Quite some non OF/ACPI users of irqdomains allocate firmware nodes of type
IRQCHIP_FWNODE_NAMED or IRQCHIP_FWNODE_NAMED_ID and free them right after
creating the irqdomain. The only purpose of these FW nodes is to convey
name information. When this was introduced the core code did not store the
pointer to the node in the irqdomain. A recent change stored the firmware
node pointer in irqdomain for other reasons and missed to notice that the
usage sites which do the alloc_fwnode/create_domain/free_fwnode sequence
are broken by this. Storing a dangling pointer is dangerous itself, but in
case that the domain is destroyed later on this leads to a double free.
Remove the freeing of the firmware node after creating the irqdomain from
all affected call sites to cure this.
Fixes: 711419e504 ("irqdomain: Add the missing assignment of domain->fwnode for named fwnode")
Reported-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/873661qakd.fsf@nanos.tec.linutronix.de
This all started about 6 month ago with the attempt to move the Posix CPU
timer heavy lifting out of the timer interrupt code and just have lockless
quick checks in that code path. Trivial 5 patches.
This unearthed an inconsistency in the KVM handling of task work and the
review requested to move all of this into generic code so other
architectures can share.
Valid request and solved with another 25 patches but those unearthed
inconsistencies vs. RCU and instrumentation.
Digging into this made it obvious that there are quite some inconsistencies
vs. instrumentation in general. The int3 text poke handling in particular
was completely unprotected and with the batched update of trace events even
more likely to expose to endless int3 recursion.
In parallel the RCU implications of instrumenting fragile entry code came
up in several discussions.
The conclusion of the X86 maintainer team was to go all the way and make
the protection against any form of instrumentation of fragile and dangerous
code pathes enforcable and verifiable by tooling.
A first batch of preparatory work hit mainline with commit d5f744f9a2.
The (almost) full solution introduced a new code section '.noinstr.text'
into which all code which needs to be protected from instrumentation of all
sorts goes into. Any call into instrumentable code out of this section has
to be annotated. objtool has support to validate this. Kprobes now excludes
this section fully which also prevents BPF from fiddling with it and all
'noinstr' annotated functions also keep ftrace off. The section, kprobes
and objtool changes are already merged.
The major changes coming with this are:
- Preparatory cleanups
- Annotating of relevant functions to move them into the noinstr.text
section or enforcing inlining by marking them __always_inline so the
compiler cannot misplace or instrument them.
- Splitting and simplifying the idtentry macro maze so that it is now
clearly separated into simple exception entries and the more
interesting ones which use interrupt stacks and have the paranoid
handling vs. CR3 and GS.
- Move quite some of the low level ASM functionality into C code:
- enter_from and exit to user space handling. The ASM code now calls
into C after doing the really necessary ASM handling and the return
path goes back out without bells and whistels in ASM.
- exception entry/exit got the equivivalent treatment
- move all IRQ tracepoints from ASM to C so they can be placed as
appropriate which is especially important for the int3 recursion
issue.
- Consolidate the declaration and definition of entry points between 32
and 64 bit. They share a common header and macros now.
- Remove the extra device interrupt entry maze and just use the regular
exception entry code.
- All ASM entry points except NMI are now generated from the shared header
file and the corresponding macros in the 32 and 64 bit entry ASM.
- The C code entry points are consolidated as well with the help of
DEFINE_IDTENTRY*() macros. This allows to ensure at one central point
that all corresponding entry points share the same semantics. The
actual function body for most entry points is in an instrumentable
and sane state.
There are special macros for the more sensitive entry points,
e.g. INT3 and of course the nasty paranoid #NMI, #MCE, #DB and #DF.
They allow to put the whole entry instrumentation and RCU handling
into safe places instead of the previous pray that it is correct
approach.
- The INT3 text poke handling is now completely isolated and the
recursion issue banned. Aside of the entry rework this required other
isolation work, e.g. the ability to force inline bsearch.
- Prevent #DB on fragile entry code, entry relevant memory and disable
it on NMI, #MC entry, which allowed to get rid of the nested #DB IST
stack shifting hackery.
- A few other cleanups and enhancements which have been made possible
through this and already merged changes, e.g. consolidating and
further restricting the IDT code so the IDT table becomes RO after
init which removes yet another popular attack vector
- About 680 lines of ASM maze are gone.
There are a few open issues:
- An escape out of the noinstr section in the MCE handler which needs
some more thought but under the aspect that MCE is a complete
trainwreck by design and the propability to survive it is low, this was
not high on the priority list.
- Paravirtualization
When PV is enabled then objtool complains about a bunch of indirect
calls out of the noinstr section. There are a few straight forward
ways to fix this, but the other issues vs. general correctness were
more pressing than parawitz.
- KVM
KVM is inconsistent as well. Patches have been posted, but they have
not yet been commented on or picked up by the KVM folks.
- IDLE
Pretty much the same problems can be found in the low level idle code
especially the parts where RCU stopped watching. This was beyond the
scope of the more obvious and exposable problems and is on the todo
list.
The lesson learned from this brain melting exercise to morph the evolved
code base into something which can be validated and understood is that once
again the violation of the most important engineering principle
"correctness first" has caused quite a few people to spend valuable time on
problems which could have been avoided in the first place. The "features
first" tinkering mindset really has to stop.
With that I want to say thanks to everyone involved in contributing to this
effort. Special thanks go to the following people (alphabetical order):
Alexandre Chartre
Andy Lutomirski
Borislav Petkov
Brian Gerst
Frederic Weisbecker
Josh Poimboeuf
Juergen Gross
Lai Jiangshan
Macro Elver
Paolo Bonzini
Paul McKenney
Peter Zijlstra
Vitaly Kuznetsov
Will Deacon
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl7j510THHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoU2WD/4refvaNm08fG7aiVYem3JJzr0+Pq5O
/opwnI/1D973ApApj5W/Nd53sN5tVqOiXncSKgywRBWZxRCAGjVYypl9rjpvXu4l
HlMjhEKBmWkDryxxrM98Vr7hl3hnId5laR56oFfH+G4LUsItaV6Uak/HfXZ4Mq1k
iYVbEtl2CN+KJjvSgZ6Y1l853Ab5mmGvmeGNHHWCj8ZyjF3cOLoelDTQNnsb0wXM
crKXBcXJSsCWKYyJ5PTvB82crQCET7Su+LgwK06w/ZbW1//2hVIjSCiN5o/V+aRJ
06BZNMj8v9tfglkN8LEQvRIjTlnEQ2sq3GxbrVtA53zxkzbBCBJQ96w8yYzQX0ux
yhqQ/aIZJ1wTYEjJzSkftwLNMRHpaOUnKvJndXRKAYi+eGI7syF61qcZSYGKuAQ/
bK3b/CzU6QWr1235oTADxh4isEwxA0Pg5wtJCfDDOG0MJ9ALMSOGUkhoiz5EqpkU
mzFAwfG/Uj7hRjlkms7Yj2OjZfnU7iypj63GgpXghLjr5ksRFKEOMw8e1GXltVHs
zzwghUjqp2EPq0VOOQn3lp9lol5Prc3xfFHczKpO+CJW6Rpa4YVdqJmejBqJy/on
Hh/T/ST3wa2qBeAw89vZIeWiUJZZCsQ0f//+2hAbzJY45Y6DuR9vbTAPb9agRgOM
xg+YaCfpQqFc1A==
=llba
-----END PGP SIGNATURE-----
Merge tag 'x86-entry-2020-06-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 entry updates from Thomas Gleixner:
"The x86 entry, exception and interrupt code rework
This all started about 6 month ago with the attempt to move the Posix
CPU timer heavy lifting out of the timer interrupt code and just have
lockless quick checks in that code path. Trivial 5 patches.
This unearthed an inconsistency in the KVM handling of task work and
the review requested to move all of this into generic code so other
architectures can share.
Valid request and solved with another 25 patches but those unearthed
inconsistencies vs. RCU and instrumentation.
Digging into this made it obvious that there are quite some
inconsistencies vs. instrumentation in general. The int3 text poke
handling in particular was completely unprotected and with the batched
update of trace events even more likely to expose to endless int3
recursion.
In parallel the RCU implications of instrumenting fragile entry code
came up in several discussions.
The conclusion of the x86 maintainer team was to go all the way and
make the protection against any form of instrumentation of fragile and
dangerous code pathes enforcable and verifiable by tooling.
A first batch of preparatory work hit mainline with commit
d5f744f9a2 ("Pull x86 entry code updates from Thomas Gleixner")
That (almost) full solution introduced a new code section
'.noinstr.text' into which all code which needs to be protected from
instrumentation of all sorts goes into. Any call into instrumentable
code out of this section has to be annotated. objtool has support to
validate this.
Kprobes now excludes this section fully which also prevents BPF from
fiddling with it and all 'noinstr' annotated functions also keep
ftrace off. The section, kprobes and objtool changes are already
merged.
The major changes coming with this are:
- Preparatory cleanups
- Annotating of relevant functions to move them into the
noinstr.text section or enforcing inlining by marking them
__always_inline so the compiler cannot misplace or instrument
them.
- Splitting and simplifying the idtentry macro maze so that it is
now clearly separated into simple exception entries and the more
interesting ones which use interrupt stacks and have the paranoid
handling vs. CR3 and GS.
- Move quite some of the low level ASM functionality into C code:
- enter_from and exit to user space handling. The ASM code now
calls into C after doing the really necessary ASM handling and
the return path goes back out without bells and whistels in
ASM.
- exception entry/exit got the equivivalent treatment
- move all IRQ tracepoints from ASM to C so they can be placed as
appropriate which is especially important for the int3
recursion issue.
- Consolidate the declaration and definition of entry points between
32 and 64 bit. They share a common header and macros now.
- Remove the extra device interrupt entry maze and just use the
regular exception entry code.
- All ASM entry points except NMI are now generated from the shared
header file and the corresponding macros in the 32 and 64 bit
entry ASM.
- The C code entry points are consolidated as well with the help of
DEFINE_IDTENTRY*() macros. This allows to ensure at one central
point that all corresponding entry points share the same
semantics. The actual function body for most entry points is in an
instrumentable and sane state.
There are special macros for the more sensitive entry points, e.g.
INT3 and of course the nasty paranoid #NMI, #MCE, #DB and #DF.
They allow to put the whole entry instrumentation and RCU handling
into safe places instead of the previous pray that it is correct
approach.
- The INT3 text poke handling is now completely isolated and the
recursion issue banned. Aside of the entry rework this required
other isolation work, e.g. the ability to force inline bsearch.
- Prevent #DB on fragile entry code, entry relevant memory and
disable it on NMI, #MC entry, which allowed to get rid of the
nested #DB IST stack shifting hackery.
- A few other cleanups and enhancements which have been made
possible through this and already merged changes, e.g.
consolidating and further restricting the IDT code so the IDT
table becomes RO after init which removes yet another popular
attack vector
- About 680 lines of ASM maze are gone.
There are a few open issues:
- An escape out of the noinstr section in the MCE handler which needs
some more thought but under the aspect that MCE is a complete
trainwreck by design and the propability to survive it is low, this
was not high on the priority list.
- Paravirtualization
When PV is enabled then objtool complains about a bunch of indirect
calls out of the noinstr section. There are a few straight forward
ways to fix this, but the other issues vs. general correctness were
more pressing than parawitz.
- KVM
KVM is inconsistent as well. Patches have been posted, but they
have not yet been commented on or picked up by the KVM folks.
- IDLE
Pretty much the same problems can be found in the low level idle
code especially the parts where RCU stopped watching. This was
beyond the scope of the more obvious and exposable problems and is
on the todo list.
The lesson learned from this brain melting exercise to morph the
evolved code base into something which can be validated and understood
is that once again the violation of the most important engineering
principle "correctness first" has caused quite a few people to spend
valuable time on problems which could have been avoided in the first
place. The "features first" tinkering mindset really has to stop.
With that I want to say thanks to everyone involved in contributing to
this effort. Special thanks go to the following people (alphabetical
order): Alexandre Chartre, Andy Lutomirski, Borislav Petkov, Brian
Gerst, Frederic Weisbecker, Josh Poimboeuf, Juergen Gross, Lai
Jiangshan, Macro Elver, Paolo Bonzin,i Paul McKenney, Peter Zijlstra,
Vitaly Kuznetsov, and Will Deacon"
* tag 'x86-entry-2020-06-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (142 commits)
x86/entry: Force rcu_irq_enter() when in idle task
x86/entry: Make NMI use IDTENTRY_RAW
x86/entry: Treat BUG/WARN as NMI-like entries
x86/entry: Unbreak __irqentry_text_start/end magic
x86/entry: __always_inline CR2 for noinstr
lockdep: __always_inline more for noinstr
x86/entry: Re-order #DB handler to avoid *SAN instrumentation
x86/entry: __always_inline arch_atomic_* for noinstr
x86/entry: __always_inline irqflags for noinstr
x86/entry: __always_inline debugreg for noinstr
x86/idt: Consolidate idt functionality
x86/idt: Cleanup trap_init()
x86/idt: Use proper constants for table size
x86/idt: Add comments about early #PF handling
x86/idt: Mark init only functions __init
x86/entry: Rename trace_hardirqs_off_prepare()
x86/entry: Clarify irq_{enter,exit}_rcu()
x86/entry: Remove DBn stacks
x86/entry: Remove debug IDT frobbing
x86/entry: Optimize local_db_save() for virt
...
- Unbreak paravirt VDSO clocks. While the VDSO code was moved into lib
for sharing a subtle check for the validity of paravirt clocks got
replaced. While the replacement works perfectly fine for bare metal as
the update of the VDSO clock mode is synchronous, it fails for paravirt
clocks because the hypervisor can invalidate them asynchronous. Bring
it back as an optional function so it does not inflict this on
architectures which are free of PV damage.
- Fix the jiffies to jiffies64 mapping on 64bit so it does not trigger
an ODR violation on newer compilers
- Three fixes for the SSBD and *IB* speculation mitigation maze to ensure
consistency, not disabling of some *IB* variants wrongly and to prevent
a rogue cross process shutdown of SSBD. All marked for stable.
- Add yet more CPU models to the splitlock detection capable list !@#%$!
- Bring the pr_info() back which tells that TSC deadline timer is enabled.
- Reboot quirk for MacBook6,1
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl7ie1oTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYofXrEACDD0mNBU2c4vQiR+n4d41PqW1p15DM
/wG7dYqYt2RdR6qOAspmNL5ilUP+L+eoT/86U9y0g4j3FtTREqyy6mpWE4MQzqaQ
eKWVoeYt7l9QbR1kP4eks1CN94OyVBUPo3P78UPruWMB11iyKjyrkEdsDmRSLOdr
6doqMFGHgowrQRwsLPFUt7b2lls6ssOSYgM/ChHi2Iga431ZuYYcRe2mNVsvqx3n
0N7QZlJ/LivXdCmdpe3viMBsDaomiXAloKUo+HqgrCLYFXefLtfOq09U7FpddYqH
ztxbGW/7gFn2HEbmdeaiufux263MdHtnjvdPhQZKHuyQmZzzxDNBFgOILSrBJb5y
qLYJGhMa0sEwMBM9MMItomNgZnOITQ3WGYAdSCg3mG3jK4EXzr6aQm/Qz5SI+Cte
bQKB2dgR53Gw/1uc7F5qMGQ2NzeUbKycT0ZbF3vkUPVh1kdU3juIntsovv2lFeBe
Rog/rZliT1xdHrGAHRbubb2/3v66CSodMoYz0eQtr241Oz0LGwnyFqLN3qcZVLDt
OtxHQ3bbaxevDEetJXfSh3CfHKNYMToAcszmGDse3MJxC7DL5AA51OegMa/GYOX6
r5J99MUsEzZQoQYyXFf1MjwgxH4CQK1xBBUXYaVG65AcmhT21YbNWnCbxgf7hW+V
hqaaUSig4V3NLw==
=VlBk
-----END PGP SIGNATURE-----
Merge tag 'x86-urgent-2020-06-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull more x86 updates from Thomas Gleixner:
"A set of fixes and updates for x86:
- Unbreak paravirt VDSO clocks.
While the VDSO code was moved into lib for sharing a subtle check
for the validity of paravirt clocks got replaced. While the
replacement works perfectly fine for bare metal as the update of
the VDSO clock mode is synchronous, it fails for paravirt clocks
because the hypervisor can invalidate them asynchronously.
Bring it back as an optional function so it does not inflict this
on architectures which are free of PV damage.
- Fix the jiffies to jiffies64 mapping on 64bit so it does not
trigger an ODR violation on newer compilers
- Three fixes for the SSBD and *IB* speculation mitigation maze to
ensure consistency, not disabling of some *IB* variants wrongly and
to prevent a rogue cross process shutdown of SSBD. All marked for
stable.
- Add yet more CPU models to the splitlock detection capable list
!@#%$!
- Bring the pr_info() back which tells that TSC deadline timer is
enabled.
- Reboot quirk for MacBook6,1"
* tag 'x86-urgent-2020-06-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/vdso: Unbreak paravirt VDSO clocks
lib/vdso: Provide sanity check for cycles (again)
clocksource: Remove obsolete ifdef
x86_64: Fix jiffies ODR violation
x86/speculation: PR_SPEC_FORCE_DISABLE enforcement for indirect branches.
x86/speculation: Prevent rogue cross-process SSBD shutdown
x86/speculation: Avoid force-disabling IBPB based on STIBP and enhanced IBRS.
x86/cpu: Add Sapphire Rapids CPU model number
x86/split_lock: Add Icelake microserver and Tigerlake CPU models
x86/apic: Make TSC deadline timer detection message visible
x86/reboot/quirks: Add MacBook6,1 reboot quirk
Convert SMP system vectors to IDTENTRY_SYSVEC:
- Implement the C entry point with DEFINE_IDTENTRY_SYSVEC
- Emit the ASM stub with DECLARE_IDTENTRY_SYSVEC
- Remove the ASM idtentries in 64-bit
- Remove the BUILD_INTERRUPT entries in 32-bit
- Remove the old prototypes
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20200521202119.372234635@linutronix.de
Convert APIC interrupts to IDTENTRY_SYSVEC:
- Implement the C entry point with DEFINE_IDTENTRY_SYSVEC
- Emit the ASM stub with DECLARE_IDTENTRY_SYSVEC
- Remove the ASM idtentries in 64-bit
- Remove the BUILD_INTERRUPT entries in 32-bit
- Remove the old prototypes
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20200521202119.280728850@linutronix.de
Replace the extra interrupt handling code and reuse the existing idtentry
machinery. This moves the irq stack switching on 64-bit from ASM to C code;
32-bit already does the stack switching in C.
This requires to remove HAVE_IRQ_EXIT_ON_IRQ_STACK as the stack switch is
not longer in the low level entry code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20200521202119.078690991@linutronix.de
Device interrupts which go through do_IRQ() or the spurious interrupt
handler have their separate entry code on 64 bit for no good reason.
Both 32 and 64 bit transport the vector number through ORIG_[RE]AX in
pt_regs. Further the vector number is forced to fit into an u8 and is
complemented and offset by 0x80 so it's in the signed character
range. Otherwise GAS would expand the pushq to a 5 byte instruction for any
vector > 0x7F.
Treat the vector number like an error code and hand it to the C function as
argument. This allows to get rid of the extra entry code in a later step.
Simplify the error code push magic by implementing the pushq imm8 via a
'.byte 0x6a, vector' sequence so GAS is not able to screw it up. As the
pushq imm8 is sign extending the resulting error code needs to be truncated
to 8 bits in C code.
Originally-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20200521202118.796915981@linutronix.de
The replacement of <asm/pgrable.h> with <linux/pgtable.h> made the include
of the latter in the middle of asm includes. Fix this up with the aid of
the below script and manual adjustments here and there.
import sys
import re
if len(sys.argv) is not 3:
print "USAGE: %s <file> <header>" % (sys.argv[0])
sys.exit(1)
hdr_to_move="#include <linux/%s>" % sys.argv[2]
moved = False
in_hdrs = False
with open(sys.argv[1], "r") as f:
lines = f.readlines()
for _line in lines:
line = _line.rstrip('
')
if line == hdr_to_move:
continue
if line.startswith("#include <linux/"):
in_hdrs = True
elif not moved and in_hdrs:
moved = True
print hdr_to_move
print line
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Cain <bcain@codeaurora.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ley Foon Tan <ley.foon.tan@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Nick Hu <nickhu@andestech.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vincent Chen <deanbo422@gmail.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/20200514170327.31389-4-rppt@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The include/linux/pgtable.h is going to be the home of generic page table
manipulation functions.
Start with moving asm-generic/pgtable.h to include/linux/pgtable.h and
make the latter include asm/pgtable.h.
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Cain <bcain@codeaurora.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ley Foon Tan <ley.foon.tan@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Nick Hu <nickhu@andestech.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vincent Chen <deanbo422@gmail.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/20200514170327.31389-3-rppt@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
it removes unnecessary functions and cleans up the rest.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAl7VNO4RHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1i61RAAogLRVi4ga4vmTk5SqUqtR4pupbHJv5IM
IjkQN0HZ3+Oi6kRxwuOQ9xOOzQWm8GntkZeyN5FA73H7x+bYdU12MIKKTEDcW3xp
Mg9FtzfeL0V4YmNkmlnIXycyYA3nBdSxnI/OL/58J9CLT15qXYkWjyvkbI2aJ3qL
U8xM5cTTvhoARjd43o0eAfekTg0XdUAsgvO0vOM5+I1HrQP8SR3ZIFaMSR+MfAQx
Nbz/UVUSDJ8BNzmS/CfFLFm0F2dkphlLC0r6eAOFZAYSIax0bRVklxV9qdScEQMK
bkVKXGanCzVTBVM1HXDycLJaILlqcS18tK+VqNIAR5x2BXmaSG8jqwCW4NM0tcaN
c5zemNsqnAH/VzxeFjE2BcDQnA1nkgj75Vm9O81HMQfyqR16M5pBzRXY/qBqslya
vX5wLoD962BiVtbELqW6v+Ot29xMYlCLLlTbLHaWQraJS3TjuAvL0/sOFdWgs63F
N7a+BLvikfYoKCS8IxW87BFBysy9nhv/4UwdaX5RpIQ1wgx/EJLDaowrM+L6Dzmw
bhQ3AgRZGNZCBDm3uGU/LigTTxN93h5KqKnuUKv3H+tNvEKxPKEAqPyvL8fO8G0U
BTJiM/XRIzQrkrmwCKqON1iKRjKB2fKklxiq4REIoSqKfeiQ3SVBIHENFnH96Ekf
G9qptwFEZYI=
=L8Vy
-----END PGP SIGNATURE-----
Merge tag 'x86-platform-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 platform updates from Ingo Molnar:
"This tree cleans up various aspects of the UV platform support code,
it removes unnecessary functions and cleans up the rest"
* tag 'x86-platform-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/apic/uv: Remove code for unused distributed GRU mode
x86/platform/uv: Remove the unused _uv_cpu_blade_processor_id() macro
x86/platform/uv: Unexport uv_apicid_hibits
x86/platform/uv: Remove _uv_hub_info_check()
x86/platform/uv: Simplify uv_send_IPI_one()
x86/platform/uv: Mark uv_min_hub_revision_id static
x86/platform/uv: Mark is_uv_hubless() static
x86/platform/uv: Remove the UV*_HUB_IS_SUPPORTED macros
x86/platform/uv: Unexport symbols only used by x2apic_uv_x.c
x86/platform/uv: Unexport sn_coherency_id
x86/platform/uv: Remove the uv_partition_coherence_id() macro
x86/platform/uv: Mark uv_bios_call() and uv_bios_call_irqsave() static
- Extend the x86 family/model macros with a steppings dimension,
because x86 life isn't complex enough and Intel uses steppings to
differentiate between different CPUs. :-/
- Convert the TSC deadline timer quirks to the steppings macros.
- Clean up asm mnemonics.
- Fix the handling of an AMD erratum, or in other words, fix a kernel erratum.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAl7VL2wRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1hxYQ//dic//qQ+4GOL1wP1Qj8EiGOzaWdynoia
oDi7Si1I9vy58iCCRgkQKmxEwfnHcM5+NC6/091S4BD2IE6o+iD1YhPsGZK8DT4Y
FmeD8pgtx5LMJFMBe6KRyek1s0JblP6v0Q0BwUk7YtV6k0oSP+f/2n5BGj2+P7YH
3Iw438M5JhIrzVp3PnCgJoZkSm9iRnZqbBtR8nd2SO+vx8M75cX27LL6fdaCypRj
wH9w6+J2NhAZStmEv54LKOdO5RAPJjvatbTZFMEFdceAGFEbHPJIees7paoC+DTP
3BuhzF/9ghDNKly6Zz3PtyNNDP1vglZ1W9dJkCfTXUWlZKbQV94Yk+JbP5mndxqn
+f3eD/dInofHiCeAh1Sfj3BCGdOSjgFMBB57CKkCy4LehXwJ9C2eBcbxd4XMfEkd
h0EywZrp1L10AxDHtq5x82xf1fwfTDyvlYmJrBshXfiitaySn+mPVJMuj3wvqJSP
WKbJS4HfkekIaf9WoUA+Ay6FJdY7nNirViRrQEZVmDPTV0EDfcaNM5p6Ttkja3Ph
VoVa8Ms8FRqTfh6xCfckYR+vI44U+AFNLM6YFyetGYc0yVXNzg3vLy2DbqLRolWy
t1upDdNf1TMJg4BaMrBzZgDg/uI2BM3jeOj69U0cboO2JhJjxjl3qPeiYDKD50MK
Z1Nho933894=
=QKjn
-----END PGP SIGNATURE-----
Merge tag 'x86-cpu-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cpu updates from Ingo Molnar:
"Misc updates:
- Extend the x86 family/model macros with a steppings dimension,
because x86 life isn't complex enough and Intel uses steppings to
differentiate between different CPUs. :-/
- Convert the TSC deadline timer quirks to the steppings macros.
- Clean up asm mnemonics.
- Fix the handling of an AMD erratum, or in other words, fix a kernel
erratum"
* tag 'x86-cpu-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/cpu: Use RDRAND and RDSEED mnemonics in archrandom.h
x86/cpu: Use INVPCID mnemonic in invpcid.h
x86/cpu/amd: Make erratum #1054 a legacy erratum
x86/apic: Convert the TSC deadline timer matching to steppings macro
x86/cpu: Add a X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS() macro
x86/cpu: Add a steppings field to struct x86_cpu_id
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAl7VLcQRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1iFnhAArGBqco3C2RPQugv7UDDbKEaMvxOGrc5B
kwnyOS/k/yeIkfhT9u11oBuLcaj/Zgw8YCjFyRfaNsorRqnytLyZzZ6PvdCCE3YU
X3DVYgulcdAQnM4bS2e3Kt9ciJvFxB27XNm0AfuyLMUxMqCD+iIO4gJ6TuQNBYy3
dfUMfB1R9OUDW13GCrASe+p1Dw76uaqVngdFWJhnC8Rm49E6gFXq7CLQp5Cka81I
KZeJ8I6ug9p3gqhOIXdi+S6g5CM5jf86Wkk7dOHwHFH7CceFb3FIz7z0n1je4Wgd
L5rYX7+PwfNeZ73GIuvEBN+agJH2K0H/KmnlWNWeZHzc+J12MeruSdSMBIkBOEpn
iSbYAOmDpQLzBjTdZjC8bDqTZf472WrTh4VwN9NxHLucjdC+IqGoTAvnyyEOmZ5o
R7sv7Q++316CVwRhYVXbzwZcqtiinCDE1EkP5nKTo9z3z0kMF5+ce/k7wn5sgZIk
zJq3LXtaToiDoDRAPGxcvFPts9MdC0EI1aKTIjaK/n6i2h/SpJfrTKgANWaldYTe
XJIqlSB43saqf5YAQ3/sY+wnpCRBmmCU+sfKja4C8bH7RuggI3mZS19uhFs0Qctq
Yx5bIXVSBAIqjJtgzQ0WAAZ5LrCpNNyAzb35ZYefQlGyJlx1URKXVBmxa6S99biU
KiYX7Dk5uhQ=
=0ZQd
-----END PGP SIGNATURE-----
Merge tag 'x86-cleanups-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cleanups from Ingo Molnar:
"Misc cleanups, with an emphasis on removing obsolete/dead code"
* tag 'x86-cleanups-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/spinlock: Remove obsolete ticket spinlock macros and types
x86/mm: Drop deprecated DISCONTIGMEM support for 32-bit
x86/apb_timer: Drop unused declaration and macro
x86/apb_timer: Drop unused TSC calibration
x86/io_apic: Remove unused function mp_init_irq_at_boot()
x86/mm: Stop printing BRK addresses
x86/audit: Fix a -Wmissing-prototypes warning for ia32_classify_syscall()
x86/nmi: Remove edac.h include leftover
mm: Remove MPX leftovers
x86/mm/mmap: Fix -Wmissing-prototypes warnings
x86/early_printk: Remove unused includes
crash_dump: Remove no longer used saved_max_pfn
x86/smpboot: Remove the last ICPU() macro
The commit
c84cb3735f ("x86/apic: Move TSC deadline timer debug printk")
removed the message which said that the deadline timer was enabled.
It added a pr_debug() message which is issued when deadline timer
validation succeeds.
Well, issued only when CONFIG_DYNAMIC_DEBUG is enabled - otherwise
pr_debug() calls get optimized away if DEBUG is not defined in the
compilation unit.
Therefore, make the above message pr_info() so that it is visible in
dmesg.
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200525104218.27018-1-bp@alien8.de
Distributed GRU mode appeared in only one generation of UV hardware,
and no version of the BIOS has shipped with this feature enabled, and
we have no plans to ever change that. The gru.s3.mode check has
always been and will continue to be false. So remove this dead code.
Signed-off-by: Steve Wahl <steve.wahl@hpe.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Dimitri Sivanich <sivanich@hpe.com>
Link: https://lkml.kernel.org/r/20200513221123.GJ3240@raspberrypi
Neither this functions nor the helpers used to implement it are used
anywhere in the kernel tree.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Not-acked-by: Dimitri Sivanich <sivanich@hpe.com>
Cc: Russ Anderson <rja@hpe.com>
Link: https://lkml.kernel.org/r/20200504171527.2845224-10-hch@lst.de
Merge two helpers only used by uv_send_IPI_one() into the main function.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Not-acked-by: Dimitri Sivanich <sivanich@hpe.com>
Cc: Russ Anderson <rja@hpe.com>
Link: https://lkml.kernel.org/r/20200504171527.2845224-9-hch@lst.de
This variable is only used inside x2apic_uv_x and not even declared
in a header.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Not-acked-by: Dimitri Sivanich <sivanich@hpe.com>
Cc: Russ Anderson <rja@hpe.com>
Link: https://lkml.kernel.org/r/20200504171527.2845224-8-hch@lst.de
is_uv_hubless() is only used in x2apic_uv_x.c.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Not-acked-by: Dimitri Sivanich <sivanich@hpe.com>
Cc: Russ Anderson <rja@hpe.com>
Link: https://lkml.kernel.org/r/20200504171527.2845224-7-hch@lst.de
... and get rid of the function pointers which would spit out the
microcode revision based on the CPU stepping.
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Mark Gross <mgross.linux.intel.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200506071516.25445-4-bp@alien8.de
Leon reported that the printk_once() in __setup_APIC_LVTT() triggers a
lockdep splat due to a lock order violation between hrtimer_base::lock and
console_sem, when the 'once' condition is reset via
/sys/kernel/debug/clear_warn_once after boot.
The initial printk cannot trigger this because that happens during boot
when the local APIC timer is set up on the boot CPU.
Prevent it by moving the printk to a place which is guaranteed to be only
called once during boot.
Mark the deadline timer check related functions and data __init while at
it.
Reported-by: Leon Romanovsky <leon@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/87y2qhoshi.fsf@nanos.tec.linutronix.de
Treewide:
- Cleanup of setup_irq() which is not longer required because the
memory allocator is available early. Most cleanup changes come
through the various maintainer trees, so the final removal of
setup_irq() is postponed towards the end of the merge window.
Core:
- Protection against unsafe invocation of interrupt handlers and unsafe
interrupt injection including a fixup of the offending PCI/AER error
injection mechanism.
Invoking interrupt handlers from arbitrary contexts, i.e. outside of
an actual interrupt, can cause inconsistent state on the fragile
x86 interrupt affinity changing hardware trainwreck.
Drivers:
- Second wave of support for the new ARM GICv4.1
- Multi-instance support for Xilinx and PLIC interrupt controllers
- CPU-Hotplug support for PLIC
- The obligatory new driver for X1000 TCU
- Enhancements, cleanups and fixes all over the place
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl6B888THHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoeMJD/9v8GcI/DSY87Fmo7s4odLFVU0J8zZ6
7QlYjSPm4yWv4pqn1TEnEF2pKz5X9Euhoh8BmdMKtdXBqlS4Ix9N+pH8ModcxyQo
aX97zuRUxvqfeeVE+yQRwbbMREj9jj9RW8FRtA39+l5H3uC1GDcc+2aAMIaykQ7+
8lo/6wBd8ZrZ0gsNf4KjlBwMDYAlQSRWxrff38PQ2XRpGKowdp8JFYZuq5Vp0ljJ
r2cE75ldmFSfmtuhhVroBRY0GAqW4/8v8/syAN3Q9jOEII60qhA0dqR085B9veWa
DHSqgLmzyUFFXN7Ntzt/fDirJVsIM4BE9qGu3ftCYHMaPB8hG+xqjbZe9E3D2e/d
+0Pb3TG8EHVOIwzv1t9+6462qYGkBhmBXtbj6GptPYk2Ai4HZlNaSsa8jUNyHvGz
WDegdRjt7O5RjqDH/VwrQxW/AEp05f/1egweBXbq9aF6j9nqeOur75c/PdxZxAX5
WUMtouXP2WN+sMW8k1T5cmVMGWxLGBB0wwG4LC/mXzHnkDiN1+2wEUHmhS8Voi3q
3HXeYBJeukUYbVvMKRvWVAD330TxFjAyd6pPwCdoNY2ZngJnQWlDD9vbYYX2osoW
kP+KhIANNBVqdK7NqlLoqcr3SdHn01pQYuVHejNzxb7E6/mmpMlaYDJc/rMPi/eM
0/rzl8fAj/WyBQ==
=DZ/G
-----END PGP SIGNATURE-----
Merge tag 'irq-core-2020-03-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull irq updates from Thomas Gleixner:
"Updates for the interrupt subsystem:
Treewide:
- Cleanup of setup_irq() which is not longer required because the
memory allocator is available early.
Most cleanup changes come through the various maintainer trees, so
the final removal of setup_irq() is postponed towards the end of
the merge window.
Core:
- Protection against unsafe invocation of interrupt handlers and
unsafe interrupt injection including a fixup of the offending
PCI/AER error injection mechanism.
Invoking interrupt handlers from arbitrary contexts, i.e. outside
of an actual interrupt, can cause inconsistent state on the
fragile x86 interrupt affinity changing hardware trainwreck.
Drivers:
- Second wave of support for the new ARM GICv4.1
- Multi-instance support for Xilinx and PLIC interrupt controllers
- CPU-Hotplug support for PLIC
- The obligatory new driver for X1000 TCU
- Enhancements, cleanups and fixes all over the place"
* tag 'irq-core-2020-03-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (58 commits)
unicore32: Replace setup_irq() by request_irq()
sh: Replace setup_irq() by request_irq()
hexagon: Replace setup_irq() by request_irq()
c6x: Replace setup_irq() by request_irq()
alpha: Replace setup_irq() by request_irq()
irqchip/gic-v4.1: Eagerly vmap vPEs
irqchip/gic-v4.1: Add VSGI property setup
irqchip/gic-v4.1: Add VSGI allocation/teardown
irqchip/gic-v4.1: Move doorbell management to the GICv4 abstraction layer
irqchip/gic-v4.1: Plumb set_vcpu_affinity SGI callbacks
irqchip/gic-v4.1: Plumb get/set_irqchip_state SGI callbacks
irqchip/gic-v4.1: Plumb mask/unmask SGI callbacks
irqchip/gic-v4.1: Add initial SGI configuration
irqchip/gic-v4.1: Plumb skeletal VSGI irqchip
irqchip/stm32: Retrigger both in eoi and unmask callbacks
irqchip/gic-v3: Move irq_domain_update_bus_token to after checking for NULL domain
irqchip/xilinx: Do not call irq_set_default_host()
irqchip/xilinx: Enable generic irq multi handler
irqchip/xilinx: Fill error code when irq domain registration fails
irqchip/xilinx: Add support for multiple instances
...
The new macro set has a consistent namespace and uses C99 initializers
instead of the grufty C89 ones.
Get rid the of the local macro wrappers for consistency.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Link: https://lkml.kernel.org/r/20200320131509.250559388@linutronix.de
The vector management code assumes that managed interrupts cannot be
migrated away from an online CPU. free_moved_vector() has a WARN_ON_ONCE()
which triggers when a managed interrupt vector association on a online CPU
is cleared. The CPU offline code uses a different mechanism which cannot
trigger this.
This assumption is not longer correct because the new CPU isolation feature
which affects the placement of managed interrupts must be able to move a
managed interrupt away from an online CPU.
There are two reasons why this can happen:
1) When the interrupt is activated the affinity mask which was
established in irq_create_affinity_masks() is handed in to
the vector allocation code. This mask contains all CPUs to which
the interrupt can be made affine to, but this does not take the
CPU isolation 'managed_irq' mask into account.
When the interrupt is finally requested by the device driver then the
affinity is checked again and the CPU isolation 'managed_irq' mask is
taken into account, which moves the interrupt to a non-isolated CPU if
possible.
2) The interrupt can be affine to an isolated CPU because the
non-isolated CPUs in the calculated affinity mask are not online.
Once a non-isolated CPU which is in the mask comes online the
interrupt is migrated to this non-isolated CPU
In both cases the regular online migration mechanism is used which triggers
the WARN_ON_ONCE() in free_moved_vector().
Case #1 could have been addressed by taking the isolation mask into
account, but that would require a massive code change in the activation
logic and the eventual migration event was accepted as a reasonable
tradeoff when the isolation feature was developed. But even if #1 would be
addressed, #2 would still trigger it.
Of course the warning in free_moved_vector() was overlooked at that time
and the above two cases which have been discussed during patch review have
obviously never been tested before the final submission.
So keep it simple and remove the warning.
[ tglx: Rewrote changelog and added a comment to free_moved_vector() ]
Fixes: 11ea68f553 ("genirq, sched/isolation: Isolate from handling managed interrupts")
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ming Lei <ming.lei@redhat.com>
Link: https://lkml.kernel.org/r/20200312205830.81796-1-peterx@redhat.com
Sathyanarayanan reported that the PCI-E AER error injection mechanism
can result in a NULL pointer dereference in apic_ack_edge():
BUG: unable to handle kernel NULL pointer dereference at 0000000000000078
RIP: 0010:apic_ack_edge+0x1e/0x40
Call Trace:
handle_edge_irq+0x7d/0x1e0
generic_handle_irq+0x27/0x30
aer_inject_write+0x53a/0x720
It crashes in irq_complete_move() which dereferences get_irq_regs() which
is obviously NULL when this is called from non interrupt context.
Of course the pointer could be checked, but that just papers over the real
issue. Invoking the low level interrupt handling mechanism from random code
can wreckage the fragile interrupt affinity mechanism of x86 as interrupts
can only be moved in interrupt context or with special care when a CPU goes
offline and the move has to be enforced.
In the best case this triggers the warning in the MSI affinity setter, but
if the call happens on the correct CPU it just corrupts state and might
prevent further interrupt delivery for the affected device.
Mark the APIC interrupts as unsuitable for being invoked in random contexts.
This prevents the AER injection from proliferating the wreckage, but that's
less broken than the current state of affairs and more correct than just
papering over the problem by sprinkling random checks all over the place
and silently corrupting state.
Reported-by: sathyanarayanan.kuppuswamy@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200306130623.684591280@linutronix.de
- Ensure that the PIT is set up when the local APIC is disable or
configured in legacy mode. This is caused by an ordering issue
introduced in the recent changes which skip PIT initialization when the
TSC and APIC frequencies are already known.
- Handle malformed SRAT tables during early ACPI parsing which caused an
infinite loop anda boot hang.
- Fix a long standing race in the affinity setting code which affects PCI
devices with non-maskable MSI interrupts. The problem is caused by the
non-atomic writes of the MSI address (destination APIC id) and data
(vector) fields which the device uses to construct the MSI message. The
non-atomic writes are mandated by PCI.
If both fields change and the device raises an interrupt after writing
address and before writing data, then the MSI block constructs a
inconsistent message which causes interrupts to be lost and subsequent
malfunction of the device.
The fix is to redirect the interrupt to the new vector on the current
CPU first and then switch it over to the new target CPU. This allows to
observe an eventually raised interrupt in the transitional stage (old
CPU, new vector) to be observed in the APIC IRR and retriggered on the
new target CPU and the new vector. The potential spurious interrupts
caused by this are harmless and can in the worst case expose a buggy
driver (all handlers have to be able to deal with spurious interrupts as
they can and do happen for various reasons).
- Add the missing suspend/resume mechanism for the HYPERV hypercall page
which prevents resume hibernation on HYPERV guests. This change got
lost before the merge window.
- Mask the IOAPIC before disabling the local APIC to prevent potentially
stale IOAPIC remote IRR bits which cause stale interrupt lines after
resume.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl5AEJwTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoWY2D/47ur9gsVQGryKzneVAr0SCsq4Un11e
uifX4ldu4gCEBRTYhpgcpiFKeLvY/QJ6uOD+gQUHyy/s+lCf6yzE6UhXEqSCtcT7
LkSxD8jAFf6KhMA6iqYBfyxUsPMXBetLjjHWsyc/kf15O/vbYm7qf05timmNZkDS
S7C+yr3KRqRjLR7G7t4twlgC9aLcNUQihUdsH2qyTvjnlkYHJLDa0/Js7bFYYKVx
9GdUDLvPFB1mZ76g012De4R3kJsWitiyLlQ38DP5VysKulnszUCdiXlgCEFrgxvQ
OQhLafQzOAzvxQmP+1alODR0dmJZA8k0zsDeeTB/vTpRvv6+Pe2qUswLSpauBzuq
TpDsrv8/5pwZh28+91f/Unk+tH8NaVNtGe/Uf+ePxIkn1nbqL84o4NHGplM6R97d
HAWdZQZ1cGRLf6YRRJ+57oM/5xE3vBbF1Wn0+QDTFwdsk2vcxuQ4eB3M/8E1V7Zk
upp8ty50bZ5+rxQ8XTq/eb8epSRnfLoBYpi4ux6MIOWRdmKDl40cDeZCzA2kNP7m
qY1haaRN3ksqvhzc0Yf6cL+CgvC4ur8gRHezfOqmBzVoaLyVEFIVjgjR/ojf0bq8
/v+L9D5+IdIv4jEZruRRs0gOXNDzoBbvf0qKGaO0tUTWiDsv7c5AGixp8aozniHS
HXsv1lIpRuC7WQ==
=WxKD
-----END PGP SIGNATURE-----
Merge tag 'x86-urgent-2020-02-09' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Thomas Gleixner:
"A set of fixes for X86:
- Ensure that the PIT is set up when the local APIC is disable or
configured in legacy mode. This is caused by an ordering issue
introduced in the recent changes which skip PIT initialization when
the TSC and APIC frequencies are already known.
- Handle malformed SRAT tables during early ACPI parsing which caused
an infinite loop anda boot hang.
- Fix a long standing race in the affinity setting code which affects
PCI devices with non-maskable MSI interrupts. The problem is caused
by the non-atomic writes of the MSI address (destination APIC id)
and data (vector) fields which the device uses to construct the MSI
message. The non-atomic writes are mandated by PCI.
If both fields change and the device raises an interrupt after
writing address and before writing data, then the MSI block
constructs a inconsistent message which causes interrupts to be
lost and subsequent malfunction of the device.
The fix is to redirect the interrupt to the new vector on the
current CPU first and then switch it over to the new target CPU.
This allows to observe an eventually raised interrupt in the
transitional stage (old CPU, new vector) to be observed in the APIC
IRR and retriggered on the new target CPU and the new vector.
The potential spurious interrupts caused by this are harmless and
can in the worst case expose a buggy driver (all handlers have to
be able to deal with spurious interrupts as they can and do happen
for various reasons).
- Add the missing suspend/resume mechanism for the HYPERV hypercall
page which prevents resume hibernation on HYPERV guests. This
change got lost before the merge window.
- Mask the IOAPIC before disabling the local APIC to prevent
potentially stale IOAPIC remote IRR bits which cause stale
interrupt lines after resume"
* tag 'x86-urgent-2020-02-09' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/apic: Mask IOAPIC entries when disabling the local APIC
x86/hyperv: Suspend/resume the hypercall page for hibernation
x86/apic/msi: Plug non-maskable MSI affinity race
x86/boot: Handle malformed SRAT tables during early ACPI parsing
x86/timer: Don't skip PIT setup when APIC is disabled or in legacy mode
When a system suspends, the local APIC is disabled in the suspend sequence,
but the IOAPIC is left in the current state. This means unmasked interrupt
lines stay unmasked. This is usually the case for IOAPIC pin 9 to which the
ACPI interrupt is connected.
That means that in suspended state the IOAPIC can respond to an external
interrupt, e.g. the wakeup via keyboard/RTC/ACPI, but the interrupt message
cannot be handled by the disabled local APIC. As a consequence the Remote
IRR bit is set, but the local APIC does not send an EOI to acknowledge
it. This causes the affected interrupt line to become stale and the stale
Remote IRR bit will cause a hang when __synchronize_hardirq() is invoked
for that interrupt line.
To prevent this, mask all IOAPIC entries before disabling the local
APIC. The resume code already has the unmask operation inside.
[ tglx: Massaged changelog ]
Signed-off-by: Tony W Wang-oc <TonyWWang-oc@zhaoxin.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/1579076539-7267-1-git-send-email-TonyWWang-oc@zhaoxin.com
Evan tracked down a subtle race between the update of the MSI message and
the device raising an interrupt internally on PCI devices which do not
support MSI masking. The update of the MSI message is non-atomic and
consists of either 2 or 3 sequential 32bit wide writes to the PCI config
space.
- Write address low 32bits
- Write address high 32bits (If supported by device)
- Write data
When an interrupt is migrated then both address and data might change, so
the kernel attempts to mask the MSI interrupt first. But for MSI masking is
optional, so there exist devices which do not provide it. That means that
if the device raises an interrupt internally between the writes then a MSI
message is sent built from half updated state.
On x86 this can lead to spurious interrupts on the wrong interrupt
vector when the affinity setting changes both address and data. As a
consequence the device interrupt can be lost causing the device to
become stuck or malfunctioning.
Evan tried to handle that by disabling MSI accross an MSI message
update. That's not feasible because disabling MSI has issues on its own:
If MSI is disabled the PCI device is routing an interrupt to the legacy
INTx mechanism. The INTx delivery can be disabled, but the disablement is
not working on all devices.
Some devices lose interrupts when both MSI and INTx delivery are disabled.
Another way to solve this would be to enforce the allocation of the same
vector on all CPUs in the system for this kind of screwed devices. That
could be done, but it would bring back the vector space exhaustion problems
which got solved a few years ago.
Fortunately the high address (if supported by the device) is only relevant
when X2APIC is enabled which implies interrupt remapping. In the interrupt
remapping case the affinity setting is happening at the interrupt remapping
unit and the PCI MSI message is programmed only once when the PCI device is
initialized.
That makes it possible to solve it with a two step update:
1) Target the MSI msg to the new vector on the current target CPU
2) Target the MSI msg to the new vector on the new target CPU
In both cases writing the MSI message is only changing a single 32bit word
which prevents the issue of inconsistency.
After writing the final destination it is necessary to check whether the
device issued an interrupt while the intermediate state #1 (new vector,
current CPU) was in effect.
This is possible because the affinity change is always happening on the
current target CPU. The code runs with interrupts disabled, so the
interrupt can be detected by checking the IRR of the local APIC. If the
vector is pending in the IRR then the interrupt is retriggered on the new
target CPU by sending an IPI for the associated vector on the target CPU.
This can cause spurious interrupts on both the local and the new target
CPU.
1) If the new vector is not in use on the local CPU and the device
affected by the affinity change raised an interrupt during the
transitional state (step #1 above) then interrupt entry code will
ignore that spurious interrupt. The vector is marked so that the
'No irq handler for vector' warning is supressed once.
2) If the new vector is in use already on the local CPU then the IRR check
might see an pending interrupt from the device which is using this
vector. The IPI to the new target CPU will then invoke the handler of
the device, which got the affinity change, even if that device did not
issue an interrupt
3) If the new vector is in use already on the local CPU and the device
affected by the affinity change raised an interrupt during the
transitional state (step #1 above) then the handler of the device which
uses that vector on the local CPU will be invoked.
expose issues in device driver interrupt handlers which are not prepared to
handle a spurious interrupt correctly. This not a regression, it's just
exposing something which was already broken as spurious interrupts can
happen for a lot of reasons and all driver handlers need to be able to deal
with them.
Reported-by: Evan Green <evgreen@chromium.org>
Debugged-by: Evan Green <evgreen@chromium.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Evan Green <evgreen@chromium.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/87imkr4s7n.fsf@nanos.tec.linutronix.de
Tony reported a boot regression caused by the recent workaround for systems
which have a disabled (clock gate off) PIT.
On his machine the kernel fails to initialize the PIT because
apic_needs_pit() does not take into account whether the local APIC
interrupt delivery mode will actually allow to setup and use the local
APIC timer. This should be easy to reproduce with acpi=off on the
command line which also disables HPET.
Due to the way the PIT/HPET and APIC setup ordering works (APIC setup can
require working PIT/HPET) the information is not available at the point
where apic_needs_pit() makes this decision.
To address this, split out the interrupt mode selection from
apic_intr_mode_init(), invoke the selection before making the decision
whether PIT is required or not, and add the missing checks into
apic_needs_pit().
Fixes: c8c4076723 ("x86/timer: Skip PIT initialization on modern chipsets")
Reported-by: Anthony Buckley <tony.buckley000@gmail.com>
Tested-by: Anthony Buckley <tony.buckley000@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Daniel Drake <drake@endlessm.com>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=206125
Link: https://lore.kernel.org/r/87sgk6tmk2.fsf@nanos.tec.linutronix.de
When CONFIG_PROC_FS is disabled, the compiler warns about an unused
variable:
arch/x86/kernel/apic/x2apic_uv_x.c: In function 'uv_setup_proc_files':
arch/x86/kernel/apic/x2apic_uv_x.c:1546:8: error: unused variable 'name' [-Werror=unused-variable]
char *name = hubless ? "hubless" : "hubbed";
Simplify the code so this variable is no longer needed.
Fixes: 8785968bce ("x86/platform/uv: Add UV Hubbed/Hubless Proc FS Files")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20191212140419.315264-1-arnd@arndb.de
Pull x86 platform updates from Ingo Molnar:
"UV platform updates (with a 'hubless' variant) and Jailhouse updates
for better UART support"
* 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/jailhouse: Only enable platform UARTs if available
x86/jailhouse: Improve setup data version comparison
x86/platform/uv: Account for UV Hubless in is_uvX_hub Ops
x86/platform/uv: Check EFI Boot to set reboot type
x86/platform/uv: Decode UVsystab Info
x86/platform/uv: Add UV Hubbed/Hubless Proc FS Files
x86/platform/uv: Setup UV functions for Hubless UV Systems
x86/platform/uv: Add return code to UV BIOS Init function
x86/platform/uv: Return UV Hubless System Type
x86/platform/uv: Save OEM_ID from ACPI MADT probe
Pull x86 objtool, cleanup, and apic updates from Ingo Molnar:
"Objtool:
- Fix a gawk 5.0 incompatibility in gen-insn-attr-x86.awk. Most
distros are still on gawk 4.2.x.
Cleanup:
- Misc cleanups, plus the removal of obsolete code such as Calgary
IOMMU support, which code hasn't seen any real testing in a long
time and there's no known users left.
apic:
- Two changes: a cleanup and a fix for an (old) race for oneshot
threaded IRQ handlers"
* 'core-objtool-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/insn: Fix awk regexp warnings
* 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86: Remove unused asm/rio.h
x86: Fix typos in comments
x86/pci: Remove #ifdef __KERNEL__ guard from <asm/pci.h>
x86/pci: Remove pci_64.h
x86: Remove the calgary IOMMU driver
x86/apic, x86/uprobes: Correct parameter names in kernel-doc comments
x86/kdump: Remove the unused crash_copy_backup_region()
x86/nmi: Remove stale EDAC include leftover
* 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/ioapic: Rename misnamed functions
x86/ioapic: Prevent inconsistent state when moving an interrupt
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEESH4wyp42V4tXvYsjUqAMR0iAlPIFAl3bpjoACgkQUqAMR0iA
lPJJDA/+IJT4YCRp2TwV2jvIs0QzvXZrzEsxgCLibLE85mYTJgoQBD3W1bH2eyjp
T/9U0Zh5PGr/84cHd4qiMxzo+5Olz930weG59NcO4RJBSr671aRYs5tJqwaQAZDR
wlwaob5S28vUmjPxKulvxv6V3FdI79ZE9xrCOCSTQvz4iCLsGOu+Dn/qtF64pImX
M/EXzPMBrByiQ8RTM4Ege8JoBqiCZPDG9GR3KPXIXQwEeQgIoeYxwRYakxSmSzz8
W8NduFCbWavg/yHhghHikMiyOZeQzAt+V9k9WjOBTle3TGJegRhvjgI7508q3tXe
jQTMGATBOPkIgFaZz7eEn/iBa3jZUIIOzDY93RYBmd26aBvwKLOma/Vkg5oGYl0u
ZK+CMe+/xXl7brQxQ6JNsQhbSTjT+746LvLJlCvPbbPK9R0HeKNhsdKpGY3ugnmz
VAnOFIAvWUHO7qx+J+EnOo5iiPpcwXZj4AjrwVrs/x5zVhzwQ+4DSU6rbNn0O1Ak
ELrBqCQkQzh5kqK93jgMHeWQ9EOUp1Lj6PJhTeVnOx2x8tCOi6iTQFFrfdUPlZ6K
2DajgrFhti4LvwVsohZlzZuKRm5EuwReLRSOn7PU5qoSm5rcouqMkdlYG/viwyhf
mTVzEfrfemrIQOqWmzPrWEXlMj2mq8oJm4JkC+jJ/+HsfK4UU8I=
=QCEy
-----END PGP SIGNATURE-----
Merge tag 'printk-for-5.5' of git://git.kernel.org/pub/scm/linux/kernel/git/pmladek/printk
Pull printk updates from Petr Mladek:
- Allow to print symbolic error names via new %pe modifier.
- Use pr_warn() instead of the remaining pr_warning() calls. Fix
formatting of the related lines.
- Add VSPRINTF entry to MAINTAINERS.
* tag 'printk-for-5.5' of git://git.kernel.org/pub/scm/linux/kernel/git/pmladek/printk: (32 commits)
checkpatch: don't warn about new vsprintf pointer extension '%pe'
MAINTAINERS: Add VSPRINTF
tools lib api: Renaming pr_warning to pr_warn
ASoC: samsung: Use pr_warn instead of pr_warning
lib: cpu_rmap: Use pr_warn instead of pr_warning
trace: Use pr_warn instead of pr_warning
dma-debug: Use pr_warn instead of pr_warning
vgacon: Use pr_warn instead of pr_warning
fs: afs: Use pr_warn instead of pr_warning
sh/intc: Use pr_warn instead of pr_warning
scsi: Use pr_warn instead of pr_warning
platform/x86: intel_oaktrail: Use pr_warn instead of pr_warning
platform/x86: asus-laptop: Use pr_warn instead of pr_warning
platform/x86: eeepc-laptop: Use pr_warn instead of pr_warning
oprofile: Use pr_warn instead of pr_warning
of: Use pr_warn instead of pr_warning
macintosh: Use pr_warn instead of pr_warning
idsn: Use pr_warn instead of pr_warning
ide: Use pr_warn instead of pr_warning
crypto: n2: Use pr_warn instead of pr_warning
...
The removal of the LDR initialization in the bigsmp_32 APIC code unearthed
a problem in setup_local_APIC().
The code checks unconditionally for a mismatch of the logical APIC id by
comparing the early APIC id which was initialized in get_smp_config() with
the actual LDR value in the APIC.
Due to the removal of the bogus LDR initialization the check now can
trigger on bigsmp_32 APIC systems emitting a warning for every booting
CPU. This is of course a false positive because the APIC is not using
logical destination mode.
Restrict the check and the possibly resulting fixup to systems which are
actually using the APIC in logical destination mode.
[ tglx: Massaged changelog and added Cc stable ]
Fixes: bae3a8d330 ("x86/apic: Do not initialize LDR and DFR for bigsmp")
Signed-off-by: Jan Beulich <jbeulich@suse.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/666d8f91-b5a8-1afd-7add-821e72a35f03@suse.com
Rename parameter names to the correct ones used in the function. No
functional changes.
[ bp: Merge two patches into a single one. ]
Signed-off-by: Yi Wang <wang.yi59@zte.com.cn>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/1571816442-22494-1-git-send-email-wang.yi59@zte.com.cn
ioapic_irqd_[un]mask() are misnomers as both functions do way more than
masking and unmasking the interrupt line. Both deal with the moving the
affinity of the interrupt within interrupt context. The mask/unmask is just
a tiny part of the functionality.
Rename them to ioapic_prepare/finish_move(), fixup the call sites and
rename the related variables in the code to reflect what this is about.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Shevchenko <andy.shevchenko@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Link: https://lkml.kernel.org/r/20191017101938.412489856@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There is an issue with threaded interrupts which are marked ONESHOT
and using the fasteoi handler:
if (IS_ONESHOT())
mask_irq();
....
cond_unmask_eoi_irq()
chip->irq_eoi();
if (setaffinity_pending) {
mask_ioapic();
...
move_affinity();
unmask_ioapic();
}
So if setaffinity is pending the interrupt will be moved and then
unconditionally unmasked at the ioapic level, which is wrong in two
aspects:
1) It should be kept masked up to the point where the threaded handler
finished.
2) The physical chip state and the software masked state are inconsistent
Guard both the mask and the unmask with a check for the software masked
state. If the line is marked masked then the ioapic line is also masked, so
both mask_ioapic() and unmask_ioapic() can be skipped safely.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Shevchenko <andy.shevchenko@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Fixes: 3aa551c9b4 ("genirq: add threaded interrupt handler support")
Link: https://lkml.kernel.org/r/20191017101938.321393687@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As said in commit f2c2cbcc35 ("powerpc: Use pr_warn instead of
pr_warning"), removing pr_warning so all logging messages use a
consistent <prefix>_warn style. Let's do it.
Link: http://lkml.kernel.org/r/20191018031850.48498-7-wangkefeng.wang@huawei.com
To: linux-kernel@vger.kernel.org
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Robert Richter <rric@kernel.org>
Cc: Darren Hart <dvhart@infradead.org>
Cc: Andy Shevchenko <andy@infradead.org>
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Check that the per-cpu cluster mask pointer has been set prior to
clearing a dying cpu's bit. The per-cpu pointer is not set until the
target cpu reaches smp_callin() during CPUHP_BRINGUP_CPU, whereas the
teardown function, x2apic_dead_cpu(), is associated with the earlier
CPUHP_X2APIC_PREPARE. If an error occurs before the cpu is awakened,
e.g. if do_boot_cpu() itself fails, x2apic_dead_cpu() will dereference
the NULL pointer and cause a panic.
smpboot: do_boot_cpu failed(-22) to wakeup CPU#1
BUG: kernel NULL pointer dereference, address: 0000000000000008
RIP: 0010:x2apic_dead_cpu+0x1a/0x30
Call Trace:
cpuhp_invoke_callback+0x9a/0x580
_cpu_up+0x10d/0x140
do_cpu_up+0x69/0xb0
smp_init+0x63/0xa9
kernel_init_freeable+0xd7/0x229
? rest_init+0xa0/0xa0
kernel_init+0xa/0x100
ret_from_fork+0x35/0x40
Fixes: 023a611748 ("x86/apic/x2apic: Simplify cluster management")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20191001205019.5789-1-sean.j.christopherson@intel.com
Change to checking for EFI Boot type from previous check on if this
is a KDUMP kernel. This allows for KDUMP kernels that can handle
EFI reboots.
Signed-off-by: Mike Travis <mike.travis@hpe.com>
Reviewed-by: Steve Wahl <steve.wahl@hpe.com>
Reviewed-by: Dimitri Sivanich <dimitri.sivanich@hpe.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Hedi Berriche <hedi.berriche@hpe.com>
Cc: Justin Ernst <justin.ernst@hpe.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russ Anderson <russ.anderson@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190910145840.215091717@stormcage.eag.rdlabs.hpecorp.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Decode the hubless UVsystab passed from BIOS to the kernel saving
pertinent info in a similar manner that hubbed UVsystabs are decoded.
Signed-off-by: Mike Travis <mike.travis@hpe.com>
Reviewed-by: Steve Wahl <steve.wahl@hpe.com>
Reviewed-by: Dimitri Sivanich <dimitri.sivanich@hpe.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Hedi Berriche <hedi.berriche@hpe.com>
Cc: Justin Ernst <justin.ernst@hpe.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russ Anderson <russ.anderson@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190910145840.135325066@stormcage.eag.rdlabs.hpecorp.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Indicate to UV user utilities that UV hubless support is available on
this system via the existing /proc infterface. The current interface is
maintained with the addition of new /proc leaves ("hubbed", "hubless",
and "oemid") that contain the specific type of UV arch this one is.
Signed-off-by: Mike Travis <mike.travis@hpe.com>
Reviewed-by: Steve Wahl <steve.wahl@hpe.com>
Reviewed-by: Dimitri Sivanich <dimitri.sivanich@hpe.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Hedi Berriche <hedi.berriche@hpe.com>
Cc: Justin Ernst <justin.ernst@hpe.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russ Anderson <russ.anderson@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190910145840.055590900@stormcage.eag.rdlabs.hpecorp.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add more support for UV systems that do not contain a UV Hub (AKA
"hubless"). This update adds support for additional functions required:
Use PCH NMI handler instead of a UV Hub NMI handler.
Initialize the UV BIOS callback interface used to support specific
UV functions.
Signed-off-by: Mike Travis <mike.travis@hpe.com>
Reviewed-by: Steve Wahl <steve.wahl@hpe.com>
Reviewed-by: Dimitri Sivanich <dimitri.sivanich@hpe.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Hedi Berriche <hedi.berriche@hpe.com>
Cc: Justin Ernst <justin.ernst@hpe.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russ Anderson <russ.anderson@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190910145839.975787119@stormcage.eag.rdlabs.hpecorp.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Return the type of UV hubless system for UV specific code that depends
on that. Add a function to convert UV system type to bit pattern needed
for is_uv_hubless().
Signed-off-by: Mike Travis <mike.travis@hpe.com>
Reviewed-by: Steve Wahl <steve.wahl@hpe.com>
Reviewed-by: Dimitri Sivanich <dimitri.sivanich@hpe.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Hedi Berriche <hedi.berriche@hpe.com>
Cc: Justin Ernst <justin.ernst@hpe.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russ Anderson <russ.anderson@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190910145839.814880843@stormcage.eag.rdlabs.hpecorp.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Save the OEM_ID and OEM_TABLE_ID passed to the apic driver probe function
for later use. Also, convert the char list arg passed from the kernel
to a true null-terminated string.
Signed-off-by: Mike Travis <mike.travis@hpe.com>
Reviewed-by: Steve Wahl <steve.wahl@hpe.com>
Reviewed-by: Dimitri Sivanich <dimitri.sivanich@hpe.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Hedi Berriche <hedi.berriche@hpe.com>
Cc: Justin Ernst <justin.ernst@hpe.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russ Anderson <russ.anderson@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190910145839.732237241@stormcage.eag.rdlabs.hpecorp.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 apic updates from Thomas Gleixner:
- Cleanup the apic IPI implementation by removing duplicated code and
consolidating the functions into the APIC core.
- Implement a safe variant of the IPI broadcast mode. Contrary to
earlier attempts this uses the core tracking of which CPUs have been
brought online at least once so that a broadcast does not end up in
some dead end in BIOS/SMM code when the CPU is still waiting for
init. Once all CPUs have been brought up once, IPI broadcasting is
enabled. Before that regular one by one IPIs are issued.
- Drop the paravirt CR8 related functions as they have no user anymore
- Initialize the APIC TPR to block interrupt 16-31 as they are reserved
for CPU exceptions and should never be raised by any well behaving
device.
- Emit a warning when vector space exhaustion breaks the admin set
affinity of an interrupt.
- Make sure to use the NMI fallback when shutdown via reboot vector IPI
fails. The original code had conditions which prevent the code path
to be reached.
- Annotate various APIC config variables as RO after init.
[ The ipi broadcase change came in earlier through the cpu hotplug
branch, but I left the explanation in the commit message since it was
shared between the two different branches - Linus ]
* 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (28 commits)
x86/apic/vector: Warn when vector space exhaustion breaks affinity
x86/apic: Annotate global config variables as "read-only after init"
x86/apic/x2apic: Implement IPI shorthands support
x86/apic/flat64: Remove the IPI shorthand decision logic
x86/apic: Share common IPI helpers
x86/apic: Remove the shorthand decision logic
x86/smp: Enhance native_send_call_func_ipi()
x86/smp: Move smp_function_call implementations into IPI code
x86/apic: Provide and use helper for send_IPI_allbutself()
x86/apic: Add static key to Control IPI shorthands
x86/apic: Move no_ipi_broadcast() out of 32bit
x86/apic: Add NMI_VECTOR wait to IPI shorthand
x86/apic: Remove dest argument from __default_send_IPI_shortcut()
x86/hotplug: Silence APIC and NMI when CPU is dead
x86/cpu: Move arch_smt_update() to a neutral place
x86/apic/uv: Make x2apic_extra_bits static
x86/apic: Consolidate the apic local headers
x86/apic: Move apic_flat_64 header into apic directory
x86/apic: Move ipi header into apic directory
x86/apic: Cleanup the include maze
...
Pull x86 cpu-feature updates from Ingo Molnar:
- Rework the Intel model names symbols/macros, which were decades of
ad-hoc extensions and added random noise. It's now a coherent, easy
to follow nomenclature.
- Add new Intel CPU model IDs:
- "Tiger Lake" desktop and mobile models
- "Elkhart Lake" model ID
- and the "Lightning Mountain" variant of Airmont, plus support code
- Add the new AVX512_VP2INTERSECT instruction to cpufeatures
- Remove Intel MPX user-visible APIs and the self-tests, because the
toolchain (gcc) is not supporting it going forward. This is the
first, lowest-risk phase of MPX removal.
- Remove X86_FEATURE_MFENCE_RDTSC
- Various smaller cleanups and fixes
* 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (25 commits)
x86/cpu: Update init data for new Airmont CPU model
x86/cpu: Add new Airmont variant to Intel family
x86/cpu: Add Elkhart Lake to Intel family
x86/cpu: Add Tiger Lake to Intel family
x86: Correct misc typos
x86/intel: Add common OPTDIFFs
x86/intel: Aggregate microserver naming
x86/intel: Aggregate big core graphics naming
x86/intel: Aggregate big core mobile naming
x86/intel: Aggregate big core client naming
x86/cpufeature: Explain the macro duplication
x86/ftrace: Remove mcount() declaration
x86/PCI: Remove superfluous returns from void functions
x86/msr-index: Move AMD MSRs where they belong
x86/cpu: Use constant definitions for CPU models
lib: Remove redundant ftrace flag removal
x86/crash: Remove unnecessary comparison
x86/bitops: Use __builtin_constant_p() directly instead of IS_IMMEDIATE()
x86: Remove X86_FEATURE_MFENCE_RDTSC
x86/mpx: Remove MPX APIs
...
Pull x86 fixes from Ingo Molnar:
"A KVM guest fix, and a kdump kernel relocation errors fix"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/timer: Force PIT initialization when !X86_FEATURE_ARAT
x86/purgatory: Change compiler flags from -mcmodel=kernel to -mcmodel=large to fix kexec relocation errors
KVM guests with commit c8c4076723 ("x86/timer: Skip PIT initialization on
modern chipsets") applied to guest kernel have been observed to have
unusually higher CPU usage with symptoms of increase in vm exits for HLT
and MSW_WRITE (MSR_IA32_TSCDEADLINE).
This is caused by older QEMUs lacking support for X86_FEATURE_ARAT. lapic
clock retains CLOCK_EVT_FEAT_C3STOP and nohz stays inactive. There's no
usable broadcast device either.
Do the PIT initialization if guest CPU lacks X86_FEATURE_ARAT. On real
hardware it shouldn't matter as ARAT and DEADLINE come together.
Fixes: c8c4076723 ("x86/timer: Skip PIT initialization on modern chipsets")
Signed-off-by: Jan Stancek <jstancek@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This reverts commit 558682b529.
Chris Wilson reports that it breaks his CPU hotplug test scripts. In
particular, it breaks offlining and then re-onlining the boot CPU, which
we treat specially (and the BIOS does too).
The symptoms are that we can offline the CPU, but it then does not come
back online again:
smpboot: CPU 0 is now offline
smpboot: Booting Node 0 Processor 0 APIC 0x0
smpboot: do_boot_cpu failed(-1) to wakeup CPU#0
Thomas says he knows why it's broken (my personal suspicion: our magic
handling of the "cpu0_logical_apicid" thing), but for 5.3 the right fix
is to just revert it, since we've never touched the LDR bits before, and
it's not worth the risk to do anything else at this stage.
[ Hotpluging of the boot CPU is special anyway, and should be off by
default. See the "BOOTPARAM_HOTPLUG_CPU0" config option and the
cpu0_hotplug kernel parameter.
In general you should not do it, and it has various known limitations
(hibernate and suspend require the boot CPU, for example).
But it should work, even if the boot CPU is special and needs careful
treatment - Linus ]
Link: https://lore.kernel.org/lkml/156785100521.13300.14461504732265570003@skylake-alporthouse-com/
Reported-by: Chris Wilson <chris@chris-wilson.co.uk>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Bandan Das <bsd@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Conflicts:
tools/power/x86/turbostat/turbostat.c
Recent turbostat changes conflicted with a pending rename of x86 model names in tip:x86/cpu,
sort it out.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
On x86, CPUs are limited in the number of interrupts they can have affined
to them as they only support 256 interrupt vectors per CPU. 32 vectors are
reserved for the CPU and the kernel reserves another 22 for internal
purposes. That leaves 202 vectors for assignement to devices.
When an interrupt is set up or the affinity is changed by the kernel or the
administrator, the vector assignment code attempts to honor the requested
affinity mask. If the vector space on the CPUs in that affinity mask is
exhausted the code falls back to a wider set of CPUs and assigns a vector
on a CPU outside of the requested affinity mask silently.
While the effective affinity is reflected in the corresponding
/proc/irq/$N/effective_affinity* files the silent breakage of the requested
affinity can lead to unexpected behaviour for administrators.
Add a pr_warn() when this happens so that adminstrators get at least
informed about it in the syslog.
[ tglx: Massaged changelog and made the pr_warn() more informative ]
Reported-by: djuran@redhat.com
Signed-off-by: Neil Horman <nhorman@tuxdriver.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: djuran@redhat.com
Link: https://lkml.kernel.org/r/20190822143421.9535-1-nhorman@tuxdriver.com
Currently big microservers have _XEON_D while small microservers have
_X, Make it uniformly: _D.
for i in `git grep -l "\(INTEL_FAM6_\|VULNWL_INTEL\|INTEL_CPU_FAM6\).*_\(X\|XEON_D\)"`
do
sed -i -e 's/\(\(INTEL_FAM6_\|VULNWL_INTEL\|INTEL_CPU_FAM6\).*ATOM.*\)_X/\1_D/g' \
-e 's/\(\(INTEL_FAM6_\|VULNWL_INTEL\|INTEL_CPU_FAM6\).*\)_XEON_D/\1_D/g' ${i}
done
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Cc: x86@kernel.org
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Link: https://lkml.kernel.org/r/20190827195122.677152989@infradead.org
Currently big core clients with extra graphics on have:
- _G
- _GT3E
Make it uniformly: _G
for i in `git grep -l "\(INTEL_FAM6_\|VULNWL_INTEL\|INTEL_CPU_FAM6\).*_GT3E"`
do
sed -i -e 's/\(\(INTEL_FAM6_\|VULNWL_INTEL\|INTEL_CPU_FAM6\).*\)_GT3E/\1_G/g' ${i}
done
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Cc: x86@kernel.org
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Link: https://lkml.kernel.org/r/20190827195122.622802314@infradead.org
Currently big core mobile chips have either:
- _L
- _ULT
- _MOBILE
Make it uniformly: _L.
for i in `git grep -l "\(INTEL_FAM6_\|VULNWL_INTEL\|INTEL_CPU_FAM6\).*_\(MOBILE\|ULT\)"`
do
sed -i -e 's/\(\(INTEL_FAM6_\|VULNWL_INTEL\|INTEL_CPU_FAM6\).*\)_\(MOBILE\|ULT\)/\1_L/g' ${i}
done
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Cc: x86@kernel.org
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190827195122.568978530@infradead.org
Currently the big core client models either have:
- no OPTDIFF
- _CORE
- _DESKTOP
Make it uniformly: 'no OPTDIFF'.
for i in `git grep -l "\(INTEL_FAM6_\|VULNWL_INTEL\|INTEL_CPU_FAM6\).*_\(CORE\|DESKTOP\)"`
do
sed -i -e 's/\(\(INTEL_FAM6_\|VULNWL_INTEL\|INTEL_CPU_FAM6\).*\)_\(CORE\|DESKTOP\)/\1/g' ${i}
done
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Cc: x86@kernel.org
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190827195122.513945586@infradead.org
Although APIC initialization will typically clear out the LDR before
setting it, the APIC cleanup code should reset the LDR.
This was discovered with a 32-bit KVM guest jumping into a kdump
kernel. The stale bits in the LDR triggered a bug in the KVM APIC
implementation which caused the destination mapping for VCPUs to be
corrupted.
Note that this isn't intended to paper over the KVM APIC bug. The kernel
has to clear the LDR when resetting the APIC registers except when X2APIC
is enabled.
This lacks a Fixes tag because missing to clear LDR goes way back into pre
git history.
[ tglx: Made x2apic_enabled a function call as required ]
Signed-off-by: Bandan Das <bsd@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20190826101513.5080-3-bsd@redhat.com
Legacy apic init uses bigsmp for smp systems with 8 and more CPUs. The
bigsmp APIC implementation uses physical destination mode, but it
nevertheless initializes LDR and DFR. The LDR even ends up incorrectly with
multiple bit being set.
This does not cause a functional problem because LDR and DFR are ignored
when physical destination mode is active, but it triggered a problem on a
32-bit KVM guest which jumps into a kdump kernel.
The multiple bits set unearthed a bug in the KVM APIC implementation. The
code which creates the logical destination map for VCPUs ignores the
disabled state of the APIC and ends up overwriting an existing valid entry
and as a result, APIC calibration hangs in the guest during kdump
initialization.
Remove the bogus LDR/DFR initialization.
This is not intended to work around the KVM APIC bug. The LDR/DFR
ininitalization is wrong on its own.
The issue goes back into the pre git history. The fixes tag is the commit
in the bitkeeper import which introduced bigsmp support in 2003.
git://git.kernel.org/pub/scm/linux/kernel/git/tglx/history.git
Fixes: db7b9e9f26b8 ("[PATCH] Clustered APIC setup for >8 CPU systems")
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Bandan Das <bsd@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20190826101513.5080-2-bsd@redhat.com
Rahul Tanwar reported the following bug on DT systems:
> 'ioapic_dynirq_base' contains the virtual IRQ base number. Presently, it is
> updated to the end of hardware IRQ numbers but this is done only when IOAPIC
> configuration type is IOAPIC_DOMAIN_LEGACY or IOAPIC_DOMAIN_STRICT. There is
> a third type IOAPIC_DOMAIN_DYNAMIC which applies when IOAPIC configuration
> comes from devicetree.
>
> See dtb_add_ioapic() in arch/x86/kernel/devicetree.c
>
> In case of IOAPIC_DOMAIN_DYNAMIC (DT/OF based system), 'ioapic_dynirq_base'
> remains to zero initialized value. This means that for OF based systems,
> virtual IRQ base will get set to zero.
Such systems will very likely not even boot.
For DT enabled machines ioapic_dynirq_base is irrelevant and not
updated, so simply map the IRQ base 1:1 instead.
Reported-by: Rahul Tanwar <rahul.tanwar@linux.intel.com>
Tested-by: Rahul Tanwar <rahul.tanwar@linux.intel.com>
Tested-by: Andy Shevchenko <andriy.shevchenko@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: alan@linux.intel.com
Cc: bp@alien8.de
Cc: cheol.yong.kim@intel.com
Cc: qi-ming.wu@intel.com
Cc: rahul.tanwar@intel.com
Cc: rppt@linux.ibm.com
Cc: tony.luck@intel.com
Link: http://lkml.kernel.org/r/20190821081330.1187-1-rahul.tanwar@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Some newer machines do not advertise legacy timers. The kernel can handle
that situation if the TSC and the CPU frequency are enumerated by CPUID or
MSRs and the CPU supports TSC deadline timer. If the CPU does not support
TSC deadline timer the local APIC timer frequency has to be known as well.
Some Ryzens machines do not advertize legacy timers, but there is no
reliable way to determine the bus frequency which feeds the local APIC
timer when the machine allows overclocking of that frequency.
As there is no legacy timer the local APIC timer calibration crashes due to
a NULL pointer dereference when accessing the not installed global clock
event device.
Switch the calibration loop to a non interrupt based one, which polls
either TSC (if frequency is known) or jiffies. The latter requires a global
clockevent. As the machines which do not have a global clockevent installed
have a known TSC frequency this is a non issue. For older machines where
TSC frequency is not known, there is no known case where the legacy timers
do not exist as that would have been reported long ago.
Reported-by: Daniel Drake <drake@endlessm.com>
Reported-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Daniel Drake <drake@endlessm.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1908091443030.21433@nanos.tec.linutronix.de
Link: http://bugzilla.opensuse.org/show_bug.cgi?id=1142926#c12
Fix
arch/x86/kernel/apic/probe_32.c: In function ‘default_setup_apic_routing’:
arch/x86/kernel/apic/probe_32.c:146:7: warning: this statement may fall through [-Wimplicit-fallthrough=]
if (!APIC_XAPIC(version)) {
^
arch/x86/kernel/apic/probe_32.c:151:3: note: here
case X86_VENDOR_HYGON:
^~~~
for 32-bit builds.
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190811154036.29805-1-bp@alien8.de
Mark the APIC's global config variables that are constant after boot as
__ro_after_init to help document that the majority of the APIC config is
not changed at runtime, and to harden the kernel a smidge.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190805212134.12001-1-sean.j.christopherson@intel.com
All callers of apic->send_IPI_all() and apic->send_IPI_allbutself() contain
the decision logic for shorthand invocation already and invoke
send_IPI_mask() if the prereqisites are not satisfied.
Implement shorthand support for x2apic.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190722105221.134696837@linutronix.de
All callers of apic->send_IPI_all() and apic->send_IPI_allbutself() contain
the decision logic for shorthand invocation already and invoke
send_IPI_mask() if the prereqisites are not satisfied.
Remove the now redundant decision logic in the APIC code and the duplicate
helper in probe_64.c.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190722105221.042964120@linutronix.de
The 64bit implementations need the same wrappers around
__default_send_IPI_shortcut() as 32bit.
Move them out of the 32bit section.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190722105220.951534451@linutronix.de
All callers of apic->send_IPI_all() and apic->send_IPI_allbutself() contain
the decision logic for shorthand invocation already and invoke
send_IPI_mask() if the prereqisites are not satisfied.
Remove the now redundant decision logic in the 32bit implementation.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190722105220.860244707@linutronix.de
Nadav noticed that the cpumask allocations in native_send_call_func_ipi()
are noticeable in microbenchmarks.
Use the new cpumask_or_equal() function to simplify the decision whether
the supplied target CPU mask is either equal to cpu_online_mask or equal to
cpu_online_mask except for the CPU on which the function is invoked.
cpumask_or_equal() or's the target mask and the cpumask of the current CPU
together and compares it to cpu_online_mask.
If the result is false, use the mask based IPI function, otherwise check
whether the current CPU is set in the target mask and invoke either the
send_IPI_all() or the send_IPI_allbutselt() APIC callback.
Make the shorthand decision also depend on the static key which enables
shorthand mode. That allows to remove the extra cpumask comparison with
cpu_callout_mask.
Reported-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190722105220.768238809@linutronix.de
Move it where it belongs. That allows to keep all the shorthand logic in
one place.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190722105220.677835995@linutronix.de
To support IPI shorthands wrap invocations of apic->send_IPI_allbutself()
in a helper function, so the static key controlling the shorthand mode is
only in one place.
Fixup all callers.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190722105220.492691679@linutronix.de
The IPI shorthand functionality delivers IPI/NMI broadcasts to all CPUs in
the system. This can have similar side effects as the MCE broadcasting when
CPUs are waiting in the BIOS or are offlined.
The kernel tracks already the state of offlined CPUs whether they have been
brought up at least once so that the CR4 MCE bit is set to make sure that
MCE broadcasts can't brick the machine.
Utilize that information and compare it to the cpu_present_mask. If all
present CPUs have been brought up at least once then the broadcast side
effect is mitigated by disabling regular interrupt/IPI delivery in the APIC
itself and by the cpu offline check at the begin of the NMI handler.
Use a static key to switch between broadcasting via shorthands or sending
the IPI/NMI one by one.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190722105220.386410643@linutronix.de
For the upcoming shorthand support for all APIC incarnations the command
line option needs to be available for 64 bit as well.
While at it, rename the control variable, make it static and mark it
__ro_after_init.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190722105220.278327940@linutronix.de
To support NMI shorthand broadcasts add the safe wait for ICR idle for NMI
vector delivery.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190722105220.185838026@linutronix.de
The SDM states:
"The destination shorthand field of the ICR allows the delivery mode to be
by-passed in favor of broadcasting the IPI to all the processors on the
system bus and/or back to itself (see Section 10.6.1, Interrupt Command
Register (ICR)). Three destination shorthands are supported: self, all
excluding self, and all including self. The destination mode is ignored
when a destination shorthand is used."
So there is no point to supply the destination mode to the shorthand
delivery function.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190722105220.094613426@linutronix.de
In order to support IPI/NMI broadcasting via the shorthand mechanism side
effects of shorthands need to be mitigated:
Shorthand IPIs and NMIs hit all CPUs including unplugged CPUs
Neither of those can be handled on unplugged CPUs for obvious reasons.
It would be trivial to just fully disable the APIC via the enable bit in
MSR_APICBASE. But that's not possible because clearing that bit on systems
based on the 3 wire APIC bus would require a hardware reset to bring it
back as the APIC would lose track of bus arbitration. On systems with FSB
delivery APICBASE could be disabled, but it has to be guaranteed that no
interrupt is sent to the APIC while in that state and it's not clear from
the SDM whether it still responds to INIT/SIPI messages.
Therefore stay on the safe side and switch the APIC into soft disabled mode
so it won't deliver any regular vector to the CPU.
NMIs are still propagated to the 'dead' CPUs. To mitigate that add a check
for the CPU being offline on early nmi entry and if so bail.
Note, this cannot use the stop/restart_nmi() magic which is used in the
alternatives code. A dead CPU cannot invoke nmi_enter() or anything else
due to RCU and other reasons.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1907241723290.1791@nanos.tec.linutronix.de
Now there are three small local headers. Some contain functions which are
only used in one source file.
Move all the inlines and declarations into a single local header and the
inlines which are only used in one source file into that.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190722105219.618612624@linutronix.de
All of these APIC files include the world and some more. Remove the
unneeded cruft.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190722105219.342631201@linutronix.de
In course of developing shorthand based IPI support issues with the
function which tries to clear eventually pending ISR bits in the local APIC
were observed.
1) O-day testing triggered the WARN_ON() in apic_pending_intr_clear().
This warning is emitted when the function fails to clear pending ISR
bits or observes pending IRR bits which are not delivered to the CPU
after the stale ISR bit(s) are ACK'ed.
Unfortunately the function only emits a WARN_ON() and fails to dump
the IRR/ISR content. That's useless for debugging.
Feng added spot on debug printk's which revealed that the stale IRR
bit belonged to the APIC timer interrupt vector, but adding ad hoc
debug code does not help with sporadic failures in the field.
Rework the loop so the full IRR/ISR contents are saved and on failure
dumped.
2) The loop termination logic is interesting at best.
If the machine has no TSC or cpu_khz is not known yet it tries 1
million times to ack stale IRR/ISR bits. What?
With TSC it uses the TSC to calculate the loop termination. It takes a
timestamp at entry and terminates the loop when:
(rdtsc() - start_timestamp) >= (cpu_hkz << 10)
That's roughly one second.
Both methods are problematic. The APIC has 256 vectors, which means
that in theory max. 256 IRR/ISR bits can be set. In practice this is
impossible and the chance that more than a few bits are set is close
to zero.
With the pure loop based approach the 1 million retries are complete
overkill.
With TSC this can terminate too early in a guest which is running on a
heavily loaded host even with only a couple of IRR/ISR bits set. The
reason is that after acknowledging the highest priority ISR bit,
pending IRRs must get serviced first before the next round of
acknowledge can take place as the APIC (real and virtualized) does not
honour EOI without a preceeding interrupt on the CPU. And every APIC
read/write takes a VMEXIT if the APIC is virtualized. While trying to
reproduce the issue 0-day reported it was observed that the guest was
scheduled out long enough under heavy load that it terminated after 8
iterations.
Make the loop terminate after 512 iterations. That's plenty enough
in any case and does not take endless time to complete.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190722105219.158847694@linutronix.de
If the APIC was already enabled on entry of setup_local_APIC() then
disabling it soft via the SPIV register makes a lot of sense.
That masks all LVT entries and brings it into a well defined state.
Otherwise previously enabled LVTs which are not touched in the setup
function stay unmasked and might surprise the just booting kernel.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190722105219.068290579@linutronix.de
If the APIC is soft disabled then unmasking an LVT entry does not work and
the write is ignored. perf_events_lapic_init() tries to do so.
Move the invocation after the point where the APIC has been enabled.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190722105218.962517234@linutronix.de
The APIC, per spec, is fundamentally confused and thinks that interrupt
vectors 16-31 are valid. This makes no sense -- the CPU reserves vectors
0-31 for exceptions (faults, traps, etc). Obviously, no device should
actually produce an interrupt with vector 16-31, but robustness can be
improved by setting the APIC TPR class to 1, which will prevent delivery of
an interrupt with a vector below 32.
Note: This is *not* intended as a security measure against attackers who
control malicious hardware. Any PCI or similar hardware that can be
controlled by an attacker MUST be behind a functional IOMMU that remaps
interrupts. The purpose of this change is to reduce the chance that a
certain class of device malfunctions crashes the kernel in hard-to-debug
ways.
Suggested-by: Andrew Cooper <andrew.cooper3@citrix.com>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/dc04a9f8b234d7b0956a8d2560b8945bcd9c4bf7.1563117760.git.luto@kernel.org
There are many compiler warnings like this,
In file included from ./arch/x86/include/asm/smp.h:13,
from ./arch/x86/include/asm/mmzone_64.h:11,
from ./arch/x86/include/asm/mmzone.h:5,
from ./include/linux/mmzone.h:969,
from ./include/linux/gfp.h:6,
from ./include/linux/mm.h:10,
from arch/x86/kernel/apic/io_apic.c:34:
arch/x86/kernel/apic/io_apic.c: In function 'check_timer':
./arch/x86/include/asm/apic.h:37:11: warning: comparison of unsigned
expression >= 0 is always true [-Wtype-limits]
if ((v) <= apic_verbosity) \
^~
arch/x86/kernel/apic/io_apic.c:2160:2: note: in expansion of macro
'apic_printk'
apic_printk(APIC_QUIET, KERN_INFO "..TIMER: vector=0x%02X "
^~~~~~~~~~~
./arch/x86/include/asm/apic.h:37:11: warning: comparison of unsigned
expression >= 0 is always true [-Wtype-limits]
if ((v) <= apic_verbosity) \
^~
arch/x86/kernel/apic/io_apic.c:2207:4: note: in expansion of macro
'apic_printk'
apic_printk(APIC_QUIET, KERN_ERR "..MP-BIOS bug: "
^~~~~~~~~~~
APIC_QUIET is 0, so silence them by making apic_verbosity type int.
Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/1562621805-24789-1-git-send-email-cai@lca.pw
Pull x86 timer updates from Thomas Gleixner:
"A rather large series consolidating the HPET code, which was triggered
by the attempt to bolt HPET NMI watchdog support on to the existing
maze with the usual duct tape and super glue approach.
This mainly removes two separate partially redundant storage layers
and consolidates them into a single one which provides a consistent
view of the different HPET channels and their usage and allows to
integrate HPET NMI watchdog support (if it turns out to be feasible)
in a non intrusive way"
* 'x86-timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (29 commits)
x86/hpet: Use channel for legacy clockevent storage
x86/hpet: Use common init for legacy clockevent
x86/hpet: Carve out shareable parts of init_one_hpet_msi_clockevent()
x86/hpet: Consolidate clockevent functions
x86/hpet: Wrap legacy clockevent in hpet_channel
x86/hpet: Use cached info instead of extra flags
x86/hpet: Move clockevents into channels
x86/hpet: Rename variables to prepare for switching to channels
x86/hpet: Add function to select a /dev/hpet channel
x86/hpet: Add mode information to struct hpet_channel
x86/hpet: Use cached channel data
x86/hpet: Introduce struct hpet_base and struct hpet_channel
x86/hpet: Coding style cleanup
x86/hpet: Clean up comments
x86/hpet: Make naming consistent
x86/hpet: Remove not required includes
x86/hpet: Decapitalize and rename EVT_TO_HPET_DEV
x86/hpet: Simplify counter validation
x86/hpet: Separate counter check out of clocksource register code
x86/hpet: Shuffle code around for readability sake
...
Pull x96 apic updates from Thomas Gleixner:
"Updates for the x86 APIC interrupt handling and APIC timer:
- Fix a long standing issue with spurious interrupts which was caused
by the big vector management rework a few years ago. Robert Hodaszi
provided finally enough debug data and an excellent initial failure
analysis which allowed to understand the underlying issues.
This contains a change to the core interrupt management code which
is required to handle this correctly for the APIC/IO_APIC. The core
changes are NOOPs for most architectures except ARM64. ARM64 is not
impacted by the change as confirmed by Marc Zyngier.
- Newer systems allow to disable the PIT clock for power saving
causing panic in the timer interrupt delivery check of the IO/APIC
when the HPET timer is not enabled either. While the clock could be
turned on this would cause an endless whack a mole game to chase
the proper register in each affected chipset.
These systems provide the relevant frequencies for TSC, CPU and the
local APIC timer via CPUID and/or MSRs, which allows to avoid the
PIT/HPET based calibration. As the calibration code is the only
usage of the legacy timers on modern systems and is skipped anyway
when the frequencies are known already, there is no point in
setting up the PIT and actually checking for the interrupt delivery
via IO/APIC.
To achieve this on a wide variety of platforms, the CPUID/MSR based
frequency readout has been made more robust, which also allowed to
remove quite some workarounds which turned out to be not longer
required. Thanks to Daniel Drake for analysis, patches and
verification"
* 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/irq: Seperate unused system vectors from spurious entry again
x86/irq: Handle spurious interrupt after shutdown gracefully
x86/ioapic: Implement irq_get_irqchip_state() callback
genirq: Add optional hardware synchronization for shutdown
genirq: Fix misleading synchronize_irq() documentation
genirq: Delay deactivation in free_irq()
x86/timer: Skip PIT initialization on modern chipsets
x86/apic: Use non-atomic operations when possible
x86/apic: Make apic_bsp_setup() static
x86/tsc: Set LAPIC timer period to crystal clock frequency
x86/apic: Rename 'lapic_timer_frequency' to 'lapic_timer_period'
x86/tsc: Use CPUID.0x16 to calculate missing crystal frequency
Quite some time ago the interrupt entry stubs for unused vectors in the
system vector range got removed and directly mapped to the spurious
interrupt vector entry point.
Sounds reasonable, but it's subtly broken. The spurious interrupt vector
entry point pushes vector number 0xFF on the stack which makes the whole
logic in __smp_spurious_interrupt() pointless.
As a consequence any spurious interrupt which comes from a vector != 0xFF
is treated as a real spurious interrupt (vector 0xFF) and not
acknowledged. That subsequently stalls all interrupt vectors of equal and
lower priority, which brings the system to a grinding halt.
This can happen because even on 64-bit the system vector space is not
guaranteed to be fully populated. A full compile time handling of the
unused vectors is not possible because quite some of them are conditonally
populated at runtime.
Bring the entry stubs back, which wastes 160 bytes if all stubs are unused,
but gains the proper handling back. There is no point to selectively spare
some of the stubs which are known at compile time as the required code in
the IDT management would be way larger and convoluted.
Do not route the spurious entries through common_interrupt and do_IRQ() as
the original code did. Route it to smp_spurious_interrupt() which evaluates
the vector number and acts accordingly now that the real vector numbers are
handed in.
Fixup the pr_warn so the actual spurious vector (0xff) is clearly
distiguished from the other vectors and also note for the vectored case
whether it was pending in the ISR or not.
"Spurious APIC interrupt (vector 0xFF) on CPU#0, should never happen."
"Spurious interrupt vector 0xed on CPU#1. Acked."
"Spurious interrupt vector 0xee on CPU#1. Not pending!."
Fixes: 2414e021ac ("x86: Avoid building unused IRQ entry stubs")
Reported-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Jan Beulich <jbeulich@suse.com>
Link: https://lkml.kernel.org/r/20190628111440.550568228@linutronix.de
Since the rework of the vector management, warnings about spurious
interrupts have been reported. Robert provided some more information and
did an initial analysis. The following situation leads to these warnings:
CPU 0 CPU 1 IO_APIC
interrupt is raised
sent to CPU1
Unable to handle
immediately
(interrupts off,
deep idle delay)
mask()
...
free()
shutdown()
synchronize_irq()
clear_vector()
do_IRQ()
-> vector is clear
Before the rework the vector entries of legacy interrupts were statically
assigned and occupied precious vector space while most of them were
unused. Due to that the above situation was handled silently because the
vector was handled and the core handler of the assigned interrupt
descriptor noticed that it is shut down and returned.
While this has been usually observed with legacy interrupts, this situation
is not limited to them. Any other interrupt source, e.g. MSI, can cause the
same issue.
After adding proper synchronization for level triggered interrupts, this
can only happen for edge triggered interrupts where the IO-APIC obviously
cannot provide information about interrupts in flight.
While the spurious warning is actually harmless in this case it worries
users and driver developers.
Handle it gracefully by marking the vector entry as VECTOR_SHUTDOWN instead
of VECTOR_UNUSED when the vector is freed up.
If that above late handling happens the spurious detector will not complain
and switch the entry to VECTOR_UNUSED. Any subsequent spurious interrupt on
that line will trigger the spurious warning as before.
Fixes: 464d12309e ("x86/vector: Switch IOAPIC to global reservation mode")
Reported-by: Robert Hodaszi <Robert.Hodaszi@digi.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>-
Tested-by: Robert Hodaszi <Robert.Hodaszi@digi.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Link: https://lkml.kernel.org/r/20190628111440.459647741@linutronix.de
When an interrupt is shut down in free_irq() there might be an inflight
interrupt pending in the IO-APIC remote IRR which is not yet serviced. That
means the interrupt has been sent to the target CPUs local APIC, but the
target CPU is in a state which delays the servicing.
So free_irq() would proceed to free resources and to clear the vector
because synchronize_hardirq() does not see an interrupt handler in
progress.
That can trigger a spurious interrupt warning, which is harmless and just
confuses users, but it also can leave the remote IRR in a stale state
because once the handler is invoked the interrupt resources might be freed
already and therefore acknowledgement is not possible anymore.
Implement the irq_get_irqchip_state() callback for the IO-APIC irq chip. The
callback is invoked from free_irq() via __synchronize_hardirq(). Check the
remote IRR bit of the interrupt and return 'in flight' if it is set and the
interrupt is configured in level mode. For edge mode the remote IRR has no
meaning.
As this is only meaningful for level triggered interrupts this won't cure
the potential spurious interrupt warning for edge triggered interrupts, but
the edge trigger case does not result in stale hardware state. This has to
be addressed at the vector/interrupt entry level seperately.
Fixes: 464d12309e ("x86/vector: Switch IOAPIC to global reservation mode")
Reported-by: Robert Hodaszi <Robert.Hodaszi@digi.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Link: https://lkml.kernel.org/r/20190628111440.370295517@linutronix.de
Pull x86 fixes from Ingo Molnar:
"Misc fixes all over the place:
- might_sleep() atomicity fix in the microcode loader
- resctrl boundary condition fix
- APIC arithmethics bug fix for frequencies >= 4.2 GHz
- three 5-level paging crash fixes
- two speculation fixes
- a perf/stacktrace fix"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/unwind/orc: Fall back to using frame pointers for generated code
perf/x86: Always store regs->ip in perf_callchain_kernel()
x86/speculation: Allow guests to use SSBD even if host does not
x86/mm: Handle physical-virtual alignment mismatch in phys_p4d_init()
x86/boot/64: Add missing fixup_pointer() for next_early_pgt access
x86/boot/64: Fix crash if kernel image crosses page table boundary
x86/apic: Fix integer overflow on 10 bit left shift of cpu_khz
x86/resctrl: Prevent possible overrun during bitmap operations
x86/microcode: Fix the microcode load on CPU hotplug for real
Recent Intel chipsets including Skylake and ApolloLake have a special
ITSSPRC register which allows the 8254 PIT to be gated. When gated, the
8254 registers can still be programmed as normal, but there are no IRQ0
timer interrupts.
Some products such as the Connex L1430 and exone go Rugged E11 use this
register to ship with the PIT gated by default. This causes Linux to fail
to boot:
Kernel panic - not syncing: IO-APIC + timer doesn't work! Boot with
apic=debug and send a report.
The panic happens before the framebuffer is initialized, so to the user, it
appears as an early boot hang on a black screen.
Affected products typically have a BIOS option that can be used to enable
the 8254 and make Linux work (Chipset -> South Cluster Configuration ->
Miscellaneous Configuration -> 8254 Clock Gating), however it would be best
to make Linux support the no-8254 case.
Modern sytems allow to discover the TSC and local APIC timer frequencies,
so the calibration against the PIT is not required. These systems have
always running timers and the local APIC timer works also in deep power
states.
So the setup of the PIT including the IO-APIC timer interrupt delivery
checks are a pointless exercise.
Skip the PIT setup and the IO-APIC timer interrupt checks on these systems,
which avoids the panic caused by non ticking PITs and also speeds up the
boot process.
Thanks to Daniel for providing the changelog, initial analysis of the
problem and testing against a variety of machines.
Reported-by: Daniel Drake <drake@endlessm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Daniel Drake <drake@endlessm.com>
Cc: bp@alien8.de
Cc: hpa@zytor.com
Cc: linux@endlessm.com
Cc: rafael.j.wysocki@intel.com
Cc: hdegoede@redhat.com
Link: https://lkml.kernel.org/r/20190628072307.24678-1-drake@endlessm.com
Instead of allocating yet another data structure, move the clock event data
into the channel structure. This allows further consolidation of the
reservation code and the reuse of the cached boot config to replace the
extra flags in the clockevent data.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Link: https://lkml.kernel.org/r/20190623132436.185851116@linutronix.de
Using __clear_bit() and __cpumask_clear_cpu() is more efficient than using
their atomic counterparts.
Use them when atomicity is not needed, such as when manipulating bitmasks
that are on the stack.
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lkml.kernel.org/r/20190613064813.8102-10-namit@vmware.com
The left shift of unsigned int cpu_khz will overflow for large values of
cpu_khz, so cast it to a long long before shifting it to avoid overvlow.
For example, this can happen when cpu_khz is 4194305, i.e. ~4.2 GHz.
Addresses-Coverity: ("Unintentional integer overflow")
Fixes: 8c3ba8d049 ("x86, apic: ack all pending irqs when crashed/on kexec")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: kernel-janitors@vger.kernel.org
Link: https://lkml.kernel.org/r/20190619181446.13635-1-colin.king@canonical.com
Based on 2 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license version 2 as
published by the free software foundation
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license version 2 as
published by the free software foundation #
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 4122 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Enrico Weigelt <info@metux.net>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190604081206.933168790@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Based on 1 normalized pattern(s):
subject to the gnu public license v 2
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 9 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Reviewed-by: Steve Winslow <swinslow@gmail.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190528171440.130801526@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Add SPDX license identifiers to all files which:
- Have no license information of any form
- Have EXPORT_.*_SYMBOL_GPL inside which was used in the
initial scan/conversion to ignore the file
These files fall under the project license, GPL v2 only. The resulting SPDX
license identifier is:
GPL-2.0-only
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This variable is a period unit (number of clock cycles per jiffy),
not a frequency (which is number of cycles per second).
Give it a more appropriate name.
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Daniel Drake <drake@endlessm.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: len.brown@intel.com
Cc: linux@endlessm.com
Cc: rafael.j.wysocki@intel.com
Link: http://lkml.kernel.org/r/20190509055417.13152-2-drake@endlessm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 asm updates from Ingo Molnar:
"This includes the following changes:
- cpu_has() cleanups
- sync_bitops.h modernization to the rmwcc.h facility, similarly to
bitops.h
- continued LTO annotations/fixes
- misc cleanups and smaller cleanups"
* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/um/vdso: Drop unnecessary cc-ldoption
x86/vdso: Rename variable to fix -Wshadow warning
x86/cpu/amd: Exclude 32bit only assembler from 64bit build
x86/asm: Mark all top level asm statements as .text
x86/build/vdso: Add FORCE to the build rule of %.so
x86/asm: Modernize sync_bitops.h
x86/mm: Convert some slow-path static_cpu_has() callers to boot_cpu_has()
x86: Convert some slow-path static_cpu_has() callers to boot_cpu_has()
x86/asm: Clarify static_cpu_has()'s intended use
x86/uaccess: Fix implicit cast of __user pointer
x86/cpufeature: Remove __pure attribute to _static_cpu_has()
Local APIC timer clockevent parameters can be calculated based on platform
specific methods. However the code is mostly duplicated with the interrupt
based calibration. The commit which increased the max_delta parameter
updated only one place and made the implementations diverge.
Unify it to prevent further damage.
[ tglx: Rename function to lapic_init_clockevent() and adjust changelog a bit ]
Fixes: 4aed89d6b5 ("x86, lapic-timer: Increase the max_delta to 31 bits")
Reported-by: Daniel Drake <drake@endlessm.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Len Brown <lenb@kernel.org>
Link: https://lkml.kernel.org/r/1556213272-63568-1-git-send-email-jacob.jun.pan@linux.intel.com
Using static_cpu_has() is pointless on those paths, convert them to the
boot_cpu_has() variant.
No functional changes.
Reported-by: Nadav Amit <nadav.amit@gmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Rik van Riel <riel@surriel.com>
Reviewed-by: Juergen Gross <jgross@suse.com> # for paravirt
Cc: Aubrey Li <aubrey.li@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Thomas Lendacky <Thomas.Lendacky@amd.com>
Cc: linux-edac@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: virtualization@lists.linux-foundation.org
Cc: x86@kernel.org
Link: https://lkml.kernel.org/r/20190330112022.28888-3-bp@alien8.de
Add check for the return value of memblock_alloc*() functions and call
panic() in case of error. The panic message repeats the one used by
panicing memblock allocators with adjustment of parameters to include
only relevant ones.
The replacement was mostly automated with semantic patches like the one
below with manual massaging of format strings.
@@
expression ptr, size, align;
@@
ptr = memblock_alloc(size, align);
+ if (!ptr)
+ panic("%s: Failed to allocate %lu bytes align=0x%lx\n", __func__, size, align);
[anders.roxell@linaro.org: use '%pa' with 'phys_addr_t' type]
Link: http://lkml.kernel.org/r/20190131161046.21886-1-anders.roxell@linaro.org
[rppt@linux.ibm.com: fix format strings for panics after memblock_alloc]
Link: http://lkml.kernel.org/r/1548950940-15145-1-git-send-email-rppt@linux.ibm.com
[rppt@linux.ibm.com: don't panic if the allocation in sparse_buffer_init fails]
Link: http://lkml.kernel.org/r/20190131074018.GD28876@rapoport-lnx
[akpm@linux-foundation.org: fix xtensa printk warning]
Link: http://lkml.kernel.org/r/1548057848-15136-20-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Anders Roxell <anders.roxell@linaro.org>
Reviewed-by: Guo Ren <ren_guo@c-sky.com> [c-sky]
Acked-by: Paul Burton <paul.burton@mips.com> [MIPS]
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> [s390]
Reviewed-by: Juergen Gross <jgross@suse.com> [Xen]
Reviewed-by: Geert Uytterhoeven <geert@linux-m68k.org> [m68k]
Acked-by: Max Filippov <jcmvbkbc@gmail.com> [xtensa]
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull x86 cleanups from Ingo Molnar:
"Various cleanups and simplifications, none of them really stands out,
they are all over the place"
* 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/uaccess: Remove unused __addr_ok() macro
x86/smpboot: Remove unused phys_id variable
x86/mm/dump_pagetables: Remove the unused prev_pud variable
x86/fpu: Move init_xstate_size() to __init section
x86/cpu_entry_area: Move percpu_setup_debug_store() to __init section
x86/mtrr: Remove unused variable
x86/boot/compressed/64: Explain paging_prepare()'s return value
x86/resctrl: Remove duplicate MSR_MISC_FEATURE_CONTROL definition
x86/asm/suspend: Drop ENTRY from local data
x86/hw_breakpoints, kprobes: Remove kprobes ifdeffery
x86/boot: Save several bytes in decompressor
x86/trap: Remove useless declaration
x86/mm/tlb: Remove unused cpu variable
x86/events: Mark expected switch-case fall-throughs
x86/asm-prototypes: Remove duplicate include <asm/page.h>
x86/kernel: Mark expected switch-case fall-throughs
x86/insn-eval: Mark expected switch-case fall-through
x86/platform/UV: Replace kmalloc() and memset() with k[cz]alloc() calls
x86/e820: Replace kmalloc() + memcpy() with kmemdup()
Patch series "Replace all open encodings for NUMA_NO_NODE", v3.
All these places for replacement were found by running the following
grep patterns on the entire kernel code. Please let me know if this
might have missed some instances. This might also have replaced some
false positives. I will appreciate suggestions, inputs and review.
1. git grep "nid == -1"
2. git grep "node == -1"
3. git grep "nid = -1"
4. git grep "node = -1"
This patch (of 2):
At present there are multiple places where invalid node number is
encoded as -1. Even though implicitly understood it is always better to
have macros in there. Replace these open encodings for an invalid node
number with the global macro NUMA_NO_NODE. This helps remove NUMA
related assumptions like 'invalid node' from various places redirecting
them to a common definition.
Link: http://lkml.kernel.org/r/1545127933-10711-2-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com> [ixgbe]
Acked-by: Jens Axboe <axboe@kernel.dk> [mtip32xx]
Acked-by: Vinod Koul <vkoul@kernel.org> [dmaengine.c]
Acked-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc]
Acked-by: Doug Ledford <dledford@redhat.com> [drivers/infiniband]
Cc: Joseph Qi <jiangqi903@gmail.com>
Cc: Hans Verkuil <hverkuil@xs4all.nl>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In preparation to enable -Wimplicit-fallthrough by default, mark
switch-case statements where fall-through is intentional, explicitly in
order to fix a couple of -Wimplicit-fallthrough warnings.
Warning level 3 was used: -Wimplicit-fallthrough=3.
[ bp: Massasge and trim commit message. ]
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Daniel Thompson <daniel.thompson@linaro.org>
Cc: David Wang <davidwang@zhaoxin.com>
Cc: Douglas Anderson <dianders@chromium.org>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jan Beulich <JBeulich@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pu Wen <puwen@hygon.cn>
Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190125183903.GA4712@embeddedor
... with the goal of eventually enabling -Wmissing-prototypes by
default. At least on x86.
Make functions static where possible, otherwise add prototypes or make
them visible through includes.
asm/trace/ changes courtesy of Steven Rostedt <rostedt@goodmis.org>.
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> # ACPI + cpufreq bits
Cc: Andrew Banman <andrew.banman@hpe.com>
Cc: Dimitri Sivanich <dimitri.sivanich@hpe.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mike Travis <mike.travis@hpe.com>
Cc: "Steven Rostedt (VMware)" <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yi Wang <wang.yi59@zte.com.cn>
Cc: linux-acpi@vger.kernel.org
When a memblock allocation APIs are called with align = 0, the alignment
is implicitly set to SMP_CACHE_BYTES.
Implicit alignment is done deep in the memblock allocator and it can
come as a surprise. Not that such an alignment would be wrong even
when used incorrectly but it is better to be explicit for the sake of
clarity and the prinicple of the least surprise.
Replace all such uses of memblock APIs with the 'align' parameter
explicitly set to SMP_CACHE_BYTES and stop implicit alignment assignment
in the memblock internal allocation functions.
For the case when memblock APIs are used via helper functions, e.g. like
iommu_arena_new_node() in Alpha, the helper functions were detected with
Coccinelle's help and then manually examined and updated where
appropriate.
The direct memblock APIs users were updated using the semantic patch below:
@@
expression size, min_addr, max_addr, nid;
@@
(
|
- memblock_alloc_try_nid_raw(size, 0, min_addr, max_addr, nid)
+ memblock_alloc_try_nid_raw(size, SMP_CACHE_BYTES, min_addr, max_addr,
nid)
|
- memblock_alloc_try_nid_nopanic(size, 0, min_addr, max_addr, nid)
+ memblock_alloc_try_nid_nopanic(size, SMP_CACHE_BYTES, min_addr, max_addr,
nid)
|
- memblock_alloc_try_nid(size, 0, min_addr, max_addr, nid)
+ memblock_alloc_try_nid(size, SMP_CACHE_BYTES, min_addr, max_addr, nid)
|
- memblock_alloc(size, 0)
+ memblock_alloc(size, SMP_CACHE_BYTES)
|
- memblock_alloc_raw(size, 0)
+ memblock_alloc_raw(size, SMP_CACHE_BYTES)
|
- memblock_alloc_from(size, 0, min_addr)
+ memblock_alloc_from(size, SMP_CACHE_BYTES, min_addr)
|
- memblock_alloc_nopanic(size, 0)
+ memblock_alloc_nopanic(size, SMP_CACHE_BYTES)
|
- memblock_alloc_low(size, 0)
+ memblock_alloc_low(size, SMP_CACHE_BYTES)
|
- memblock_alloc_low_nopanic(size, 0)
+ memblock_alloc_low_nopanic(size, SMP_CACHE_BYTES)
|
- memblock_alloc_from_nopanic(size, 0, min_addr)
+ memblock_alloc_from_nopanic(size, SMP_CACHE_BYTES, min_addr)
|
- memblock_alloc_node(size, 0, nid)
+ memblock_alloc_node(size, SMP_CACHE_BYTES, nid)
)
[mhocko@suse.com: changelog update]
[akpm@linux-foundation.org: coding-style fixes]
[rppt@linux.ibm.com: fix missed uses of implicit alignment]
Link: http://lkml.kernel.org/r/20181016133656.GA10925@rapoport-lnx
Link: http://lkml.kernel.org/r/1538687224-17535-1-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Suggested-by: Michal Hocko <mhocko@suse.com>
Acked-by: Paul Burton <paul.burton@mips.com> [MIPS]
Acked-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc]
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Richard Weinberger <richard@nod.at>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move remaining definitions and declarations from include/linux/bootmem.h
into include/linux/memblock.h and remove the redundant header.
The includes were replaced with the semantic patch below and then
semi-automated removal of duplicated '#include <linux/memblock.h>
@@
@@
- #include <linux/bootmem.h>
+ #include <linux/memblock.h>
[sfr@canb.auug.org.au: dma-direct: fix up for the removal of linux/bootmem.h]
Link: http://lkml.kernel.org/r/20181002185342.133d1680@canb.auug.org.au
[sfr@canb.auug.org.au: powerpc: fix up for removal of linux/bootmem.h]
Link: http://lkml.kernel.org/r/20181005161406.73ef8727@canb.auug.org.au
[sfr@canb.auug.org.au: x86/kaslr, ACPI/NUMA: fix for linux/bootmem.h removal]
Link: http://lkml.kernel.org/r/20181008190341.5e396491@canb.auug.org.au
Link: http://lkml.kernel.org/r/1536927045-23536-30-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Serge Semin <fancer.lancer@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The alloc_bootmem(size) is a shortcut for allocation of SMP_CACHE_BYTES
aligned memory. When the align parameter of memblock_alloc() is 0, the
alignment is implicitly set to SMP_CACHE_BYTES and thus alloc_bootmem(size)
and memblock_alloc(size, 0) are equivalent.
The conversion is done using the following semantic patch:
@@
expression size;
@@
- alloc_bootmem(size)
+ memblock_alloc(size, 0)
Link: http://lkml.kernel.org/r/1536927045-23536-22-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Serge Semin <fancer.lancer@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The alloc_bootmem_pages() function allocates PAGE_SIZE aligned memory.
memblock_alloc() with alignment set to PAGE_SIZE does exactly the same
thing.
The conversion is done using the following semantic patch:
@@
expression e;
@@
- alloc_bootmem_pages(e)
+ memblock_alloc(e, PAGE_SIZE)
Link: http://lkml.kernel.org/r/1536927045-23536-20-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Serge Semin <fancer.lancer@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull x86 cpu updates from Ingo Molnar:
"The main changes in this cycle were:
- Add support for the "Dhyana" x86 CPUs by Hygon: these are licensed
based on the AMD Zen architecture, and are built and sold in China,
for domestic datacenter use. The code is pretty close to AMD
support, mostly with a few quirks and enumeration differences. (Pu
Wen)
- Enable CPUID support on Cyrix 6x86/6x86L processors"
* 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
tools/cpupower: Add Hygon Dhyana support
cpufreq: Add Hygon Dhyana support
ACPI: Add Hygon Dhyana support
x86/xen: Add Hygon Dhyana support to Xen
x86/kvm: Add Hygon Dhyana support to KVM
x86/mce: Add Hygon Dhyana support to the MCA infrastructure
x86/bugs: Add Hygon Dhyana to the respective mitigation machinery
x86/apic: Add Hygon Dhyana support
x86/pci, x86/amd_nb: Add Hygon Dhyana support to PCI and northbridge
x86/amd_nb: Check vendor in AMD-only functions
x86/alternative: Init ideal_nops for Hygon Dhyana
x86/events: Add Hygon Dhyana support to PMU infrastructure
x86/smpboot: Do not use BSP INIT delay and MWAIT to idle on Dhyana
x86/cpu/mtrr: Support TOP_MEM2 and get MTRR number
x86/cpu: Get cache info and setup cache cpumap for Hygon Dhyana
x86/cpu: Create Hygon Dhyana architecture support file
x86/CPU: Change query logic so CPUID is enabled before testing
x86/CPU: Use correct macros for Cyrix calls
Linux spreads out the non managed interrupt across the possible target CPUs
to avoid vector space exhaustion.
Managed interrupts are treated differently, as for them the vectors are
reserved (with guarantee) when the interrupt descriptors are initialized.
When the interrupt is requested a real vector is assigned. The assignment
logic uses the first CPU in the affinity mask for assignment. If the
interrupt has more than one CPU in the affinity mask, which happens when a
multi queue device has less queues than CPUs, then doing the same search as
for non managed interrupts makes sense as it puts the interrupt on the
least interrupt plagued CPU. For single CPU affine vectors that's obviously
a NOOP.
Restructre the matrix allocation code so it does the 'best CPU' search, add
the sanity check for an empty affinity mask and adapt the call site in the
x86 vector management code.
[ tglx: Added the empty mask check to the core and improved change log ]
Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/20180908175838.14450-2-dou_liyang@163.com
activate_managed() returns EINVAL instead of -EINVAL in case of
error. While this is unlikely to happen, the positive return value would
cause further malfunction at the call site.
Fixes: 2db1f959d9 ("x86/vector: Handle managed interrupts proper")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
The function has an inline "return false;" definition with CONFIG_SMP=n
but the "real" definition is also visible leading to "redefinition of
‘apic_id_is_primary_thread’" compiler error.
Guard it with #ifdef CONFIG_SMP
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Fixes: 6a4d2657e0 ("x86/smp: Provide topology_is_primary_thread()")
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge L1 Terminal Fault fixes from Thomas Gleixner:
"L1TF, aka L1 Terminal Fault, is yet another speculative hardware
engineering trainwreck. It's a hardware vulnerability which allows
unprivileged speculative access to data which is available in the
Level 1 Data Cache when the page table entry controlling the virtual
address, which is used for the access, has the Present bit cleared or
other reserved bits set.
If an instruction accesses a virtual address for which the relevant
page table entry (PTE) has the Present bit cleared or other reserved
bits set, then speculative execution ignores the invalid PTE and loads
the referenced data if it is present in the Level 1 Data Cache, as if
the page referenced by the address bits in the PTE was still present
and accessible.
While this is a purely speculative mechanism and the instruction will
raise a page fault when it is retired eventually, the pure act of
loading the data and making it available to other speculative
instructions opens up the opportunity for side channel attacks to
unprivileged malicious code, similar to the Meltdown attack.
While Meltdown breaks the user space to kernel space protection, L1TF
allows to attack any physical memory address in the system and the
attack works across all protection domains. It allows an attack of SGX
and also works from inside virtual machines because the speculation
bypasses the extended page table (EPT) protection mechanism.
The assoicated CVEs are: CVE-2018-3615, CVE-2018-3620, CVE-2018-3646
The mitigations provided by this pull request include:
- Host side protection by inverting the upper address bits of a non
present page table entry so the entry points to uncacheable memory.
- Hypervisor protection by flushing L1 Data Cache on VMENTER.
- SMT (HyperThreading) control knobs, which allow to 'turn off' SMT
by offlining the sibling CPU threads. The knobs are available on
the kernel command line and at runtime via sysfs
- Control knobs for the hypervisor mitigation, related to L1D flush
and SMT control. The knobs are available on the kernel command line
and at runtime via sysfs
- Extensive documentation about L1TF including various degrees of
mitigations.
Thanks to all people who have contributed to this in various ways -
patches, review, testing, backporting - and the fruitful, sometimes
heated, but at the end constructive discussions.
There is work in progress to provide other forms of mitigations, which
might be less horrible performance wise for a particular kind of
workloads, but this is not yet ready for consumption due to their
complexity and limitations"
* 'l1tf-final' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (75 commits)
x86/microcode: Allow late microcode loading with SMT disabled
tools headers: Synchronise x86 cpufeatures.h for L1TF additions
x86/mm/kmmio: Make the tracer robust against L1TF
x86/mm/pat: Make set_memory_np() L1TF safe
x86/speculation/l1tf: Make pmd/pud_mknotpresent() invert
x86/speculation/l1tf: Invert all not present mappings
cpu/hotplug: Fix SMT supported evaluation
KVM: VMX: Tell the nested hypervisor to skip L1D flush on vmentry
x86/speculation: Use ARCH_CAPABILITIES to skip L1D flush on vmentry
x86/speculation: Simplify sysfs report of VMX L1TF vulnerability
Documentation/l1tf: Remove Yonah processors from not vulnerable list
x86/KVM/VMX: Don't set l1tf_flush_l1d from vmx_handle_external_intr()
x86/irq: Let interrupt handlers set kvm_cpu_l1tf_flush_l1d
x86: Don't include linux/irq.h from asm/hardirq.h
x86/KVM/VMX: Introduce per-host-cpu analogue of l1tf_flush_l1d
x86/irq: Demote irq_cpustat_t::__softirq_pending to u16
x86/KVM/VMX: Move the l1tf_flush_l1d test to vmx_l1d_flush()
x86/KVM/VMX: Replace 'vmx_l1d_flush_always' with 'vmx_l1d_flush_cond'
x86/KVM/VMX: Don't set l1tf_flush_l1d to true from vmx_l1d_flush()
cpu/hotplug: detect SMT disabled by BIOS
...
Pull x86 platform updates from Thomas Gleixner:
"Trivial cleanups and improvements"
* 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/platform/UV: Remove redundant check of p == q
x86/platform/olpc: Use PTR_ERR_OR_ZERO()
x86/platform/UV: Mark memblock related init code and data correctly
Pull x86 apic update from Thomas Gleixner:
"Trivial cleanups of the APIC related code"
* 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/apic: Trivial coding style fixes
x86/vector: Merge allocate_vector() into assign_vector_locked()
The next patch in this series will have to make the definition of
irq_cpustat_t available to entering_irq().
Inclusion of asm/hardirq.h into asm/apic.h would cause circular header
dependencies like
asm/smp.h
asm/apic.h
asm/hardirq.h
linux/irq.h
linux/topology.h
linux/smp.h
asm/smp.h
or
linux/gfp.h
linux/mmzone.h
asm/mmzone.h
asm/mmzone_64.h
asm/smp.h
asm/apic.h
asm/hardirq.h
linux/irq.h
linux/irqdesc.h
linux/kobject.h
linux/sysfs.h
linux/kernfs.h
linux/idr.h
linux/gfp.h
and others.
This causes compilation errors because of the header guards becoming
effective in the second inclusion: symbols/macros that had been defined
before wouldn't be available to intermediate headers in the #include chain
anymore.
A possible workaround would be to move the definition of irq_cpustat_t
into its own header and include that from both, asm/hardirq.h and
asm/apic.h.
However, this wouldn't solve the real problem, namely asm/harirq.h
unnecessarily pulling in all the linux/irq.h cruft: nothing in
asm/hardirq.h itself requires it. Also, note that there are some other
archs, like e.g. arm64, which don't have that #include in their
asm/hardirq.h.
Remove the linux/irq.h #include from x86' asm/hardirq.h.
Fix resulting compilation errors by adding appropriate #includes to *.c
files as needed.
Note that some of these *.c files could be cleaned up a bit wrt. to their
set of #includes, but that should better be done from separate patches, if
at all.
Signed-off-by: Nicolai Stange <nstange@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
parse_mem_block_size() and mem_block_size are only used during init. Mark
them accordingly.
Fixes: d7609f4210 ("x86/platform/UV: Add kernel parameter to set memory block size")
Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: hpa@zytor.com
Cc: Mike Travis <mike.travis@hpe.com>
Cc: Andrew Banman <andrew.banman@hpe.com>
Link: https://lkml.kernel.org/r/20180730075947.23023-1-douly.fnst@cn.fujitsu.com
All SKX with stepping higher than 4 support the TSC_DEADLINE,
no matter the microcode version.
Without this patch, upcoming SKX steppings will not be able to use
their TSC_DEADLINE timer.
Signed-off-by: Len Brown <len.brown@intel.com>
Cc: <stable@kernel.org> # v4.14+
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 616dd5872e ("x86/apic: Update TSC_DEADLINE quirk with additional SKX stepping")
Link: http://lkml.kernel.org/r/d0c7129e509660be9ec6b233284b8d42d90659e8.1532207856.git.len.brown@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Dave Hansen reported, that it's outright dangerous to keep SMT siblings
disabled completely so they are stuck in the BIOS and wait for SIPI.
The reason is that Machine Check Exceptions are broadcasted to siblings and
the soft disabled sibling has CR4.MCE = 0. If a MCE is delivered to a
logical core with CR4.MCE = 0, it asserts IERR#, which shuts down or
reboots the machine. The MCE chapter in the SDM contains the following
blurb:
Because the logical processors within a physical package are tightly
coupled with respect to shared hardware resources, both logical
processors are notified of machine check errors that occur within a
given physical processor. If machine-check exceptions are enabled when
a fatal error is reported, all the logical processors within a physical
package are dispatched to the machine-check exception handler. If
machine-check exceptions are disabled, the logical processors enter the
shutdown state and assert the IERR# signal. When enabling machine-check
exceptions, the MCE flag in control register CR4 should be set for each
logical processor.
Reverting the commit which ignores siblings at enumeration time solves only
half of the problem. The core cpuhotplug logic needs to be adjusted as
well.
This thoughtful engineered mechanism also turns the boot process on all
Intel HT enabled systems into a MCE lottery. MCE is enabled on the boot CPU
before the secondary CPUs are brought up. Depending on the number of
physical cores the window in which this situation can happen is smaller or
larger. On a HSW-EX it's about 750ms:
MCE is enabled on the boot CPU:
[ 0.244017] mce: CPU supports 22 MCE banks
The corresponding sibling #72 boots:
[ 1.008005] .... node #0, CPUs: #72
That means if an MCE hits on physical core 0 (logical CPUs 0 and 72)
between these two points the machine is going to shutdown. At least it's a
known safe state.
It's obvious that the early boot can be hit by an MCE as well and then runs
into the same situation because MCEs are not yet enabled on the boot CPU.
But after enabling them on the boot CPU, it does not make any sense to
prevent the kernel from recovering.
Adjust the nosmt kernel parameter documentation as well.
Reverts: 2207def700 ("x86/apic: Ignore secondary threads if nosmt=force")
Reported-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Tony Luck <tony.luck@intel.com>
Add a kernel parameter that allows setting UV memory block size. This
is to provide an adjustment for new forms of PMEM and other DIMM memory
that might require alignment restrictions other than scanning the global
address table for the required minimum alignment. The value set will be
further adjusted by both the GAM range table scan as well as restrictions
imposed by set_memory_block_size_order().
Signed-off-by: Mike Travis <mike.travis@hpe.com>
Reviewed-by: Andrew Banman <andrew.banman@hpe.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Dimitri Sivanich <dimitri.sivanich@hpe.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russ Anderson <russ.anderson@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dan.j.williams@intel.com
Cc: jgross@suse.com
Cc: kirill.shutemov@linux.intel.com
Cc: mhocko@suse.com
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/lkml/20180524201711.854849120@stormcage.americas.sgi.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add a call to the new function to "adjust" the current fixed UV memory
block size of 2GB so it can be changed to a different physical boundary.
This accommodates changes in the Intel BIOS, and therefore UV BIOS,
which now can align boundaries different than the previous UV standard
of 2GB. It also flags any UV Global Address boundaries from BIOS that
cause a change in the mem block size (boundary).
The current boundary of 2GB has been used on UV since the first system
release in 2009 with Linux 2.6 and has worked fine. But the new NVDIMM
persistent memory modules (PMEM), along with the Intel BIOS changes to
support these modules caused the memory block size boundary to be set
to a lower limit. Intel only guarantees that this minimum boundary at
64MB though the current Linux limit is 128MB.
Note that the default remains 2GB if no changes occur.
Signed-off-by: Mike Travis <mike.travis@hpe.com>
Reviewed-by: Andrew Banman <andrew.banman@hpe.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Dimitri Sivanich <dimitri.sivanich@hpe.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russ Anderson <russ.anderson@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dan.j.williams@intel.com
Cc: jgross@suse.com
Cc: kirill.shutemov@linux.intel.com
Cc: mhocko@suse.com
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/lkml/20180524201711.732785782@stormcage.americas.sgi.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
nosmt on the kernel command line merely prevents the onlining of the
secondary SMT siblings.
nosmt=force makes the APIC detection code ignore the secondary SMT siblings
completely, so they even do not show up as possible CPUs. That reduces the
amount of memory allocations for per cpu variables and saves other
resources from being allocated too large.
This is not fully equivalent to disabling SMT in the BIOS because the low
level SMT enabling in the BIOS can result in partitioning of resources
between the siblings, which is not undone by just ignoring them. Some CPUs
can use the full resources when their sibling is not onlined, but this is
depending on the CPU family and model and it's not well documented whether
this applies to all partitioned resources. That means depending on the
workload disabling SMT in the BIOS might result in better performance.
Linus analysis of the Intel manual:
The intel optimization manual is not very clear on what the partitioning
rules are.
I find:
"In general, the buffers for staging instructions between major pipe
stages are partitioned. These buffers include µop queues after the
execution trace cache, the queues after the register rename stage, the
reorder buffer which stages instructions for retirement, and the load
and store buffers.
In the case of load and store buffers, partitioning also provided an
easier implementation to maintain memory ordering for each logical
processor and detect memory ordering violations"
but some of that partitioning may be relaxed if the HT thread is "not
active":
"In Intel microarchitecture code name Sandy Bridge, the micro-op queue
is statically partitioned to provide 28 entries for each logical
processor, irrespective of software executing in single thread or
multiple threads. If one logical processor is not active in Intel
microarchitecture code name Ivy Bridge, then a single thread executing
on that processor core can use the 56 entries in the micro-op queue"
but I do not know what "not active" means, and how dynamic it is. Some of
that partitioning may be entirely static and depend on the early BIOS
disabling of HT, and even if we park the cores, the resources will just be
wasted.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
If the CPU is supporting SMT then the primary thread can be found by
checking the lower APIC ID bits for zero. smp_num_siblings is used to build
the mask for the APIC ID bits which need to be taken into account.
This uses the MPTABLE or ACPI/MADT supplied APIC ID, which can be different
than the initial APIC ID in CPUID. But according to AMD the lower bits have
to be consistent. Intel gave a tentative confirmation as well.
Preparatory patch to support disabling SMT at boot/runtime.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Extend the debugability of the vector management by adding the state bits
to the debugfs output.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Song Liu <songliubraving@fb.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Song Liu <liu.song.a23@gmail.com>
Cc: Dmitry Safonov <0x7f454c46@gmail.com>
Cc: Mike Travis <mike.travis@hpe.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Tariq Toukan <tariqt@mellanox.com>
Link: https://lkml.kernel.org/r/20180604162224.908136099@linutronix.de
To address the EBUSY fail of interrupt affinity settings in case that the
previous setting has not been cleaned up yet, use the new apic_ack_irq()
function instead of directly invoking ack_APIC_irq().
Preparatory change for the real fix
Fixes: dccfe3147b ("x86/vector: Simplify vector move cleanup")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Song Liu <songliubraving@fb.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Song Liu <liu.song.a23@gmail.com>
Cc: Dmitry Safonov <0x7f454c46@gmail.com>
Cc: stable@vger.kernel.org
Cc: Mike Travis <mike.travis@hpe.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Tariq Toukan <tariqt@mellanox.com>
Link: https://lkml.kernel.org/r/20180604162224.639011135@linutronix.de
apic_ack_edge() is explicitely for handling interrupt affinity cleanup when
interrupt remapping is not available or disable.
Remapped interrupts and also some of the platform specific special
interrupts, e.g. UV, invoke ack_APIC_irq() directly.
To address the issue of failing an affinity update with -EBUSY the delayed
affinity mechanism can be reused, but ack_APIC_irq() does not handle
that. Adding this to ack_APIC_irq() is not possible, because that function
is also used for exceptions and directly handled interrupts like IPIs.
Create a new function, which just contains the conditional invocation of
irq_move_irq() and the final ack_APIC_irq().
Reuse the new function in apic_ack_edge().
Preparatory change for the real fix.
Fixes: dccfe3147b ("x86/vector: Simplify vector move cleanup")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Song Liu <songliubraving@fb.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Song Liu <liu.song.a23@gmail.com>
Cc: Dmitry Safonov <0x7f454c46@gmail.com>
Cc: stable@vger.kernel.org
Cc: Mike Travis <mike.travis@hpe.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Tariq Toukan <tariqt@mellanox.com>
Link: https://lkml.kernel.org/r/20180604162224.471925894@linutronix.de
Several people observed the WARN_ON() in irq_matrix_free() which triggers
when the caller tries to free an vector which is not in the allocation
range. Song provided the trace information which allowed to decode the root
cause.
The rework of the vector allocation mechanism failed to preserve a sanity
check, which prevents setting a new target vector/CPU when the previous
affinity change has not fully completed.
As a result a half finished affinity change can be overwritten, which can
cause the leak of a irq descriptor pointer on the previous target CPU and
double enqueue of the hlist head into the cleanup lists of two or more
CPUs. After one CPU cleaned up its vector the next CPU will invoke the
cleanup handler with vector 0, which triggers the out of range warning in
the matrix allocator.
Prevent this by checking the apic_data of the interrupt whether the
move_in_progress flag is false and the hlist node is not hashed. Return
-EBUSY if not.
This prevents the damage and restores the behaviour before the vector
allocation rework, but due to other changes in that area it also widens the
chance that user space can observe -EBUSY. In theory this should be fine,
but actually not all user space tools handle -EBUSY correctly. Addressing
that is not part of this fix, but will be addressed in follow up patches.
Fixes: 69cde0004a ("x86/vector: Use matrix allocator for vector assignment")
Reported-by: Dmitry Safonov <0x7f454c46@gmail.com>
Reported-by: Tariq Toukan <tariqt@mellanox.com>
Reported-by: Song Liu <liu.song.a23@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Song Liu <songliubraving@fb.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: stable@vger.kernel.org
Cc: Mike Travis <mike.travis@hpe.com>
Cc: Borislav Petkov <bp@alien8.de>
Link: https://lkml.kernel.org/r/20180604162224.303870257@linutronix.de
assign_vector_locked() calls allocate_vector() to get a real vector for an
IRQ. If the current target CPU is online and in the new requested affinity
mask, allocate_vector() will return 0 and nothing should be done. But,
assign_vector_locked() calls apic_update_irq_cfg() even in that case which
is pointless.
allocate_vector() is not called from anything else, so the functions can be
merged and in case of no change the apic_update_irq_cfg() can be avoided.
[ tglx: Massaged changelog ]
Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/20180511080956.6316-1-douly.fnst@cn.fujitsu.com
Rick bisected a regression on large systems which use the x2apic cluster
mode for interrupt delivery to the commit wich reworked the cluster
management.
The problem is caused by a missing initialization of the clusterid field
in the shared cluster data structures. So all structures end up with
cluster ID 0 which only allows sharing between all CPUs which belong to
cluster 0. All other CPUs with a cluster ID > 0 cannot share the data
structure because they cannot find existing data with their cluster
ID. This causes malfunction with IPIs because IPIs are sent to the wrong
cluster and the caller waits for ever that the target CPU handles the IPI.
Add the missing initialization when a upcoming CPU is the first in a
cluster so that the later booting CPUs can find the data and share it for
proper operation.
Fixes: 023a611748 ("x86/apic/x2apic: Simplify cluster management")
Reported-by: Rick Warner <rick@microway.com>
Bisected-by: Rick Warner <rick@microway.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Rick Warner <rick@microway.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1805171418210.1947@nanos.tec.linutronix.de
The APIC ID as parsed from ACPI MADT is validity checked with the
apic->apic_id_valid() callback, which depends on the selected APIC type.
For non X2APIC types APIC IDs >= 0xFF are invalid, but values > 0x7FFFFFFF
are detected as valid. This happens because the 'apicid' argument of the
apic_id_valid() callback is type 'int'. So the resulting comparison
apicid < 0xFF
evaluates to true for all unsigned int values > 0x7FFFFFFF which are handed
to default_apic_id_valid(). As a consequence, invalid APIC IDs in !X2APIC
mode are considered valid and accounted as possible CPUs.
Change the apicid argument type of the apic_id_valid() callback to u32 so
the evaluation is unsigned and returns the correct result.
[ tglx: Massaged changelog ]
Signed-off-by: Li RongQing <lirongqing@baidu.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Cc: jgross@suse.com
Cc: Dou Liyang <douly.fnst@cn.fujitsu.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/1523322966-10296-1-git-send-email-lirongqing@baidu.com
Pull x86 apic updates from Ingo Molnar:
"The main x86 APIC/IOAPIC changes in this cycle were:
- Robustify kexec support to more carefully restore IRQ hardware
state before calling into kexec/kdump kernels. (Baoquan He)
- Clean up the local APIC code a bit (Dou Liyang)
- Remove unused callbacks (David Rientjes)"
* 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/apic: Finish removing unused callbacks
x86/apic: Drop logical_smp_processor_id() inline
x86/apic: Modernize the pending interrupt code
x86/apic: Move pending interrupt check code into it's own function
x86/apic: Set up through-local-APIC mode on the boot CPU if 'noapic' specified
x86/apic: Rename variables and functions related to x86_io_apic_ops
x86/apic: Remove the (now) unused disable_IO_APIC() function
x86/apic: Fix restoring boot IRQ mode in reboot and kexec/kdump
x86/apic: Split disable_IO_APIC() into two functions to fix CONFIG_KEXEC_JUMP=y
x86/apic: Split out restore_boot_irq_mode() from disable_IO_APIC()
x86/apic: Make setup_local_APIC() static
x86/apic: Simplify init_bsp_APIC() usage
x86/x2apic: Mark set_x2apic_phys_mode() as __init
The pending interrupt check code is old, update the following:
- Use for_each_set_bit() instead of open coding it
- Replace printk() with pr_err()
- Get rid of printk line breaks
- Make curly braces balanced
Suggested-by: Andy Shevchenko <andy.shevchenko@gmail.com>
Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Andy Shevchenko <andy.shevchenko@gmail.com>
Cc: bhe@redhat.com
Cc: ebiederm@xmission.com
Link: https://lkml.kernel.org/r/20180301055930.2396-3-douly.fnst@cn.fujitsu.com
The pending interrupt check code is mixed with the local APIC setup code,
that looks messy.
Extract the related code, move it into a new function named
apic_pending_intr_clear().
Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Andy Shevchenko <andy.shevchenko@gmail.com>
Cc: bhe@redhat.com
Cc: ebiederm@xmission.com
Link: https://lkml.kernel.org/r/20180301055930.2396-2-douly.fnst@cn.fujitsu.com
Pull x86 fixes from Thomas Gleixner:
"Yet another pile of melted spectrum related changes:
- sanitize the array_index_nospec protection mechanism: Remove the
overengineered array_index_nospec_mask_check() magic and allow
const-qualified types as index to avoid temporary storage in a
non-const local variable.
- make the microcode loader more robust by properly propagating error
codes. Provide information about new feature bits after micro code
was updated so administrators can act upon.
- optimizations of the entry ASM code which reduce code footprint and
make the code simpler and faster.
- fix the {pmd,pud}_{set,clear}_flags() implementations to work
properly on paravirt kernels by removing the address translation
operations.
- revert the harmful vmexit_fill_RSB() optimization
- use IBRS around firmware calls
- teach objtool about retpolines and add annotations for indirect
jumps and calls.
- explicitly disable jumplabel patching in __init code and handle
patching failures properly instead of silently ignoring them.
- remove indirect paravirt calls for writing the speculation control
MSR as these calls are obviously proving the same attack vector
which is tried to be mitigated.
- a few small fixes which address build issues with recent compiler
and assembler versions"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (38 commits)
KVM/VMX: Optimize vmx_vcpu_run() and svm_vcpu_run() by marking the RDMSR path as unlikely()
KVM/x86: Remove indirect MSR op calls from SPEC_CTRL
objtool, retpolines: Integrate objtool with retpoline support more closely
x86/entry/64: Simplify ENCODE_FRAME_POINTER
extable: Make init_kernel_text() global
jump_label: Warn on failed jump_label patching attempt
jump_label: Explicitly disable jump labels in __init code
x86/entry/64: Open-code switch_to_thread_stack()
x86/entry/64: Move ASM_CLAC to interrupt_entry()
x86/entry/64: Remove 'interrupt' macro
x86/entry/64: Move the switch_to_thread_stack() call to interrupt_entry()
x86/entry/64: Move ENTER_IRQ_STACK from interrupt macro to interrupt_entry
x86/entry/64: Move PUSH_AND_CLEAR_REGS from interrupt macro to helper function
x86/speculation: Move firmware_restrict_branch_speculation_*() from C to CPP
objtool: Add module specific retpoline rules
objtool: Add retpoline validation
objtool: Use existing global variables for options
x86/mm/sme, objtool: Annotate indirect call in sme_encrypt_execute()
x86/boot, objtool: Annotate indirect jump in secondary_startup_64()
x86/paravirt, objtool: Annotate indirect calls
...
When a irq vector is replaced, then the previous vector is normally
released when the first interrupt happens on the new vector. If the target
CPU of the previous vector is already offline when the new vector is
installed, then the previous vector is silently discarded, which leads to
accounting issues causing suspend failures and other problems.
Adjust the logic so that the previous vector is freed in the underlying
matrix allocator to ensure that the accounting stays correct.
Fixes: 69cde0004a ("x86/vector: Use matrix allocator for vector assignment")
Reported-by: Yuriy Vostrikov <delamonpansie@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Yuriy Vostrikov <delamonpansie@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20180222112316.930791749@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently the kdump kernel becomes very slow if 'noapic' is specified.
Normal kernel doesn't have this bug.
Kernel parameter 'noapic' is used to disable IO-APIC in system for
testing or special purpose. Here the root cause is that in kdump
kernel LAPIC is disabled since commit:
522e664644 ("x86/apic: Disable I/O APIC before shutdown of the local APIC")
In this case we need set up through-local-APIC on boot CPU in
setup_local_APIC().
In normal kernel the legacy irq mode is enabled by the BIOS. If
it is virtual wire mode, the local-APIC has been enabled and set as
through-local-APIC.
Though we fixed the regression introduced by commit 522e664644,
to further improve robustness set up the through-local-APIC mode
explicitly, do not rely on the default boot IRQ mode.
Signed-off-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Eric W. Biederman <ebiederm@xmission.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: douly.fnst@cn.fujitsu.com
Cc: joro@8bytes.org
Cc: prarit@redhat.com
Cc: uobergfe@redhat.com
Link: http://lkml.kernel.org/r/20180214054656.3780-7-bhe@redhat.com
[ Rewrote the changelog. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The names of x86_io_apic_ops and its two member variables are
misleading:
The ->read() member is to read IO_APIC reg, while ->disable()
which is called by native_disable_io_apic()/irq_remapping_disable_io_apic()
is actually used to restore boot IRQ mode, not to disable the IO-APIC.
So rename x86_io_apic_ops to 'x86_apic_ops' since it doesn't only
handle the IO-APIC, but also the local APIC.
Also rename its member variables and the related callbacks.
Signed-off-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Eric W. Biederman <ebiederm@xmission.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: douly.fnst@cn.fujitsu.com
Cc: joro@8bytes.org
Cc: prarit@redhat.com
Cc: uobergfe@redhat.com
Link: http://lkml.kernel.org/r/20180214054656.3780-6-bhe@redhat.com
[ Rewrote the changelog. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>