Since commit 84af7a6194 ("checkpatch: kconfig: prefer 'help' over
'---help---'"), the number of '---help---' has been gradually
decreasing, but there are still more than 2400 instances.
This commit finishes the conversion. While I touched the lines,
I also fixed the indentation.
There are a variety of indentation styles found.
a) 4 spaces + '---help---'
b) 7 spaces + '---help---'
c) 8 spaces + '---help---'
d) 1 space + 1 tab + '---help---'
e) 1 tab + '---help---' (correct indentation)
f) 1 tab + 1 space + '---help---'
g) 1 tab + 2 spaces + '---help---'
In order to convert all of them to 1 tab + 'help', I ran the
following commend:
$ find . -name 'Kconfig*' | xargs sed -i 's/^[[:space:]]*---help---/\thelp/'
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Introduce a ingress frame gate control flow action.
Tc gate action does the work like this:
Assume there is a gate allow specified ingress frames can be passed at
specific time slot, and be dropped at specific time slot. Tc filter
chooses the ingress frames, and tc gate action would specify what slot
does these frames can be passed to device and what time slot would be
dropped.
Tc gate action would provide an entry list to tell how much time gate
keep open and how much time gate keep state close. Gate action also
assign a start time to tell when the entry list start. Then driver would
repeat the gate entry list cyclically.
For the software simulation, gate action requires the user assign a time
clock type.
Below is the setting example in user space. Tc filter a stream source ip
address is 192.168.0.20 and gate action own two time slots. One is last
200ms gate open let frame pass another is last 100ms gate close let
frames dropped. When the ingress frames have reach total frames over
8000000 bytes, the excessive frames will be dropped in that 200000000ns
time slot.
> tc qdisc add dev eth0 ingress
> tc filter add dev eth0 parent ffff: protocol ip \
flower src_ip 192.168.0.20 \
action gate index 2 clockid CLOCK_TAI \
sched-entry open 200000000 -1 8000000 \
sched-entry close 100000000 -1 -1
> tc chain del dev eth0 ingress chain 0
"sched-entry" follow the name taprio style. Gate state is
"open"/"close". Follow with period nanosecond. Then next item is internal
priority value means which ingress queue should put. "-1" means
wildcard. The last value optional specifies the maximum number of
MSDU octets that are permitted to pass the gate during the specified
time interval.
Base-time is not set will be 0 as default, as result start time would
be ((N + 1) * cycletime) which is the minimal of future time.
Below example shows filtering a stream with destination mac address is
10:00:80:00:00:00 and ip type is ICMP, follow the action gate. The gate
action would run with one close time slot which means always keep close.
The time cycle is total 200000000ns. The base-time would calculate by:
1357000000000 + (N + 1) * cycletime
When the total value is the future time, it will be the start time.
The cycletime here would be 200000000ns for this case.
> tc filter add dev eth0 parent ffff: protocol ip \
flower skip_hw ip_proto icmp dst_mac 10:00:80:00:00:00 \
action gate index 12 base-time 1357000000000 \
sched-entry close 200000000 -1 -1 \
clockid CLOCK_TAI
Signed-off-by: Po Liu <Po.Liu@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Use the NF flow tables infrastructure for CT offload.
Create a nf flow table per zone.
Next patches will add FT entries to this table, and do
the software offload.
Signed-off-by: Paul Blakey <paulb@mellanox.com>
Reviewed-by: Jiri Pirko <jiri@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Principles:
- Packets are classified on flows.
- This is a Stochastic model (as we use a hash, several flows might
be hashed to the same slot)
- Each flow has a PIE managed queue.
- Flows are linked onto two (Round Robin) lists,
so that new flows have priority on old ones.
- For a given flow, packets are not reordered.
- Drops during enqueue only.
- ECN capability is off by default.
- ECN threshold (if ECN is enabled) is at 10% by default.
- Uses timestamps to calculate queue delay by default.
Usage:
tc qdisc ... fq_pie [ limit PACKETS ] [ flows NUMBER ]
[ target TIME ] [ tupdate TIME ]
[ alpha NUMBER ] [ beta NUMBER ]
[ quantum BYTES ] [ memory_limit BYTES ]
[ ecnprob PERCENTAGE ] [ [no]ecn ]
[ [no]bytemode ] [ [no_]dq_rate_estimator ]
defaults:
limit: 10240 packets, flows: 1024
target: 15 ms, tupdate: 15 ms (in jiffies)
alpha: 1/8, beta : 5/4
quantum: device MTU, memory_limit: 32 Mb
ecnprob: 10%, ecn: off
bytemode: off, dq_rate_estimator: off
Signed-off-by: Mohit P. Tahiliani <tahiliani@nitk.edu.in>
Signed-off-by: Sachin D. Patil <sdp.sachin@gmail.com>
Signed-off-by: V. Saicharan <vsaicharan1998@gmail.com>
Signed-off-by: Mohit Bhasi <mohitbhasi1998@gmail.com>
Signed-off-by: Leslie Monis <lesliemonis@gmail.com>
Signed-off-by: Gautam Ramakrishnan <gautamramk@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Introduces a new Qdisc, which is based on 802.1Q-2014 wording. It is
PRIO-like in how it is configured, meaning one needs to specify how many
bands there are, how many are strict and how many are dwrr, quanta for the
latter, and priomap.
The new Qdisc operates like the PRIO / DRR combo would when configured as
per the standard. The strict classes, if any, are tried for traffic first.
When there's no traffic in any of the strict queues, the ETS ones (if any)
are treated in the same way as in DRR.
Signed-off-by: Petr Machata <petrm@mellanox.com>
Acked-by: Jiri Pirko <jiri@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This a new feature, it is preferred that it defaults to N.
We will probe the feature support from userspace before actually using it.
Fixes: 95a7233c45 ('net: openvswitch: Set OvS recirc_id from tc chain index')
Signed-off-by: Paul Blakey <paulb@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Adjust indentation from spaces to tab (+optional two spaces) as in
coding style with command like:
$ sed -e 's/^ /\t/' -i */Kconfig
Signed-off-by: Krzysztof Kozlowski <krzk@kernel.org>
Acked-by: Sven Eckelmann <sven@narfation.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Offloaded OvS datapath rules are translated one to one to tc rules,
for example the following simplified OvS rule:
recirc_id(0),in_port(dev1),eth_type(0x0800),ct_state(-trk) actions:ct(),recirc(2)
Will be translated to the following tc rule:
$ tc filter add dev dev1 ingress \
prio 1 chain 0 proto ip \
flower tcp ct_state -trk \
action ct pipe \
action goto chain 2
Received packets will first travel though tc, and if they aren't stolen
by it, like in the above rule, they will continue to OvS datapath.
Since we already did some actions (action ct in this case) which might
modify the packets, and updated action stats, we would like to continue
the proccessing with the correct recirc_id in OvS (here recirc_id(2))
where we left off.
To support this, introduce a new skb extension for tc, which
will be used for translating tc chain to ovs recirc_id to
handle these miss cases. Last tc chain index will be set
by tc goto chain action and read by OvS datapath.
Signed-off-by: Paul Blakey <paulb@mellanox.com>
Signed-off-by: Vlad Buslov <vladbu@mellanox.com>
Acked-by: Jiri Pirko <jiri@mellanox.com>
Acked-by: Pravin B Shelar <pshelar@ovn.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
If NF_NAT is m and NET_ACT_CT is y, build fails:
net/sched/act_ct.o: In function `tcf_ct_act':
act_ct.c:(.text+0x21ac): undefined reference to `nf_ct_nat_ext_add'
act_ct.c:(.text+0x229a): undefined reference to `nf_nat_icmp_reply_translation'
act_ct.c:(.text+0x233a): undefined reference to `nf_nat_setup_info'
act_ct.c:(.text+0x234a): undefined reference to `nf_nat_alloc_null_binding'
act_ct.c:(.text+0x237c): undefined reference to `nf_nat_packet'
Reported-by: Hulk Robot <hulkci@huawei.com>
Fixes: b57dc7c13e ("net/sched: Introduce action ct")
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Allow sending a packet to conntrack module for connection tracking.
The packet will be marked with conntrack connection's state, and
any metadata such as conntrack mark and label. This state metadata
can later be matched against with tc classifers, for example with the
flower classifier as below.
In addition to committing new connections the user can optionally
specific a zone to track within, set a mark/label and configure nat
with an address range and port range.
Usage is as follows:
$ tc qdisc add dev ens1f0_0 ingress
$ tc qdisc add dev ens1f0_1 ingress
$ tc filter add dev ens1f0_0 ingress \
prio 1 chain 0 proto ip \
flower ip_proto tcp ct_state -trk \
action ct zone 2 pipe \
action goto chain 2
$ tc filter add dev ens1f0_0 ingress \
prio 1 chain 2 proto ip \
flower ct_state +trk+new \
action ct zone 2 commit mark 0xbb nat src addr 5.5.5.7 pipe \
action mirred egress redirect dev ens1f0_1
$ tc filter add dev ens1f0_0 ingress \
prio 1 chain 2 proto ip \
flower ct_zone 2 ct_mark 0xbb ct_state +trk+est \
action ct nat pipe \
action mirred egress redirect dev ens1f0_1
$ tc filter add dev ens1f0_1 ingress \
prio 1 chain 0 proto ip \
flower ip_proto tcp ct_state -trk \
action ct zone 2 pipe \
action goto chain 1
$ tc filter add dev ens1f0_1 ingress \
prio 1 chain 1 proto ip \
flower ct_zone 2 ct_mark 0xbb ct_state +trk+est \
action ct nat pipe \
action mirred egress redirect dev ens1f0_0
Signed-off-by: Paul Blakey <paulb@mellanox.com>
Signed-off-by: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com>
Signed-off-by: Yossi Kuperman <yossiku@mellanox.com>
Acked-by: Jiri Pirko <jiri@mellanox.com>
Changelog:
V5->V6:
Added CONFIG_NF_DEFRAG_IPV6 in handle fragments ipv6 case
V4->V5:
Reordered nf_conntrack_put() in tcf_ct_skb_nfct_cached()
V3->V4:
Added strict_start_type for act_ct policy
V2->V3:
Fixed david's comments: Removed extra newline after rcu in tcf_ct_params , and indent of break in act_ct.c
V1->V2:
Fixed parsing of ranges TCA_CT_NAT_IPV6_MAX as 'else' case overwritten ipv4 max
Refactored NAT_PORT_MIN_MAX range handling as well
Added ipv4/ipv6 defragmentation
Removed extra skb pull push of nw offset in exectute nat
Refactored tcf_ct_skb_network_trim after pull
Removed TCA_ACT_CT define
Signed-off-by: David S. Miller <davem@davemloft.net>
Currently, TC offers the ability to match on the MPLS fields of a packet
through the use of the flow_dissector_key_mpls struct. However, as yet, TC
actions do not allow the modification or manipulation of such fields.
Add a new module that registers TC action ops to allow manipulation of
MPLS. This includes the ability to push and pop headers as well as modify
the contents of new or existing headers. A further action to decrement the
TTL field of an MPLS header is also provided with a new helper added to
support this.
Examples of the usage of the new action with flower rules to push and pop
MPLS labels are:
tc filter add dev eth0 protocol ip parent ffff: flower \
action mpls push protocol mpls_uc label 123 \
action mirred egress redirect dev eth1
tc filter add dev eth0 protocol mpls_uc parent ffff: flower \
action mpls pop protocol ipv4 \
action mirred egress redirect dev eth1
Signed-off-by: John Hurley <john.hurley@netronome.com>
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Simon Horman <simon.horman@netronome.com>
Reviewed-by: Willem de Bruijn <willemb@google.com>
Acked-by: Cong Wang <xiyou.wangcong@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This config option makes only couple of lines optional.
Two small helpers and an int in couple of cls structs.
Remove the config option and always compile this in.
This saves the user from unexpected surprises when he adds
a filter with ingress device match which is silently ignored
in case the config option is not set.
Signed-off-by: Jiri Pirko <jiri@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
ctinfo is a new tc filter action module. It is designed to restore
information contained in firewall conntrack marks to other packet fields
and is typically used on packet ingress paths. At present it has two
independent sub-functions or operating modes, DSCP restoration mode &
skb mark restoration mode.
The DSCP restore mode:
This mode copies DSCP values that have been placed in the firewall
conntrack mark back into the IPv4/v6 diffserv fields of relevant
packets.
The DSCP restoration is intended for use and has been found useful for
restoring ingress classifications based on egress classifications across
links that bleach or otherwise change DSCP, typically home ISP Internet
links. Restoring DSCP on ingress on the WAN link allows qdiscs such as
but by no means limited to CAKE to shape inbound packets according to
policies that are easier to set & mark on egress.
Ingress classification is traditionally a challenging task since
iptables rules haven't yet run and tc filter/eBPF programs are pre-NAT
lookups, hence are unable to see internal IPv4 addresses as used on the
typical home masquerading gateway. Thus marking the connection in some
manner on egress for later restoration of classification on ingress is
easier to implement.
Parameters related to DSCP restore mode:
dscpmask - a 32 bit mask of 6 contiguous bits and indicate bits of the
conntrack mark field contain the DSCP value to be restored.
statemask - a 32 bit mask of (usually) 1 bit length, outside the area
specified by dscpmask. This represents a conditional operation flag
whereby the DSCP is only restored if the flag is set. This is useful to
implement a 'one shot' iptables based classification where the
'complicated' iptables rules are only run once to classify the
connection on initial (egress) packet and subsequent packets are all
marked/restored with the same DSCP. A mask of zero disables the
conditional behaviour ie. the conntrack mark DSCP bits are always
restored to the ip diffserv field (assuming the conntrack entry is found
& the skb is an ipv4/ipv6 type)
e.g. dscpmask 0xfc000000 statemask 0x01000000
|----0xFC----conntrack mark----000000---|
| Bits 31-26 | bit 25 | bit24 |~~~ Bit 0|
| DSCP | unused | flag |unused |
|-----------------------0x01---000000---|
| |
| |
---| Conditional flag
v only restore if set
|-ip diffserv-|
| 6 bits |
|-------------|
The skb mark restore mode (cpmark):
This mode copies the firewall conntrack mark to the skb's mark field.
It is completely the functional equivalent of the existing act_connmark
action with the additional feature of being able to apply a mask to the
restored value.
Parameters related to skb mark restore mode:
mask - a 32 bit mask applied to the firewall conntrack mark to mask out
bits unwanted for restoration. This can be useful where the conntrack
mark is being used for different purposes by different applications. If
not specified and by default the whole mark field is copied (i.e.
default mask of 0xffffffff)
e.g. mask 0x00ffffff to mask out the top 8 bits being used by the
aforementioned DSCP restore mode.
|----0x00----conntrack mark----ffffff---|
| Bits 31-24 | |
| DSCP & flag| some value here |
|---------------------------------------|
|
|
v
|------------skb mark-------------------|
| | |
| zeroed | |
|---------------------------------------|
Overall parameters:
zone - conntrack zone
control - action related control (reclassify | pipe | drop | continue |
ok | goto chain <CHAIN_INDEX>)
Signed-off-by: Kevin Darbyshire-Bryant <ldir@darbyshire-bryant.me.uk>
Reviewed-by: Toke Høiland-Jørgensen <toke@redhat.com>
Acked-by: Cong Wang <xiyou.wangcong@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add SPDX license identifiers to all Make/Kconfig files which:
- Have no license information of any form
These files fall under the project license, GPL v2 only. The resulting SPDX
license identifier is:
GPL-2.0-only
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This traffic scheduler allows traffic classes states (transmission
allowed/not allowed, in the simplest case) to be scheduled, according
to a pre-generated time sequence. This is the basis of the IEEE
802.1Qbv specification.
Example configuration:
tc qdisc replace dev enp3s0 parent root handle 100 taprio \
num_tc 3 \
map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \
queues 1@0 1@1 2@2 \
base-time 1528743495910289987 \
sched-entry S 01 300000 \
sched-entry S 02 300000 \
sched-entry S 04 300000 \
clockid CLOCK_TAI
The configuration format is similar to mqprio. The main difference is
the presence of a schedule, built by multiple "sched-entry"
definitions, each entry has the following format:
sched-entry <CMD> <GATE MASK> <INTERVAL>
The only supported <CMD> is "S", which means "SetGateStates",
following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK>
is a bitmask where each bit is a associated with a traffic class, so
bit 0 (the least significant bit) being "on" means that traffic class
0 is "active" for that schedule entry. <INTERVAL> is a time duration
in nanoseconds that specifies for how long that state defined by <CMD>
and <GATE MASK> should be held before moving to the next entry.
This schedule is circular, that is, after the last entry is executed
it starts from the first one, indefinitely.
The other parameters can be defined as follows:
- base-time: specifies the instant when the schedule starts, if
'base-time' is a time in the past, the schedule will start at
base-time + (N * cycle-time)
where N is the smallest integer so the resulting time is greater
than "now", and "cycle-time" is the sum of all the intervals of the
entries in the schedule;
- clockid: specifies the reference clock to be used;
The parameters should be similar to what the IEEE 802.1Q family of
specification defines.
Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Skbprio (SKB Priority Queue) is a queueing discipline that prioritizes packets
according to their skb->priority field. Under congestion, already-enqueued lower
priority packets will be dropped to make space available for higher priority
packets. Skbprio was conceived as a solution for denial-of-service defenses that
need to route packets with different priorities as a means to overcome DoS
attacks.
v5
*Do not reference qdisc_dev(sch)->tx_queue_len for setting limit. Instead set
default sch->limit to 64.
v4
*Drop Documentation/networking/sch_skbprio.txt doc file to move it to tc man
page for Skbprio, in iproute2.
v3
*Drop max_limit parameter in struct skbprio_sched_data and instead use
sch->limit.
*Reference qdisc_dev(sch)->tx_queue_len only once, during initialisation for
qdisc (previously being referenced every time qdisc changes).
*Move qdisc's detailed description from in-code to Documentation/networking.
*When qdisc is saturated, enqueue incoming packet first before dequeueing
lowest priority packet in queue - improves usage of call stack registers.
*Introduce and use overlimit stat to keep track of number of dropped packets.
v2
*Use skb->priority field rather than DS field. Rename queueing discipline as
SKB Priority Queue (previously Gatekeeper Priority Queue).
*Queueing discipline is made classful to expose Skbprio's internal priority
queues.
Signed-off-by: Nishanth Devarajan <ndev2021@gmail.com>
Reviewed-by: Sachin Paryani <sachin.paryani@gmail.com>
Reviewed-by: Cody Doucette <doucette@bu.edu>
Reviewed-by: Michel Machado <michel@digirati.com.br>
Acked-by: Cong Wang <xiyou.wangcong@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Remove trailing whitespace and blank lines at EOF
Signed-off-by: Stephen Hemminger <stephen@networkplumber.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
sch_cake targets the home router use case and is intended to squeeze the
most bandwidth and latency out of even the slowest ISP links and routers,
while presenting an API simple enough that even an ISP can configure it.
Example of use on a cable ISP uplink:
tc qdisc add dev eth0 cake bandwidth 20Mbit nat docsis ack-filter
To shape a cable download link (ifb and tc-mirred setup elided)
tc qdisc add dev ifb0 cake bandwidth 200mbit nat docsis ingress wash
CAKE is filled with:
* A hybrid Codel/Blue AQM algorithm, "Cobalt", tied to an FQ_Codel
derived Flow Queuing system, which autoconfigures based on the bandwidth.
* A novel "triple-isolate" mode (the default) which balances per-host
and per-flow FQ even through NAT.
* An deficit based shaper, that can also be used in an unlimited mode.
* 8 way set associative hashing to reduce flow collisions to a minimum.
* A reasonable interpretation of various diffserv latency/loss tradeoffs.
* Support for zeroing diffserv markings for entering and exiting traffic.
* Support for interacting well with Docsis 3.0 shaper framing.
* Extensive support for DSL framing types.
* Support for ack filtering.
* Extensive statistics for measuring, loss, ecn markings, latency
variation.
A paper describing the design of CAKE is available at
https://arxiv.org/abs/1804.07617, and will be published at the 2018 IEEE
International Symposium on Local and Metropolitan Area Networks (LANMAN).
This patch adds the base shaper and packet scheduler, while subsequent
commits add the optional (configurable) features. The full userspace API
and most data structures are included in this commit, but options not
understood in the base version will be ignored.
Various versions baking have been available as an out of tree build for
kernel versions going back to 3.10, as the embedded router world has been
running a few years behind mainline Linux. A stable version has been
generally available on lede-17.01 and later.
sch_cake replaces a combination of iptables, tc filter, htb and fq_codel
in the sqm-scripts, with sane defaults and vastly simpler configuration.
CAKE's principal author is Jonathan Morton, with contributions from
Kevin Darbyshire-Bryant, Toke Høiland-Jørgensen, Sebastian Moeller,
Ryan Mounce, Tony Ambardar, Dean Scarff, Nils Andreas Svee, Dave Täht,
and Loganaden Velvindron.
Testing from Pete Heist, Georgios Amanakis, and the many other members of
the cake@lists.bufferbloat.net mailing list.
tc -s qdisc show dev eth2
qdisc cake 8017: root refcnt 2 bandwidth 1Gbit diffserv3 triple-isolate split-gso rtt 100.0ms noatm overhead 38 mpu 84
Sent 51504294511 bytes 37724591 pkt (dropped 6, overlimits 64958695 requeues 12)
backlog 0b 0p requeues 12
memory used: 1053008b of 15140Kb
capacity estimate: 970Mbit
min/max network layer size: 28 / 1500
min/max overhead-adjusted size: 84 / 1538
average network hdr offset: 14
Bulk Best Effort Voice
thresh 62500Kbit 1Gbit 250Mbit
target 5.0ms 5.0ms 5.0ms
interval 100.0ms 100.0ms 100.0ms
pk_delay 5us 5us 6us
av_delay 3us 2us 2us
sp_delay 2us 1us 1us
backlog 0b 0b 0b
pkts 3164050 25030267 9530280
bytes 3227519915 35396974782 12879808898
way_inds 0 8 0
way_miss 21 366 25
way_cols 0 0 0
drops 5 0 1
marks 0 0 0
ack_drop 0 0 0
sp_flows 1 3 0
bk_flows 0 1 1
un_flows 0 0 0
max_len 68130 68130 68130
Tested-by: Pete Heist <peteheist@gmail.com>
Tested-by: Georgios Amanakis <gamanakis@gmail.com>
Signed-off-by: Dave Taht <dave.taht@gmail.com>
Signed-off-by: Toke Høiland-Jørgensen <toke@toke.dk>
Signed-off-by: David S. Miller <davem@davemloft.net>
The ETF (Earliest TxTime First) qdisc uses the information added
earlier in this series (the socket option SO_TXTIME and the new
role of sk_buff->tstamp) to schedule packets transmission based
on absolute time.
For some workloads, just bandwidth enforcement is not enough, and
precise control of the transmission of packets is necessary.
Example:
$ tc qdisc replace dev enp2s0 parent root handle 100 mqprio num_tc 3 \
map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 queues 1@0 1@1 2@2 hw 0
$ tc qdisc add dev enp2s0 parent 100:1 etf delta 100000 \
clockid CLOCK_TAI
In this example, the Qdisc will provide SW best-effort for the control
of the transmission time to the network adapter, the time stamp in the
socket will be in reference to the clockid CLOCK_TAI and packets
will leave the qdisc "delta" (100000) nanoseconds before its transmission
time.
The ETF qdisc will buffer packets sorted by their txtime. It will drop
packets on enqueue() if their skbuff clockid does not match the clock
reference of the Qdisc. Moreover, on dequeue(), a packet will be dropped
if it expires while being enqueued.
The qdisc also supports the SO_TXTIME deadline mode. For this mode, it
will dequeue a packet as soon as possible and change the skb timestamp
to 'now' during etf_dequeue().
Note that both the qdisc's and the SO_TXTIME ABIs allow for a clockid
to be configured, but it's been decided that usage of CLOCK_TAI should
be enforced until we decide to allow for other clockids to be used.
The rationale here is that PTP times are usually in the TAI scale, thus
no other clocks should be necessary. For now, the qdisc will return
EINVAL if any clocks other than CLOCK_TAI are used.
Signed-off-by: Jesus Sanchez-Palencia <jesus.sanchez-palencia@intel.com>
Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The commit a new tc ematch for using netfilter xtable matches.
This allows early classification as well as mirroning/redirecting traffic
based on logic implemented in netfilter extensions.
Current supported use case is classification based on the incoming IPSec
state used during decpsulation using the 'policy' iptables extension
(xt_policy).
The module dynamically fetches the netfilter match module and calls
it using a fake xt_action_param structure based on validated userspace
provided parameters.
As the xt_policy match does not access skb->data, no skb modifications
are needed on match.
Signed-off-by: Eyal Birger <eyal.birger@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Blank help texts are probably either a typo, a Kconfig misunderstanding,
or some kind of half-committing to adding a help text (in which case a
TODO comment would be clearer, if the help text really can't be added
right away).
Best to remove them, IMO.
Signed-off-by: Ulf Magnusson <ulfalizer@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This queueing discipline implements the shaper algorithm defined by
the 802.1Q-2014 Section 8.6.8.2 and detailed in Annex L.
It's primary usage is to apply some bandwidth reservation to user
defined traffic classes, which are mapped to different queues via the
mqprio qdisc.
Only a simple software implementation is added for now.
Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com>
Signed-off-by: Jesus Sanchez-Palencia <jesus.sanchez-palencia@intel.com>
Tested-by: Henrik Austad <henrik@austad.us>
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
It really makes no sense to have cls_act enabled without cls. In that
case, the cls_act code is dead. So select it.
This also fixes an issue recently reported by kbuild robot:
[linux-next:master 1326/4151] net/sched/act_api.c:37:18: error: implicit declaration of function 'tcf_chain_get'
Reported-by: kbuild test robot <fengguang.wu@intel.com>
Fixes: db50514f9a ("net: sched: add termination action to allow goto chain")
Signed-off-by: Jiri Pirko <jiri@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Since 3.12 it has been possible to configure the default queuing
discipline via sysctl. This patch adds ability to configure the
default queue discipline in kernel configuration. This is useful for
environments where configuring the value from userspace is difficult
to manage.
The default is still the same as before (pfifo_fast) and it is
possible to change after kernel init with sysctl. This is similar
to how TCP congestion control works.
Signed-off-by: Stephen Hemminger <sthemmin@microsoft.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Use the encode/decode functionality from the ife module instead of using
implementation inside the act_ife.
Reviewed-by: Jiri Pirko <jiri@mellanox.com>
Signed-off-by: Yotam Gigi <yotamg@mellanox.com>
Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com>
Signed-off-by: Roman Mashak <mrv@mojatatu.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This action allows the user to sample traffic matched by tc classifier.
The sampling consists of choosing packets randomly and sampling them using
the psample module. The user can configure the psample group number, the
sampling rate and the packet's truncation (to save kernel-user traffic).
Example:
To sample ingress traffic from interface eth1, one may use the commands:
tc qdisc add dev eth1 handle ffff: ingress
tc filter add dev eth1 parent ffff: \
matchall action sample rate 12 group 4
Where the first command adds an ingress qdisc and the second starts
sampling randomly with an average of one sampled packet per 12 packets on
dev eth1 to psample group 4.
Signed-off-by: Yotam Gigi <yotamg@mellanox.com>
Signed-off-by: Jiri Pirko <jiri@mellanox.com>
Acked-by: Jamal Hadi Salim <jhs@mojatatu.com>
Reviewed-by: Simon Horman <simon.horman@netronome.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
LIBCRC32C is needed to compute crc32c on SCTP packets.
Signed-off-by: Davide Caratti <dcaratti@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Sample use case of how this is encoded:
user space via tuntap (or a connected VM/Machine/container)
encodes the tcindex TLV.
Sample use case of decoding:
IFE action decodes it and the skb->tc_index is then used to classify.
So something like this for encoded ICMP packets:
.. first decode then reclassify... skb->tcindex will be set
sudo $TC filter add dev $ETH parent ffff: prio 2 protocol 0xbeef \
u32 match u32 0 0 flowid 1:1 \
action ife decode reclassify
...next match the decode icmp packet...
sudo $TC filter add dev $ETH parent ffff: prio 4 protocol ip \
u32 match ip protocol 1 0xff flowid 1:1 \
action continue
... last classify it using the tcindex classifier and do someaction..
sudo $TC filter add dev $ETH parent ffff: prio 5 protocol ip \
handle 0x11 tcindex classid 1:1 \
action blah..
Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This action is intended to be an upgrade from a usability perspective
from pedit (as well as operational debugability).
Compare this:
sudo tc filter add dev $ETH parent 1: protocol ip prio 10 \
u32 match ip protocol 1 0xff flowid 1:2 \
action pedit munge offset -14 u8 set 0x02 \
munge offset -13 u8 set 0x15 \
munge offset -12 u8 set 0x15 \
munge offset -11 u8 set 0x15 \
munge offset -10 u16 set 0x1515 \
pipe
to:
sudo tc filter add dev $ETH parent 1: protocol ip prio 10 \
u32 match ip protocol 1 0xff flowid 1:2 \
action skbmod dmac 02:15:15:15:15:15
Also try to do a MAC address swap with pedit or worse
try to debug a policy with destination mac, source mac and
etherype. Then make few rules out of those and you'll get my point.
In the future common use cases on pedit can be migrated to this action
(as an example different fields in ip v4/6, transports like tcp/udp/sctp
etc). For this first cut, this allows modifying basic ethernet header.
The most important ethernet use case at the moment is when redirecting or
mirroring packets to a remote machine. The dst mac address needs a re-write
so that it doesnt get dropped or confuse an interconnecting (learning) switch
or dropped by a target machine (which looks at the dst mac). And at times
when flipping back the packet a swap of the MAC addresses is needed.
Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This action could be used before redirecting packets to a shared tunnel
device, or when redirecting packets arriving from a such a device.
The action will release the metadata created by the tunnel device
(decap), or set the metadata with the specified values for encap
operation.
For example, the following flower filter will forward all ICMP packets
destined to 11.11.11.2 through the shared vxlan device 'vxlan0'. Before
redirecting, a metadata for the vxlan tunnel is created using the
tunnel_key action and it's arguments:
$ tc filter add dev net0 protocol ip parent ffff: \
flower \
ip_proto 1 \
dst_ip 11.11.11.2 \
action tunnel_key set \
src_ip 11.11.0.1 \
dst_ip 11.11.0.2 \
id 11 \
action mirred egress redirect dev vxlan0
Signed-off-by: Amir Vadai <amir@vadai.me>
Signed-off-by: Hadar Hen Zion <hadarh@mellanox.com>
Reviewed-by: Shmulik Ladkani <shmulik.ladkani@gmail.com>
Acked-by: Jamal Hadi Salim <jhs@mojatatu.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The matchall classifier matches every packet and allows the user to apply
actions on it. This filter is very useful in usecases where every packet
should be matched, for example, packet mirroring (SPAN) can be setup very
easily using that filter.
Signed-off-by: Jiri Pirko <jiri@mellanox.com>
Signed-off-by: Yotam Gigi <yotamg@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Example usage:
Set the skb priority using skbedit then allow it to be encoded
sudo tc qdisc add dev $ETH root handle 1: prio
sudo tc filter add dev $ETH parent 1: protocol ip prio 10 \
u32 match ip protocol 1 0xff flowid 1:2 \
action skbedit prio 17 \
action ife encode \
allow prio \
dst 02:15:15:15:15:15
Note: You dont need the skbedit action if you are already encoding the
skb priority earlier. A zero skb priority will not be sent
Alternative hard code static priority of decimal 33 (unlike skbedit)
then mark of 0x12 every time the filter matches
sudo $TC filter add dev $ETH parent 1: protocol ip prio 10 \
u32 match ip protocol 1 0xff flowid 1:2 \
action ife encode \
type 0xDEAD \
use prio 33 \
use mark 0x12 \
dst 02:15:15:15:15:15
Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com>
Acked-by: Cong Wang <xiyou.wangcong@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Example usage:
Set the skb using skbedit then allow it to be encoded
sudo tc qdisc add dev $ETH root handle 1: prio
sudo tc filter add dev $ETH parent 1: protocol ip prio 10 \
u32 match ip protocol 1 0xff flowid 1:2 \
action skbedit mark 17 \
action ife encode \
allow mark \
dst 02:15:15:15:15:15
Note: You dont need the skbedit action if you are already encoding the
skb mark earlier. A zero skb mark, when seen, will not be encoded.
Alternative hard code static mark of 0x12 every time the filter matches
sudo $TC filter add dev $ETH parent 1: protocol ip prio 10 \
u32 match ip protocol 1 0xff flowid 1:2 \
action ife encode \
type 0xDEAD \
use mark 0x12 \
dst 02:15:15:15:15:15
Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com>
Acked-by: Cong Wang <xiyou.wangcong@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This action allows for a sending side to encapsulate arbitrary metadata
which is decapsulated by the receiving end.
The sender runs in encoding mode and the receiver in decode mode.
Both sender and receiver must specify the same ethertype.
At some point we hope to have a registered ethertype and we'll
then provide a default so the user doesnt have to specify it.
For now we enforce the user specify it.
Lets show example usage where we encode icmp from a sender towards
a receiver with an skbmark of 17; both sender and receiver use
ethertype of 0xdead to interop.
YYYY: Lets start with Receiver-side policy config:
xxx: add an ingress qdisc
sudo tc qdisc add dev $ETH ingress
xxx: any packets with ethertype 0xdead will be subjected to ife decoding
xxx: we then restart the classification so we can match on icmp at prio 3
sudo $TC filter add dev $ETH parent ffff: prio 2 protocol 0xdead \
u32 match u32 0 0 flowid 1:1 \
action ife decode reclassify
xxx: on restarting the classification from above if it was an icmp
xxx: packet, then match it here and continue to the next rule at prio 4
xxx: which will match based on skb mark of 17
sudo tc filter add dev $ETH parent ffff: prio 3 protocol ip \
u32 match ip protocol 1 0xff flowid 1:1 \
action continue
xxx: match on skbmark of 0x11 (decimal 17) and accept
sudo tc filter add dev $ETH parent ffff: prio 4 protocol ip \
handle 0x11 fw flowid 1:1 \
action ok
xxx: Lets show the decoding policy
sudo tc -s filter ls dev $ETH parent ffff: protocol 0xdead
xxx:
filter pref 2 u32
filter pref 2 u32 fh 800: ht divisor 1
filter pref 2 u32 fh 800::800 order 2048 key ht 800 bkt 0 flowid 1:1 (rule hit 0 success 0)
match 00000000/00000000 at 0 (success 0 )
action order 1: ife decode action reclassify
index 1 ref 1 bind 1 installed 14 sec used 14 sec
type: 0x0
Metadata: allow mark allow hash allow prio allow qmap
Action statistics:
Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues 0)
backlog 0b 0p requeues 0
xxx:
Observe that above lists all metadatum it can decode. Typically these
submodules will already be compiled into a monolithic kernel or
loaded as modules
YYYY: Lets show the sender side now ..
xxx: Add an egress qdisc on the sender netdev
sudo tc qdisc add dev $ETH root handle 1: prio
xxx:
xxx: Match all icmp packets to 192.168.122.237/24, then
xxx: tag the packet with skb mark of decimal 17, then
xxx: Encode it with:
xxx: ethertype 0xdead
xxx: add skb->mark to whitelist of metadatum to send
xxx: rewrite target dst MAC address to 02:15:15:15:15:15
xxx:
sudo $TC filter add dev $ETH parent 1: protocol ip prio 10 u32 \
match ip dst 192.168.122.237/24 \
match ip protocol 1 0xff \
flowid 1:2 \
action skbedit mark 17 \
action ife encode \
type 0xDEAD \
allow mark \
dst 02:15:15:15:15:15
xxx: Lets show the encoding policy
sudo tc -s filter ls dev $ETH parent 1: protocol ip
xxx:
filter pref 10 u32
filter pref 10 u32 fh 800: ht divisor 1
filter pref 10 u32 fh 800::800 order 2048 key ht 800 bkt 0 flowid 1:2 (rule hit 0 success 0)
match c0a87aed/ffffffff at 16 (success 0 )
match 00010000/00ff0000 at 8 (success 0 )
action order 1: skbedit mark 17
index 6 ref 1 bind 1
Action statistics:
Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues 0)
backlog 0b 0p requeues 0
action order 2: ife encode action pipe
index 3 ref 1 bind 1
dst MAC: 02:15:15:15:15:15 type: 0xDEAD
Metadata: allow mark
Action statistics:
Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues 0)
backlog 0b 0p requeues 0
xxx:
test by sending ping from sender to destination
Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com>
Acked-by: Cong Wang <xiyou.wangcong@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This work adds a generalization of the ingress qdisc as a qdisc holding
only classifiers. The clsact qdisc works on ingress, but also on egress.
In both cases, it's execution happens without taking the qdisc lock, and
the main difference for the egress part compared to prior version of [1]
is that this can be applied with _any_ underlying real egress qdisc (also
classless ones).
Besides solving the use-case of [1], that is, allowing for more programmability
on assigning skb->priority for the mqprio case that is supported by most
popular 10G+ NICs, it also opens up a lot more flexibility for other tc
applications. The main work on classification can already be done at clsact
egress time if the use-case allows and state stored for later retrieval
f.e. again in skb->priority with major/minors (which is checked by most
classful qdiscs before consulting tc_classify()) and/or in other skb fields
like skb->tc_index for some light-weight post-processing to get to the
eventual classid in case of a classful qdisc. Another use case is that
the clsact egress part allows to have a central egress counterpart to
the ingress classifiers, so that classifiers can easily share state (e.g.
in cls_bpf via eBPF maps) for ingress and egress.
Currently, default setups like mq + pfifo_fast would require for this to
use, for example, prio qdisc instead (to get a tc_classify() run) and to
duplicate the egress classifier for each queue. With clsact, it allows
for leaving the setup as is, it can additionally assign skb->priority to
put the skb in one of pfifo_fast's bands and it can share state with maps.
Moreover, we can access the skb's dst entry (f.e. to retrieve tclassid)
w/o the need to perform a skb_dst_force() to hold on to it any longer. In
lwt case, we can also use this facility to setup dst metadata via cls_bpf
(bpf_skb_set_tunnel_key()) without needing a real egress qdisc just for
that (case of IFF_NO_QUEUE devices, for example).
The realization can be done without any changes to the scheduler core
framework. All it takes is that we have two a-priori defined minors/child
classes, where we can mux between ingress and egress classifier list
(dev->ingress_cl_list and dev->egress_cl_list, latter stored close to
dev->_tx to avoid extra cacheline miss for moderate loads). The egress
part is a bit similar modelled to handle_ing() and patched to a noop in
case the functionality is not used. Both handlers are now called
sch_handle_ingress() and sch_handle_egress(), code sharing among the two
doesn't seem practical as there are various minor differences in both
paths, so that making them conditional in a single handler would rather
slow things down.
Full compatibility to ingress qdisc is provided as well. Since both
piggyback on TC_H_CLSACT, only one of them (ingress/clsact) can exist
per netdevice, and thus ingress qdisc specific behaviour can be retained
for user space. This means, either a user does 'tc qdisc add dev foo ingress'
and configures ingress qdisc as usual, or the 'tc qdisc add dev foo clsact'
alternative, where both, ingress and egress classifier can be configured
as in the below example. ingress qdisc supports attaching classifier to any
minor number whereas clsact has two fixed minors for muxing between the
lists, therefore to not break user space setups, they are better done as
two separate qdiscs.
I decided to extend the sch_ingress module with clsact functionality so
that commonly used code can be reused, the module is being aliased with
sch_clsact so that it can be auto-loaded properly. Alternative would have been
to add a flag when initializing ingress to alter its behaviour plus aliasing
to a different name (as it's more than just ingress). However, the first would
end up, based on the flag, choosing the new/old behaviour by calling different
function implementations to handle each anyway, the latter would require to
register ingress qdisc once again under different alias. So, this really begs
to provide a minimal, cleaner approach to have Qdisc_ops and Qdisc_class_ops
by its own that share callbacks used by both.
Example, adding qdisc:
# tc qdisc add dev foo clsact
# tc qdisc show dev foo
qdisc mq 0: root
qdisc pfifo_fast 0: parent :1 bands 3 priomap 1 2 2 2 1 2 0 0 1 1 1 1 1 1 1 1
qdisc pfifo_fast 0: parent :2 bands 3 priomap 1 2 2 2 1 2 0 0 1 1 1 1 1 1 1 1
qdisc pfifo_fast 0: parent :3 bands 3 priomap 1 2 2 2 1 2 0 0 1 1 1 1 1 1 1 1
qdisc pfifo_fast 0: parent :4 bands 3 priomap 1 2 2 2 1 2 0 0 1 1 1 1 1 1 1 1
qdisc clsact ffff: parent ffff:fff1
Adding filters (deleting, etc works analogous by specifying ingress/egress):
# tc filter add dev foo ingress bpf da obj bar.o sec ingress
# tc filter add dev foo egress bpf da obj bar.o sec egress
# tc filter show dev foo ingress
filter protocol all pref 49152 bpf
filter protocol all pref 49152 bpf handle 0x1 bar.o:[ingress] direct-action
# tc filter show dev foo egress
filter protocol all pref 49152 bpf
filter protocol all pref 49152 bpf handle 0x1 bar.o:[egress] direct-action
A 'tc filter show dev foo' or 'tc filter show dev foo parent ffff:' will
show an empty list for clsact. Either using the parent names (ingress/egress)
or specifying the full major/minor will then show the related filter lists.
Prior work on a mqprio prequeue() facility [1] was done mainly by John Fastabend.
[1] http://patchwork.ozlabs.org/patch/512949/
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.r.fastabend@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This new config switch enables the ingress filtering infrastructure that is
controlled through the ingress_needed static key. This prepares the
introduction of the Netfilter ingress hook that resides under this unique
static key.
Note that CONFIG_SCH_INGRESS automatically selects this, that should be no
problem since this also depends on CONFIG_NET_CLS_ACT.
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
Acked-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch introduces a flow-based filter. So far, the very essential
packet fields are supported.
This patch is only the first step. There is a lot of potential performance
improvements possible to implement. Also a lot of features are missing
now. They will be addressed in follow-up patches.
Signed-off-by: Jiri Pirko <jiri@resnulli.us>
Acked-by: Jamal Hadi Salim <jhs@mojatatu.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Pull kconfig updates from Michal Marek:
"Yann E Morin was supposed to take over kconfig maintainership, but
this hasn't happened. So I'm sending a few kconfig patches that I
collected:
- Fix for missing va_end in kconfig
- merge_config.sh displays used if given too few arguments
- s/boolean/bool/ in Kconfig files for consistency, with the plan to
only support bool in the future"
* 'kconfig' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild:
kconfig: use va_end to match corresponding va_start
merge_config.sh: Display usage if given too few arguments
kconfig: use bool instead of boolean for type definition attributes
NET_ACT_CONNMARK fails to build if NF_CONNTRACK_MARK is disabled,
and d7924450e1 ("act_connmark: Add missing dependency on
NF_CONNTRACK_MARK") fixed that case, but missed the cased where
NF_CONNTRACK is a loadable module.
This adds the second dependency to ensure that NET_ACT_CONNMARK
can only be built-in if NF_CONNTRACK is also part of the kernel
rather than a loadable module.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
Depending on NETFILTER is not sufficient to ensure the presence of the
'mark' field in nf_conn, also needs to depend on NF_CONNTRACK_MARK.
Fixes: 22a5dc ("net: sched: Introduce connmark action")
Cc: Felix Fietkau <nbd@openwrt.org>
Cc: Jamal Hadi Salim <jhs@mojatatu.com>
Signed-off-by: Thomas Graf <tgraf@suug.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
This tc action allows you to retrieve the connection tracking mark
This action has been used heavily by openwrt for a few years now.
There are known limitations currently:
doesn't work for initial packets, since we only query the ct table.
Fine given use case is for returning packets
no implicit defrag.
frags should be rare so fix later..
won't work for more complex tasks, e.g. lookup of other extensions
since we have no means to store results
we still have a 2nd lookup later on via normal conntrack path.
This shouldn't break anything though since skb->nfct isn't altered.
V2:
remove unnecessary braces (Jiri)
change the action identifier to 14 (Jiri)
Fix some stylistic issues caught by checkpatch
V3:
Move module params to bottom (Cong)
Get rid of tcf_hashinfo_init and friends and conform to newer API (Cong)
Acked-by: Jiri Pirko <jiri@resnulli.us>
Signed-off-by: Felix Fietkau <nbd@openwrt.org>
Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This action provides a possibility to exec custom BPF code.
Signed-off-by: Jiri Pirko <jiri@resnulli.us>
Signed-off-by: David S. Miller <davem@davemloft.net>
Support for keyword 'boolean' will be dropped later on.
No functional change.
Reference: http://lkml.kernel.org/r/cover.1418003065.git.cj@linux.com
Signed-off-by: Christoph Jaeger <cj@linux.com>
Signed-off-by: Michal Marek <mmarek@suse.cz>
Conflicts:
drivers/net/ethernet/amd/xgbe/xgbe-desc.c
drivers/net/ethernet/renesas/sh_eth.c
Overlapping changes in both conflict cases.
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Andrew Shewmaker <agshew@gmail.com>
Acked-by: Stephen Hemminger <stephen@networkplumber.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
This tc action allows to work with vlan tagged skbs. Two supported
sub-actions are header pop and header push.
Signed-off-by: Jiri Pirko <jiri@resnulli.us>
Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Proportional Integral controller Enhanced (PIE) is a scheduler to address the
bufferbloat problem.
>From the IETF draft below:
" Bufferbloat is a phenomenon where excess buffers in the network cause high
latency and jitter. As more and more interactive applications (e.g. voice over
IP, real time video streaming and financial transactions) run in the Internet,
high latency and jitter degrade application performance. There is a pressing
need to design intelligent queue management schemes that can control latency and
jitter; and hence provide desirable quality of service to users.
We present here a lightweight design, PIE(Proportional Integral controller
Enhanced) that can effectively control the average queueing latency to a target
value. Simulation results, theoretical analysis and Linux testbed results have
shown that PIE can ensure low latency and achieve high link utilization under
various congestion situations. The design does not require per-packet
timestamp, so it incurs very small overhead and is simple enough to implement
in both hardware and software. "
Many thanks to Dave Taht for extensive feedback, reviews, testing and
suggestions. Thanks also to Stephen Hemminger and Eric Dumazet for reviews and
suggestions. Naeem Khademi and Dave Taht independently contributed to ECN
support.
For more information, please see technical paper about PIE in the IEEE
Conference on High Performance Switching and Routing 2013. A copy of the paper
can be found at ftp://ftpeng.cisco.com/pie/.
Please also refer to the IETF draft submission at
http://tools.ietf.org/html/draft-pan-tsvwg-pie-00
All relevant code, documents and test scripts and results can be found at
ftp://ftpeng.cisco.com/pie/.
For problems with the iproute2/tc or Linux kernel code, please contact Vijay
Subramanian (vijaynsu@cisco.com or subramanian.vijay@gmail.com) Mythili Prabhu
(mysuryan@cisco.com)
Signed-off-by: Vijay Subramanian <subramanian.vijay@gmail.com>
Signed-off-by: Mythili Prabhu <mysuryan@cisco.com>
CC: Dave Taht <dave.taht@bufferbloat.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
Pablo Neira Ayuso says:
====================
netfilter/IPVS updates for net-next
The following patchset contains Netfilter updates for your net-next tree,
they are:
* Add full port randomization support. Some crazy researchers found a way
to reconstruct the secure ephemeral ports that are allocated in random mode
by sending off-path bursts of UDP packets to overrun the socket buffer of
the DNS resolver to trigger retransmissions, then if the timing for the
DNS resolution done by a client is larger than usual, then they conclude
that the port that received the burst of UDP packets is the one that was
opened. It seems a bit aggressive method to me but it seems to work for
them. As a result, Daniel Borkmann and Hannes Frederic Sowa came up with a
new NAT mode to fully randomize ports using prandom.
* Add a new classifier to x_tables based on the socket net_cls set via
cgroups. These includes two patches to prepare the field as requested by
Zefan Li. Also from Daniel Borkmann.
* Use prandom instead of get_random_bytes in several locations of the
netfilter code, from Florian Westphal.
* Allow to use the CTA_MARK_MASK in ctnetlink when mangling the conntrack
mark, also from Florian Westphal.
* Fix compilation warning due to unused variable in IPVS, from Geert
Uytterhoeven.
* Add support for UID/GID via nfnetlink_queue, from Valentina Giusti.
* Add IPComp extension to x_tables, from Fan Du.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
Zefan Li requested [1] to perform the following cleanup/refactoring:
- Split cgroupfs classid handling into net core to better express a
possible more generic use.
- Disable module support for cgroupfs bits as the majority of other
cgroupfs subsystems do not have that, and seems to be not wished
from cgroup side. Zefan probably might want to follow-up for netprio
later on.
- By this, code can be further reduced which previously took care of
functionality built when compiled as module.
cgroupfs bits are being placed under net/core/netclassid_cgroup.c, so
that we are consistent with {netclassid,netprio}_cgroup naming that is
under net/core/ as suggested by Zefan.
No change in functionality, but only code refactoring that is being
done here.
[1] http://patchwork.ozlabs.org/patch/304825/
Suggested-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Cc: Zefan Li <lizefan@huawei.com>
Cc: Thomas Graf <tgraf@suug.ch>
Cc: cgroups@vger.kernel.org
Acked-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>