Convert all uses of devm_request_and_ioremap() to the newly introduced
devm_ioremap_resource() which provides more consistent error handling.
Signed-off-by: Thierry Reding <thierry.reding@avionic-design.de>
Cc: Russell King <linux@arm.linux.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
CONFIG_HOTPLUG is going away as an option. As a result, the __dev*
markings need to be removed.
This change removes the use of __devinit, __devexit_p, __devinitdata,
and __devexit from these drivers.
Based on patches originally written by Bill Pemberton, but redone by me
in order to handle some of the coding style issues better, by hand.
Cc: Bill Pemberton <wfp5p@virginia.edu>
Cc: Russell King <linux@arm.linux.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This patch removes some code duplication by using
module_platform_driver.
Signed-off-by: Srinivas Kandagatla <srinivas.kandagatla@st.com>
Signed-off-by: Tony Lindgren <tony@atomide.com>
The omap_dm_timer_prepare function is a local function only used in the
dmtimer.c file. Therefore, make this a static function and remove its
declaration from the dmtimer.h file.
Signed-off-by: Jon Hunter <jon-hunter@ti.com>
Only OMAP1 devices use the omap_dm_timer_reset() and so require the
omap_dm_timer_wait_for_reset() and __omap_dm_timer_reset() functions.
Therefore combine these into a single function called omap_dm_timer_reset()
and simplify the code.
The omap_dm_timer_reset() function is now the only place that is using the
omap_dm_timer structure member "sys_stat". Therefore, remove this member and
just use the register offset definition to simplify and clean-up the code. The
TISTAT register is only present on revision 1 timers and so check for this in
the omap_dm_timer_reset() function.
Please note that for OMAP1 devices, the TIOCP_CFG register does not have the
clock-activity field and so when we reset the timer for an OMAP1 device we
only need to configure the idle-mode field in the TIOCP_CFG register.
Signed-off-by: Jon Hunter <jon-hunter@ti.com>
The __omap_dm_timer_set_source() function is only used by the system timer
(clock-events and clock-source) code for OMAP2+ devices. Therefore, we can
remove this code from the dmtimer driver and move it to the system timer
code for OMAP2+ devices.
The current __omap_dm_timer_set_source() function calls clk_disable() before
calling clk_set_parent() and clk_enable() afterwards. We can avoid these calls
to clk_disable/enable by moving the calls to omap_hwmod_setup_one() and
omap_hwmod_enable() to after the call to clk_set_parent() in
omap_dm_timer_init_one().
The function omap_hwmod_setup_one() will enable the timers functional clock
and therefore increment the use-count of the functional clock to 1.
clk_set_parent() will fail if the use-count is not 0 when called. Hence, if
omap_hwmod_setup_one() is called before clk_set_parent(), we will need to call
clk_disable() before calling clk_set_parent() to decrement the use-count.
Hence, avoid these extra calls to disable and enable the functional clock by
moving the calls to omap_hwmod_setup_one() and omap_hwmod_enable() to after
clk_set_parent().
We can also remove the delay from the __omap_dm_timer_set_source() function
because enabling the clock will now be handled via the HWMOD framework by
calling omap_hwmod_setup_one(). Therefore, by moving the calls to
omap_hwmod_setup_one() and omap_hwmod_enable() to after the call to
clk_set_parent(), we can simply replace __omap_dm_timer_set_source() with
clk_set_parent().
It should be safe to move these hwmod calls to later in the
omap_dm_timer_init_one() because other calls to the hwmod layer that occur
before are just requesting resource information.
Testing includes boot testing on OMAP2420 H4, OMAP3430 SDP and OMAP4430 Blaze
with the following configurations:
1. CONFIG_OMAP_32K_TIMER=y
2. CONFIG_OMAP_32K_TIMER=y and boot parameter "clocksource=gp_timer"
3. CONFIG_OMAP_32K_TIMER not set
4. CONFIG_OMAP_32K_TIMER not set and boot parameter "clocksource=gp_timer"
Signed-off-by: Jon Hunter <jon-hunter@ti.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Whenever we call the function omap_dm_timer_set_source() to set the clock
source of a dmtimer we look-up the dmtimer functional clock source by
calling clk_get(). This is not necessary because on requesting a dmtimer
we look-up the functional clock source and store it in the omap_dm_timer
structure. So instead of looking up the clock again used the clock handle
that stored in the omap_dm_timer structure.
Signed-off-by: Jon Hunter <jon-hunter@ti.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
The OMAP dmtimer driver does not currently have a function to disable the
timer interrupts. For some timer instances the timer interrupt enable
function can be used to disable the interrupts because the same interrupt
enable register is used to disable interrupts. However, some timer instances
have separate interrupt enable/disable registers and so this will not work.
Therefore, add a dedicated function to disable interrupts.
This change is required for OMAP4+ devices. For OMAP4, all timers apart from 1,
2 and 10 need this function and for OMAP5 all timers need this function.
Please note that the interrupt disable function has been written so that it
can be used by all OMAP devices.
Signed-off-by: Jon Hunter <jon-hunter@ti.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
The OMAP DMTIMERs can generate an interrupt when the timer counter value
matches the value stored in the timer's match register. When using this
feature spurious interrupts were seen, because the compare logic is being
enabled before the match value is loaded and according to the documentation
the match value must be loaded before the compare logic is enable.
The reset value for the timer counter and match registers is 0 and hence,
by enabling the compare logic before the actual match value is loaded a
spurious interrupt can be generated as the reset values match.
Signed-off-by: Jon Hunter <jon-hunter@ti.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Restoring the timer interrupt status is not possible because writing a 1 to any
bit in the register clears that bit if set and writing a 0 has no affect.
Furthermore, if an interrupt is pending when someone attempts to disable a
timer, the timer will fail to transition to the idle state and hence it's
context will not be lost. Users should take care to service all interrupts
before disabling the timer.
Signed-off-by: Jon Hunter <jon-hunter@ti.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
The timer TISTAT register is a read-only register and therefore restoring the
context is not needed. Furthermore, the context of TISTAT is never saved
anywhere in the current code. The TISTAT register is read-only for all OMAP
devices from OMAP1 to OMAP4. OMAP5 timers no longer have this register.
Signed-off-by: Jon Hunter <jon-hunter@ti.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
In commit e32f7ec2 (ARM: OMAP: Fix 32 kHz timer and modify GP timer to use GPT1)
a fix was added to prevent timer1 being reset in the function
omap_dm_timer_reset() because timer1 was being used as the system timer for
OMAP2 devices. Although timer1 is still used by most OMAP2+ devices as a system
timer, the function omap_dm_timer_reset() is now only being called for OMAP1
devices and OMAP1 does not use timer1 as a system timer. Therefore, remove the
check in omap_dm_timer_reset() so that timer1 is reset for OMAP1 devices.
Signed-off-by: Jon Hunter <jon-hunter@ti.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Currently the dmtimer posted mode is being enabled when the function
omap_dm_timer_enable_posted() is called. This function is only being called
for OMAP1 timers and OMAP2+ timers that are being used as system timers. Hence,
for OMAP2+ timers that are NOT being used as a system timer, posted mode is
not enabled but the "timer->posted" variable is still set (incorrectly) in
the omap_dm_timer_prepare() function.
This is a regression introduced by commit 3392cdd3 (ARM: OMAP: dmtimer:
switch-over to platform device driver) which was before the
omap_dm_timer_enable_posted() function was introduced. Although this is a
regression from the original code it only impacts performance and so is not
needed for stable.
Signed-off-by: Jon Hunter <jon-hunter@ti.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Errata Titles:
i103: Delay needed to read some GP timer, WD timer and sync timer
registers after wakeup (OMAP3/4)
i767: Delay needed to read some GP timer registers after wakeup (OMAP5)
Description (i103/i767):
If a General Purpose Timer (GPTimer) is in posted mode
(TSICR [2].POSTED=1), due to internal resynchronizations, values read in
TCRR, TCAR1 and TCAR2 registers right after the timer interface clock
(L4) goes from stopped to active may not return the expected values. The
most common event leading to this situation occurs upon wake up from
idle.
GPTimer non-posted synchronization mode is not impacted by this
limitation.
Workarounds:
1). Disable posted mode
2). Use static dependency between timer clock domain and MPUSS clock
domain
3). Use no-idle mode when the timer is active
Workarounds #2 and #3 are not pratical from a power standpoint and so
workaround #1 has been implemented. Disabling posted mode adds some CPU
overhead for configuring and reading the timers as the CPU has to wait
for accesses to be re-synchronised within the timer. However, disabling
posted mode guarantees correct operation.
Please note that it is safe to use posted mode for timers if the counter
(TCRR) and capture (TCARx) registers will never be read. An example of
this is the clock-event system timer. This is used by the kernel to
schedule events however, the timers counter is never read and capture
registers are not used. Given that the kernel configures this timer
often yet never reads the counter register it is safe to enable posted
mode in this case. Hence, for the timer used for kernel clock-events,
posted mode is enabled by overriding the errata for devices that are
impacted by this defect.
For drivers using the timers that do not read the counter or capture
registers and wish to use posted mode, can override the errata and
enable posted mode by making the following function calls.
__omap_dm_timer_override_errata(timer, OMAP_TIMER_ERRATA_I103_I767);
__omap_dm_timer_enable_posted(timer);
Both dmtimers and watchdogs are impacted by this defect this patch only
implements the workaround for the dmtimer. Currently the watchdog driver
does not read the counter register and so no workaround is necessary.
Posted mode will be disabled for all OMAP2+ devices (including AM33xx)
using a GP timer as a clock-source timer to guarantee correct operation.
This is not necessary for OMAP24xx devices but the default clock-source
timer for OMAP24xx devices is the 32k-sync timer and not the GP timer
and so should not have any impact. This should be re-visited for future
devices if this errata is fixed.
Confirmed with Vaibhav Hiremath that this bug also impacts AM33xx
devices.
Signed-off-by: Jon Hunter <jon-hunter@ti.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Now mach/hardware.h is empty for omap2+ and can be
removed except for plat-omap/dmtimer.c for omap1.
Also the include of mach/irqs.h can now be removed
for shared plat-omap/i2c.c as it's no longer needed.
Signed-off-by: Tony Lindgren <tony@atomide.com>
In order to add device-tree support to the timer driver the following changes
were made ...
1. Allocate system timers (used for clock-events and clock-source) based upon
timer properties rather than using an hard-coded timer instance ID. To allow
this a new helper function called omap_dmtimer_find_by_property() has been
added for finding a timer with the particular properties in the device-tree
blob. Please note that this is an internal helper function for system timers
only to find a timer in the device-tree blob. This cannot be used by device
drivers, another API has been added for that (see below). Timers that are
allocated for system timers are dynamically disabled at boot time by adding
a status property with the value "disabled" to the timer's device-tree node.
Please note that when allocating system timers we now pass a timer ID and
timer property. The timer ID is only be used for allocating a timer when
booting without device-tree. Once device-tree migration is complete, all
the timer ID references will be removed.
2. System timer resources (memory and interrupts) are directly obtained from
the device-tree timer node when booting with device-tree, so that system
timers are no longer reliant upon the OMAP HWMOD framework to provide these
resources.
3. If DT blob is present, then let device-tree create the timer devices
dynamically.
4. When device-tree is present the "id" field in the platform_device structure
(pdev->id) is initialised to -1 and hence cannot be used to identify a timer
instance. Due to this the following changes were made ...
a). The API omap_dm_timer_request_specific() is not supported when using
device-tree, because it uses the device ID to request a specific timer.
This function will return an error if called when device-tree is present.
Users of this API should use omap_dm_timer_request_by_cap() instead.
b). When removing the DMTIMER driver, the timer "id" was used to identify the
timer instance. The remove function has been modified to use the device
name instead of the "id".
5. When device-tree is present the platform_data structure will be NULL and so
check for this.
6. The OMAP timer device tree binding has the following optional parameters ...
a). ti,timer-alwon --> Timer is in an always-on power domain
b). ti,timer-dsp --> Timer can generate an interrupt to the on-chip DSP
c). ti,timer-pwm --> Timer can generate a PWM output
d). ti,timer-secure --> Timer is reserved on a secure OMAP device
Search for the above parameters and set the appropriate timer attribute
flags.
Signed-off-by: Jon Hunter <jon-hunter@ti.com>
Currently OMAP timers can be requested by requesting any available or by a
numerical device ID. If a specific timer is required because it has a particular
capability, such as can interrupt the on-chip DSP in addition to the ARM CPU,
then the user needs to know the device ID of the timer with this feature.
Therefore, add a new API called omap_dm_timer_request_by_cap() that allows
drivers to request a timer by capability.
Signed-off-by: Jon Hunter <jon-hunter@ti.com>
This code should be private to mach-omap2.
The only use for it in for omap1 has been in dmtimer.c
to check for context loss. However, omap1 does not
lose context during idle, so the code is not needed.
Further, omap1 timer has OMAP_TIMER_ALWON set, so omap1
was not hitting omap_pm_get_dev_context_loss_count()
test.
Cc: Jon Hunter <jon-hunter@ti.com>
Cc: Kevin Hilman <khilman@deeprootsystems.com>
Signed-off-by: Tony Lindgren <tony@atomide.com>
We must move this for ARM common zImage support.
Note that neither drivers/media/rc/ir-rx51.c or
drivers/media/platform/omap3isp/ispvideo.c need
to include omap-pm.h, so this patch removes the
include for those files.
Acked-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Cc: Mauro Carvalho Chehab <mchehab@infradead.org>
Cc: Timo Kokkonen <timo.t.kokkonen@iki.fi>
Cc: linux-media@vger.kernel.org
Signed-off-by: Tony Lindgren <tony@atomide.com>
Calling omap_dm_timer_prepare while the spinlock is held is not
allowed as sleeping functions are called later on during the
preparation (namely within clk_get()).
dm_timer_lock is only required for protecting the
omap_timer_list. After the timer is marked as reserved, the lock is no
longer needed and should be freed.
Signed-off-by: Timo Kokkonen <timo.t.kokkonen@iki.fi>
Cc: Tarun Kanti DebBarma <tarun.kanti@ti.com>
Signed-off-by: Tony Lindgren <tony@atomide.com>
Calling the dmtimer function omap_dm_timer_set_source() fails if following a
call to pm_runtime_put() to disable the timer. For example the following
sequence would fail to set the parent clock ...
omap_dm_timer_stop(gptimer);
omap_dm_timer_set_source(gptimer, OMAP_TIMER_SRC_32_KHZ);
The following error message would be seen ...
omap_dm_timer_set_source: failed to set timer_32k_ck as parent
The problem is that, by design, pm_runtime_put() simply decrements the usage
count and returns before the timer has actually been disabled. Therefore,
setting the parent clock failed because the timer was still active when the
trying to set the parent clock. Setting a parent clock will fail if the clock
you are setting the parent of has a non-zero usage count. To ensure that this
does not fail use pm_runtime_put_sync() when disabling the timer.
Note that this will not be seen on OMAP1 devices, because these devices do
not use the clock framework for dmtimers.
Signed-off-by: Jon Hunter <jon-hunter@ti.com>
Acked-by: Kevin Hilman <khilman@ti.com>
Cc: stable@vger.kernel.org
Signed-off-by: Tony Lindgren <tony@atomide.com>
Replace the regular kzalloc and ioremap with the devm_ equivalent
to simplify error handling. We don't need kree() any more in
omap_dm_timer_remove().
Also added *dev* pointer to reference pdev->dev which makes the
usage shorter in code.
Cc: Cousson, Benoit <b-cousson@ti.com>
Cc: Paul Walmsley <paul@pwsan.com>
Cc: Kevin Hilman <khilman@ti.com>
Cc: Rajendra Nayak <rnayak@ti.com>
Cc: Santosh Shilimkar <santosh.shilimkar@ti.com>
Signed-off-by: Tarun Kanti DebBarma <tarun.kanti@ti.com>
Signed-off-by: Tony Lindgren <tony@atomide.com>
The OMAP dmtimer driver allows you to dynamically configure the functional
clock that drives the timer logic. The dmtimer driver uses the device name and
a "con-id" string to search for the appropriate functional clock.
Currently, we define a clock alias for each functional clock source each timer
supports. Some functional clock sources are common to all of the timers on a
device and so for these clock sources we can use a single alias with a unique
con-id string.
The possible functional clock sources for an OMAP device are a 32kHz clock,
a system (MHz range) clock and (for OMAP2 only) an external clock. By defining
a unique con-id name for each of these (timer_32k_ck, timer_sys_ck and
timer_ext_ck) we can eliminate a lot of the clock aliases for timers. This
reduces code, speeds-up searches and clock initialisation time.
Signed-off-by: Jon Hunter <jon-hunter@ti.com>
Acked-by: Paul Walmsley <paul@pwsan.com>
Signed-off-by: Tony Lindgren <tony@atomide.com>
OMAP1 uses an architecture specific function for setting the dmtimer clock
source, where as the OMAP2+ devices use the clock framework. Eventually OMAP1
device should also use the clock framework and hence we should not any
architecture specific functions.
For now move the OMAP2+ function for configuring the clock source into the
dmtimer driver. Therefore, we do no longer need to specify an architecture
specific function for setting the clock source for OMAP2+ devices. This will
simplify device tree migration of the dmtimers for OMAP2+ devices.
From now on, only OMAP1 devices should specify an architecture specific
function for setting the clock source via the platform data set_dmtimer_src()
function pointer.
Signed-off-by: Jon Hunter <jon-hunter@ti.com>
Signed-off-by: Tony Lindgren <tony@atomide.com>
OMAP1 dmtimer support is currently broken. When a dmtimer is requested by the
omap_dm_timer_request() function fails to allocate a dmtimer because the call
to clk_get() inside omap_dm_timer_prepare fails. The clk_get() fails simply
because the clock data for the OMAP1 dmtimers is not present.
Ideally this should be fixed by moving OMAP1 dmtimers to use the clock
framework. For now simply fix this by using the "TIMER_NEEDS_RESET" flag to
identify an OMAP1 device and avoid calling clk_get(). Although this is not
the ideal fix and should be corrected, this flag has already been use for the
same purpose in omap_dm_timer_stop().
Signed-off-by: Jon Hunter <jon-hunter@ti.com>
Signed-off-by: Tony Lindgren <tony@atomide.com>
For OMAP1 devices, it is necessary to perform a manual reset of the timer.
Currently, this is indicating by setting the "needs_manual_reset" variable in
the platform data. Instead of using an extra variable to indicate this add a new
timer capabilities flag to indicate this and remove the "needs_manual_reset"
member from the platform data.
Signed-off-by: Jon Hunter <jon-hunter@ti.com>
Signed-off-by: Tony Lindgren <tony@atomide.com>
For OMAP2+ devices, a function pointer that returns the number of times a timer
power domain has lost context is passed to the dmtimer driver. This function
pointer is only populated for OMAP2+ devices and it is pointing to a platform
function. Given that this is a platform function, we can simplify the code by
removing the function pointer and referencing the function directly. We can use
the OMAP_TIMER_ALWON flag to determine if we need to call this function for
OMAP1 and OMAP2+ devices.
The benefit of this change is the we can remove the function pointer from the
platform data and simplifies the dmtimer migration to device-tree.
Signed-off-by: Jon Hunter <jon-hunter@ti.com>
Signed-off-by: Tony Lindgren <tony@atomide.com>
The platform data variable loses_context is used to determine if the timer may
lose its logic state during power transitions and so needs to be restored. This
information is also provided in the HWMOD device attributes for OMAP2+ devices
via the OMAP_TIMER_ALWON flag. When this flag is set the timer will not lose
context. So use the HWMOD device attributes to determine this.
For OMAP1 devices, loses_context is never set and so set the OMAP_TIMER_ALWON
flag for OMAP1 timers to ensure that code is equivalent.
Signed-off-by: Jon Hunter <jon-hunter@ti.com>
Signed-off-by: Tony Lindgren <tony@atomide.com>
Although the OMAP timers share a common hardware design, there are some
differences between the timer instances in a given device. For example, a timer
maybe in a power domain that can be powered-of, so can lose its logic state and
need restoring where as another may be in power domain that is always be on.
Another example, is a timer may support different clock sources to drive the
timer. This information is passed to the dmtimer via the following platform data
structure.
struct dmtimer_platform_data {
int (*set_timer_src)(struct platform_device *pdev, int source);
int timer_ip_version;
u32 needs_manual_reset:1;
bool loses_context;
int (*get_context_loss_count)(struct device *dev);
};
The above structure uses multiple variables to represent the timer features.
HWMOD also stores the timer capabilities using a bit-mask that represents the
features supported. By using the same format for representing the timer
features in the platform data as used by HWMOD, we can ...
1. Use the flags defined in the plat/dmtimer.h to represent the features
supported.
2. For devices using HWMOD, we can retrieve the features supported from HWMOD.
3. Eventually, simplify the platform data structure to be ...
struct dmtimer_platform_data {
int (*set_timer_src)(struct platform_device *pdev, int source);
u32 timer_capability;
}
Another benefit from doing this, is that it will simplify the migration of the
dmtimer driver to device-tree. For example, in the current OMAP2+ timer code the
"loses_context" variable is configured at runtime by calling an architecture
specific function. For device tree this creates a problem, because we would need
to call the architecture specific function from within the dmtimer driver.
However, such attributes do not need to be queried at runtime and we can look up
the attributes via HWMOD or device-tree.
This changes a new "capability" variable to the platform data and timer
structure so we can start removing and simplifying the platform data structure.
Signed-off-by: Jon Hunter <jon-hunter@ti.com>
Signed-off-by: Tony Lindgren <tony@atomide.com>
During early boot, one or two dmtimers are reserved by the kernel as system
timers (for clocksource and clockevents). These timers are marked as reserved
and the dmtimer driver is notified which timers have been reserved via the
platform data information.
For OMAP2+ devices the timers reserved may vary depending on device and compile
flags. Therefore, it is not easy to assume which timers we be reserved for the
system timers. In order to migrate the dmtimer driver to support device-tree we
need a way to pass the timers reserved for system timers to the dmtimer driver.
Using the platform data structure will not work in the same way as it is
currently used because the platform data structure will be stored statically in
the dmtimer itself and the platform data will be selected via the device-tree
match device function (of_match_device).
There are a couple ways to workaround this. One option is to store the system
timers reserved for the kernel in the device-tree and query them on boot.
The downside of this approach is that it adds some delay to parse the DT blob
to search for the system timers. Secondly, for OMAP3 devices we have a
dependency on compile time flags and the device-tree would not be aware of that
kernel compile flags and so we would need to address that.
The second option is to add a function to the dmtimer code to reserved the
system timers during boot and so the dmtimer knows exactly which timers are
being used for system timers. This also allows us to remove the "reserved"
member from the timer platform data. This seemed like the simpler approach and
so was implemented here.
Signed-off-by: Jon Hunter <jon-hunter@ti.com>
Signed-off-by: Tony Lindgren <tony@atomide.com>
More cleanups, continuing an earlier set with omap and samsung specific
cleanups. These could not go into the first set because they have
dependencies on various other series that in turn depend on the first
cleanups.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.11 (GNU/Linux)
iQIcBAABAgAGBQJPuewtAAoJEIwa5zzehBx3J+gQAJKLV8ga5P3adkPAWEceewhX
pBjCgwgegs3V5GWhW3Svwhxpll5Djzzt891sAiZjh5eDZCfWy+CnxDJzyuh4mXok
zRIfEVLZOopTVV3B31Uq7e7cYEy61Hm6QY4yLGknjxKrrc4CG3G1puvrbLvm1RiL
tlFBdbCwwiLM6pnCyi6BTGKfvrbCgqpdaKSNmVjiwiKjAIvB8v++BsRxXXGWAbVR
fq8uyiClIB+xhghhsUBLQ6V+pxF+XrjRnoNtl5tQE4VqUUl81UdbJVDfU3L67Q/V
hFBNLf0uwO4ecu7Alyx+/c6Eax0N9tQ5VVtAkSRekKzID2/CoGp9w5JBwjctZNrm
LuPvzaq11q/GzkmcVjrJ/U3FIxgFta+v6cY2CYtZAAfmxw4oAgr25eMRKTUHDGoy
1F7SD3KOEqT1OFgrHVM9XLYAHL+5i27dnGsk0Nk4qGYZLYVLJ1nxUUNvxV8jfXyJ
AtqlYwm06vQxYLM86nV8g9xHssWBrOrCLEJ51rvjHfG+B5m5BifQlImGsHP1Xhut
gnLvak3r4Xkc6ipeROikY0wH/Ss8aE/F0fP0TZMXH9e45eA0EVQEp+qnJOcld5o4
CR63OTD6u9j9TbIbJXmleItkADfcrk2dCHs1tF42+KA9VJJsWxRjj1+S+NfLVihU
ScTFTiSPHPXAxWAwJIL1
=7UKB
-----END PGP SIGNATURE-----
Merge tag 'cleanup2' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
Pull arm-soc cleanups (part 2) from Olof Johansson:
"More cleanups, continuing an earlier set with omap and samsung
specific cleanups. These could not go into the first set because they
have dependencies on various other series that in turn depend on the
first cleanups."
Fixed up conflicts in arch/arm/plat-omap/counter_32k.c due to commit
bd0493eaaf5c: "move read_{boot,persistent}_clock to the architecture
level" that changed how the persistent clocks were handled. And trivial
conflicts in arch/arm/mach-omap1/common.h due to just independent
changes close to each other.
* tag 'cleanup2' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc: (35 commits)
ARM: SAMSUNG: merge plat-s5p into plat-samsung
ARM: SAMSUNG: move options for common s5p into plat-samsung/Kconfig
ARM: SAMSUNG: move setup code for s5p mfc and mipiphy into plat-samsung
ARM: SAMSUNG: move platform device for s5p uart into plat-samsung
ARM: SAMSUNG: move hr timer for common s5p into plat-samsung
ARM: SAMSUNG: move pm part for common s5p into plat-samsung
ARM: SAMSUNG: move interrupt part for common s5p into plat-samsung
ARM: SAMSUNG: move clock part for common s5p into plat-samsung
ARM: S3C24XX: Use common macro to define resources on dev-uart.c
ARM: S3C24XX: move common clock init into common.c
ARM: S3C24XX: move common power-management code to mach-s3c24xx
ARM: S3C24XX: move plat-s3c24xx/dev-uart.c into common.c
ARM: S3C24XX: move plat-s3c24xx/cpu.c
ARM: OMAP2+: Kconfig: convert SOC_OMAPAM33XX to SOC_AM33XX
ARM: OMAP2+: Kconfig: convert SOC_OMAPTI81XX to SOC_TI81XX
GPMC: add ECC control definitions
ARM: OMAP2+: dmtimer: remove redundant sysconfig context restore
ARM: OMAP: AM35xx: convert 3517 detection/flags to AM35xx
ARM: OMAP: AM35xx: remove redunant cpu_is checks for AM3505
ARM: OMAP1: Pass dma request lines in platform data to MMC driver
...
Since hwmod framework now manages sysconfig context save/restore
there is no more need to touch this register in driver. Hence,
remove restore of sysconfig register in omap_timer_restore_context.
This was causing incorrect context restore of sysconfig register.
Signed-off-by: Tarun Kanti DebBarma <tarun.kanti@ti.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Acked-by: Kevin Hilman <khilman@ti.com>
Signed-off-by: Tony Lindgren <tony@atomide.com>
Resolve some warnings identified by cppcheck in arch/arm/mach-omap2:
[arch/arm/mach-omap2/usb-tusb6010.c:129]: (style) Checking if unsigned variable 'tmp' is less than zero.
[arch/arm/mach-omap2/prm_common.c:241]: (error) Possible null pointer dereference: irq_setup - otherwise it is redundant to check if irq_setup is null at line 247
[arch/arm/mach-omap2/pm34xx.c:790]: (style) Variable 'per_clkdm' is assigned a value that is never used
[arch/arm/mach-omap2/pm34xx.c:790]: (style) Variable 'core_clkdm' is assigned a value that is never used
[arch/arm/mach-omap2/pm24xx.c:185]: (style) Variable 'only_idle' is assigned a value that is never used
[arch/arm/mach-omap2/mux.c:254]: (error) Possible null pointer dereference: mux
[arch/arm/mach-omap2/mux.c:258]: (error) Possible null pointer dereference: mux
[arch/arm/mach-omap2/gpmc-onenand.c:178]: (style) Variable 'tick_ns' is assigned a value that is never used
[arch/arm/mach-omap2/gpio.c:56]: (error) Possible null pointer dereference: pdata - otherwise it is redundant to check if pdata is null at line 57
[arch/arm/mach-omap2/devices.c:45]: (style) Variable 'l' is assigned a value that is never used
[arch/arm/mach-omap2/board-omap3evm.c:641] -> [arch/arm/mach-omap2/board-omap3evm.c:639]: (style) Found duplicate branches for if and else.
[arch/arm/mach-omap2/am35xx-emac.c:95]: (style) Variable 'regval' is assigned a value that is never used
[arch/arm/mach-omap2/devices.c:74]: (style) Variable 'l' is assigned a value that is never used
[arch/arm/mach-omap2/pm34xx.c:277]: (style) Variable 'per_prev_state' is assigned a value that is never used
[arch/arm/plat-omap/dmtimer.c:352]: (error) Possible null pointer dereference: timer - otherwise it is redundant to check if timer is null at line 354
[arch/arm/plat-omap/omap_device.c:478]: (style) Variable 'c' is assigned a value that is never used
[arch/arm/plat-omap/usb.c:42]: (style) Variable 'status' is assigned a value that is never used
[arch/arm/mach-omap1/clock.c:197]: (style) Variable 'dpll1_rate' is assigned a value that is never used
[arch/arm/mach-omap1/lcd_dma.c:60]: (style) struct or union member 'lcd_dma_info::size' is never used
[arch/arm/mach-omap1/pm.c:572]: (style) Variable 'entry' is assigned a value that is never used
Some of them are pretty good catches, such as gpio.c:56 and
usb-tusb6010.c:129.
Thanks to Jarkko Nikula for some comments on the sscanf() warnings.
It seems that the kernel sscanf() ignores the field width anyway for the
%d format, so those changes have been dropped from this second version.
Thanks to Daniel Marjamäki <daniel.marjamaki@gmail.com> for pointing
out that a variable was unnecessarily marked static in the
board-omap3evm.c change.
Signed-off-by: Paul Walmsley <paul@pwsan.com>
Cc: Felipe Balbi <balbi@ti.com>
Cc: Tony Lindgren <tony@atomide.com>
Cc: Kevin Hilman <khilman@ti.com>
Cc: Peter Ujfalusi <peter.ujfalusi@ti.com>
Cc: Jarkko Nikula <jarkko.nikula@bitmer.com>
Cc: Charulatha Varadarajan <charu@ti.com>
Cc: Daniel Marjamäki <daniel.marjamaki@gmail.com>
Cc: Tarun Kanti DebBarma <tarun.kanti@ti.com>
Reviewed-by: Charulatha Varadarajan <charu@ti.com> # for gpio.c
Quite a bit of code gets removed, and some stuff moved around, mostly
the old samsung s3c24xx stuff. There should be no functional changes
in this series otherwise. Some cleanups have dependencies on other
arm-soc branches and will be sent in the second round.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.11 (GNU/Linux)
iQIVAwUAT2pCjGCrR//JCVInAQLd8RAAqCxhzSc4ewTUP/974gVhujj3TrpiEQcS
FKvYWF76yP38Lbf3CJZBZaONRtrQNOhYpVQ0jb3WCV4F8mEH9PCes2q9RObeBYiY
TNX8VdcuVjX2U9HaH0+RQtBUdujNLHpEOqtO57un7T5UDNssR5JOive1tNAooRv1
pL0Hgx3AVqUbNOPpqQqHzy/MDdd67S6dX80yysANjFGMX87Nvp/ztYAdNnIdta+Z
pDJt+DPlmK8LvjoSL3SEUN0p3Thk75621cCuauGq88PLIB2w62tzF0NFFbvIAgJT
3aMlHM2flOiTJAWkUvA8zJiUzwv/0vYvH3xPoTo84abve3lVfZcY+fHNcfxE/Gge
ri2MmkHyimVP3rNeyM0GbN1RTej1TN1MezeQW3nq2wP6nvS2k0/t32ObLLtWU7XA
6iA0hKVMSnhqj4ln6jPAmyaDkaWHyYz97urhgetHqGadvLTiGPXCSBPalSiFmyMo
11tvuqwUNz9tw4nsvGboFQwS2ZoVquC5inoHp5seqZETkGCB67JyeRGxtAM4gbP/
wIRa3OBLY99yo1on6QovWNnSOMC6X4cOvBI/qHIjSEY/T9JVkslY87gRg3LkxCBR
XpXfZ6iuLHoSRUGcIjE8D6KHjMgWIDPRnLkIliK4H+3Jn08g0R1MxCplevFCRtis
egswZ8C24Xw=
=o5Xl
-----END PGP SIGNATURE-----
Merge tag 'cleanup' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
Pull "ARM: global cleanups" from Arnd Bergmann:
"Quite a bit of code gets removed, and some stuff moved around, mostly
the old samsung s3c24xx stuff. There should be no functional changes
in this series otherwise. Some cleanups have dependencies on other
arm-soc branches and will be sent in the second round.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>"
Fixed up trivial conflicts mainly due to #include's being changes on
both sides.
* tag 'cleanup' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc: (121 commits)
ep93xx: Remove unnecessary includes of ep93xx-regs.h
ep93xx: Move EP93XX_SYSCON defines to SoC private header
ep93xx: Move crunch code to mach-ep93xx directory
ep93xx: Make syscon access functions private to SoC
ep93xx: Configure GPIO ports in core code
ep93xx: Move peripheral defines to local SoC header
ep93xx: Convert the watchdog driver into a platform device.
ep93xx: Use ioremap for backlight driver
ep93xx: Move GPIO defines to gpio-ep93xx.h
ep93xx: Don't use system controller defines in audio drivers
ep93xx: Move PHYS_BASE defines to local SoC header file
ARM: EXYNOS: Add clock register addresses for EXYNOS4X12 bus devfreq driver
ARM: EXYNOS: add clock registers for exynos4x12-cpufreq
PM / devfreq: update the name of EXYNOS clock registers that were omitted
PM / devfreq: update the name of EXYNOS clock register
ARM: EXYNOS: change the prefix S5P_ to EXYNOS4_ for clock
ARM: EXYNOS: use static declaration on regarding clock
ARM: EXYNOS: replace clock.c for other new EXYNOS SoCs
ARM: OMAP2+: Fix build error after merge
ARM: S3C24XX: remove call to s3c24xx_setup_clocks
...
Since omap_dm_timer_write_reg/__omap_dm_timer_write is now modified
to use timer->func_base OCP_CFG should not use this wrapper anymore.
Instead use __raw_writel() directly and use timer->io_base instead
to write to OCP_CFG.
The timer->sys_stat is valid only if timer->revision is 1. In the
context restore function make this correction.
Save the contexts and loss count when timer is stopped.
Also, disable the clock. Else, clock usecount would become imbalanced.
Signed-off-by: Tarun Kanti DebBarma <tarun.kanti@ti.com>
Tested-by: Omar Ramirez Luna <omar.ramirez@ti.com>
Signed-off-by: Tony Lindgren <tony@atomide.com>
This is needed to minimize io.h so the SoC specific io.h
for ARMs can removed.
Note that minimal driver changes for DSS and RNG are needed to
include cpu.h for SoC detection macros.
Cc: Tomi Valkeinen <tomi.valkeinen@ti.com>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Tony Lindgren <tony@atomide.com>
Include linux/module.h to fix below build error:
CC arch/arm/plat-omap/dmtimer.o
arch/arm/plat-omap/dmtimer.c:184: warning: data definition has no type or storage class
arch/arm/plat-omap/dmtimer.c:184: warning: type defaults to 'int' in declaration of 'EXPORT_SYMBOL_GPL'
arch/arm/plat-omap/dmtimer.c:184: warning: parameter names (without types) in function declaration
arch/arm/plat-omap/dmtimer.c:215: warning: data definition has no type or storage class
arch/arm/plat-omap/dmtimer.c:215: warning: type defaults to 'int' in declaration of 'EXPORT_SYMBOL_GPL'
arch/arm/plat-omap/dmtimer.c:215: warning: parameter names (without types) in function declaration
arch/arm/plat-omap/dmtimer.c:228: warning: data definition has no type or storage class
arch/arm/plat-omap/dmtimer.c:228: warning: type defaults to 'int' in declaration of 'EXPORT_SYMBOL_GPL'
arch/arm/plat-omap/dmtimer.c:228: warning: parameter names (without types) in function declaration
arch/arm/plat-omap/dmtimer.c:234: warning: data definition has no type or storage class
arch/arm/plat-omap/dmtimer.c:234: warning: type defaults to 'int' in declaration of 'EXPORT_SYMBOL_GPL'
arch/arm/plat-omap/dmtimer.c:234: warning: parameter names (without types) in function declaration
arch/arm/plat-omap/dmtimer.c:240: warning: data definition has no type or storage class
arch/arm/plat-omap/dmtimer.c:240: warning: type defaults to 'int' in declaration of 'EXPORT_SYMBOL_GPL'
arch/arm/plat-omap/dmtimer.c:240: warning: parameter names (without types) in function declaration
arch/arm/plat-omap/dmtimer.c:248: warning: data definition has no type or storage class
arch/arm/plat-omap/dmtimer.c:248: warning: type defaults to 'int' in declaration of 'EXPORT_SYMBOL_GPL'
arch/arm/plat-omap/dmtimer.c:248: warning: parameter names (without types) in function declaration
arch/arm/plat-omap/dmtimer.c:294: warning: data definition has no type or storage class
arch/arm/plat-omap/dmtimer.c:294: warning: type defaults to 'int' in declaration of 'EXPORT_SYMBOL_GPL'
arch/arm/plat-omap/dmtimer.c:294: warning: parameter names (without types) in function declaration
arch/arm/plat-omap/dmtimer.c:302: warning: data definition has no type or storage class
arch/arm/plat-omap/dmtimer.c:302: warning: type defaults to 'int' in declaration of 'EXPORT_SYMBOL_GPL'
arch/arm/plat-omap/dmtimer.c:302: warning: parameter names (without types) in function declaration
arch/arm/plat-omap/dmtimer.c:316: warning: data definition has no type or storage class
arch/arm/plat-omap/dmtimer.c:316: warning: type defaults to 'int' in declaration of 'EXPORT_SYMBOL_GPL'
arch/arm/plat-omap/dmtimer.c:316: warning: parameter names (without types) in function declaration
arch/arm/plat-omap/dmtimer.c:344: warning: data definition has no type or storage class
arch/arm/plat-omap/dmtimer.c:344: warning: type defaults to 'int' in declaration of 'EXPORT_SYMBOL_GPL'
arch/arm/plat-omap/dmtimer.c:344: warning: parameter names (without types) in function declaration
arch/arm/plat-omap/dmtimer.c:361: warning: data definition has no type or storage class
arch/arm/plat-omap/dmtimer.c:361: warning: type defaults to 'int' in declaration of 'EXPORT_SYMBOL_GPL'
arch/arm/plat-omap/dmtimer.c:361: warning: parameter names (without types) in function declaration
arch/arm/plat-omap/dmtimer.c:380: warning: data definition has no type or storage class
arch/arm/plat-omap/dmtimer.c:380: warning: type defaults to 'int' in declaration of 'EXPORT_SYMBOL_GPL'
arch/arm/plat-omap/dmtimer.c:380: warning: parameter names (without types) in function declaration
arch/arm/plat-omap/dmtimer.c:406: warning: data definition has no type or storage class
arch/arm/plat-omap/dmtimer.c:406: warning: type defaults to 'int' in declaration of 'EXPORT_SYMBOL_GPL'
arch/arm/plat-omap/dmtimer.c:406: warning: parameter names (without types) in function declaration
arch/arm/plat-omap/dmtimer.c:443: warning: data definition has no type or storage class
arch/arm/plat-omap/dmtimer.c:443: warning: type defaults to 'int' in declaration of 'EXPORT_SYMBOL_GPL'
arch/arm/plat-omap/dmtimer.c:443: warning: parameter names (without types) in function declaration
arch/arm/plat-omap/dmtimer.c:468: warning: data definition has no type or storage class
arch/arm/plat-omap/dmtimer.c:468: warning: type defaults to 'int' in declaration of 'EXPORT_SYMBOL_GPL'
arch/arm/plat-omap/dmtimer.c:468: warning: parameter names (without types) in function declaration
arch/arm/plat-omap/dmtimer.c:494: warning: data definition has no type or storage class
arch/arm/plat-omap/dmtimer.c:494: warning: type defaults to 'int' in declaration of 'EXPORT_SYMBOL_GPL'
arch/arm/plat-omap/dmtimer.c:494: warning: parameter names (without types) in function declaration
arch/arm/plat-omap/dmtimer.c:517: warning: data definition has no type or storage class
arch/arm/plat-omap/dmtimer.c:517: warning: type defaults to 'int' in declaration of 'EXPORT_SYMBOL_GPL'
arch/arm/plat-omap/dmtimer.c:517: warning: parameter names (without types) in function declaration
arch/arm/plat-omap/dmtimer.c:534: warning: data definition has no type or storage class
arch/arm/plat-omap/dmtimer.c:534: warning: type defaults to 'int' in declaration of 'EXPORT_SYMBOL_GPL'
arch/arm/plat-omap/dmtimer.c:534: warning: parameter names (without types) in function declaration
arch/arm/plat-omap/dmtimer.c:549: warning: data definition has no type or storage class
arch/arm/plat-omap/dmtimer.c:549: warning: type defaults to 'int' in declaration of 'EXPORT_SYMBOL_GPL'
arch/arm/plat-omap/dmtimer.c:549: warning: parameter names (without types) in function declaration
arch/arm/plat-omap/dmtimer.c:561: warning: data definition has no type or storage class
arch/arm/plat-omap/dmtimer.c:561: warning: type defaults to 'int' in declaration of 'EXPORT_SYMBOL_GPL'
arch/arm/plat-omap/dmtimer.c:561: warning: parameter names (without types) in function declaration
arch/arm/plat-omap/dmtimer.c:572: warning: data definition has no type or storage class
arch/arm/plat-omap/dmtimer.c:572: warning: type defaults to 'int' in declaration of 'EXPORT_SYMBOL_GPL'
arch/arm/plat-omap/dmtimer.c:572: warning: parameter names (without types) in function declaration
arch/arm/plat-omap/dmtimer.c:587: warning: data definition has no type or storage class
arch/arm/plat-omap/dmtimer.c:587: warning: type defaults to 'int' in declaration of 'EXPORT_SYMBOL_GPL'
arch/arm/plat-omap/dmtimer.c:587: warning: parameter names (without types) in function declaration
arch/arm/plat-omap/dmtimer.c:604: warning: data definition has no type or storage class
arch/arm/plat-omap/dmtimer.c:604: warning: type defaults to 'int' in declaration of 'EXPORT_SYMBOL_GPL'
arch/arm/plat-omap/dmtimer.c:604: warning: parameter names (without types) in function declaration
arch/arm/plat-omap/dmtimer.c:746: error: expected declaration specifiers or '...' before string constant
arch/arm/plat-omap/dmtimer.c:746: warning: data definition has no type or storage class
arch/arm/plat-omap/dmtimer.c:746: warning: type defaults to 'int' in declaration of 'MODULE_DESCRIPTION'
arch/arm/plat-omap/dmtimer.c:746: warning: function declaration isn't a prototype
arch/arm/plat-omap/dmtimer.c:747: error: expected declaration specifiers or '...' before string constant
arch/arm/plat-omap/dmtimer.c:747: warning: data definition has no type or storage class
arch/arm/plat-omap/dmtimer.c:747: warning: type defaults to 'int' in declaration of 'MODULE_LICENSE'
arch/arm/plat-omap/dmtimer.c:747: warning: function declaration isn't a prototype
arch/arm/plat-omap/dmtimer.c:748: error: expected declaration specifiers or '...' before string constant
arch/arm/plat-omap/dmtimer.c:748: warning: data definition has no type or storage class
arch/arm/plat-omap/dmtimer.c:748: warning: type defaults to 'int' in declaration of 'MODULE_ALIAS'
arch/arm/plat-omap/dmtimer.c:748: warning: function declaration isn't a prototype
arch/arm/plat-omap/dmtimer.c:749: error: expected declaration specifiers or '...' before string constant
arch/arm/plat-omap/dmtimer.c:749: warning: data definition has no type or storage class
arch/arm/plat-omap/dmtimer.c:749: warning: type defaults to 'int' in declaration of 'MODULE_AUTHOR'
arch/arm/plat-omap/dmtimer.c:749: warning: function declaration isn't a prototype
make[1]: *** [arch/arm/plat-omap/dmtimer.o] Error 1
make: *** [arch/arm/plat-omap] Error 2
Signed-off-by: Axel Lin <axel.lin@gmail.com>
Signed-off-by: Tony Lindgren <tony@atomide.com>
The omap_dm_timer_remove function gets discarded when
CONFIG_HOTPLUG is not set, so we must not reference it
unconditionally.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Clock is enabled only when timer is started and disabled when the the timer
is stopped. Therefore before accessing registers in functions clock is enabled
and then disabled back at the end of access. Context save is done dynamically
whenever the registers are modified. Context restore is called when context is
lost.
Signed-off-by: Tarun Kanti DebBarma <tarun.kanti@ti.com>
Reviewed-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
[tony@atomide.com: updated to use revision instead of tidr]
Signed-off-by: Tony Lindgren <tony@atomide.com>
Pass the reserved flag in pdata and use it. We can
now make sys_timer_reserved static to mach-omap2/timer.c.
Signed-off-by: Tony Lindgren <tony@atomide.com>
Add pm_runtime feature to dmtimer whereby *_runtime_get_sync()
is called within omap_dm_timer_enable(), pm_runtime_put()
is called in omap_dm_timer_disable(). In addition to calling
pm_runtime_enable, we are calling pm_runtime_irq_safe so that
they can be called from interrupt context.
Signed-off-by: Tarun Kanti DebBarma <tarun.kanti@ti.com>
Signed-off-by: Partha Basak <p-basak2@ti.com>
Reviewed-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Acked-by: Cousson, Benoit <b-cousson@ti.com>
Signed-off-by: Tony Lindgren <tony@atomide.com>
Register timer devices by going through hwmod database using
hwmod API. The driver probes each of the registered devices.
Functionality which are already performed by hwmod framework
are removed from timer code. New set of timers present on
OMAP4 are now supported.
Signed-off-by: Tarun Kanti DebBarma <tarun.kanti@ti.com>
Acked-by: Cousson, Benoit <b-cousson@ti.com>
[tony@atomide.com: folded in spinlock changes, left out is_omap2]
Signed-off-by: Tony Lindgren <tony@atomide.com>
Convert OMAP1 dmtimers into a platform devices and then registers with
device model framework so that it can be bound to corresponding driver.
Signed-off-by: Thara Gopinath <thara@ti.com>
Signed-off-by: Tarun Kanti DebBarma <tarun.kanti@ti.com>
Reviewed-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Acked-by: Cousson, Benoit <b-cousson@ti.com>
Signed-off-by: Tony Lindgren <tony@atomide.com>
The registers are slightly different between v1 and v2 ip that
is available in omap4 and later for some timers.
Add support for v2 ip by mapping the interrupt related registers
separately and adding func_base for the functional registers.
Also disable dmtimer driver features on omap4 for now as
those need the hwmod conversion series to deal with enabling
the timers properly in omap_dm_timer_init.
Signed-off-by: Afzal Mohammed <afzal@ti.com>
Tested-by: Hemant Pedanekar <hemantp@ti.com>
Signed-off-by: Tony Lindgren <tony@atomide.com>
Currently autoidle is only enabled for OMAP2/3; by enabling autoidle,
the automatic L4 clock gating strategy is applied based on L4 activity,
otherwise L4 clock to module will be a free running.
Signed-off-by: Ambresh K <ambresh@ti.com>
[tony@atomide.com: updated for timer init changes]
Signed-off-by: Tony Lindgren <tony@atomide.com>
There's no need to initialize the dmtimer framework early.
Just mark the clocksource and timesource as reserved, and
initialize dmtimer with an arch_initcall.
Signed-off-by: Tony Lindgren <tony@atomide.com>
Reviewed-by: Kevin Hilman <khilman@ti.com>