanup and consolidation of irq stats
- Remove the fasteoi IPI flow which has been proved useless
- Provide an interface for converting legacy interrupt mechanism into
irqdomains
Drivers:
- Preliminary support for managed interrupts on platform devices
- Correctly identify allocation of MSIs proxyied by another device
- Generalise the Ocelot support to new SoCs
- Improve GICv4.1 vcpu entry, matching the corresponding KVM
optimisation
- Work around spurious interrupts on Qualcomm PDC
- Random fixes and cleanups"
* tag 'irq-core-2020-12-15' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (54 commits)
irqchip/qcom-pdc: Fix phantom irq when changing between rising/falling
driver core: platform: Add devm_platform_get_irqs_affinity()
ACPI: Drop acpi_dev_irqresource_disabled()
resource: Add irqresource_disabled()
genirq/affinity: Add irq_update_affinity_desc()
irqchip/gic-v3-its: Flag device allocation as proxied if behind a PCI bridge
irqchip/gic-v3-its: Tag ITS device as shared if allocating for a proxy device
platform-msi: Track shared domain allocation
irqchip/ti-sci-intr: Fix freeing of irqs
irqchip/ti-sci-inta: Fix printing of inta id on probe success
drivers/irqchip: Remove EZChip NPS interrupt controller
Revert "genirq: Add fasteoi IPI flow"
irqchip/hip04: Make IPIs use handle_percpu_devid_irq()
irqchip/bcm2836: Make IPIs use handle_percpu_devid_irq()
irqchip/armada-370-xp: Make IPIs use handle_percpu_devid_irq()
irqchip/gic, gic-v3: Make SGIs use handle_percpu_devid_irq()
irqchip/ocelot: Add support for Jaguar2 platforms
irqchip/ocelot: Add support for Serval platforms
irqchip/ocelot: Add support for Luton platforms
irqchip/ocelot: prepare to support more SoC
...
First off, some cpufreq drivers (eg. intel_pstate) can pass hints
beyond the current target frequency to the hardware and there are no
provisions for doing that in the cpufreq framework. In particular,
today the driver has to assume that it should not allow the frequency
to fall below the one requested by the governor (or the required
capacity may not be provided) which may not be the case and which may
lead to excessive energy usage in some scenarios.
Second, the hints passed by these drivers to the hardware need not be
in terms of the frequency, so representing the utilization numbers
coming from the scheduler as frequency before passing them to those
drivers is not really useful.
Address the two points above by adding a special-purpose replacement
for the ->fast_switch callback, called ->adjust_perf, allowing the
governor to pass abstract performance level (rather than frequency)
values for the minimum (required) and target (desired) performance
along with the CPU capacity to compare them to.
Also update the schedutil governor to use the new callback instead
of ->fast_switch if present and if the utilization mertics are
frequency-invariant (that is requisite for the direct mapping
between the utilization and the CPU performance levels to be a
reasonable approximation).
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Instead of passing util and max between functions while computing the
utilization and capacity, store the former in struct sg_cpu (along
with the latter and bw_dl).
This will allow the current utilization value to be compared with the
one obtained previously (which is requisite for some code changes to
follow this one), but also it causes the code to look slightly more
consistent and cleaner.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
- PSCI relay at EL2 when "protected KVM" is enabled
- New exception injection code
- Simplification of AArch32 system register handling
- Fix PMU accesses when no PMU is enabled
- Expose CSV3 on non-Meltdown hosts
- Cache hierarchy discovery fixes
- PV steal-time cleanups
- Allow function pointers at EL2
- Various host EL2 entry cleanups
- Simplification of the EL2 vector allocation
-----BEGIN PGP SIGNATURE-----
iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAl/XoggPHG1hekBrZXJu
ZWwub3JnAAoJECPQ0LrRPXpDsRYP/3ZtGWsyBc1sKdaTBIwQdnrPQHL+7o1Mmjnl
b+YqRMWcJW4g3O81GW6IA+vM0A1UMJxVOjzkZd8KulGv3RCZiqQmWJClWFlYbwLj
e+HHx+Zo/qsmDrwcVoFI8/n+iC/a5fIaCbSWMSPaKHrOMxBiHQk0qlaq4AZ8gb7a
/eHYqI/hISJQb1ZVFHmwlp8FoMnB2M6/FDpCf8oeGKjpF2hjghIPugJ0oRlPLZjB
o3Q6ELEScJV1wBy7d1+5rkm52t9j8gpGhXxja0QwypADNzk5KHEzghXq+rTWUh1S
et9OfqkflMtKMsh0qNwe5ZFbqtsH69qtYMAj4ok7rZOwQcbJ97VSrP5ka7VVzSdC
AgcQU9c9LoyQ7rk0dbs3t0cd8hMgVu50guZ/iHfW88CcdykN9M0nnSPRAYpNbW85
xndBQ5k/a4FoufwoY4e0hS28HIiRfLoEA68mps+yoMiiKh27HO2v4GFRIJoCNxzp
YQ01zOBp9FKYTsxj0h7mMf+5EEyo9E4X/kJOfZpOVVbVKy82wPAGLJpDEnbnoJUe
j1jBmiV/trkn+nTnWmDoXcw2ljuIF9dBm2M8r8yGKdNEHptnN8tMVRlCRImVVWW0
BbZGAzoK0tpKXPIlUh4aXS3mtV9qlohs9rzjVyKfGnaRRbRGANM8qrH5aKuDFinM
RugpMWyk
=hf4L
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 updates for Linux 5.11
- PSCI relay at EL2 when "protected KVM" is enabled
- New exception injection code
- Simplification of AArch32 system register handling
- Fix PMU accesses when no PMU is enabled
- Expose CSV3 on non-Meltdown hosts
- Cache hierarchy discovery fixes
- PV steal-time cleanups
- Allow function pointers at EL2
- Various host EL2 entry cleanups
- Simplification of the EL2 vector allocation
The kernel test robot measured a -1.6% performance regression on
will-it-scale/sched_yield due to commit:
2558aacff8 ("sched/hotplug: Ensure only per-cpu kthreads run during hotplug")
Even though we were careful to replace a single load with another
single load from the same cacheline.
Restore finish_lock_switch() to the exact state before the offending
patch and solve the problem differently.
Fixes: 2558aacff8 ("sched/hotplug: Ensure only per-cpu kthreads run during hotplug")
Reported-by: kernel test robot <oliver.sang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201210161408.GX3021@hirez.programming.kicks-ass.net
- Preliminary support for managed interrupts on platform devices
- Correctly identify allocation of MSIs proxyied by another device
- Remove the fasteoi IPI flow which has been proved useless
- Generalise the Ocelot support to new SoCs
- Improve GICv4.1 vcpu entry, matching the corresponding KVM optimisation
- Work around spurious interrupts on Qualcomm PDC
- Random fixes and cleanups
-----BEGIN PGP SIGNATURE-----
iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAl/Uxq8PHG1hekBrZXJu
ZWwub3JnAAoJECPQ0LrRPXpDoW0P/0ZMDvFPxrfnJD46exUgUOPuuFF8jZxAlxD8
7UExqar7u6yX7bbq394jPgtOOxldDagfCx/jCXgb9ja7DK5EHKRcrfjaDT8knHi2
Keg5RaRMRi9TVltvWQTxAkXwSv0Atl881qqsndPeZCez0GNZp+HB34s+rNkZwBOu
MBrWihMQOSv5QE6milsNc7HXLSHM1eLZ7Y2XgumNtKrIGEX9yZI7qwdMofwP8Za3
ayMOvc1WAWaTJI7Mg5ac1yTCVbqLmRHhCtws6c6DMgaRu6SI0itmbpQzkDuJJIe3
k9h4KQPaKAFcQsoo3GV0MKTMm63eq82XT3CAdv+htYRY1z95D2+nzNK+mJtsGptX
gJ2zeJkUb4u+yVtNguL9qjo5ssCXV/6IybJxv6baaEFnSwQMUwqa066NdxmtqfIe
1BOWnc153a7SRbQ34M9/llje+v8YJbueGMS2RFR2LQ6IjjpaHsXh+YCZokfA/kdk
zGbOUD5WWFtFD1T3UoaJ4gFt+pzHjNqym4CcEj4S1Vf5y+POUkNmC+GYK+xfm2Fp
WJMbdIUxJhHFRD9L1ShtfAVUSbp712VOOdILp9rYAkOdqfb51BVUiMUP++s2dGp1
ZIT78qt7kTKT1CxbDdFAjzsi7RoMqdSGYgKmG4sVprELeZnFwq47nBkBr8XEQ1TT
0ccEUOY8
=7Z24
-----END PGP SIGNATURE-----
Merge tag 'irqchip-5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/maz/arm-platforms into irq/core
Pull irqchip updates for 5.11 from Marc Zyngier:
- Preliminary support for managed interrupts on platform devices
- Correctly identify allocation of MSIs proxyied by another device
- Remove the fasteoi IPI flow which has been proved useless
- Generalise the Ocelot support to new SoCs
- Improve GICv4.1 vcpu entry, matching the corresponding KVM optimisation
- Work around spurious interrupts on Qualcomm PDC
- Random fixes and cleanups
Link: https://lore.kernel.org/r/20201212135626.1479884-1-maz@kernel.org
- Consolidate all kmap_atomic() internals into a generic implementation
which builds the base for the kmap_local() API and make the
kmap_atomic() interface wrappers which handle the disabling/enabling of
preemption and pagefaults.
- Switch the storage from per-CPU to per task and provide scheduler
support for clearing mapping when scheduling out and restoring them
when scheduling back in.
- Merge the migrate_disable/enable() code, which is also part of the
scheduler pull request. This was required to make the kmap_local()
interface available which does not disable preemption when a mapping
is established. It has to disable migration instead to guarantee that
the virtual address of the mapped slot is the same accross preemption.
- Provide better debug facilities: guard pages and enforced utilization
of the mapping mechanics on 64bit systems when the architecture allows
it.
- Provide the new kmap_local() API which can now be used to cleanup the
kmap_atomic() usage sites all over the place. Most of the usage sites
do not require the implicit disabling of preemption and pagefaults so
the penalty on 64bit and 32bit non-highmem systems is removed and quite
some of the code can be simplified. A wholesale conversion is not
possible because some usage depends on the implicit side effects and
some need to be cleaned up because they work around these side effects.
The migrate disable side effect is only effective on highmem systems
and when enforced debugging is enabled. On 64bit and 32bit non-highmem
systems the overhead is completely avoided.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl/XyQwTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoUolD/9+R+BX96fGir+I8rG9dc3cbLw5meSi
0I/Nq3PToZMs2Iqv50DsoaPYHHz/M6fcAO9LRIgsE9jRbnY93GnsBM0wU9Y8yQaT
4wUzOG5WHaLDfqIkx/CN9coUl458oEiwOEbn79A2FmPXFzr7IpkufnV3ybGDwzwP
p73bjMJMPPFrsa9ig87YiYfV/5IAZHi82PN8Cq1v4yNzgXRP3Tg6QoAuCO84ZnWF
RYlrfKjcJ2xPdn+RuYyXolPtxr1hJQ0bOUpe4xu/UfeZjxZ7i1wtwLN9kWZe8CKH
+x4Lz8HZZ5QMTQ9sCHOLtKzu2MceMcpISzoQH4/aFQCNMgLn1zLbS790XkYiQCuR
ne9Cua+IqgYfGMG8cq8+bkU9HCNKaXqIBgPEKE/iHYVmqzCOqhW5Cogu4KFekf6V
Wi7pyyUdX2en8BAWpk5NHc8de9cGcc+HXMq2NIcgXjVWvPaqRP6DeITERTZLJOmz
XPxq5oPLGl7wdm7z+ICIaNApy8zuxpzb6sPLNcn7l5OeorViORlUu08AN8587wAj
FiVjp6ZYomg+gyMkiNkDqFOGDH5TMENpOFoB0hNNEyJwwS0xh6CgWuwZcv+N8aPO
HuS/P+tNANbD8ggT4UparXYce7YCtgOf3IG4GA3JJYvYmJ6pU+AZOWRoDScWq4o+
+jlfoJhMbtx5Gg==
=n71I
-----END PGP SIGNATURE-----
Merge tag 'core-mm-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull kmap updates from Thomas Gleixner:
"The new preemtible kmap_local() implementation:
- Consolidate all kmap_atomic() internals into a generic
implementation which builds the base for the kmap_local() API and
make the kmap_atomic() interface wrappers which handle the
disabling/enabling of preemption and pagefaults.
- Switch the storage from per-CPU to per task and provide scheduler
support for clearing mapping when scheduling out and restoring them
when scheduling back in.
- Merge the migrate_disable/enable() code, which is also part of the
scheduler pull request. This was required to make the kmap_local()
interface available which does not disable preemption when a
mapping is established. It has to disable migration instead to
guarantee that the virtual address of the mapped slot is the same
across preemption.
- Provide better debug facilities: guard pages and enforced
utilization of the mapping mechanics on 64bit systems when the
architecture allows it.
- Provide the new kmap_local() API which can now be used to cleanup
the kmap_atomic() usage sites all over the place. Most of the usage
sites do not require the implicit disabling of preemption and
pagefaults so the penalty on 64bit and 32bit non-highmem systems is
removed and quite some of the code can be simplified. A wholesale
conversion is not possible because some usage depends on the
implicit side effects and some need to be cleaned up because they
work around these side effects.
The migrate disable side effect is only effective on highmem
systems and when enforced debugging is enabled. On 64bit and 32bit
non-highmem systems the overhead is completely avoided"
* tag 'core-mm-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (33 commits)
ARM: highmem: Fix cache_is_vivt() reference
x86/crashdump/32: Simplify copy_oldmem_page()
io-mapping: Provide iomap_local variant
mm/highmem: Provide kmap_local*
sched: highmem: Store local kmaps in task struct
x86: Support kmap_local() forced debugging
mm/highmem: Provide CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP
mm/highmem: Provide and use CONFIG_DEBUG_KMAP_LOCAL
microblaze/mm/highmem: Add dropped #ifdef back
xtensa/mm/highmem: Make generic kmap_atomic() work correctly
mm/highmem: Take kmap_high_get() properly into account
highmem: High implementation details and document API
Documentation/io-mapping: Remove outdated blurb
io-mapping: Cleanup atomic iomap
mm/highmem: Remove the old kmap_atomic cruft
highmem: Get rid of kmap_types.h
xtensa/mm/highmem: Switch to generic kmap atomic
sparc/mm/highmem: Switch to generic kmap atomic
powerpc/mm/highmem: Switch to generic kmap atomic
nds32/mm/highmem: Switch to generic kmap atomic
...
- migrate_disable/enable() support which originates from the RT tree and
is now a prerequisite for the new preemptible kmap_local() API which aims
to replace kmap_atomic().
- A fair amount of topology and NUMA related improvements
- Improvements for the frequency invariant calculations
- Enhanced robustness for the global CPU priority tracking and decision
making
- The usual small fixes and enhancements all over the place
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl/XwK4THHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoX28D/9cVrvziSQGfBfuQWnUiw8iOIq1QBa2
Me+Tvenhfrlt7xU6rbP9ciFu7eTN+fS06m5uQPGI+t22WuJmHzbmw1bJVXfkvYfI
/QoU+Hg7DkDAn1p7ZKXh0dRkV0nI9ixxSHl0E+Zf1ATBxCUMV2SO85flg6z/4qJq
3VWUye0dmR7/bhtkIjv5rwce9v2JB2g1AbgYXYTW9lHVoUdGoMSdiZAF4tGyHLnx
sJ6DMqQ+k+dmPyYO0z5MTzjW/fXit4n9w2e3z9TvRH/uBu58WSW1RBmQYX6aHBAg
dhT9F4lvTs6lJY23x5RSFWDOv6xAvKF5a0xfb8UZcyH5EoLYrPRvm42a0BbjdeRa
u0z7LbwIlKA+RFdZzFZWz8UvvO0ljyMjmiuqZnZ5dY9Cd80LSBuxrWeQYG0qg6lR
Y2povhhCepEG+q8AXIe2YjHKWKKC1s/l/VY3CNnCzcd21JPQjQ4Z5eWGmHif5IED
CntaeFFhZadR3w02tkX35zFmY3w4soKKrbI4EKWrQwd+cIEQlOSY7dEPI/b5BbYj
MWAb3P4EG9N77AWTNmbhK4nN0brEYb+rBbCA+5dtNBVhHTxAC7OTWElJOC2O66FI
e06dREjvwYtOkRUkUguWwErbIai2gJ2MH0VILV3hHoh64oRk7jjM8PZYnjQkdptQ
Gsq0rJW5iiu/OQ==
=Oz1V
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Thomas Gleixner:
- migrate_disable/enable() support which originates from the RT tree
and is now a prerequisite for the new preemptible kmap_local() API
which aims to replace kmap_atomic().
- A fair amount of topology and NUMA related improvements
- Improvements for the frequency invariant calculations
- Enhanced robustness for the global CPU priority tracking and decision
making
- The usual small fixes and enhancements all over the place
* tag 'sched-core-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (61 commits)
sched/fair: Trivial correction of the newidle_balance() comment
sched/fair: Clear SMT siblings after determining the core is not idle
sched: Fix kernel-doc markup
x86: Print ratio freq_max/freq_base used in frequency invariance calculations
x86, sched: Use midpoint of max_boost and max_P for frequency invariance on AMD EPYC
x86, sched: Calculate frequency invariance for AMD systems
irq_work: Optimize irq_work_single()
smp: Cleanup smp_call_function*()
irq_work: Cleanup
sched: Limit the amount of NUMA imbalance that can exist at fork time
sched/numa: Allow a floating imbalance between NUMA nodes
sched: Avoid unnecessary calculation of load imbalance at clone time
sched/numa: Rename nr_running and break out the magic number
sched: Make migrate_disable/enable() independent of RT
sched/topology: Condition EAS enablement on FIE support
arm64: Rebuild sched domains on invariance status changes
sched/topology,schedutil: Wrap sched domains rebuild
sched/uclamp: Allow to reset a task uclamp constraint value
sched/core: Fix typos in comments
Documentation: scheduler: fix information on arch SD flags, sched_domain and sched_debug
...
- More generalization of entry/exit functionality
- The consolidation work to reclaim TIF flags on x86 and also for non-x86
specific TIF flags which are solely relevant for syscall related work
and have been moved into their own storage space. The x86 specific part
had to be merged in to avoid a major conflict.
- The TIF_NOTIFY_SIGNAL work which replaces the inefficient signal
delivery mode of task work and results in an impressive performance
improvement for io_uring. The non-x86 consolidation of this is going to
come seperate via Jens.
- The selective syscall redirection facility which provides a clean and
efficient way to support the non-Linux syscalls of WINE by catching them
at syscall entry and redirecting them to the user space emulation. This
can be utilized for other purposes as well and has been designed
carefully to avoid overhead for the regular fastpath. This includes the
core changes and the x86 support code.
- Simplification of the context tracking entry/exit handling for the users
of the generic entry code which guarantee the proper ordering and
protection.
- Preparatory changes to make the generic entry code accomodate S390
specific requirements which are mostly related to their syscall restart
mechanism.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl/XoPoTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoe0tD/4jSKHIogVM9kVpiYfwjDGS1NluaBXn
71ZoASbX9GZebyGandMyF2QP1iJ24ZO0RztBwHEVH6fyomKB2iFNedssCpO9yfWV
3eFRpOvMpbszY2W2bd0QG3GrqaTttjVfB4ahkGLzqeSbchdob6hZpNDYtBZnujA6
GSnrrurfJkCGoQny+yJQYdQJXQU+BIX90B2a2Q+jW123Luy/iHXC1f/krZSA1m14
fC9xYLSUjPphTzh2ZOW+C3DgdjOL5PfAm/6F+DArt4GtLgrEGD7R74aLSFhvetky
dn5QtG+yAsz1i0cc5Wu/JBcT9tOkY92rPYSyLI9bYQUSQ/bMyuprz6oYKj3dubsu
ZSsKPdkNFPIniL4fLdCMWZcIXX5xgnrxKjdgXZXW3gtrcxSns8w8uED3Sh7dgE08
pgIeq67E5g/OB8kJXH1VxdewmeQb9cOmnzzHwNO7TrrGbBKjDTYHNdYOKf1dUTTK
ZX1UjLfGwxTkMYAbQD1k0JGZ2OLRshzSaH5BW/ZKa3bvJW6yYOq+/YT8B8hbJ8U3
vThlO75/55IJxS5r5Y3vZd/IHdsYbPuETD+TA8tNYtPqNZasW8nnk4TYctWqzDuO
/Ka1wvWYid3c6ySznQn4zSyRjr968AfHeZ9YTUMhWufy5waXVmdBMG41u3IKfsVt
osyzNc4EK19/Mg==
=hsjV
-----END PGP SIGNATURE-----
Merge tag 'core-entry-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull core entry/exit updates from Thomas Gleixner:
"A set of updates for entry/exit handling:
- More generalization of entry/exit functionality
- The consolidation work to reclaim TIF flags on x86 and also for
non-x86 specific TIF flags which are solely relevant for syscall
related work and have been moved into their own storage space. The
x86 specific part had to be merged in to avoid a major conflict.
- The TIF_NOTIFY_SIGNAL work which replaces the inefficient signal
delivery mode of task work and results in an impressive performance
improvement for io_uring. The non-x86 consolidation of this is
going to come seperate via Jens.
- The selective syscall redirection facility which provides a clean
and efficient way to support the non-Linux syscalls of WINE by
catching them at syscall entry and redirecting them to the user
space emulation. This can be utilized for other purposes as well
and has been designed carefully to avoid overhead for the regular
fastpath. This includes the core changes and the x86 support code.
- Simplification of the context tracking entry/exit handling for the
users of the generic entry code which guarantee the proper ordering
and protection.
- Preparatory changes to make the generic entry code accomodate S390
specific requirements which are mostly related to their syscall
restart mechanism"
* tag 'core-entry-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (36 commits)
entry: Add syscall_exit_to_user_mode_work()
entry: Add exit_to_user_mode() wrapper
entry_Add_enter_from_user_mode_wrapper
entry: Rename exit_to_user_mode()
entry: Rename enter_from_user_mode()
docs: Document Syscall User Dispatch
selftests: Add benchmark for syscall user dispatch
selftests: Add kselftest for syscall user dispatch
entry: Support Syscall User Dispatch on common syscall entry
kernel: Implement selective syscall userspace redirection
signal: Expose SYS_USER_DISPATCH si_code type
x86: vdso: Expose sigreturn address on vdso to the kernel
MAINTAINERS: Add entry for common entry code
entry: Fix boot for !CONFIG_GENERIC_ENTRY
x86: Support HAVE_CONTEXT_TRACKING_OFFSTACK
context_tracking: Only define schedule_user() on !HAVE_CONTEXT_TRACKING_OFFSTACK archs
sched: Detect call to schedule from critical entry code
context_tracking: Don't implement exception_enter/exit() on CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK
context_tracking: Introduce HAVE_CONTEXT_TRACKING_OFFSTACK
x86: Reclaim unused x86 TI flags
...
Rearrange a conditional to make it more straightforward.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
idle_balance() has been renamed to newidle_balance(). To differentiate
with nohz_idle_balance, it seems refining the comment will be helpful
for the readers of the code.
Signed-off-by: Barry Song <song.bao.hua@hisilicon.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20201202220641.22752-1-song.bao.hua@hisilicon.com
The clearing of SMT siblings from the SIS mask before checking for an idle
core is a small but unnecessary cost. Defer the clearing of the siblings
until the scan moves to the next potential target. The cost of this was
not measured as it is borderline noise but it should be self-evident.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20201130144020.GS3371@techsingularity.net
Kernel-doc requires that a kernel-doc markup to be immediately
below the function prototype, as otherwise it will rename it.
So, move sys_sched_yield() markup to the right place.
Also fix the cpu_util() markup: Kernel-doc markups
should use this format:
identifier - description
Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/50cd6f460aeb872ebe518a8e9cfffda2df8bdb0a.1606823973.git.mchehab+huawei@kernel.org
membarrier()'s MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE is documented as
syncing the core on all sibling threads but not necessarily the calling
thread. This behavior is fundamentally buggy and cannot be used safely.
Suppose a user program has two threads. Thread A is on CPU 0 and thread B
is on CPU 1. Thread A modifies some text and calls
membarrier(MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE).
Then thread B executes the modified code. If, at any point after
membarrier() decides which CPUs to target, thread A could be preempted and
replaced by thread B on CPU 0. This could even happen on exit from the
membarrier() syscall. If this happens, thread B will end up running on CPU
0 without having synced.
In principle, this could be fixed by arranging for the scheduler to issue
sync_core_before_usermode() whenever switching between two threads in the
same mm if there is any possibility of a concurrent membarrier() call, but
this would have considerable overhead. Instead, make membarrier() sync the
calling CPU as well.
As an optimization, this avoids an extra smp_mb() in the default
barrier-only mode and an extra rseq preempt on the caller.
Fixes: 70216e18e5 ("membarrier: Provide core serializing command, *_SYNC_CORE")
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/r/250ded637696d490c69bef1877148db86066881c.1607058304.git.luto@kernel.org
membarrier() does not explicitly sync_core() remote CPUs; instead, it
relies on the assumption that an IPI will result in a core sync. On x86,
this may be true in practice, but it's not architecturally reliable. In
particular, the SDM and APM do not appear to guarantee that interrupt
delivery is serializing. While IRET does serialize, IPI return can
schedule, thereby switching to another task in the same mm that was
sleeping in a syscall. The new task could then SYSRET back to usermode
without ever executing IRET.
Make this more robust by explicitly calling sync_core_before_usermode()
on remote cores. (This also helps people who search the kernel tree for
instances of sync_core() and sync_core_before_usermode() -- one might be
surprised that the core membarrier code doesn't currently show up in a
such a search.)
Fixes: 70216e18e5 ("membarrier: Provide core serializing command, *_SYNC_CORE")
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/776b448d5f7bd6b12690707f5ed67bcda7f1d427.1607058304.git.luto@kernel.org
It seems that most RSEQ membarrier users will expect any stores done before
the membarrier() syscall to be visible to the target task(s). While this
is extremely likely to be true in practice, nothing actually guarantees it
by a strict reading of the x86 manuals. Rather than providing this
guarantee by accident and potentially causing a problem down the road, just
add an explicit barrier.
Fixes: 70216e18e5 ("membarrier: Provide core serializing command, *_SYNC_CORE")
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/d3e7197e034fa4852afcf370ca49c30496e58e40.1607058304.git.luto@kernel.org
IRQ time entry is currently accounted before HARDIRQ_OFFSET or
SOFTIRQ_OFFSET are incremented. This is convenient to decide to which
index the cputime to account is dispatched.
Unfortunately it prevents tick_irq_enter() from being called under
HARDIRQ_OFFSET because tick_irq_enter() has to be called before the IRQ
entry accounting due to the necessary clock catch up. As a result we
don't benefit from appropriate lockdep coverage on tick_irq_enter().
To prepare for fixing this, move the IRQ entry cputime accounting after
the preempt offset is incremented. This requires the cputime dispatch
code to handle the extra offset.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20201202115732.27827-5-frederic@kernel.org
The 3 architectures implementing CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
all have their own version of irq time accounting that dispatch the
cputime to the appropriate index: hardirq, softirq, system, idle,
guest... from an all-in-one function.
Instead of having these ad-hoc versions, move the cputime destination
dispatch decision to the core code and leave only the actual per-index
cputime accounting to the architecture.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201202115732.27827-4-frederic@kernel.org
s390 has its own version of IRQ entry accounting because it doesn't
account the idle time the same way the other architectures do. Only
the actual idle sleep time is accounted as idle time, the rest of the
idle task execution is accounted as system time.
Make the generic IRQ entry accounting aware of architectures that have
their own way of accounting idle time and convert s390 to use it.
This prepares s390 to get involved in further consolidations of IRQ
time accounting.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201202115732.27827-3-frederic@kernel.org
account_irq_enter_time() and account_irq_exit_time() are not called
from modules. EXPORT_SYMBOL_GPL() can be safely removed from the IRQ
cputime accounting functions called from there.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201202115732.27827-2-frederic@kernel.org
idle path. Similar to the entry path the low level idle functions have to
be non-instrumentable.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl/DpAUTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoXSLD/9klc0YimnEnROW6Q5Svb2IcyIutmXF
bOIY1bYYoKILOBj3wyvDUhmdMuq5zh7H9yG11hO8MaVVWVQcLcOMLdHTYm9dcdmF
xQk33+xqjuhRShB+nEmC9ayYtWogtH6W6uZ6WDtF9ZltMKU85n5ddGJ/Fvo+HoCb
NbOdHGJdJ3/3ZCeHnxOnxM+5/GwjkBuccTV/tXmb3yXrfU9DBySyQ4/UchcpF43w
LcEb0kiQbpZsBTByKJOQV8+RR654S0sILlvRwVXpmj94vrgGwhlVk1/9rz7tkOhF
ksoo1mTVu75LMt22G/hXxE63787yRvFdHjapf0+kCOAuhl992NK+xlGDH8o9DXcu
9y73D4bI0HnDFs20w6vs20iLvxECJiYHJqlgR5ZwFUToceaNgtiYr8kzuD7Zbae1
KG2E7BuNSwHWMtf97fGn44GZknPEOaKdDn4Wv6/bvKHxLm77qe11RKF70Stcz2AI
am13KmQzzsHGF5qNWwpElRUxSdxfJMR66RnOdTQULGrRedaZTFol/y2pnVzTSe3k
SZnlpL5kE7y92UYDogPb5wWA7b+YkJN0OdSkRFy1FH26ZG8E4M7ZJ2tql5Sw7pGM
lsTjXpAUphnK5rz7QcYE8KAZWj//fIAcElIrvdklVcBnS3IqjfksYW27B64133vx
cT1B/lA1PHXj6Q==
=raED
-----END PGP SIGNATURE-----
Merge tag 'locking-urgent-2020-11-29' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking fixes from Thomas Gleixner:
"Two more places which invoke tracing from RCU disabled regions in the
idle path.
Similar to the entry path the low level idle functions have to be
non-instrumentable"
* tag 'locking-urgent-2020-11-29' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
intel_idle: Fix intel_idle() vs tracing
sched/idle: Fix arch_cpu_idle() vs tracing
Get rid of the __call_single_node union and cleanup the API a little
to avoid external code relying on the structure layout as much.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
At fork time currently, a local node can be allowed to fill completely
and allow the periodic load balancer to fix the problem. This can be
problematic in cases where a task creates lots of threads that idle until
woken as part of a worker poll causing a memory bandwidth problem.
However, a "real" workload suffers badly from this behaviour. The workload
in question is mostly NUMA aware but spawns large numbers of threads
that act as a worker pool that can be called from anywhere. These need
to spread early to get reasonable behaviour.
This patch limits how much a local node can fill before spilling over
to another node and it will not be a universal win. Specifically,
very short-lived workloads that fit within a NUMA node would prefer
the memory bandwidth.
As I cannot describe the "real" workload, the best proxy measure I found
for illustration was a page fault microbenchmark. It's not representative
of the workload but demonstrates the hazard of the current behaviour.
pft timings
5.10.0-rc2 5.10.0-rc2
imbalancefloat-v2 forkspread-v2
Amean elapsed-1 46.37 ( 0.00%) 46.05 * 0.69%*
Amean elapsed-4 12.43 ( 0.00%) 12.49 * -0.47%*
Amean elapsed-7 7.61 ( 0.00%) 7.55 * 0.81%*
Amean elapsed-12 4.79 ( 0.00%) 4.80 ( -0.17%)
Amean elapsed-21 3.13 ( 0.00%) 2.89 * 7.74%*
Amean elapsed-30 3.65 ( 0.00%) 2.27 * 37.62%*
Amean elapsed-48 3.08 ( 0.00%) 2.13 * 30.69%*
Amean elapsed-79 2.00 ( 0.00%) 1.90 * 4.95%*
Amean elapsed-80 2.00 ( 0.00%) 1.90 * 4.70%*
This is showing the time to fault regions belonging to threads. The target
machine has 80 logical CPUs and two nodes. Note the ~30% gain when the
machine is approximately the point where one node becomes fully utilised.
The slower results are borderline noise.
Kernel building shows similar benefits around the same balance point.
Generally performance was either neutral or better in the tests conducted.
The main consideration with this patch is the point where fork stops
spreading a task so some workloads may benefit from different balance
points but it would be a risky tuning parameter.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20201120090630.3286-5-mgorman@techsingularity.net
Currently, an imbalance is only allowed when a destination node
is almost completely idle. This solved one basic class of problems
and was the cautious approach.
This patch revisits the possibility that NUMA nodes can be imbalanced
until 25% of the CPUs are occupied. The reasoning behind 25% is somewhat
superficial -- it's half the cores when HT is enabled. At higher
utilisations, balancing should continue as normal and keep things even
until scheduler domains are fully busy or over utilised.
Note that this is not expected to be a universal win. Any benchmark
that prefers spreading as wide as possible with limited communication
will favour the old behaviour as there is more memory bandwidth.
Workloads that communicate heavily in pairs such as netperf or tbench
benefit. For the tests I ran, the vast majority of workloads saw
a benefit so it seems to be a worthwhile trade-off.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20201120090630.3286-4-mgorman@techsingularity.net
In find_idlest_group(), the load imbalance is only relevant when the group
is either overloaded or fully busy but it is calculated unconditionally.
This patch moves the imbalance calculation to the context it is required.
Technically, it is a micro-optimisation but really the benefit is avoiding
confusing one type of imbalance with another depending on the group_type
in the next patch.
No functional change.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20201120090630.3286-3-mgorman@techsingularity.net
This is simply a preparation patch to make the following patches easier
to read. No functional change.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20201120090630.3286-2-mgorman@techsingularity.net
We call arch_cpu_idle() with RCU disabled, but then use
local_irq_{en,dis}able(), which invokes tracing, which relies on RCU.
Switch all arch_cpu_idle() implementations to use
raw_local_irq_{en,dis}able() and carefully manage the
lockdep,rcu,tracing state like we do in entry.
(XXX: we really should change arch_cpu_idle() to not return with
interrupts enabled)
Reported-by: Sven Schnelle <svens@linux.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lkml.kernel.org/r/20201120114925.594122626@infradead.org
Instead of storing the map per CPU provide and use per task storage. That
prepares for local kmaps which are preemptible.
The context switch code is preparatory and not yet in use because
kmap_atomic() runs with preemption disabled. Will be made usable in the
next step.
The context switch logic is safe even when an interrupt happens after
clearing or before restoring the kmaps. The kmap index in task struct is
not modified so any nesting kmap in an interrupt will use unused indices
and on return the counter is the same as before.
Also add an assert into the return to user space code. Going back to user
space with an active kmap local is a nono.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20201118204007.372935758@linutronix.de
Now that the scheduler can deal with migrate disable properly, there is no
real compelling reason to make it only available for RT.
There are quite some code pathes which needlessly disable preemption in
order to prevent migration and some constructs like kmap_atomic() enforce
it implicitly.
Making it available independent of RT allows to provide a preemptible
variant of kmap_atomic() and makes the code more consistent in general.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Grudgingly-Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20201118204007.269943012@linutronix.de
- Make the conditional update of the overutilized state work correctly by
caching the relevant flags state before overwriting them and checking
them afterwards.
- Fix a data race in the wakeup path which caused loadavg on ARM64
platforms to become a random number generator.
- Fix the ordering of the iowaiter accounting operations so it can't be
decremented before it is incremented.
- Fix a bug in the deadline scheduler vs. priority inheritance when a
non-deadline task A has inherited the parameters of a deadline task B
and then blocks on a non-deadline task C.
The second inheritance step used the static deadline parameters of task
A, which are usually 0, instead of further propagating task B's
parameters. The zero initialized parameters trigger a bug in the
deadline scheduler.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl+6edsTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoaJCEAC7VGr9IlWRzCI/173tKAXkLRrGXHVb
yOYc/YjLMCTcERNxqpf8uIURd/ATSHU/RMwfFcB558NedKZ/QKZDoKmLqeCXnVeM
e20tXv/fmpqRS7lgtmbBfhQ8mSDhst960oD1mHifdEwEBCCm7mLEaipTuTWjnZ0x
rOz70Hir1mSjsP0E7ZorsxCr1yExbrt+jZfKCe9D2kUSvlWHf1ipzAYNlqb/DsfG
n81G7q9LYV8NUhX3lt8oSZDq0K44aO6G6fEaP4EkfwsIAOh37yPHwuEuqDZCBmXw
rQ17XUU3jQ2MtubPvVEKG/6Z+hAUyOsAKynpq/RhzueXQm/9Ns6+qHX/xY8yh39y
S5qPd5DLRlac8f7cFwz2zPxP5E+xTJLONgRkuN1XlitMJZBxru9AzDNa0/6on8TM
OtvbvVR+bPUfHiHULk4fTz7fLcbgYgxbCgfGoFsVlfskOxnzgEG8WfuI2Up2rRJ0
nr1MCER+5fprciqPPs+18rVEFiC4mQSrV01cnwrNbpW8pqibZSomMilQ0oQvcTGL
VDEHkaDTa5YbR92Szq4rYbr7Sf0ihFU0EZUNVQnu7SujdVFxTdHb1yr8UYcYp09b
LqGFhr1FHBNYKbw3rEPx2R/FGuCii21oQkhz94ujDo1Np8EGVZYwFGh+iwbsa2Xn
K1u0HzqLTfTkMw==
=HiGq
-----END PGP SIGNATURE-----
Merge tag 'sched-urgent-2020-11-22' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler fixes from Thomas Gleixner:
"A couple of scheduler fixes:
- Make the conditional update of the overutilized state work
correctly by caching the relevant flags state before overwriting
them and checking them afterwards.
- Fix a data race in the wakeup path which caused loadavg on ARM64
platforms to become a random number generator.
- Fix the ordering of the iowaiter accounting operations so it can't
be decremented before it is incremented.
- Fix a bug in the deadline scheduler vs. priority inheritance when a
non-deadline task A has inherited the parameters of a deadline task
B and then blocks on a non-deadline task C.
The second inheritance step used the static deadline parameters of
task A, which are usually 0, instead of further propagating task
B's parameters. The zero initialized parameters trigger a bug in
the deadline scheduler"
* tag 'sched-urgent-2020-11-22' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/deadline: Fix priority inheritance with multiple scheduling classes
sched: Fix rq->nr_iowait ordering
sched: Fix data-race in wakeup
sched/fair: Fix overutilized update in enqueue_task_fair()
In order to make accurate predictions across CPUs and for all performance
states, Energy Aware Scheduling (EAS) needs frequency-invariant load
tracking signals.
EAS task placement aims to minimize energy consumption, and does so in
part by limiting the search space to only CPUs with the highest spare
capacity (CPU capacity - CPU utilization) in their performance domain.
Those candidates are the placement choices that will keep frequency at
its lowest possible and therefore save the most energy.
But without frequency invariance, a CPU's utilization is relative to the
CPU's current performance level, and not relative to its maximum
performance level, which determines its capacity. As a result, it will
fail to correctly indicate any potential spare capacity obtained by an
increase in a CPU's performance level. Therefore, a non-invariant
utilization signal would render the EAS task placement logic invalid.
Now that we properly report support for the Frequency Invariance Engine
(FIE) through arch_scale_freq_invariant() for arm and arm64 systems,
while also ensuring a re-evaluation of the EAS use conditions for
possible invariance status change, we can assert this is the case when
initializing EAS. Warn and bail out otherwise.
Suggested-by: Quentin Perret <qperret@google.com>
Signed-off-by: Ionela Voinescu <ionela.voinescu@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201027180713.7642-4-ionela.voinescu@arm.com
Add the rebuild_sched_domains_energy() function to wrap the functionality
that rebuilds the scheduling domains if any of the Energy Aware Scheduling
(EAS) initialisation conditions change. This functionality is used when
schedutil is added or removed or when EAS is enabled or disabled
through the sched_energy_aware sysctl.
Therefore, create a single function that is used in both these cases and
that can be later reused.
Signed-off-by: Ionela Voinescu <ionela.voinescu@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Quentin Perret <qperret@google.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Link: https://lkml.kernel.org/r/20201027180713.7642-2-ionela.voinescu@arm.com
In case the user wants to stop controlling a uclamp constraint value
for a task, use the magic value -1 in sched_util_{min,max} with the
appropriate sched_flags (SCHED_FLAG_UTIL_CLAMP_{MIN,MAX}) to indicate
the reset.
The advantage over the 'additional flag' approach (i.e. introducing
SCHED_FLAG_UTIL_CLAMP_RESET) is that no additional flag has to be
exported via uapi. This avoids the need to document how this new flag
has be used in conjunction with the existing uclamp related flags.
The following subtle issue is fixed as well. When a uclamp constraint
value is set on a !user_defined uclamp_se it is currently first reset
and then set.
Fix this by AND'ing !user_defined with !SCHED_FLAG_UTIL_CLAMP which
stands for the 'sched class change' case.
The related condition 'if (uc_se->user_defined)' moved from
__setscheduler_uclamp() into uclamp_reset().
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Yun Hsiang <hsiang023167@gmail.com>
Link: https://lkml.kernel.org/r/20201113113454.25868-1-dietmar.eggemann@arm.com
NUMA topologies where the shortest path between some two nodes requires
three or more hops (i.e. diameter > 2) end up being misrepresented in the
scheduler topology structures.
This is currently detected when booting a kernel with CONFIG_SCHED_DEBUG=y
+ sched_debug on the cmdline, although this will only yield a warning about
sched_group spans not matching sched_domain spans:
ERROR: groups don't span domain->span
Add an explicit warning for that case, triggered regardless of
CONFIG_SCHED_DEBUG, and decorate it with an appropriate comment.
The topology described in the comment can be booted up on QEMU by appending
the following to your usual QEMU incantation:
-smp cores=4 \
-numa node,cpus=0,nodeid=0 -numa node,cpus=1,nodeid=1, \
-numa node,cpus=2,nodeid=2, -numa node,cpus=3,nodeid=3, \
-numa dist,src=0,dst=1,val=20, -numa dist,src=0,dst=2,val=30, \
-numa dist,src=0,dst=3,val=40, -numa dist,src=1,dst=2,val=20, \
-numa dist,src=1,dst=3,val=30, -numa dist,src=2,dst=3,val=20
A somewhat more realistic topology (6-node mesh) with the same affliction
can be conjured with:
-smp cores=6 \
-numa node,cpus=0,nodeid=0 -numa node,cpus=1,nodeid=1, \
-numa node,cpus=2,nodeid=2, -numa node,cpus=3,nodeid=3, \
-numa node,cpus=4,nodeid=4, -numa node,cpus=5,nodeid=5, \
-numa dist,src=0,dst=1,val=20, -numa dist,src=0,dst=2,val=30, \
-numa dist,src=0,dst=3,val=40, -numa dist,src=0,dst=4,val=30, \
-numa dist,src=0,dst=5,val=20, \
-numa dist,src=1,dst=2,val=20, -numa dist,src=1,dst=3,val=30, \
-numa dist,src=1,dst=4,val=20, -numa dist,src=1,dst=5,val=30, \
-numa dist,src=2,dst=3,val=20, -numa dist,src=2,dst=4,val=30, \
-numa dist,src=2,dst=5,val=40, \
-numa dist,src=3,dst=4,val=20, -numa dist,src=3,dst=5,val=30, \
-numa dist,src=4,dst=5,val=20
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Link: https://lore.kernel.org/lkml/jhjtux5edo2.mognet@arm.com
Oleksandr reported hitting the WARN in the 'task_rq(p) != rq' branch
of migration_cpu_stop(). Valentin noted that using cpu_of(rq) in that
case is just plain wrong to begin with, since per the earlier branch
that isn't the actual CPU of the task.
Replace both instances of is_cpu_allowed() by a direct p->cpus_mask
test using task_cpu().
Reported-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Debugged-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Qian reported that some fuzzer issuing sched_setaffinity() ends up stuck on
a wait_for_completion(). The problematic pattern seems to be:
affine_move_task()
// task_running() case
stop_one_cpu();
wait_for_completion(&pending->done);
Combined with, on the stopper side:
migration_cpu_stop()
// Task moved between unlocks and scheduling the stopper
task_rq(p) != rq &&
// task_running() case
dest_cpu >= 0
=> no complete_all()
This can happen with both PREEMPT and !PREEMPT, although !PREEMPT should
be more likely to see this given the targeted task has a much bigger window
to block and be woken up elsewhere before the stopper runs.
Make migration_cpu_stop() always look at pending affinity requests; signal
their completion if the stopper hits a rq mismatch but the task is
still within its allowed mask. When Migrate-Disable isn't involved, this
matches the previous set_cpus_allowed_ptr() vs migration_cpu_stop()
behaviour.
Fixes: 6d337eab04 ("sched: Fix migrate_disable() vs set_cpus_allowed_ptr()")
Reported-by: Qian Cai <cai@redhat.com>
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/lkml/8b62fd1ad1b18def27f18e2ee2df3ff5b36d0762.camel@redhat.com