Check the values we read in from the AG headers when calculating the
block reservations for a repair transaction. If they're obviously
wrong, substitute worst case assumptions (rather than ENOSPC on a bogus
reservation request).
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
As mentioned previously, the xrep_extent_list basically implements a
bitmap with two functions: set and disjoint union. Rename all these
functions to xfs_bitmap to shorten the name and make it more obvious
what we're doing.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Move the xrep_extent_list code into a separate file. Logically, this
data structure is really just a clumsy bitmap, and in the next patch
we'll make this more obvious. No functional changes.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Now that we've shortened everything, fix up all the indentation and
whitespace problems. There are no functional changes.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Shorten the name of the online fsck context structure. Whitespace
damage will be fixed by a subsequent patch. There are no functional
changes.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Shorten all the metadata repair xfs_repair_* symbols to xrep_.
Whitespace damage will be fixed by a subsequent patch. There are no
functional changes.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Shorten all the metadata checking xfs_scrub_ prefixes to xchk_. After
this, the only xfs_scrub* symbols are the ones that pertain to both
scrub and repair. Whitespace damage will be fixed in a subsequent
patch. There are no functional changes.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Less trivial cleanups of the error argument to xfs_btree_del_cursor;
these require some minor code refactoring.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
The error argument to xfs_btree_del_cursor already understands the
"nonzero for error" semantics, so remove pointless error testing in the
callers and pass it directly.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/
This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:
for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done
And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:
$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}
/^ \* This program is free software/ {
hdr = 2.0;
next
}
/any later version./ {
tag = "GPL-2.0+"
next
}
/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}
/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}
/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}
// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}
END { }
$
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Add a helper routine to attach quota information to inodes that are
about to undergo repair. If that fails, we need to schedule a
quotacheck for the next mount but allow the corrupted metadata repair to
continue.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Add a helper function to help us recover btree roots from the rmap data.
Callers pass in a list of rmap owner codes, buffer ops, and magic
numbers. We iterate the rmap records looking for owner matches, and
then read the matching blocks to see if the magic number & uuid match.
If so, we then read-verify the block, and if that passes then we retain
a pointer to the block with the highest level, assuming that by the end
of the call we will have found the root. This will be used to reset the
AGF/AGI btree root fields during their rebuild procedures.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Now that we've plumbed in the ability to construct a list of dead btree
blocks following a repair, add more helpers to dispose of them. This is
done by examining the rmapbt -- if the btree was the only owner we can
free the block, otherwise it's crosslinked and we can only remove the
rmapbt record.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Add some helpers to assemble a list of fs block extents. Generally,
repair functions will iterate the rmapbt to make a list (1) of all
extents owned by the nominal owner of the metadata structure; then they
will iterate all other structures with the same rmap owner to make a
list (2) of active blocks; and finally we have a subtraction function to
subtract all the blocks in (2) from (1), with the result that (1) is now
a list of blocks that were owned by the old btree and must be disposed.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Add a pair of helper functions to allocate and initialize fresh btree
roots. The repair functions will use these as part of recreating
corrupted metadata.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
For repairs, we need to reserve at least as many blocks as we think
we're going to need to rebuild the data structure, and we're going to
need some helpers to roll transactions while maintaining locks on the AG
headers so that other threads cannot wander into the middle of a repair.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Plumb in the pieces necessary to make the "scrub" subfunction of
the scrub ioctl actually work. This means that we make the IFLAG_REPAIR
flag to the scrub ioctl actually do something, and we add an errortag
knob so that xfstests can force the kernel to rebuild a metadata
structure even if there's nothing wrong with it.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>