For x86 this brings in PCID emulation and CR3 caching for shadow page
tables, nested VMX live migration, nested VMCS shadowing, an optimized
IPI hypercall, and some optimizations.
ARM will come next week.
There is a semantic conflict because tip also added an .init_platform
callback to kvm.c. Please keep the initializer from this branch,
and add a call to kvmclock_init (added by tip) inside kvm_init_platform
(added here).
Also, there is a backmerge from 4.18-rc6. This is because of a
refactoring that conflicted with a relatively late bugfix and
resulted in a particularly hellish conflict. Because the conflict
was only due to unfortunate timing of the bugfix, I backmerged and
rebased the refactoring rather than force the resolution on you.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJbdwNFAAoJEL/70l94x66DiPEH/1cAGZWGd85Y3yRu1dmTmqiz
kZy0V+WTQ5kyJF4ZsZKKOp+xK7Qxh5e9kLdTo70uPZCHwLu9IaGKN9+dL9Jar3DR
yLPX5bMsL8UUed9g9mlhdaNOquWi7d7BseCOnIyRTolb+cqnM5h3sle0gqXloVrS
UQb4QogDz8+86czqR8tNfazjQRKW/D2HEGD5NDNVY1qtpY+leCDAn9/u6hUT5c6z
EtufgyDh35UN+UQH0e2605gt3nN3nw3FiQJFwFF1bKeQ7k5ByWkuGQI68XtFVhs+
2WfqL3ftERkKzUOy/WoSJX/C9owvhMcpAuHDGOIlFwguNGroZivOMVnACG1AI3I=
=9Mgw
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull first set of KVM updates from Paolo Bonzini:
"PPC:
- minor code cleanups
x86:
- PCID emulation and CR3 caching for shadow page tables
- nested VMX live migration
- nested VMCS shadowing
- optimized IPI hypercall
- some optimizations
ARM will come next week"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (85 commits)
kvm: x86: Set highest physical address bits in non-present/reserved SPTEs
KVM/x86: Use CC_SET()/CC_OUT in arch/x86/kvm/vmx.c
KVM: X86: Implement PV IPIs in linux guest
KVM: X86: Add kvm hypervisor init time platform setup callback
KVM: X86: Implement "send IPI" hypercall
KVM/x86: Move X86_CR4_OSXSAVE check into kvm_valid_sregs()
KVM: x86: Skip pae_root shadow allocation if tdp enabled
KVM/MMU: Combine flushing remote tlb in mmu_set_spte()
KVM: vmx: skip VMWRITE of HOST_{FS,GS}_BASE when possible
KVM: vmx: skip VMWRITE of HOST_{FS,GS}_SEL when possible
KVM: vmx: always initialize HOST_{FS,GS}_BASE to zero during setup
KVM: vmx: move struct host_state usage to struct loaded_vmcs
KVM: vmx: compute need to reload FS/GS/LDT on demand
KVM: nVMX: remove a misleading comment regarding vmcs02 fields
KVM: vmx: rename __vmx_load_host_state() and vmx_save_host_state()
KVM: vmx: add dedicated utility to access guest's kernel_gs_base
KVM: vmx: track host_state.loaded using a loaded_vmcs pointer
KVM: vmx: refactor segmentation code in vmx_save_host_state()
kvm: nVMX: Fix fault priority for VMX operations
kvm: nVMX: Fix fault vector for VMX operation at CPL > 0
...
This patch is to provide a way for platforms to register hv tlb remote
flush callback and this helps to optimize operation of tlb flush
among vcpus for nested virtualization case.
Signed-off-by: Lan Tianyu <Tianyu.Lan@microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
It is a duplicate of X86_CR3_PCID_NOFLUSH. So just use that instead.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Adds support for storing multiple previous CR3/root_hpa pairs maintained
as an LRU cache, so that the lockless CR3 switch path can be used when
switching back to any of them.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This needs a minor bug fix. The updated patch is as follows.
Thanks,
Junaid
------------------------------------------------------------------------------
kvm_mmu_invlpg() and kvm_mmu_invpcid_gva() only need to flush the TLB
entries for the specific guest virtual address, instead of flushing all
TLB entries associated with the VM.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_mmu_free_roots() now takes a mask specifying which roots to free, so
that either one of the roots (active/previous) can be individually freed
when needed.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This allows invlpg() to be called using either the active root_hpa
or the prev_root_hpa.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When PCIDs are enabled, the MSb of the source operand for a MOV-to-CR3
instruction indicates that the TLB doesn't need to be flushed.
This change enables this optimization for MOV-to-CR3s in the guest
that have been intercepted by KVM for shadow paging and are handled
within the fast CR3 switch path.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Implement support for INVPCID in shadow paging mode as well.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The KVM_REQ_LOAD_CR3 request loads the hardware CR3 using the
current root_hpa.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When using shadow paging, a CR3 switch in the guest results in a VM Exit.
In the common case, that VM exit doesn't require much processing by KVM.
However, it does acquire the MMU lock, which can start showing signs of
contention under some workloads even on a 2 VCPU VM when the guest is
using KPTI. Therefore, we add a fast path that avoids acquiring the MMU
lock in the most common cases e.g. when switching back and forth between
the kernel and user mode CR3s used by KPTI with no guest page table
changes in between.
For now, this fast path is implemented only for 64-bit guests and hosts
to avoid the handling of PDPTEs, but it can be extended later to 32-bit
guests and/or hosts as well.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
For nested virtualization L0 KVM is managing a bit of state for L2 guests,
this state can not be captured through the currently available IOCTLs. In
fact the state captured through all of these IOCTLs is usually a mix of L1
and L2 state. It is also dependent on whether the L2 guest was running at
the moment when the process was interrupted to save its state.
With this capability, there are two new vcpu ioctls: KVM_GET_NESTED_STATE
and KVM_SET_NESTED_STATE. These can be used for saving and restoring a VM
that is in VMX operation.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Jim Mattson <jmattson@google.com>
[karahmed@ - rename structs and functions and make them ready for AMD and
address previous comments.
- handle nested.smm state.
- rebase & a bit of refactoring.
- Merge 7/8 and 8/8 into one patch. ]
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If the vCPU enters system management mode while running a nested guest,
RSM starts processing the vmentry while still in SMM. In that case,
however, the pages pointed to by the vmcs12 might be incorrectly
loaded from SMRAM. To avoid this, delay the handling of the pages
until just before the next vmentry. This is done with a new request
and a new entry in kvm_x86_ops, which we will be able to reuse for
nested VMX state migration.
Extracted from a patch by Jim Mattson and KarimAllah Ahmed.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When nested virtualization is in use, VMENTER operations from the nested
hypervisor into the nested guest will always be processed by the bare metal
hypervisor, and KVM's "conditional cache flushes" mode in particular does a
flush on nested vmentry. Therefore, include the "skip L1D flush on
vmentry" bit in KVM's suggested ARCH_CAPABILITIES setting.
Add the relevant Documentation.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The next patch in this series will have to make the definition of
irq_cpustat_t available to entering_irq().
Inclusion of asm/hardirq.h into asm/apic.h would cause circular header
dependencies like
asm/smp.h
asm/apic.h
asm/hardirq.h
linux/irq.h
linux/topology.h
linux/smp.h
asm/smp.h
or
linux/gfp.h
linux/mmzone.h
asm/mmzone.h
asm/mmzone_64.h
asm/smp.h
asm/apic.h
asm/hardirq.h
linux/irq.h
linux/irqdesc.h
linux/kobject.h
linux/sysfs.h
linux/kernfs.h
linux/idr.h
linux/gfp.h
and others.
This causes compilation errors because of the header guards becoming
effective in the second inclusion: symbols/macros that had been defined
before wouldn't be available to intermediate headers in the #include chain
anymore.
A possible workaround would be to move the definition of irq_cpustat_t
into its own header and include that from both, asm/hardirq.h and
asm/apic.h.
However, this wouldn't solve the real problem, namely asm/harirq.h
unnecessarily pulling in all the linux/irq.h cruft: nothing in
asm/hardirq.h itself requires it. Also, note that there are some other
archs, like e.g. arm64, which don't have that #include in their
asm/hardirq.h.
Remove the linux/irq.h #include from x86' asm/hardirq.h.
Fix resulting compilation errors by adding appropriate #includes to *.c
files as needed.
Note that some of these *.c files could be cleaned up a bit wrt. to their
set of #includes, but that should better be done from separate patches, if
at all.
Signed-off-by: Nicolai Stange <nstange@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Add the logic for flushing L1D on VMENTER. The flush depends on the static
key being enabled and the new l1tf_flush_l1d flag being set.
The flags is set:
- Always, if the flush module parameter is 'always'
- Conditionally at:
- Entry to vcpu_run(), i.e. after executing user space
- From the sched_in notifier, i.e. when switching to a vCPU thread.
- From vmexit handlers which are considered unsafe, i.e. where
sensitive data can be brought into L1D:
- The emulator, which could be a good target for other speculative
execution-based threats,
- The MMU, which can bring host page tables in the L1 cache.
- External interrupts
- Nested operations that require the MMU (see above). That is
vmptrld, vmptrst, vmclear,vmwrite,vmread.
- When handling invept,invvpid
[ tglx: Split out from combo patch and reduced to a single flag ]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* ARM: lazy context-switching of FPSIMD registers on arm64, "split"
regions for vGIC redistributor
* s390: cleanups for nested, clock handling, crypto, storage keys and
control register bits
* x86: many bugfixes, implement more Hyper-V super powers,
implement lapic_timer_advance_ns even when the LAPIC timer
is emulated using the processor's VMX preemption timer. Two
security-related bugfixes at the top of the branch.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJbH8Z/AAoJEL/70l94x66DF+UIAJeOuTp6LGasT/9uAb2OovaN
+5kGmOPGFwkTcmg8BQHI2fXT4vhxMXWPFcQnyig9eXJVxhuwluXDOH4P9IMay0yw
VDCBsWRdMvZDQad2hn6Z5zR4Jx01XrSaG/KqvXbbDKDCy96mWG7SYAY2m3ZwmeQi
3Pa3O3BTijr7hBYnMhdXGkSn4ZyU8uPaAgIJ8795YKeOJ2JmioGYk6fj6y2WCxA3
ztJymBjTmIoZ/F8bjuVouIyP64xH4q9roAyw4rpu7vnbWGqx1fjPYJoB8yddluWF
JqCPsPzhKDO7mjZJy+lfaxIlzz2BN7tKBNCm88s5GefGXgZwk3ByAq/0GQ2M3rk=
=H5zI
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"Small update for KVM:
ARM:
- lazy context-switching of FPSIMD registers on arm64
- "split" regions for vGIC redistributor
s390:
- cleanups for nested
- clock handling
- crypto
- storage keys
- control register bits
x86:
- many bugfixes
- implement more Hyper-V super powers
- implement lapic_timer_advance_ns even when the LAPIC timer is
emulated using the processor's VMX preemption timer.
- two security-related bugfixes at the top of the branch"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (79 commits)
kvm: fix typo in flag name
kvm: x86: use correct privilege level for sgdt/sidt/fxsave/fxrstor access
KVM: x86: pass kvm_vcpu to kvm_read_guest_virt and kvm_write_guest_virt_system
KVM: x86: introduce linear_{read,write}_system
kvm: nVMX: Enforce cpl=0 for VMX instructions
kvm: nVMX: Add support for "VMWRITE to any supported field"
kvm: nVMX: Restrict VMX capability MSR changes
KVM: VMX: Optimize tscdeadline timer latency
KVM: docs: nVMX: Remove known limitations as they do not exist now
KVM: docs: mmu: KVM support exposing SLAT to guests
kvm: no need to check return value of debugfs_create functions
kvm: Make VM ioctl do valloc for some archs
kvm: Change return type to vm_fault_t
KVM: docs: mmu: Fix link to NPT presentation from KVM Forum 2008
kvm: x86: Amend the KVM_GET_SUPPORTED_CPUID API documentation
KVM: x86: hyperv: declare KVM_CAP_HYPERV_TLBFLUSH capability
KVM: x86: hyperv: simplistic HVCALL_FLUSH_VIRTUAL_ADDRESS_{LIST,SPACE}_EX implementation
KVM: x86: hyperv: simplistic HVCALL_FLUSH_VIRTUAL_ADDRESS_{LIST,SPACE} implementation
KVM: introduce kvm_make_vcpus_request_mask() API
KVM: x86: hyperv: do rep check for each hypercall separately
...
Implement HvFlushVirtualAddress{List,Space} hypercalls in a simplistic way:
do full TLB flush with KVM_REQ_TLB_FLUSH and kick vCPUs which are currently
IN_GUEST_MODE.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Expose the new virtualized architectural mechanism, VIRT_SSBD, for using
speculative store bypass disable (SSBD) under SVM. This will allow guests
to use SSBD on hardware that uses non-architectural mechanisms for enabling
SSBD.
[ tglx: Folded the migration fixup from Paolo Bonzini ]
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
L1 and L2 need to have disjoint mappings, so that L1's APIC access
page (under VMX) can be omitted from L2's mappings.
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Previously, we toggled between SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
and SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES, depending on whether or
not the EXTD bit was set in MSR_IA32_APICBASE. However, if the local
APIC is disabled, we should not set either of these APIC
virtualization control bits.
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Extract the logic to free a root page in a separate function to avoid code
duplication in mmu_free_roots(). Also, change it to an exported function
i.e. kvm_mmu_free_roots().
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Update 'tsc_offset' on vmentry/vmexit of L2 guests to ensure that it always
captures the TSC_OFFSET of the running guest whether it is the L1 or L2
guest.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Reviewed-by: Jim Mattson <jmattson@google.com>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
[AMD changes, fix update_ia32_tsc_adjust_msr. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
For exceptions & NMIs events, KVM code use the following
coding convention:
*) "pending" represents an event that should be injected to guest at
some point but it's side-effects have not yet occurred.
*) "injected" represents an event that it's side-effects have already
occurred.
However, interrupts don't conform to this coding convention.
All current code flows mark interrupt.pending when it's side-effects
have already taken place (For example, bit moved from LAPIC IRR to
ISR). Therefore, it makes sense to just rename
interrupt.pending to interrupt.injected.
This change follows logic of previous commit 664f8e26b0 ("KVM: X86:
Fix loss of exception which has not yet been injected") which changed
exception to follow this coding convention as well.
It is important to note that in case !lapic_in_kernel(vcpu),
interrupt.pending usage was and still incorrect.
In this case, interrrupt.pending can only be set using one of the
following ioctls: KVM_INTERRUPT, KVM_SET_VCPU_EVENTS and
KVM_SET_SREGS. Looking at how QEMU uses these ioctls, one can see that
QEMU uses them either to re-set an "interrupt.pending" state it has
received from KVM (via KVM_GET_VCPU_EVENTS interrupt.pending or
via KVM_GET_SREGS interrupt_bitmap) or by dispatching a new interrupt
from QEMU's emulated LAPIC which reset bit in IRR and set bit in ISR
before sending ioctl to KVM. So it seems that indeed "interrupt.pending"
in this case is also suppose to represent "interrupt.injected".
However, kvm_cpu_has_interrupt() & kvm_cpu_has_injectable_intr()
is misusing (now named) interrupt.injected in order to return if
there is a pending interrupt.
This leads to nVMX/nSVM not be able to distinguish if it should exit
from L2 to L1 on EXTERNAL_INTERRUPT on pending interrupt or should
re-inject an injected interrupt.
Therefore, add a FIXME at these functions for handling this issue.
This patch introduce no semantics change.
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
hyperv.h is not part of uapi, there are no (known) users outside of kernel.
We are making changes to this file to match current Hyper-V Hypervisor
Top-Level Functional Specification (TLFS, see:
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/tlfs)
and we don't want to maintain backwards compatibility.
Move the file renaming to hyperv-tlfs.h to avoid confusing it with
mshyperv.h. In future, all definitions from TLFS should go to it and
all kernel objects should go to mshyperv.h or include/linux/hyperv.h.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Add struct kvm_svm, which is analagous to struct vcpu_svm, along with
a helper to_kvm_svm() to retrieve kvm_svm from a struct kvm *. Move
the SVM specific variables and struct definitions out of kvm_arch
and into kvm_svm.
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add struct kvm_vmx, which wraps struct kvm, and a helper to_kvm_vmx()
that retrieves 'struct kvm_vmx *' from 'struct kvm *'. Move the VMX
specific variables out of kvm_arch and into kvm_vmx.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add kvm_x86_ops->set_identity_map_addr and set ept_identity_map_addr
in VMX specific code so that ept_identity_map_addr can be moved out
of 'struct kvm_arch' in a future patch.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Define kvm_arch_[alloc|free]_vm in x86 as pass through functions
to new kvm_x86_ops vm_alloc and vm_free, and move the current
allocation logic as-is to SVM and VMX. Vendor specific alloc/free
functions set the stage for SVM/VMX wrappers of 'struct kvm',
which will allow us to move the growing number of SVM/VMX specific
member variables out of 'struct kvm_arch'.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When L1 IOAPIC redirection-table is written, a request of
KVM_REQ_SCAN_IOAPIC is set on all vCPUs. This is done such that
all vCPUs will now recalc their IOAPIC handled vectors and load
it to their EOI-exitmap.
However, it could be that one of the vCPUs is currently running
L2. In this case, load_eoi_exitmap() will be called which would
write to vmcs02->eoi_exit_bitmap, which is wrong because
vmcs02->eoi_exit_bitmap should always be equal to
vmcs12->eoi_exit_bitmap. Furthermore, at this point
KVM_REQ_SCAN_IOAPIC was already consumed and therefore we will
never update vmcs01->eoi_exit_bitmap. This could lead to remote_irr
of some IOAPIC level-triggered entry to remain set forever.
Fix this issue by delaying the load of EOI-exitmap to when vCPU
is running L1.
One may wonder why not just delay entire KVM_REQ_SCAN_IOAPIC
processing to when vCPU is running L1. This is done in order to handle
correctly the case where LAPIC & IO-APIC of L1 is pass-throughed into
L2. In this case, vmcs12->virtual_interrupt_delivery should be 0. In
current nVMX implementation, that results in
vmcs02->virtual_interrupt_delivery to also be 0. Thus,
vmcs02->eoi_exit_bitmap is not used. Therefore, every L2 EOI cause
a #VMExit into L0 (either on MSR_WRITE to x2APIC MSR or
APIC_ACCESS/APIC_WRITE/EPT_MISCONFIG to APIC MMIO page).
In order for such L2 EOI to be broadcasted, if needed, from LAPIC
to IO-APIC, vcpu->arch.ioapic_handled_vectors must be updated
while L2 is running. Therefore, patch makes sure to delay only the
loading of EOI-exitmap but not the update of
vcpu->arch.ioapic_handled_vectors.
Reviewed-by: Arbel Moshe <arbel.moshe@oracle.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Allow to disable pause loop exit/pause filtering on a per VM basis.
If some VMs have dedicated host CPUs, they won't be negatively affected
due to needlessly intercepted PAUSE instructions.
Thanks to Jan H. Schönherr's initial patch.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Jan H. Schönherr <jschoenh@amazon.de>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If host CPUs are dedicated to a VM, we can avoid VM exits on HLT.
This patch adds the per-VM capability to disable them.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Jan H. Schönherr <jschoenh@amazon.de>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Allowing a guest to execute MWAIT without interception enables a guest
to put a (physical) CPU into a power saving state, where it takes
longer to return from than what may be desired by the host.
Don't give a guest that power over a host by default. (Especially,
since nothing prevents a guest from using MWAIT even when it is not
advertised via CPUID.)
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Jan H. Schönherr <jschoenh@amazon.de>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Access to VMware backdoor ports is done by one of the IN/OUT/INS/OUTS
instructions. These ports must be allowed access even if TSS I/O
permission bitmap don't allow it.
To handle this, VMX/SVM will be changed in future commits
to intercept #GP which was raised by such access and
handle it by calling x86 emulator to emulate instruction.
If it was one of these instructions, the x86 emulator already handles
it correctly (Since commit "KVM: x86: Always allow access to VMware
backdoor I/O ports") by not checking these ports against TSS I/O
permission bitmap.
One may wonder why checking for specific instructions is necessary
as we can just forward all #GPs to the x86 emulator.
There are multiple reasons for doing so:
1. We don't want the x86 emulator to be reached easily
by guest by just executing an instruction that raises #GP as that
exposes the x86 emulator as a bigger attack surface.
2. The x86 emulator is incomplete and therefore certain instructions
that can cause #GP cannot be emulated. Such an example is "INT x"
(opcode 0xcd) which reaches emulate_int() which can only emulate
the instruction if vCPU is in real-mode.
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Next commits are going introduce support for accessing VMware backdoor
ports even though guest's TSS I/O permissions bitmap doesn't allow
access. This mimic VMware hypervisor behavior.
In order to support this, next commits will change VMX/SVM to
intercept #GP which was raised by such access and handle it by calling
the x86 emulator to emulate instruction. Since commit "KVM: x86:
Always allow access to VMware backdoor I/O ports", the x86 emulator
handles access to these I/O ports by not checking these ports against
the TSS I/O permission bitmap.
However, there could be cases that CPU rasies a #GP on instruction
that fails to be disassembled by the x86 emulator (Because of
incomplete implementation for example).
In those cases, we would like the #GP intercept to just forward #GP
as-is to guest as if there was no intercept to begin with.
However, current emulator code always queues #UD exception in case
emulator fails (including disassembly failures) which is not what is
wanted in this flow.
This commit addresses this issue by adding a new emulation_type flag
that will allow the #GP intercept handler to specify that it wishes
to be aware when instruction emulation fails and doesn't want #UD
exception to be queued.
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add kvm_fast_pio() to consolidate duplicate code in VMX and SVM.
Unexport kvm_fast_pio_in() and kvm_fast_pio_out().
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Nested Hyper-V/Windows guest running on top of KVM will use TSC page
clocksource in two cases:
- L0 exposes invariant TSC (CPUID.80000007H:EDX[8]).
- L0 provides Hyper-V Reenlightenment support (CPUID.40000003H:EAX[13]).
Exposing invariant TSC effectively blocks migration to hosts with different
TSC frequencies, providing reenlightenment support will be needed when we
start migrating nested workloads.
Implement rudimentary support for reenlightenment MSRs. For now, these are
just read/write MSRs with no effect.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
In Hyper-V, the fast guest->host notification mechanism is the
SIGNAL_EVENT hypercall, with a single parameter of the connection ID to
signal.
Currently this hypercall incurs a user exit and requires the userspace
to decode the parameters and trigger the notification of the potentially
different I/O context.
To avoid the costly user exit, process this hypercall and signal the
corresponding eventfd in KVM, similar to ioeventfd. The association
between the connection id and the eventfd is established via the newly
introduced KVM_HYPERV_EVENTFD ioctl, and maintained in an
(srcu-protected) IDR.
Signed-off-by: Roman Kagan <rkagan@virtuozzo.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
[asm/hyperv.h changes approved by KY Srinivasan. - Radim]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Linux (among the others) has checks to make sure that certain features
aren't enabled on a certain family/model/stepping if the microcode version
isn't greater than or equal to a known good version.
By exposing the real microcode version, we're preventing buggy guests that
don't check that they are running virtualized (i.e., they should trust the
hypervisor) from disabling features that are effectively not buggy.
Suggested-by: Filippo Sironi <sironi@amazon.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Liran Alon <liran.alon@oracle.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Provide a new KVM capability that allows bits within MSRs to be recognized
as features. Two new ioctls are added to the /dev/kvm ioctl routine to
retrieve the list of these MSRs and then retrieve their values. A kvm_x86_ops
callback is used to determine support for the listed MSR-based features.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
[Tweaked documentation. - Radim]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Fix the following sparse warning by moving the prototype
of kvm_arch_mmu_notifier_invalidate_range() to linux/kvm_host.h .
CHECK arch/s390/kvm/../../../virt/kvm/kvm_main.c
arch/s390/kvm/../../../virt/kvm/kvm_main.c:138:13: warning: symbol 'kvm_arch_mmu_notifier_invalidate_range' was not declared. Should it be static?
Signed-off-by: Sebastian Ott <sebott@linux.vnet.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The efer_reload is never used since
commit 26bb0981b3 ("KVM: VMX: Use shared msr infrastructure"),
so remove it.
Signed-off-by: Longpeng(Mike) <longpeng2@huawei.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
This part of Secure Encrypted Virtualization (SEV) patch series focuses on KVM
changes required to create and manage SEV guests.
SEV is an extension to the AMD-V architecture which supports running encrypted
virtual machine (VMs) under the control of a hypervisor. Encrypted VMs have their
pages (code and data) secured such that only the guest itself has access to
unencrypted version. Each encrypted VM is associated with a unique encryption key;
if its data is accessed to a different entity using a different key the encrypted
guest's data will be incorrectly decrypted, leading to unintelligible data.
This security model ensures that hypervisor will no longer able to inspect or
alter any guest code or data.
The key management of this feature is handled by a separate processor known as
the AMD Secure Processor (AMD-SP) which is present on AMD SOCs. The SEV Key
Management Specification (see below) provides a set of commands which can be
used by hypervisor to load virtual machine keys through the AMD-SP driver.
The patch series adds a new ioctl in KVM driver (KVM_MEMORY_ENCRYPT_OP). The
ioctl will be used by qemu to issue SEV guest-specific commands defined in Key
Management Specification.
The following links provide additional details:
AMD Memory Encryption white paper:
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
AMD64 Architecture Programmer's Manual:
http://support.amd.com/TechDocs/24593.pdf
SME is section 7.10
SEV is section 15.34
SEV Key Management:
http://support.amd.com/TechDocs/55766_SEV-KM API_Specification.pdf
KVM Forum Presentation:
http://www.linux-kvm.org/images/7/74/02x08A-Thomas_Lendacky-AMDs_Virtualizatoin_Memory_Encryption_Technology.pdf
SEV Guest BIOS support:
SEV support has been add to EDKII/OVMF BIOS
https://github.com/tianocore/edk2
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Introduce a new bool invalidate_gpa argument to kvm_x86_ops->tlb_flush,
it will be used by later patches to just flush guest tlb.
For VMX, this will use INVVPID instead of INVEPT, which will invalidate
combined mappings while keeping guest-physical mappings.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
This MSR returns the number of #SMIs that occurred on CPU since
boot.
It was seen to be used frequently by ESXi guest.
Patch adds a new vcpu-arch specific var called smi_count to
save the number of #SMIs which occurred on CPU since boot.
It is exposed as a read-only MSR to guest (causing #GP
on wrmsr) in RDMSR/WRMSR emulation code.
MSR_SMI_COUNT is also added to emulated_msrs[] to make sure
user-space can save/restore it for migration purposes.
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Bhavesh Davda <bhavesh.davda@oracle.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
The User-Mode Instruction Prevention feature present in recent Intel
processor prevents a group of instructions (sgdt, sidt, sldt, smsw, and
str) from being executed with CPL > 0. Otherwise, a general protection
fault is issued.
UMIP instructions in general are also able to trigger vmexits, so we can
actually emulate UMIP on older processors. This commit sets up the
infrastructure so that kvm-intel.ko and kvm-amd.ko can set the UMIP
feature bit for CPUID even if the feature is not actually available
in hardware.
Reviewed-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add the CPUID bits, make the CR4.UMIP bit not reserved anymore, and
add UMIP support for instructions that are already emulated by KVM.
Reviewed-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Implementation of the unpinned APIC page didn't update the VMCS address
cache when invalidation was done through range mmu notifiers.
This became a problem when the page notifier was removed.
Re-introduce the arch-specific helper and call it from ...range_start.
Reported-by: Fabian Grünbichler <f.gruenbichler@proxmox.com>
Fixes: 38b9917350 ("kvm: vmx: Implement set_apic_access_page_addr")
Fixes: 369ea8242c ("mm/rmap: update to new mmu_notifier semantic v2")
Cc: <stable@vger.kernel.org>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Tested-by: Wanpeng Li <wanpeng.li@hotmail.com>
Tested-by: Fabian Grünbichler <f.gruenbichler@proxmox.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Currently, every time a VCPU is scheduled out, the host kernel will
first save the guest FPU/xstate context, then load the qemu userspace
FPU context, only to then immediately save the qemu userspace FPU
context back to memory. When scheduling in a VCPU, the same extraneous
FPU loads and saves are done.
This could be avoided by moving from a model where the guest FPU is
loaded and stored with preemption disabled, to a model where the
qemu userspace FPU is swapped out for the guest FPU context for
the duration of the KVM_RUN ioctl.
This is done under the VCPU mutex, which is also taken when other
tasks inspect the VCPU FPU context, so the code should already be
safe for this change. That should come as no surprise, given that
s390 already has this optimization.
This can fix a bug where KVM calls get_user_pages while owning the
FPU, and the file system ends up requesting the FPU again:
[258270.527947] __warn+0xcb/0xf0
[258270.527948] warn_slowpath_null+0x1d/0x20
[258270.527951] kernel_fpu_disable+0x3f/0x50
[258270.527953] __kernel_fpu_begin+0x49/0x100
[258270.527955] kernel_fpu_begin+0xe/0x10
[258270.527958] crc32c_pcl_intel_update+0x84/0xb0
[258270.527961] crypto_shash_update+0x3f/0x110
[258270.527968] crc32c+0x63/0x8a [libcrc32c]
[258270.527975] dm_bm_checksum+0x1b/0x20 [dm_persistent_data]
[258270.527978] node_prepare_for_write+0x44/0x70 [dm_persistent_data]
[258270.527985] dm_block_manager_write_callback+0x41/0x50 [dm_persistent_data]
[258270.527988] submit_io+0x170/0x1b0 [dm_bufio]
[258270.527992] __write_dirty_buffer+0x89/0x90 [dm_bufio]
[258270.527994] __make_buffer_clean+0x4f/0x80 [dm_bufio]
[258270.527996] __try_evict_buffer+0x42/0x60 [dm_bufio]
[258270.527998] dm_bufio_shrink_scan+0xc0/0x130 [dm_bufio]
[258270.528002] shrink_slab.part.40+0x1f5/0x420
[258270.528004] shrink_node+0x22c/0x320
[258270.528006] do_try_to_free_pages+0xf5/0x330
[258270.528008] try_to_free_pages+0xe9/0x190
[258270.528009] __alloc_pages_slowpath+0x40f/0xba0
[258270.528011] __alloc_pages_nodemask+0x209/0x260
[258270.528014] alloc_pages_vma+0x1f1/0x250
[258270.528017] do_huge_pmd_anonymous_page+0x123/0x660
[258270.528021] handle_mm_fault+0xfd3/0x1330
[258270.528025] __get_user_pages+0x113/0x640
[258270.528027] get_user_pages+0x4f/0x60
[258270.528063] __gfn_to_pfn_memslot+0x120/0x3f0 [kvm]
[258270.528108] try_async_pf+0x66/0x230 [kvm]
[258270.528135] tdp_page_fault+0x130/0x280 [kvm]
[258270.528149] kvm_mmu_page_fault+0x60/0x120 [kvm]
[258270.528158] handle_ept_violation+0x91/0x170 [kvm_intel]
[258270.528162] vmx_handle_exit+0x1ca/0x1400 [kvm_intel]
No performance changes were detected in quick ping-pong tests on
my 4 socket system, which is expected since an FPU+xstate load is
on the order of 0.1us, while ping-ponging between CPUs is on the
order of 20us, and somewhat noisy.
Cc: stable@vger.kernel.org
Signed-off-by: Rik van Riel <riel@redhat.com>
Suggested-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
[Fixed a bug where reset_vcpu called put_fpu without preceding load_fpu,
which happened inside from KVM_CREATE_VCPU ioctl. - Radim]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>