Commit Graph

46 Commits

Author SHA1 Message Date
Daniel Vetter 810e24e009 mm/mmu_notifiers: annotate with might_sleep()
Since mmu notifiers don't exist for many processes, but could block in
interesting places, add some annotations. This should help make sure the
core mm keeps up its end of the mmu notifier contract.

The checks here are outside of all notifier checks because of that.
They compile away without CONFIG_DEBUG_ATOMIC_SLEEP.

Link: https://lore.kernel.org/r/20190826201425.17547-6-daniel.vetter@ffwll.ch
Suggested-by: Jason Gunthorpe <jgg@mellanox.com>
Signed-off-by: Daniel Vetter <daniel.vetter@intel.com>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-09-07 04:28:04 -03:00
Daniel Vetter 23b68395c7 mm/mmu_notifiers: add a lockdep map for invalidate_range_start/end
This is a similar idea to the fs_reclaim fake lockdep lock. It's fairly
easy to provoke a specific notifier to be run on a specific range: Just
prep it, and then munmap() it.

A bit harder, but still doable, is to provoke the mmu notifiers for all
the various callchains that might lead to them. But both at the same time
is really hard to reliably hit, especially when you want to exercise paths
like direct reclaim or compaction, where it's not easy to control what
exactly will be unmapped.

By introducing a lockdep map to tie them all together we allow lockdep to
see a lot more dependencies, without having to actually hit them in a
single challchain while testing.

On Jason's suggestion this is is rolled out for both
invalidate_range_start and invalidate_range_end. They both have the same
calling context, hence we can share the same lockdep map. Note that the
annotation for invalidate_ranage_start is outside of the
mm_has_notifiers(), to make sure lockdep is informed about all paths
leading to this context irrespective of whether mmu notifiers are present
for a given context. We don't do that on the invalidate_range_end side to
avoid paying the overhead twice, there the lockdep annotation is pushed
down behind the mm_has_notifiers() check.

Link: https://lore.kernel.org/r/20190826201425.17547-2-daniel.vetter@ffwll.ch
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Signed-off-by: Daniel Vetter <daniel.vetter@intel.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-09-07 04:27:42 -03:00
Jason Gunthorpe c96245148c mm/mmu_notifiers: remove unregister_no_release
mmu_notifier_unregister_no_release() and mmu_notifier_call_srcu() no
longer have any users, they have all been converted to use
mmu_notifier_put().

So delete this difficult to use interface.

Link: https://lore.kernel.org/r/20190806231548.25242-12-jgg@ziepe.ca
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-08-21 20:58:19 -03:00
Jason Gunthorpe 2c7933f53f mm/mmu_notifiers: add a get/put scheme for the registration
Many places in the kernel have a flow where userspace will create some
object and that object will need to connect to the subsystem's
mmu_notifier subscription for the duration of its lifetime.

In this case the subsystem is usually tracking multiple mm_structs and it
is difficult to keep track of what struct mmu_notifier's have been
allocated for what mm's.

Since this has been open coded in a variety of exciting ways, provide core
functionality to do this safely.

This approach uses the struct mmu_notifier_ops * as a key to determine if
the subsystem has a notifier registered on the mm or not. If there is a
registration then the existing notifier struct is returned, otherwise the
ops->alloc_notifiers() is used to create a new per-subsystem notifier for
the mm.

The destroy side incorporates an async call_srcu based destruction which
will avoid bugs in the callers such as commit 6d7c3cde93 ("mm/hmm: fix
use after free with struct hmm in the mmu notifiers").

Since we are inside the mmu notifier core locking is fairly simple, the
allocation uses the same approach as for mmu_notifier_mm, the write side
of the mmap_sem makes everything deterministic and we only need to do
hlist_add_head_rcu() under the mm_take_all_locks(). The new users count
and the discoverability in the hlist is fully serialized by the
mmu_notifier_mm->lock.

Link: https://lore.kernel.org/r/20190806231548.25242-4-jgg@ziepe.ca
Co-developed-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-08-16 12:02:52 -03:00
Jérôme Glisse c6d23413f8 mm/mmu_notifier: mmu_notifier_range_update_to_read_only() helper
Helper to test if a range is updated to read only (it is still valid to
read from the range).  This is useful for device driver or anyone who wish
to optimize out update when they know that they already have the range map
read only.

Link: http://lkml.kernel.org/r/20190326164747.24405-9-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Cc: Christian König <christian.koenig@amd.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Christian Koenig <christian.koenig@amd.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:49 -07:00
Jérôme Glisse bf198b2b34 mm/mmu_notifier: pass down vma and reasons why mmu notifier is happening
CPU page table update can happens for many reasons, not only as a result
of a syscall (munmap(), mprotect(), mremap(), madvise(), ...) but also as
a result of kernel activities (memory compression, reclaim, migration,
...).

Users of mmu notifier API track changes to the CPU page table and take
specific action for them.  While current API only provide range of virtual
address affected by the change, not why the changes is happening

This patch is just passing down the new informations by adding it to the
mmu_notifier_range structure.

Link: http://lkml.kernel.org/r/20190326164747.24405-8-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Cc: Christian König <christian.koenig@amd.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Christian Koenig <christian.koenig@amd.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:49 -07:00
Jérôme Glisse 6f4f13e8d9 mm/mmu_notifier: contextual information for event triggering invalidation
CPU page table update can happens for many reasons, not only as a result
of a syscall (munmap(), mprotect(), mremap(), madvise(), ...) but also as
a result of kernel activities (memory compression, reclaim, migration,
...).

Users of mmu notifier API track changes to the CPU page table and take
specific action for them.  While current API only provide range of virtual
address affected by the change, not why the changes is happening.

This patchset do the initial mechanical convertion of all the places that
calls mmu_notifier_range_init to also provide the default MMU_NOTIFY_UNMAP
event as well as the vma if it is know (most invalidation happens against
a given vma).  Passing down the vma allows the users of mmu notifier to
inspect the new vma page protection.

The MMU_NOTIFY_UNMAP is always the safe default as users of mmu notifier
should assume that every for the range is going away when that event
happens.  A latter patch do convert mm call path to use a more appropriate
events for each call.

This is done as 2 patches so that no call site is forgotten especialy
as it uses this following coccinelle patch:

%<----------------------------------------------------------------------
@@
identifier I1, I2, I3, I4;
@@
static inline void mmu_notifier_range_init(struct mmu_notifier_range *I1,
+enum mmu_notifier_event event,
+unsigned flags,
+struct vm_area_struct *vma,
struct mm_struct *I2, unsigned long I3, unsigned long I4) { ... }

@@
@@
-#define mmu_notifier_range_init(range, mm, start, end)
+#define mmu_notifier_range_init(range, event, flags, vma, mm, start, end)

@@
expression E1, E3, E4;
identifier I1;
@@
<...
mmu_notifier_range_init(E1,
+MMU_NOTIFY_UNMAP, 0, I1,
I1->vm_mm, E3, E4)
...>

@@
expression E1, E2, E3, E4;
identifier FN, VMA;
@@
FN(..., struct vm_area_struct *VMA, ...) {
<...
mmu_notifier_range_init(E1,
+MMU_NOTIFY_UNMAP, 0, VMA,
E2, E3, E4)
...> }

@@
expression E1, E2, E3, E4;
identifier FN, VMA;
@@
FN(...) {
struct vm_area_struct *VMA;
<...
mmu_notifier_range_init(E1,
+MMU_NOTIFY_UNMAP, 0, VMA,
E2, E3, E4)
...> }

@@
expression E1, E2, E3, E4;
identifier FN;
@@
FN(...) {
<...
mmu_notifier_range_init(E1,
+MMU_NOTIFY_UNMAP, 0, NULL,
E2, E3, E4)
...> }
---------------------------------------------------------------------->%

Applied with:
spatch --all-includes --sp-file mmu-notifier.spatch fs/proc/task_mmu.c --in-place
spatch --sp-file mmu-notifier.spatch --dir kernel/events/ --in-place
spatch --sp-file mmu-notifier.spatch --dir mm --in-place

Link: http://lkml.kernel.org/r/20190326164747.24405-6-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Cc: Christian König <christian.koenig@amd.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Christian Koenig <christian.koenig@amd.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:49 -07:00
Jérôme Glisse d87f055b94 mm/mmu_notifier: contextual information for event enums
CPU page table update can happens for many reasons, not only as a result
of a syscall (munmap(), mprotect(), mremap(), madvise(), ...) but also as
a result of kernel activities (memory compression, reclaim, migration,
...).

This patch introduce a set of enums that can be associated with each of
the events triggering a mmu notifier.  Latter patches take advantages of
those enum values.

    - UNMAP: munmap() or mremap()
    - CLEAR: page table is cleared (migration, compaction, reclaim, ...)
    - PROTECTION_VMA: change in access protections for the range
    - PROTECTION_PAGE: change in access protections for page in the range
    - SOFT_DIRTY: soft dirtyness tracking

Being able to identify munmap() and mremap() from other reasons why the
page table is cleared is important to allow user of mmu notifier to update
their own internal tracking structure accordingly (on munmap or mremap it
is not longer needed to track range of virtual address as it becomes
invalid).

Link: http://lkml.kernel.org/r/20190326164747.24405-5-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Cc: Christian König <christian.koenig@amd.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Christian Koenig <christian.koenig@amd.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:49 -07:00
Jérôme Glisse 27560ee96f mm/mmu_notifier: convert mmu_notifier_range->blockable to a flags
Use an unsigned field for flags other than blockable and convert the
blockable field to be one of those flags.

Link: http://lkml.kernel.org/r/20190326164747.24405-4-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Cc: Christian König <christian.koenig@amd.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Christian Koenig <christian.koenig@amd.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:49 -07:00
Jérôme Glisse 4a83bfe916 mm/mmu_notifier: helper to test if a range invalidation is blockable
Patch series "mmu notifier provide context informations", v6.

Here I am not posting users of this, they already have been posted to
appropriate mailing list [6] and will be merge through the appropriate
tree once this patchset is upstream.

Note that this serie does not change any behavior for any existing code.
It just pass down more information to mmu notifier listener.

The rationale for this patchset:

CPU page table update can happens for many reasons, not only as a result
of a syscall (munmap(), mprotect(), mremap(), madvise(), ...) but also as
a result of kernel activities (memory compression, reclaim, migration,
...).

This patchset introduce a set of enums that can be associated with each of
the events triggering a mmu notifier:

    - UNMAP: munmap() or mremap()
    - CLEAR: page table is cleared (migration, compaction, reclaim, ...)
    - PROTECTION_VMA: change in access protections for the range
    - PROTECTION_PAGE: change in access protections for page in the range
    - SOFT_DIRTY: soft dirtyness tracking

Being able to identify munmap() and mremap() from other reasons why the
page table is cleared is important to allow user of mmu notifier to update
their own internal tracking structure accordingly (on munmap or mremap it
is not longer needed to track range of virtual address as it becomes
invalid).  Without this serie, driver are force to assume that every
notification is an munmap which triggers useless trashing within drivers
that associate structure with range of virtual address.  Each driver is
force to free up its tracking structure and then restore it on next device
page fault.  With this series we can also optimize device page table update.  Patches to use this are at

https://lkml.org/lkml/2019/1/23/833
https://lkml.org/lkml/2019/1/23/834
https://lkml.org/lkml/2019/1/23/832
https://lkml.org/lkml/2019/1/23/831

Moreover this can also be used to optimize out some page table updates
such as for KVM where we can update the secondary MMU directly from the
callback instead of clearing it.

ACKS AMD/RADEON https://lkml.org/lkml/2019/2/1/395
ACKS RDMA https://lkml.org/lkml/2018/12/6/1473

This patch (of 8):

Simple helpers to test if range invalidation is blockable.  Latter patches
use cocinnelle to convert all direct dereference of range-> blockable to
use this function instead so that we can convert the blockable field to an
unsigned for more flags.

Link: http://lkml.kernel.org/r/20190326164747.24405-2-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Cc: Christian König <christian.koenig@amd.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Christian Koenig <christian.koenig@amd.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:49 -07:00
Jérôme Glisse ac46d4f3c4 mm/mmu_notifier: use structure for invalidate_range_start/end calls v2
To avoid having to change many call sites everytime we want to add a
parameter use a structure to group all parameters for the mmu_notifier
invalidate_range_start/end cakks.  No functional changes with this patch.

[akpm@linux-foundation.org: coding style fixes]
Link: http://lkml.kernel.org/r/20181205053628.3210-3-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Acked-by: Christian König <christian.koenig@amd.com>
Acked-by: Jan Kara <jack@suse.cz>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Felix Kuehling <felix.kuehling@amd.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
From: Jérôme Glisse <jglisse@redhat.com>
Subject: mm/mmu_notifier: use structure for invalidate_range_start/end calls v3

fix build warning in migrate.c when CONFIG_MMU_NOTIFIER=n

Link: http://lkml.kernel.org/r/20181213171330.8489-3-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 12:11:50 -08:00
Jérôme Glisse 5d6527a784 mm/mmu_notifier: use structure for invalidate_range_start/end callback
Patch series "mmu notifier contextual informations", v2.

This patchset adds contextual information, why an invalidation is
happening, to mmu notifier callback.  This is necessary for user of mmu
notifier that wish to maintains their own data structure without having to
add new fields to struct vm_area_struct (vma).

For instance device can have they own page table that mirror the process
address space.  When a vma is unmap (munmap() syscall) the device driver
can free the device page table for the range.

Today we do not have any information on why a mmu notifier call back is
happening and thus device driver have to assume that it is always an
munmap().  This is inefficient at it means that it needs to re-allocate
device page table on next page fault and rebuild the whole device driver
data structure for the range.

Other use case beside munmap() also exist, for instance it is pointless
for device driver to invalidate the device page table when the
invalidation is for the soft dirtyness tracking.  Or device driver can
optimize away mprotect() that change the page table permission access for
the range.

This patchset enables all this optimizations for device drivers.  I do not
include any of those in this series but another patchset I am posting will
leverage this.

The patchset is pretty simple from a code point of view.  The first two
patches consolidate all mmu notifier arguments into a struct so that it is
easier to add/change arguments.  The last patch adds the contextual
information (munmap, protection, soft dirty, clear, ...).

This patch (of 3):

To avoid having to change many callback definition everytime we want to
add a parameter use a structure to group all parameters for the
mmu_notifier invalidate_range_start/end callback.  No functional changes
with this patch.

[akpm@linux-foundation.org: fix drivers/gpu/drm/amd/amdgpu/amdgpu_mn.c kerneldoc]
Link: http://lkml.kernel.org/r/20181205053628.3210-2-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Acked-by: Jan Kara <jack@suse.cz>
Acked-by: Jason Gunthorpe <jgg@mellanox.com>	[infiniband]
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Christian Koenig <christian.koenig@amd.com>
Cc: Felix Kuehling <felix.kuehling@amd.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 12:11:50 -08:00
Sean Christopherson 6a90a83f1d mm/mmu_notifier.c: remove mmu_notifier_synchronize()
Contrary to its name, mmu_notifier_synchronize() does not synchronize the
notifier's SRCU instance, but rather waits for RCU callbacks to finish.
i.e.  it invokes rcu_barrier().  The RCU documentation is quite clear on
this matter, explicitly calling out that rcu_barrier() does not imply
synchronize_rcu().

As there are no callers of mmu_notifier_synchronize() and it's unclear
whether any user of mmu_notifier_call_srcu() will ever want to barrier on
their callbacks, simply remove the function.

Link: http://lkml.kernel.org/r/20181106134705.14197-1-sean.j.christopherson@intel.com
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 12:11:46 -08:00
Michal Hocko 4e15a073a1 Revert "mm, mmu_notifier: annotate mmu notifiers with blockable invalidate callbacks"
Revert 5ff7091f5a ("mm, mmu_notifier: annotate mmu notifiers with
blockable invalidate callbacks").

MMU_INVALIDATE_DOES_NOT_BLOCK flags was the only one used and it is no
longer needed since 93065ac753 ("mm, oom: distinguish blockable mode for
mmu notifiers").  We now have a full support for per range !blocking
behavior so we can drop the stop gap workaround which the per notifier
flag was used for.

Link: http://lkml.kernel.org/r/20180827112623.8992-4-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:25:19 -07:00
Michal Hocko 33490af3f5 mm, mmu_notifier: be explicit about range invalition non-blocking mode
If invalidate_range_start() is called for !blocking mode then all
callbacks have to guarantee they will no block/sleep.  The same obviously
applies to invalidate_range_end because this operation pairs with the
former and they are called from the same context.  Make sure this is
appropriately documented.

Link: http://lkml.kernel.org/r/20180827112623.8992-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Jerome Glisse <jglisse@redhat.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:25:19 -07:00
Michal Hocko 93065ac753 mm, oom: distinguish blockable mode for mmu notifiers
There are several blockable mmu notifiers which might sleep in
mmu_notifier_invalidate_range_start and that is a problem for the
oom_reaper because it needs to guarantee a forward progress so it cannot
depend on any sleepable locks.

Currently we simply back off and mark an oom victim with blockable mmu
notifiers as done after a short sleep.  That can result in selecting a new
oom victim prematurely because the previous one still hasn't torn its
memory down yet.

We can do much better though.  Even if mmu notifiers use sleepable locks
there is no reason to automatically assume those locks are held.  Moreover
majority of notifiers only care about a portion of the address space and
there is absolutely zero reason to fail when we are unmapping an unrelated
range.  Many notifiers do really block and wait for HW which is harder to
handle and we have to bail out though.

This patch handles the low hanging fruit.
__mmu_notifier_invalidate_range_start gets a blockable flag and callbacks
are not allowed to sleep if the flag is set to false.  This is achieved by
using trylock instead of the sleepable lock for most callbacks and
continue as long as we do not block down the call chain.

I think we can improve that even further because there is a common pattern
to do a range lookup first and then do something about that.  The first
part can be done without a sleeping lock in most cases AFAICS.

The oom_reaper end then simply retries if there is at least one notifier
which couldn't make any progress in !blockable mode.  A retry loop is
already implemented to wait for the mmap_sem and this is basically the
same thing.

The simplest way for driver developers to test this code path is to wrap
userspace code which uses these notifiers into a memcg and set the hard
limit to hit the oom.  This can be done e.g.  after the test faults in all
the mmu notifier managed memory and set the hard limit to something really
small.  Then we are looking for a proper process tear down.

[akpm@linux-foundation.org: coding style fixes]
[akpm@linux-foundation.org: minor code simplification]
Link: http://lkml.kernel.org/r/20180716115058.5559-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Christian König <christian.koenig@amd.com> # AMD notifiers
Acked-by: Leon Romanovsky <leonro@mellanox.com> # mlx and umem_odp
Reported-by: David Rientjes <rientjes@google.com>
Cc: "David (ChunMing) Zhou" <David1.Zhou@amd.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Alex Deucher <alexander.deucher@amd.com>
Cc: David Airlie <airlied@linux.ie>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Cc: Doug Ledford <dledford@redhat.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Mike Marciniszyn <mike.marciniszyn@intel.com>
Cc: Dennis Dalessandro <dennis.dalessandro@intel.com>
Cc: Sudeep Dutt <sudeep.dutt@intel.com>
Cc: Ashutosh Dixit <ashutosh.dixit@intel.com>
Cc: Dimitri Sivanich <sivanich@sgi.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: "Jérôme Glisse" <jglisse@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Felix Kuehling <felix.kuehling@amd.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-22 10:52:44 -07:00
Mike Rapoport ad56b738c5 docs/vm: rename documentation files to .rst
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
2018-04-16 14:18:15 -06:00
David Rientjes 5ff7091f5a mm, mmu_notifier: annotate mmu notifiers with blockable invalidate callbacks
Commit 4d4bbd8526 ("mm, oom_reaper: skip mm structs with mmu
notifiers") prevented the oom reaper from unmapping private anonymous
memory with the oom reaper when the oom victim mm had mmu notifiers
registered.

The rationale is that doing mmu_notifier_invalidate_range_{start,end}()
around the unmap_page_range(), which is needed, can block and the oom
killer will stall forever waiting for the victim to exit, which may not
be possible without reaping.

That concern is real, but only true for mmu notifiers that have
blockable invalidate_range_{start,end}() callbacks.  This patch adds a
"flags" field to mmu notifier ops that can set a bit to indicate that
these callbacks do not block.

The implementation is steered toward an expensive slowpath, such as
after the oom reaper has grabbed mm->mmap_sem of a still alive oom
victim.

[rientjes@google.com: mmu_notifier_invalidate_range_end() can also call the invalidate_range() must not block, fix comment]
  Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1801091339570.240101@chino.kir.corp.google.com
[akpm@linux-foundation.org: make mm_has_blockable_invalidate_notifiers() return bool, use rwsem_is_locked()]
Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1712141329500.74052@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Acked-by: Christian König <christian.koenig@amd.com>
Acked-by: Dimitri Sivanich <sivanich@hpe.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Oded Gabbay <oded.gabbay@gmail.com>
Cc: Alex Deucher <alexander.deucher@amd.com>
Cc: David Airlie <airlied@linux.ie>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Doug Ledford <dledford@redhat.com>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Mike Marciniszyn <mike.marciniszyn@intel.com>
Cc: Sean Hefty <sean.hefty@intel.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:38 -08:00
Jérôme Glisse 4645b9fe84 mm/mmu_notifier: avoid call to invalidate_range() in range_end()
This is an optimization patch that only affect mmu_notifier users which
rely on the invalidate_range() callback.  This patch avoids calling that
callback twice in a row from inside __mmu_notifier_invalidate_range_end

Existing pattern (before this patch):
    mmu_notifier_invalidate_range_start()
        pte/pmd/pud_clear_flush_notify()
            mmu_notifier_invalidate_range()
    mmu_notifier_invalidate_range_end()
        mmu_notifier_invalidate_range()

New pattern (after this patch):
    mmu_notifier_invalidate_range_start()
        pte/pmd/pud_clear_flush_notify()
            mmu_notifier_invalidate_range()
    mmu_notifier_invalidate_range_only_end()

We call the invalidate_range callback after clearing the page table
under the page table lock and we skip the call to invalidate_range
inside the __mmu_notifier_invalidate_range_end() function.

Idea from Andrea Arcangeli

Link: http://lkml.kernel.org/r/20171017031003.7481-3-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Alistair Popple <alistair@popple.id.au>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-15 18:21:03 -08:00
Jérôme Glisse 0f10851ea4 mm/mmu_notifier: avoid double notification when it is useless
This patch only affects users of mmu_notifier->invalidate_range callback
which are device drivers related to ATS/PASID, CAPI, IOMMUv2, SVM ...
and it is an optimization for those users.  Everyone else is unaffected
by it.

When clearing a pte/pmd we are given a choice to notify the event under
the page table lock (notify version of *_clear_flush helpers do call the
mmu_notifier_invalidate_range).  But that notification is not necessary
in all cases.

This patch removes almost all cases where it is useless to have a call
to mmu_notifier_invalidate_range before
mmu_notifier_invalidate_range_end.  It also adds documentation in all
those cases explaining why.

Below is a more in depth analysis of why this is fine to do this:

For secondary TLB (non CPU TLB) like IOMMU TLB or device TLB (when
device use thing like ATS/PASID to get the IOMMU to walk the CPU page
table to access a process virtual address space).  There is only 2 cases
when you need to notify those secondary TLB while holding page table
lock when clearing a pte/pmd:

  A) page backing address is free before mmu_notifier_invalidate_range_end
  B) a page table entry is updated to point to a new page (COW, write fault
     on zero page, __replace_page(), ...)

Case A is obvious you do not want to take the risk for the device to write
to a page that might now be used by something completely different.

Case B is more subtle. For correctness it requires the following sequence
to happen:
  - take page table lock
  - clear page table entry and notify (pmd/pte_huge_clear_flush_notify())
  - set page table entry to point to new page

If clearing the page table entry is not followed by a notify before setting
the new pte/pmd value then you can break memory model like C11 or C++11 for
the device.

Consider the following scenario (device use a feature similar to ATS/
PASID):

Two address addrA and addrB such that |addrA - addrB| >= PAGE_SIZE we
assume they are write protected for COW (other case of B apply too).

[Time N] -----------------------------------------------------------------
CPU-thread-0  {try to write to addrA}
CPU-thread-1  {try to write to addrB}
CPU-thread-2  {}
CPU-thread-3  {}
DEV-thread-0  {read addrA and populate device TLB}
DEV-thread-2  {read addrB and populate device TLB}
[Time N+1] ---------------------------------------------------------------
CPU-thread-0  {COW_step0: {mmu_notifier_invalidate_range_start(addrA)}}
CPU-thread-1  {COW_step0: {mmu_notifier_invalidate_range_start(addrB)}}
CPU-thread-2  {}
CPU-thread-3  {}
DEV-thread-0  {}
DEV-thread-2  {}
[Time N+2] ---------------------------------------------------------------
CPU-thread-0  {COW_step1: {update page table point to new page for addrA}}
CPU-thread-1  {COW_step1: {update page table point to new page for addrB}}
CPU-thread-2  {}
CPU-thread-3  {}
DEV-thread-0  {}
DEV-thread-2  {}
[Time N+3] ---------------------------------------------------------------
CPU-thread-0  {preempted}
CPU-thread-1  {preempted}
CPU-thread-2  {write to addrA which is a write to new page}
CPU-thread-3  {}
DEV-thread-0  {}
DEV-thread-2  {}
[Time N+3] ---------------------------------------------------------------
CPU-thread-0  {preempted}
CPU-thread-1  {preempted}
CPU-thread-2  {}
CPU-thread-3  {write to addrB which is a write to new page}
DEV-thread-0  {}
DEV-thread-2  {}
[Time N+4] ---------------------------------------------------------------
CPU-thread-0  {preempted}
CPU-thread-1  {COW_step3: {mmu_notifier_invalidate_range_end(addrB)}}
CPU-thread-2  {}
CPU-thread-3  {}
DEV-thread-0  {}
DEV-thread-2  {}
[Time N+5] ---------------------------------------------------------------
CPU-thread-0  {preempted}
CPU-thread-1  {}
CPU-thread-2  {}
CPU-thread-3  {}
DEV-thread-0  {read addrA from old page}
DEV-thread-2  {read addrB from new page}

So here because at time N+2 the clear page table entry was not pair with a
notification to invalidate the secondary TLB, the device see the new value
for addrB before seing the new value for addrA.  This break total memory
ordering for the device.

When changing a pte to write protect or to point to a new write protected
page with same content (KSM) it is ok to delay invalidate_range callback
to mmu_notifier_invalidate_range_end() outside the page table lock.  This
is true even if the thread doing page table update is preempted right
after releasing page table lock before calling
mmu_notifier_invalidate_range_end

Thanks to Andrea for thinking of a problematic scenario for COW.

[jglisse@redhat.com: v2]
  Link: http://lkml.kernel.org/r/20171017031003.7481-2-jglisse@redhat.com
Link: http://lkml.kernel.org/r/20170901173011.10745-1-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Alistair Popple <alistair@popple.id.au>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-15 18:21:03 -08:00
Greg Kroah-Hartman b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Michal Hocko 4d4bbd8526 mm, oom_reaper: skip mm structs with mmu notifiers
Andrea has noticed that the oom_reaper doesn't invalidate the range via
mmu notifiers (mmu_notifier_invalidate_range_start/end) and that can
corrupt the memory of the kvm guest for example.

tlb_flush_mmu_tlbonly already invokes mmu notifiers but that is not
sufficient as per Andrea:

 "mmu_notifier_invalidate_range cannot be used in replacement of
  mmu_notifier_invalidate_range_start/end. For KVM
  mmu_notifier_invalidate_range is a noop and rightfully so. A MMU
  notifier implementation has to implement either ->invalidate_range
  method or the invalidate_range_start/end methods, not both. And if you
  implement invalidate_range_start/end like KVM is forced to do, calling
  mmu_notifier_invalidate_range in common code is a noop for KVM.

  For those MMU notifiers that can get away only implementing
  ->invalidate_range, the ->invalidate_range is implicitly called by
  mmu_notifier_invalidate_range_end(). And only those secondary MMUs
  that share the same pagetable with the primary MMU (like AMD iommuv2)
  can get away only implementing ->invalidate_range"

As the callback is allowed to sleep and the implementation is out of
hand of the MM it is safer to simply bail out if there is an mmu
notifier registered.  In order to not fail too early make the
mm_has_notifiers check under the oom_lock and have a little nap before
failing to give the current oom victim some more time to exit.

[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/20170913113427.2291-1-mhocko@kernel.org
Fixes: aac4536355 ("mm, oom: introduce oom reaper")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-10-03 17:54:24 -07:00
Jérôme Glisse 5f32b26540 mm/mmu_notifier: kill invalidate_page
The invalidate_page callback suffered from two pitfalls.  First it used
to happen after the page table lock was release and thus a new page
might have setup before the call to invalidate_page() happened.

This is in a weird way fixed by commit c7ab0d2fdc ("mm: convert
try_to_unmap_one() to use page_vma_mapped_walk()") that moved the
callback under the page table lock but this also broke several existing
users of the mmu_notifier API that assumed they could sleep inside this
callback.

The second pitfall was invalidate_page() being the only callback not
taking a range of address in respect to invalidation but was giving an
address and a page.  Lots of the callback implementers assumed this
could never be THP and thus failed to invalidate the appropriate range
for THP.

By killing this callback we unify the mmu_notifier callback API to
always take a virtual address range as input.

Finally this also simplifies the end user life as there is now two clear
choices:
  - invalidate_range_start()/end() callback (which allow you to sleep)
  - invalidate_range() where you can not sleep but happen right after
    page table update under page table lock

Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Cc: Bernhard Held <berny156@gmx.de>
Cc: Adam Borowski <kilobyte@angband.pl>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Wanpeng Li <kernellwp@gmail.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Takashi Iwai <tiwai@suse.de>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: axie <axie@amd.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-31 16:13:00 -07:00
Kirill A. Shutemov c0c379e293 mm: drop unused pmdp_huge_get_and_clear_notify()
Dave noticed that after fixing MADV_DONTNEED vs numa balancing race the
last pmdp_huge_get_and_clear_notify() user is gone.

Let's drop the helper.

Link: http://lkml.kernel.org/r/20170306112047.24809-1-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-04-13 18:24:21 -07:00
Matthew Wilcox a00cc7d9dd mm, x86: add support for PUD-sized transparent hugepages
The current transparent hugepage code only supports PMDs.  This patch
adds support for transparent use of PUDs with DAX.  It does not include
support for anonymous pages.  x86 support code also added.

Most of this patch simply parallels the work that was done for huge
PMDs.  The only major difference is how the new ->pud_entry method in
mm_walk works.  The ->pmd_entry method replaces the ->pte_entry method,
whereas the ->pud_entry method works along with either ->pmd_entry or
->pte_entry.  The pagewalk code takes care of locking the PUD before
calling ->pud_walk, so handlers do not need to worry whether the PUD is
stable.

[dave.jiang@intel.com: fix SMP x86 32bit build for native_pud_clear()]
  Link: http://lkml.kernel.org/r/148719066814.31111.3239231168815337012.stgit@djiang5-desk3.ch.intel.com
[dave.jiang@intel.com: native_pud_clear missing on i386 build]
  Link: http://lkml.kernel.org/r/148640375195.69754.3315433724330910314.stgit@djiang5-desk3.ch.intel.com
Link: http://lkml.kernel.org/r/148545059381.17912.8602162635537598445.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Tested-by: Alexander Kapshuk <alexander.kapshuk@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jan Kara <jack@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-24 17:46:54 -08:00
Vladimir Davydov 33c3fc71c8 mm: introduce idle page tracking
Knowing the portion of memory that is not used by a certain application or
memory cgroup (idle memory) can be useful for partitioning the system
efficiently, e.g.  by setting memory cgroup limits appropriately.
Currently, the only means to estimate the amount of idle memory provided
by the kernel is /proc/PID/{clear_refs,smaps}: the user can clear the
access bit for all pages mapped to a particular process by writing 1 to
clear_refs, wait for some time, and then count smaps:Referenced.  However,
this method has two serious shortcomings:

 - it does not count unmapped file pages
 - it affects the reclaimer logic

To overcome these drawbacks, this patch introduces two new page flags,
Idle and Young, and a new sysfs file, /sys/kernel/mm/page_idle/bitmap.
A page's Idle flag can only be set from userspace by setting bit in
/sys/kernel/mm/page_idle/bitmap at the offset corresponding to the page,
and it is cleared whenever the page is accessed either through page tables
(it is cleared in page_referenced() in this case) or using the read(2)
system call (mark_page_accessed()). Thus by setting the Idle flag for
pages of a particular workload, which can be found e.g.  by reading
/proc/PID/pagemap, waiting for some time to let the workload access its
working set, and then reading the bitmap file, one can estimate the amount
of pages that are not used by the workload.

The Young page flag is used to avoid interference with the memory
reclaimer.  A page's Young flag is set whenever the Access bit of a page
table entry pointing to the page is cleared by writing to the bitmap file.
If page_referenced() is called on a Young page, it will add 1 to its
return value, therefore concealing the fact that the Access bit was
cleared.

Note, since there is no room for extra page flags on 32 bit, this feature
uses extended page flags when compiled on 32 bit.

[akpm@linux-foundation.org: fix build]
[akpm@linux-foundation.org: kpageidle requires an MMU]
[akpm@linux-foundation.org: decouple from page-flags rework]
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Reviewed-by: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-10 13:29:01 -07:00
Vladimir Davydov 1d7715c676 mmu-notifier: add clear_young callback
In the scope of the idle memory tracking feature, which is introduced by
the following patch, we need to clear the referenced/accessed bit not only
in primary, but also in secondary ptes.  The latter is required in order
to estimate wss of KVM VMs.  At the same time we want to avoid flushing
tlb, because it is quite expensive and it won't really affect the final
result.

Currently, there is no function for clearing pte young bit that would meet
our requirements, so this patch introduces one.  To achieve that we have
to add a new mmu-notifier callback, clear_young, since there is no method
for testing-and-clearing a secondary pte w/o flushing tlb.  The new method
is not mandatory and currently only implemented by KVM.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Reviewed-by: Andres Lagar-Cavilla <andreslc@google.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-10 13:29:01 -07:00
Aneesh Kumar K.V 8809aa2d28 mm: clarify that the function operates on hugepage pte
We have confusing functions to clear pmd, pmd_clear_* and pmd_clear.  Add
_huge_ to pmdp_clear functions so that we are clear that they operate on
hugepage pte.

We don't bother about other functions like pmdp_set_wrprotect,
pmdp_clear_flush_young, because they operate on PTE bits and hence
indicate they are operating on hugepage ptes

Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-24 17:49:44 -07:00
Linus Torvalds 988adfdffd Merge branch 'drm-next' of git://people.freedesktop.org/~airlied/linux
Pull drm updates from Dave Airlie:
 "Highlights:

   - AMD KFD driver merge

     This is the AMD HSA interface for exposing a lowlevel interface for
     GPGPU use.  They have an open source userspace built on top of this
     interface, and the code looks as good as it was going to get out of
     tree.

   - Initial atomic modesetting work

     The need for an atomic modesetting interface to allow userspace to
     try and send a complete set of modesetting state to the driver has
     arisen, and been suffering from neglect this past year.  No more,
     the start of the common code and changes for msm driver to use it
     are in this tree.  Ongoing work to get the userspace ioctl finished
     and the code clean will probably wait until next kernel.

   - DisplayID 1.3 and tiled monitor exposed to userspace.

     Tiled monitor property is now exposed for userspace to make use of.

   - Rockchip drm driver merged.

   - imx gpu driver moved out of staging

  Other stuff:

   - core:
        panel - MIPI DSI + new panels.
        expose suggested x/y properties for virtual GPUs

   - i915:
        Initial Skylake (SKL) support
        gen3/4 reset work
        start of dri1/ums removal
        infoframe tracking
        fixes for lots of things.

   - nouveau:
        tegra k1 voltage support
        GM204 modesetting support
        GT21x memory reclocking work

   - radeon:
        CI dpm fixes
        GPUVM improvements
        Initial DPM fan control

   - rcar-du:
        HDMI support added
        removed some support for old boards
        slave encoder driver for Analog Devices adv7511

   - exynos:
        Exynos4415 SoC support

   - msm:
        a4xx gpu support
        atomic helper conversion

   - tegra:
        iommu support
        universal plane support
        ganged-mode DSI support

   - sti:
        HDMI i2c improvements

   - vmwgfx:
        some late fixes.

   - qxl:
        use suggested x/y properties"

* 'drm-next' of git://people.freedesktop.org/~airlied/linux: (969 commits)
  drm: sti: fix module compilation issue
  drm/i915: save/restore GMBUS freq across suspend/resume on gen4
  drm: sti: correctly cleanup CRTC and planes
  drm: sti: add HQVDP plane
  drm: sti: add cursor plane
  drm: sti: enable auxiliary CRTC
  drm: sti: fix delay in VTG programming
  drm: sti: prepare sti_tvout to support auxiliary crtc
  drm: sti: use drm_crtc_vblank_{on/off} instead of drm_vblank_{on/off}
  drm: sti: fix hdmi avi infoframe
  drm: sti: remove event lock while disabling vblank
  drm: sti: simplify gdp code
  drm: sti: clear all mixer control
  drm: sti: remove gpio for HDMI hot plug detection
  drm: sti: allow to change hdmi ddc i2c adapter
  drm/doc: Document drm_add_modes_noedid() usage
  drm/i915: Remove '& 0xffff' from the mask given to WA_REG()
  drm/i915: Invert the mask and val arguments in wa_add() and WA_REG()
  drm: Zero out DRM object memory upon cleanup
  drm/i915/bdw: Fix the write setting up the WIZ hashing mode
  ...
2014-12-15 15:52:01 -08:00
Davidlohr Bueso c8c06efa8b mm: convert i_mmap_mutex to rwsem
The i_mmap_mutex is a close cousin of the anon vma lock, both protecting
similar data, one for file backed pages and the other for anon memory.  To
this end, this lock can also be a rwsem.  In addition, there are some
important opportunities to share the lock when there are no tree
modifications.

This conversion is straightforward.  For now, all users take the write
lock.

[sfr@canb.auug.org.au: update fremap.c]
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: "Kirill A. Shutemov" <kirill@shutemov.name>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 12:42:45 -08:00
Andres Lagar-Cavilla 5712846808 kvm: Fix page ageing bugs
1. We were calling clear_flush_young_notify in unmap_one, but we are
within an mmu notifier invalidate range scope. The spte exists no more
(due to range_start) and the accessed bit info has already been
propagated (due to kvm_pfn_set_accessed). Simply call
clear_flush_young.

2. We clear_flush_young on a primary MMU PMD, but this may be mapped
as a collection of PTEs by the secondary MMU (e.g. during log-dirty).
This required expanding the interface of the clear_flush_young mmu
notifier, so a lot of code has been trivially touched.

3. In the absence of shadow_accessed_mask (e.g. EPT A bit), we emulate
the access bit by blowing the spte. This requires proper synchronizing
with MMU notifier consumers, like every other removal of spte's does.

Signed-off-by: Andres Lagar-Cavilla <andreslc@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-09-24 14:07:58 +02:00
Peter Zijlstra b972216e27 mmu_notifier: add call_srcu and sync function for listener to delay call and sync
When kernel device drivers or subsystems want to bind their lifespan to
t= he lifespan of the mm_struct, they usually use one of the following
methods:

1. Manually calling a function in the interested kernel module.  The
   funct= ion call needs to be placed in mmput.  This method was rejected
   by several ker= nel maintainers.

2. Registering to the mmu notifier release mechanism.

The problem with the latter approach is that the mmu_notifier_release
cal= lback is called from__mmu_notifier_release (called from exit_mmap).
That functi= on iterates over the list of mmu notifiers and don't expect
the release call= back function to remove itself from the list.
Therefore, the callback function= in the kernel module can't release the
mmu_notifier_object, which is actuall= y the kernel module's object
itself.  As a result, the destruction of the kernel module's object must
to be done in a delayed fashion.

This patch adds support for this delayed callback, by adding a new
mmu_notifier_call_srcu function that receives a function ptr and calls
th= at function with call_srcu.  In that function, the kernel module
releases its object.  To use mmu_notifier_call_srcu, the calling module
needs to call b= efore that a new function called
mmu_notifier_unregister_no_release that as its= name implies,
unregisters a notifier without calling its notifier release call= back.

This patch also adds a function that will call barrier_srcu so those
kern= el modules can sync with mmu_notifier.

Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: Oded Gabbay <oded.gabbay@amd.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06 18:01:22 -07:00
Joerg Roedel 0f0a327fa1 mmu_notifier: add the callback for mmu_notifier_invalidate_range()
Now that the mmu_notifier_invalidate_range() calls are in place, add the
callback to allow subsystems to register against it.

Signed-off-by: Joerg Roedel <jroedel@suse.de>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Jérôme Glisse <jglisse@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Rik van Riel <riel@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Jay Cornwall <Jay.Cornwall@amd.com>
Cc: Oded Gabbay <Oded.Gabbay@amd.com>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Jesse Barnes <jbarnes@virtuousgeek.org>
Cc: David Woodhouse <dwmw2@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Oded Gabbay <oded.gabbay@amd.com>
2014-11-13 13:46:09 +11:00
Joerg Roedel 34ee645e83 mmu_notifier: call mmu_notifier_invalidate_range() from VMM
Add calls to the new mmu_notifier_invalidate_range() function to all
places in the VMM that need it.

Signed-off-by: Joerg Roedel <jroedel@suse.de>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Jérôme Glisse <jglisse@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Rik van Riel <riel@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Jay Cornwall <Jay.Cornwall@amd.com>
Cc: Oded Gabbay <Oded.Gabbay@amd.com>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Jesse Barnes <jbarnes@virtuousgeek.org>
Cc: David Woodhouse <dwmw2@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Oded Gabbay <oded.gabbay@amd.com>
2014-11-13 13:46:09 +11:00
Joerg Roedel 1897bdc4d3 mmu_notifier: add mmu_notifier_invalidate_range()
This notifier closes an important gap in the current mmu_notifier
implementation, the existing callbacks are called too early or too late to
reliably manage a non-CPU TLB.  Specifically, invalidate_range_start() is
called when all pages are still mapped and invalidate_range_end() when all
pages are unmapped and potentially freed.

This is fine when the users of the mmu_notifiers manage their own SoftTLB,
like KVM does.  When the TLB is managed in software it is easy to wipe out
entries for a given range and prevent new entries to be established until
invalidate_range_end is called.

But when the user of mmu_notifiers has to manage a hardware TLB it can
still wipe out TLB entries in invalidate_range_start, but it can't make
sure that no new TLB entries in the given range are established between
invalidate_range_start and invalidate_range_end.

To avoid silent data corruption the entries in the non-CPU TLB need to be
flushed when the pages are unmapped (at this point in time no _new_ TLB
entries can be established in the non-CPU TLB) but not yet freed (as the
non-CPU TLB may still have _existing_ entries pointing to the pages about
to be freed).

To fix this problem we need to catch the moment when the Linux VMM flushes
remote TLBs (as a non-CPU TLB is not very CPU TLB), as this is the point
in time when the pages are unmapped but _not_ yet freed.

The mmu_notifier_invalidate_range() function aims to catch that moment.

IOMMU code will be one user of the notifier-callback.  Currently this is
only the AMD IOMMUv2 driver, but its code is about to be more generalized
and converted to a generic IOMMU-API extension to fit the needs of similar
functionality in other IOMMUs as well.

The current attempt in the AMD IOMMUv2 driver to work around the
invalidate_range_start/end() shortcoming is to assign an empty page table
to the non-CPU TLB between any invalidata_range_start/end calls.  With the
empty page-table assigned, every page-table walk to re-fill the non-CPU
TLB will cause a page-fault reported to the IOMMU driver via an interrupt,
possibly causing interrupt storms.

The page-fault handler in the AMD IOMMUv2 driver doesn't handle the fault
if an invalidate_range_start/end pair is active, it just reports back
SUCCESS to the device and let it refault the page.  But existing hardware
(newer Radeon GPUs) that makes use of this feature don't re-fault
indefinitly, after a certain number of faults for the same address the
device enters a failure state and needs to be resetted.

To avoid the GPUs entering a failure state we need to get rid of the
empty-page-table workaround and use the mmu_notifier_invalidate_range()
function introduced with this patch.

Signed-off-by: Joerg Roedel <jroedel@suse.de>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Jérôme Glisse <jglisse@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Rik van Riel <riel@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Jay Cornwall <Jay.Cornwall@amd.com>
Cc: Oded Gabbay <Oded.Gabbay@amd.com>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Jesse Barnes <jbarnes@virtuousgeek.org>
Cc: David Woodhouse <dwmw2@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Oded Gabbay <oded.gabbay@amd.com>
2014-11-13 13:46:09 +11:00
Yuanhan Liu 631b0cfdbd mm: fix wrong comments about anon_vma lock
We use rwsem since commit 5a505085f0 ("mm/rmap: Convert the struct
anon_vma::mutex to an rwsem").  And most of comments are converted to
the new rwsem lock; while just 2 more missed from:

	 $ git grep 'anon_vma->mutex'

Signed-off-by: Yuanhan Liu <yuanhan.liu@linux.intel.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-05 20:38:48 +11:00
Sagi Grimberg 2ec74c3ef2 mm: move all mmu notifier invocations to be done outside the PT lock
In order to allow sleeping during mmu notifier calls, we need to avoid
invoking them under the page table spinlock.  This patch solves the
problem by calling invalidate_page notification after releasing the lock
(but before freeing the page itself), or by wrapping the page invalidation
with calls to invalidate_range_begin and invalidate_range_end.

To prevent accidental changes to the invalidate_range_end arguments after
the call to invalidate_range_begin, the patch introduces a convention of
saving the arguments in consistently named locals:

	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;	/* For mmu_notifiers */

	...

	mmun_start = ...
	mmun_end = ...
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);

	...

	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);

The patch changes code to use this convention for all calls to
mmu_notifier_invalidate_range_start/end, except those where the calls are
close enough so that anyone who glances at the code can see the values
aren't changing.

This patchset is a preliminary step towards on-demand paging design to be
added to the RDMA stack.

Why do we want on-demand paging for Infiniband?

  Applications register memory with an RDMA adapter using system calls,
  and subsequently post IO operations that refer to the corresponding
  virtual addresses directly to HW.  Until now, this was achieved by
  pinning the memory during the registration calls.  The goal of on demand
  paging is to avoid pinning the pages of registered memory regions (MRs).
   This will allow users the same flexibility they get when swapping any
  other part of their processes address spaces.  Instead of requiring the
  entire MR to fit in physical memory, we can allow the MR to be larger,
  and only fit the current working set in physical memory.

Why should anyone care?  What problems are users currently experiencing?

  This can make programming with RDMA much simpler.  Today, developers
  that are working with more data than their RAM can hold need either to
  deregister and reregister memory regions throughout their process's
  life, or keep a single memory region and copy the data to it.  On demand
  paging will allow these developers to register a single MR at the
  beginning of their process's life, and let the operating system manage
  which pages needs to be fetched at a given time.  In the future, we
  might be able to provide a single memory access key for each process
  that would provide the entire process's address as one large memory
  region, and the developers wouldn't need to register memory regions at
  all.

Is there any prospect that any other subsystems will utilise these
infrastructural changes?  If so, which and how, etc?

  As for other subsystems, I understand that XPMEM wanted to sleep in
  MMU notifiers, as Christoph Lameter wrote at
  http://lkml.indiana.edu/hypermail/linux/kernel/0802.1/0460.html and
  perhaps Andrea knows about other use cases.

  Scheduling in mmu notifications is required since we need to sync the
  hardware with the secondary page tables change.  A TLB flush of an IO
  device is inherently slower than a CPU TLB flush, so our design works by
  sending the invalidation request to the device, and waiting for an
  interrupt before exiting the mmu notifier handler.

Avi said:

  kvm may be a buyer.  kvm::mmu_lock, which serializes guest page
  faults, also protects long operations such as destroying large ranges.
  It would be good to convert it into a spinlock, but as it is used inside
  mmu notifiers, this cannot be done.

  (there are alternatives, such as keeping the spinlock and using a
  generation counter to do the teardown in O(1), which is what the "may"
  is doing up there).

[akpm@linux-foundation.orgpossible speed tweak in hugetlb_cow(), cleanups]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Sagi Grimberg <sagig@mellanox.com>
Signed-off-by: Haggai Eran <haggaie@mellanox.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Cc: Or Gerlitz <ogerlitz@mellanox.com>
Cc: Haggai Eran <haggaie@mellanox.com>
Cc: Shachar Raindel <raindel@mellanox.com>
Cc: Liran Liss <liranl@mellanox.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Avi Kivity <avi@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 16:22:58 +09:00
Sagi Grimberg 21a92735f6 mm: mmu_notifier: have mmu_notifiers use a global SRCU so they may safely schedule
With an RCU based mmu_notifier implementation, any callout to
mmu_notifier_invalidate_range_{start,end}() or
mmu_notifier_invalidate_page() would not be allowed to call schedule()
as that could potentially allow a modification to the mmu_notifier
structure while it is currently being used.

Since srcu allocs 4 machine words per instance per cpu, we may end up
with memory exhaustion if we use srcu per mm.  So all mms share a global
srcu.  Note that during large mmu_notifier activity exit & unregister
paths might hang for longer periods, but it is tolerable for current
mmu_notifier clients.

Signed-off-by: Sagi Grimberg <sagig@mellanox.co.il>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Haggai Eran <haggaie@mellanox.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 16:22:23 +09:00
Xiao Guangrong 48af0d7cb3 mm: mmu_notifier: fix inconsistent memory between secondary MMU and host
There is a bug in set_pte_at_notify() which always sets the pte to the
new page before releasing the old page in the secondary MMU.  At this
time, the process will access on the new page, but the secondary MMU
still access on the old page, the memory is inconsistent between them

The below scenario shows the bug more clearly:

at the beginning: *p = 0, and p is write-protected by KSM or shared with
parent process

CPU 0                                       CPU 1
write 1 to p to trigger COW,
set_pte_at_notify will be called:
  *pte = new_page + W; /* The W bit of pte is set */

                                     *p = 1; /* pte is valid, so no #PF */

                                     return back to secondary MMU, then
                                     the secondary MMU read p, but get:
                                     *p == 0;

                         /*
                          * !!!!!!
                          * the host has already set p to 1, but the secondary
                          * MMU still get the old value 0
                          */

  call mmu_notifier_change_pte to release
  old page in secondary MMU

We can fix it by release old page first, then set the pte to the new
page.

Note, the new page will be firstly used in secondary MMU before it is
mapped into the page table of the process, but this is safe because it
is protected by the page table lock, there is no race to change the pte

[akpm@linux-foundation.org: add comment from Andrea]
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 16:22:22 +09:00
Peter Zijlstra 2b575eb64f mm: convert anon_vma->lock to a mutex
Straightforward conversion of anon_vma->lock to a mutex.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Hugh Dickins <hughd@google.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Miller <davem@davemloft.net>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Tony Luck <tony.luck@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Namhyung Kim <namhyung@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-05-25 08:39:19 -07:00
Peter Zijlstra 3d48ae45e7 mm: Convert i_mmap_lock to a mutex
Straightforward conversion of i_mmap_lock to a mutex.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Miller <davem@davemloft.net>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Tony Luck <tony.luck@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Namhyung Kim <namhyung@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-05-25 08:39:18 -07:00
Andrea Arcangeli 8ee53820ed thp: mmu_notifier_test_young
For GRU and EPT, we need gup-fast to set referenced bit too (this is why
it's correct to return 0 when shadow_access_mask is zero, it requires
gup-fast to set the referenced bit).  qemu-kvm access already sets the
young bit in the pte if it isn't zero-copy, if it's zero copy or a shadow
paging EPT minor fault we relay on gup-fast to signal the page is in
use...

We also need to check the young bits on the secondary pagetables for NPT
and not nested shadow mmu as the data may never get accessed again by the
primary pte.

Without this closer accuracy, we'd have to remove the heuristic that
avoids collapsing hugepages in hugepage virtual regions that have not even
a single subpage in use.

->test_young is full backwards compatible with GRU and other usages that
don't have young bits in pagetables set by the hardware and that should
nuke the secondary mmu mappings when ->clear_flush_young runs just like
EPT does.

Removing the heuristic that checks the young bit in
khugepaged/collapse_huge_page completely isn't so bad either probably but
I thought it was worth it and this makes it reliable.

Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:46 -08:00
Andrea Arcangeli 91a4ee2670 thp: add pmd mmu_notifier helpers
Add mmu notifier helpers to handle pmd huge operations.

Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:41 -08:00
Figo.zhang e732ff7077 mmu_notifier.h: fix comment spelling
Signed-off-by: Figo.zhang <figo1802@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-28 09:02:15 -07:00
Izik Eidus 828502d300 ksm: add mmu_notifier set_pte_at_notify()
KSM is a linux driver that allows dynamicly sharing identical memory pages
between one or more processes.

Unlike tradtional page sharing that is made at the allocation of the
memory, ksm do it dynamicly after the memory was created.  Memory is
periodically scanned; identical pages are identified and merged.

The sharing is made in a transparent way to the processes that use it.

Ksm is highly important for hypervisors (kvm), where in production
enviorments there might be many copys of the same data data among the host
memory.  This kind of data can be: similar kernels, librarys, cache, and
so on.

Even that ksm was wrote for kvm, any userspace application that want to
use it to share its data can try it.

Ksm may be useful for any application that might have similar (page
aligment) data strctures among the memory, ksm will find this data merge
it to one copy, and even if it will be changed and thereforew copy on
writed, ksm will merge it again as soon as it will be identical again.

Another reason to consider using ksm is the fact that it might simplify
alot the userspace code of application that want to use shared private
data, instead that the application will mange shared area, ksm will do
this for the application, and even write to this data will be allowed
without any synchinization acts from the application.

Ksm was designed to be a loadable module that doesn't change the VM code
of linux.

This patch:

The set_pte_at_notify() macro allows setting a pte in the shadow page
table directly, instead of flushing the shadow page table entry and then
getting vmexit to set it.  It uses a new change_pte() callback to do so.

set_pte_at_notify() is an optimization for kvm, and other users of
mmu_notifiers, for COW pages.  It is useful for kvm when ksm is used,
because it allows kvm not to have to receive vmexit and only then map the
ksm page into the shadow page table, but instead map it directly at the
same time as Linux maps the page into the host page table.

Users of mmu_notifiers who don't implement new mmu_notifier_change_pte()
callback will just receive the mmu_notifier_invalidate_page() callback.

Signed-off-by: Izik Eidus <ieidus@redhat.com>
Signed-off-by: Chris Wright <chrisw@redhat.com>
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 07:17:31 -07:00
Andrea Arcangeli cddb8a5c14 mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
 There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte".  In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present).  The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.

Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set.  Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).

The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space.  Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.

To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page.  Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0.  This is just an example.

This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).

At least for KVM without this patch it's impossible to swap guests
reliably.  And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.

Dependencies:

1) mm_take_all_locks() to register the mmu notifier when the whole VM
   isn't doing anything with "mm".  This allows mmu notifier users to keep
   track if the VM is in the middle of the invalidate_range_begin/end
   critical section with an atomic counter incraese in range_begin and
   decreased in range_end.  No secondary MMU page fault is allowed to map
   any spte or secondary tlb reference, while the VM is in the middle of
   range_begin/end as any page returned by get_user_pages in that critical
   section could later immediately be freed without any further
   ->invalidate_page notification (invalidate_range_begin/end works on
   ranges and ->invalidate_page isn't called immediately before freeing
   the page).  To stop all page freeing and pagetable overwrites the
   mmap_sem must be taken in write mode and all other anon_vma/i_mmap
   locks must be taken too.

2) It'd be a waste to add branches in the VM if nobody could possibly
   run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
   CONFIG_KVM=m/y.  In the current kernel kvm won't yet take advantage of
   mmu notifiers, but this already allows to compile a KVM external module
   against a kernel with mmu notifiers enabled and from the next pull from
   kvm.git we'll start using them.  And GRU/XPMEM will also be able to
   continue the development by enabling KVM=m in their config, until they
   submit all GRU/XPMEM GPLv2 code to the mainline kernel.  Then they can
   also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
   This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
   are all =n.

The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR.  Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled.  Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.

 struct  kvm *kvm_arch_create_vm(void)
 {
        struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+       int err;

        if (!kvm)
                return ERR_PTR(-ENOMEM);

        INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);

+       kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+       err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+       if (err) {
+               kfree(kvm);
+               return ERR_PTR(err);
+       }
+
        return kvm;
 }

mmu_notifier_unregister returns void and it's reliable.

The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).

[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-28 16:30:21 -07:00