The code currently responsible for the SPI communication speed setting up
is a bit messy. Most likely for some historical reason the bus frequency
is saved in the peripheral chip private data. It's pointless now since the
custom communication speed is a SPI-transfer-specific thing and only if
there is no SPI transfer data specified (like during the SPI memory
operations) it can be taken from the SPI device structure. But even in the
later case there is no point in having the clock divider and the SPI bus
frequency saved in the chip data, because the controller can be used for
both SPI-transfer-based and SPI-transfer-less communications. From
software point of view keeping the current clock divider in an SPI-device
specific storage may give a small performance gain (to avoid sometimes a
round-up division), but in comparison to the total SPI transfer time it
just doesn't worth saving a few CPU cycles in comparison to the total SPI
transfer time while having the harder to read code. The only optimization,
which could worth preserving in the code is to avoid unnecessary DW SPI
controller registers update if it's possible. So to speak let's simplify
the SPI communication speed update procedure by removing the clock-related
fields from the peripheral chip data and update the DW SPI clock divider
only if it's really changed. The later change is reached by keeping the
effective SPI bus speed in the internal DW SPI private data.
Signed-off-by: Serge Semin <Sergey.Semin@baikalelectronics.ru>
Link: https://lore.kernel.org/r/20201007235511.4935-6-Sergey.Semin@baikalelectronics.ru
Signed-off-by: Mark Brown <broonie@kernel.org>
The SPI bus speed update functionality will be useful in another parts of
the driver too (like to implement the SPI memory operations and from the
DW SPI glue layers). Let's move it to the update_cr0() method then and
since the later is now updating not only the CTRLR0 register alter its
prototype to have a generic function name not related to CR0.
Leave the too long line with the chip->clk_div setting as is for now,
since it's going to be changed later anyway.
Signed-off-by: Serge Semin <Sergey.Semin@baikalelectronics.ru>
Link: https://lore.kernel.org/r/20201007235511.4935-5-Sergey.Semin@baikalelectronics.ru
Signed-off-by: Mark Brown <broonie@kernel.org>
Indeed there is no point in detecting the SPI peripheral device parameters
and initializing the CR0 register fields each time an SPI transfer is
executed. Instead let's define a dedicated CR0 chip-data member, which
will be initialized in accordance with the SPI device settings at the
moment of setting it up.
By doing so we'll finally make the SPI device chip_data serving as it's
supposed to - to preserve the SPI device specific DW SPI configuration.
See spi-fsl-dspi.c, spi-pl022.c, spi-pxa2xx.c drivers for example of the
way the chip data is utilized.
Signed-off-by: Serge Semin <Sergey.Semin@baikalelectronics.ru>
Link: https://lore.kernel.org/r/20201007235511.4935-4-Sergey.Semin@baikalelectronics.ru
Signed-off-by: Mark Brown <broonie@kernel.org>
Currently DWC SSI core is supported by means of setting up the
core-specific update_cr0() callback. It isn't suitable for multiple
reasons. First of all having exported several methods doing the same thing
but for different chips makes the code harder to maintain. Secondly the
spi-dw-core driver exports the methods, then the spi-dw-mmio driver sets
the private data callback with one of them so to be called by the core
driver again. That makes the code logic too complicated. Thirdly using
callbacks for just updating the CR0 register is problematic, since in case
if the register needed to be updated from different parts of the code,
we'd have to create another callback (for instance the SPI device-specific
parameters don't need to be calculated each time the SPI transfer is
submitted, so it's better to pre-calculate the CR0 data at the SPI-device
setup stage).
So keeping all the above in mind let's discard the update_cr0() callbacks,
define a generic and static dw_spi_update_cr0() method and create the
DW_SPI_CAP_DWC_SSI capability, which when enabled would activate the
alternative CR0 register layout.
While at it add the comments to the code path of the normal DW APB SSI
controller setup to make the dw_spi_update_cr0() method looking coherent.
Signed-off-by: Serge Semin <Sergey.Semin@baikalelectronics.ru>
Link: https://lore.kernel.org/r/20201007235511.4935-3-Sergey.Semin@baikalelectronics.ru
Signed-off-by: Mark Brown <broonie@kernel.org>
Simplify the dw_spi_add_host() method a bit by replacing the currently
implemented default set_cs callback setting up and later having it
overwritten by a custom function with direct if-else-based callback
assignment.
Signed-off-by: Serge Semin <Sergey.Semin@baikalelectronics.ru>
Link: https://lore.kernel.org/r/20201007235511.4935-2-Sergey.Semin@baikalelectronics.ru
Signed-off-by: Mark Brown <broonie@kernel.org>
There is no point in having the commit 19b61392c5 ("spi: spi-dw: Add
lock protect dw_spi rx/tx to prevent concurrent calls") applied. The
commit author made an assumption that the problem with the rx data
mismatch was due to the lack of the data protection. While most likely it
was caused by the lack of the memory barrier. So having the
commit bfda044533 ("spi: dw: use "smp_mb()" to avoid sending spi data
error") applied would be enough to fix the problem.
Indeed the spin unlock operation makes sure each memory operation issued
before the release will be completed before it's completed. In other words
it works as an implicit one way memory barrier. So having both smp_mb()
and the spin_unlock_irqrestore() here is just redundant. One of them would
be enough. It's better to leave the smp_mb() since the Tx/Rx buffers
consistency is provided by the data transfer algorithm implementation:
first we initialize the buffers pointers, then make sure the assignments
are visible by the other CPUs by calling the smp_mb(), only after that
enable the interrupt, which handler uses the buffers.
Signed-off-by: Serge Semin <Sergey.Semin@baikalelectronics.ru>
Link: https://lore.kernel.org/r/20200920112914.26501-5-Sergey.Semin@baikalelectronics.ru
Signed-off-by: Mark Brown <broonie@kernel.org>
In a further commit we'll have to get rid of the update_cr0() callback and
define a DW SSI capability instead. Since Keem Bay master/slave
functionality is controller by the CTRL0 register bitfield, we need to
first move the master mode selection into the internal corresponding
update_cr0 method, which would be activated by means of the dedicated
DW_SPI_CAP_KEEMBAY_MST capability setup.
Note this will be also useful if the driver will be ever altered to
support the DW SPI slave interface.
Signed-off-by: Serge Semin <Sergey.Semin@baikalelectronics.ru>
Link: https://lore.kernel.org/r/20200920112914.26501-11-Sergey.Semin@baikalelectronics.ru
Signed-off-by: Mark Brown <broonie@kernel.org>
There are several vendor-specific versions of the DW SPI controllers,
each of which may have some peculiarities with respect to the original
IP-core. Seeing it has already caused adding flags and a callback into the
DW SPI private data, let's introduce a generic capabilities interface to
tune the generic DW SPI controller driver up in accordance with the
particular controller specifics. It's done by converting a simple
Alpine-specific CS-override capability into the DW SPI controller
capability activated by setting the DW_SPI_CAP_CS_OVERRIDE flag.
Signed-off-by: Serge Semin <Sergey.Semin@baikalelectronics.ru>
Link: https://lore.kernel.org/r/20200920112914.26501-10-Sergey.Semin@baikalelectronics.ru
Signed-off-by: Mark Brown <broonie@kernel.org>
Keeping SPI peripheral devices type is pointless since first it hasn't
been functionally utilized by any of the client drivers/code and second it
won't work for Microwire type at the very least. Moreover there is no
point in setting up the type by means of the chip-data in the modern
kernel. The peripheral devices with specific interface type need to be
detected in order to activate the corresponding frame format. It most
likely will require some peripheral device specific DT property or
whatever to find out the interface protocol. So let's remove the serial
interface type fields from the DW APB SSI controller and the SPI
peripheral device private data.
Note we'll preserve the explicit SSI_MOTO_SPI interface type setting up to
signify the only currently supported interface protocol.
Signed-off-by: Serge Semin <Sergey.Semin@baikalelectronics.ru>
Link: https://lore.kernel.org/r/20200920112914.26501-9-Sergey.Semin@baikalelectronics.ru
Signed-off-by: Mark Brown <broonie@kernel.org>
It's a good practice to disable all IRQs if a device is fully unused. In
our case it is supposed to be done before requesting the IRQ and after the
last byte of an SPI transfer is received. In the former case it's required
to prevent the IRQ handler invocation before the driver data is fully
initialized (which may happen if the IRQs status has been left uncleared
before the device is probed). So we just moved the spi_hw_init() method
invocation to the earlier stage before requesting the IRQ. In the later
case there is just no point in having any of the IRQs enabled between SPI
transfers and when there is no SPI message currently being processed.
Signed-off-by: Serge Semin <Sergey.Semin@baikalelectronics.ru>
Link: https://lore.kernel.org/r/20200920112914.26501-7-Sergey.Semin@baikalelectronics.ru
Signed-off-by: Mark Brown <broonie@kernel.org>
Since n_bytes field of the DW SPI private data is also utilized by the
IRQ handler, we need to make sure it' initialization is done before the
memory barrier.
Signed-off-by: Serge Semin <Sergey.Semin@baikalelectronics.ru>
Link: https://lore.kernel.org/r/20200920112914.26501-4-Sergey.Semin@baikalelectronics.ru
Signed-off-by: Mark Brown <broonie@kernel.org>
This add support for the RX_SAMPLE_DLY register. If enabled in the
Designware IP, it allows tuning of the rx data signal by means of an
internal rx sample fifo.
The register is controlled by the rx-sample-delay-ns DT property,
which is defined per SPI slave as well on controller level.
The controller level rx-sample-delay-ns will apply to all slaves
without the property explicitly defined.
The register is located at offset 0xf0, and if the option is not
enabled in the IP, changing the register will have no effect. The
register will only be written if any slave defines a nonzero value
(after scaling by the clock period).
Signed-off-by: Lars Povlsen <lars.povlsen@microchip.com>
Link: https://lore.kernel.org/r/20200824203010.2033-2-lars.povlsen@microchip.com
Signed-off-by: Mark Brown <broonie@kernel.org>
Generic DMA support is going to be part of the DW APB SSI core object.
In order to preserve the kernel loadable module name as spi-dw.ko, let's
add the "-core" suffix to the object with generic DW APB SSI code and
build it into the target spi-dw.ko driver.
Suggested-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Serge Semin <Sergey.Semin@baikalelectronics.ru>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Georgy Vlasov <Georgy.Vlasov@baikalelectronics.ru>
Cc: Ramil Zaripov <Ramil.Zaripov@baikalelectronics.ru>
Cc: Alexey Malahov <Alexey.Malahov@baikalelectronics.ru>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Feng Tang <feng.tang@intel.com>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: linux-mips@vger.kernel.org
Cc: devicetree@vger.kernel.org
Link: https://lore.kernel.org/r/20200529131205.31838-10-Sergey.Semin@baikalelectronics.ru
Signed-off-by: Mark Brown <broonie@kernel.org>