Commit Graph

5206 Commits

Author SHA1 Message Date
Chris Mason b28cf57246 Merge branch 'misc-cleanups-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux into for-linus-4.5
Signed-off-by: Chris Mason <clm@fb.com>
2016-01-11 06:08:37 -08:00
Chris Mason a3058101c1 Merge branch 'misc-for-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux into for-linus-4.5 2016-01-11 05:59:32 -08:00
Filipe Manana 8cdc7c5b00 Btrfs: fix fitrim discarding device area reserved for boot loader's use
As of the 4.3 kernel release, the fitrim ioctl can now discard any region
of a disk that is not allocated to any chunk/block group, including the
first megabyte which is used for our primary superblock and by the boot
loader (grub for example).

Fix this by not allowing to trim/discard any region in the device starting
with an offset not greater than min(alloc_start_mount_option, 1Mb), just
as it was not possible before 4.3.

A reproducer test case for xfstests follows.

  seq=`basename $0`
  seqres=$RESULT_DIR/$seq
  echo "QA output created by $seq"
  tmp=/tmp/$$
  status=1	# failure is the default!
  trap "_cleanup; exit \$status" 0 1 2 3 15

  _cleanup()
  {
      cd /
      rm -f $tmp.*
  }

  # get standard environment, filters and checks
  . ./common/rc
  . ./common/filter

  # real QA test starts here
  _need_to_be_root
  _supported_fs btrfs
  _supported_os Linux
  _require_scratch

  rm -f $seqres.full

  _scratch_mkfs >>$seqres.full 2>&1

  # Write to the [0, 64Kb[ and [68Kb, 1Mb[ ranges of the device. These ranges are
  # reserved for a boot loader to use (GRUB for example) and btrfs should never
  # use them - neither for allocating metadata/data nor should trim/discard them.
  # The range [64Kb, 68Kb[ is used for the primary superblock of the filesystem.
  $XFS_IO_PROG -c "pwrite -S 0xfd 0 64K" $SCRATCH_DEV | _filter_xfs_io
  $XFS_IO_PROG -c "pwrite -S 0xfd 68K 956K" $SCRATCH_DEV | _filter_xfs_io

  # Now mount the filesystem and perform a fitrim against it.
  _scratch_mount
  _require_batched_discard $SCRATCH_MNT
  $FSTRIM_PROG $SCRATCH_MNT

  # Now unmount the filesystem and verify the content of the ranges was not
  # modified (no trim/discard happened on them).
  _scratch_unmount
  echo "Content of the ranges [0, 64Kb] and [68Kb, 1Mb[ after fitrim:"
  od -t x1 -N $((64 * 1024)) $SCRATCH_DEV
  od -t x1 -j $((68 * 1024)) -N $((956 * 1024)) $SCRATCH_DEV

  status=0
  exit

Reported-by: Vincent Petry  <PVince81@yahoo.fr>
Reported-by: Andrei Borzenkov <arvidjaar@gmail.com>
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=109341
Fixes: 499f377f49 (btrfs: iterate over unused chunk space in FITRIM)
Cc: stable@vger.kernel.org # 4.3+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
2016-01-07 21:16:03 +00:00
Sam Tygier ee592d0771 Btrfs: Check metadata redundancy on balance
When converting a filesystem via balance check that metadata mode
is at least as redundant as the data mode. For example give warning
when:
-dconvert=raid1 -mconvert=single

Signed-off-by: Sam Tygier <samtygier@yahoo.co.uk>
[ minor message reformatting ]
Signed-off-by: David Sterba <dsterba@suse.com>
2016-01-07 15:20:56 +01:00
David Sterba ca8a51b3a9 btrfs: statfs: report zero available if metadata are exhausted
There is one ENOSPC case that's very confusing. There's Available
greater than zero but no file operation succeds (besides removing
files). This happens when the metadata are exhausted and there's no
possibility to allocate another chunk.

In this scenario it's normal that there's still some space in the data
chunk and the calculation in df reflects that in the Avail value.

To at least give some clue about the ENOSPC situation, let statfs report
zero value in Avail, even if there's still data space available.

Current:
  /dev/sdb1             4.0G  3.3G  719M  83% /mnt/test

New:
  /dev/sdb1             4.0G  3.3G     0 100% /mnt/test

We calculate the remaining metadata space minus global reserve. If this
is (supposedly) smaller than zero, there's no space. But this does not
hold in practice, the exhausted state happens where's still some
positive delta. So we apply some guesswork and compare the delta to a 4M
threshold. (Practically observed delta was 2M.)

We probably cannot calculate the exact threshold value because this
depends on the internal reservations requested by various operations, so
some operations that consume a few metadata will succeed even if the
Avail is zero. But this is better than the other way around.

Signed-off-by: David Sterba <dsterba@suse.com>
2016-01-07 15:20:55 +01:00
David Sterba 8546b57051 btrfs: preallocate path for snapshot creation at ioctl time
We can also preallocate btrfs_path that's used during pending snapshot
creation and avoid another late ENOMEM failure.

Signed-off-by: David Sterba <dsterba@suse.com>
2016-01-07 15:20:55 +01:00
David Sterba b0c0ea6338 btrfs: allocate root item at snapshot ioctl time
The actual snapshot creation is delayed until transaction commit. If we
cannot get enough memory for the root item there, we have to fail the
whole transaction commit which is bad. So we'll allocate the memory at
the ioctl call and pass it along with the pending_snapshot struct. The
potential ENOMEM will be returned to the caller of snapshot ioctl.

Signed-off-by: David Sterba <dsterba@suse.com>
2016-01-07 15:20:54 +01:00
David Sterba a1ee736268 btrfs: do an allocation earlier during snapshot creation
We can allocate pending_snapshot earlier and do not have to do cleanup
in case of failure.

Signed-off-by: David Sterba <dsterba@suse.com>
2016-01-07 15:20:54 +01:00
David Sterba 4fb72bf2e9 btrfs: use smaller type for btrfs_path locks
The values of btrfs_path::locks are 0 to 4, fit into a u8. Let's see:

* overall size of btrfs_path drops down from 136 to 112 (-24 bytes),
* better packing in a slab page +6 objects
* the whole structure now fits to 2 cachelines
* slight decrease in code size:

   text    data     bss     dec     hex filename
 938731   43670   23144 1005545   f57e9 fs/btrfs/btrfs.ko.before
 938203   43670   23144 1005017   f55d9 fs/btrfs/btrfs.ko.after

(and the generated assembly does not change much)

The main purpose is to decrease the size of the structure without
affecting performance. The byte access is usually well behaving accross
arches, the locks are not accessed frequently and sometimes just
compared to zero.

Note for further size reduction attempts: the slots could be made u16
but this might generate worse code on some arches (non-byte and non-int
access). Also the range of operations on slots is wider compared to
locks and the potential performance drop should be evaluated first.

Signed-off-by: David Sterba <dsterba@suse.com>
2016-01-07 15:01:17 +01:00
David Sterba 7853f15b2a btrfs: use smaller type for btrfs_path lowest_level
The level is 0..7, we can use smaller type. The size of btrfs_path is now
136 bytes from 144, which is +2 objects that fit into a 4k slab.

Signed-off-by: David Sterba <dsterba@suse.com>
2016-01-07 15:01:17 +01:00
David Sterba dccabfad20 btrfs: use smaller type for btrfs_path reada
The possible values for reada are all positive and bounded, we can later
save some bytes by storing it in u8.

Signed-off-by: David Sterba <dsterba@suse.com>
2016-01-07 15:01:16 +01:00
David Sterba e4058b54d1 btrfs: cleanup, use enum values for btrfs_path reada
Replace the integers by enums for better readability. The value 2 does
not have any meaning since a717531942
"Btrfs: do less aggressive btree readahead" (2009-01-22).

Signed-off-by: David Sterba <dsterba@suse.com>
2016-01-07 15:01:15 +01:00
David Sterba 4d4ab6d6bc btrfs: constify static arrays
There are a few statically initialized arrays that can be made const.
The remaining (like file_system_type, sysfs attributes or prop handlers)
do not allow that due to type mismatch when passed to the APIs or
because the structures are modified through other members.

Signed-off-by: David Sterba <dsterba@suse.com>
2016-01-07 15:01:15 +01:00
David Sterba 20e5506baf btrfs: constify remaining structs with function pointers
* struct extent_io_ops
* struct btrfs_free_space_op

Signed-off-by: David Sterba <dsterba@suse.com>
2016-01-07 15:01:14 +01:00
David Sterba 28f0779a3f btrfs tests: replace whole ops structure for free space tests
Preparatory work for making btrfs_free_space_op constant. In
test_steal_space_from_bitmap_to_extent, we substitute use_bitmap with
own version thus preventing constification. We can rework it so we
replace the whole structure with the correct function pointers.

Signed-off-by: David Sterba <dsterba@suse.com>
2016-01-07 15:01:14 +01:00
Geliang Tang a7ca42256d btrfs: use list_for_each_entry* in backref.c
Use list_for_each_entry*() to simplify the code.

Signed-off-by: Geliang Tang <geliangtang@163.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-01-07 14:42:46 +01:00
Geliang Tang 7ae1681e12 btrfs: use list_for_each_entry_safe in free-space-cache.c
Use list_for_each_entry_safe() instead of list_for_each_safe() to
simplify the code.

Signed-off-by: Geliang Tang <geliangtang@163.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-01-07 14:39:09 +01:00
Geliang Tang b69f2bef48 btrfs: use list_for_each_entry* in check-integrity.c
Use list_for_each_entry*() instead of list_for_each*() to simplify
the code.

Signed-off-by: Geliang Tang <geliangtang@163.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-01-07 14:38:42 +01:00
Byongho Lee ee22184b53 Btrfs: use linux/sizes.h to represent constants
We use many constants to represent size and offset value.  And to make
code readable we use '256 * 1024 * 1024' instead of '268435456' to
represent '256MB'.  However we can make far more readable with 'SZ_256MB'
which is defined in the 'linux/sizes.h'.

So this patch replaces 'xxx * 1024 * 1024' kind of expression with
single 'SZ_xxxMB' if 'xxx' is a power of 2 then 'xxx * SZ_1M' if 'xxx' is
not a power of 2. And I haven't touched to '4096' & '8192' because it's
more intuitive than 'SZ_4KB' & 'SZ_8KB'.

Signed-off-by: Byongho Lee <bhlee.kernel@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-01-07 14:38:02 +01:00
David Sterba 7928d672ff btrfs: cleanup, remove stray return statements
Signed-off-by: David Sterba <dsterba@suse.com>
2016-01-07 14:30:52 +01:00
Alexandru Moise 352dd9c8d3 btrfs: zero out delayed node upon allocation
It's slightly cleaner to zero-out the delayed node upon allocation
than to do it by hand in btrfs_init_delayed_node() for a few members

Signed-off-by: Alexandru Moise <00moses.alexander00@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-01-07 14:30:17 +01:00
Alexandru Moise 575a75d6fa btrfs: pass proper enum type to start_transaction()
Signed-off-by: Alexandru Moise <00moses.alexander00@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-01-07 14:30:00 +01:00
Alexandru Moise 9780c4976f btrfs: switch __btrfs_fs_incompat return type from int to bool
Conform to __btrfs_fs_incompat() cast-to-bool (!!) by explicitly
returning boolean not int.

Signed-off-by: Alexandru Moise <00moses.alexander00@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-01-07 14:29:20 +01:00
Byongho Lee e40da0e58a btrfs: remove unused inode argument from uncompress_inline()
The inode argument is never used from the beginning, so remove it.

Signed-off-by: Byongho Lee <bhlee.kernel@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-01-07 14:29:02 +01:00
David Sterba 100d57025c btrfs: don't use slab cache for struct btrfs_delalloc_work
Although we prefer to use separate caches for various structs, it seems
better not to do that for struct btrfs_delalloc_work. Objects of this
type are allocated rarely, when transaction commit calls
btrfs_start_delalloc_roots, requesting delayed iputs.

The objects are temporary (with some IO involved) but still allocated
and freed within __start_delalloc_inodes. Memory allocation failure is
handled.

The slab cache is empty most of the time (observed on several systems),
so if we need to allocate a new slab object, the first one has to
allocate a full page. In a potential case of low memory conditions this
might fail with higher probability compared to using the generic slab
caches.

Signed-off-by: David Sterba <dsterba@suse.com>
2016-01-07 14:26:58 +01:00
David Sterba 0de270fa83 btrfs: drop duplicate prefix from scrub workqueues
The helper btrfs_alloc_workqueue will add the "btrfs-" prefix.

Signed-off-by: David Sterba <dsterba@suse.com>
2016-01-07 14:26:58 +01:00
David Sterba 93a3d46780 btrfs: verbose error when we find an unexpected item in sys_array
Signed-off-by: David Sterba <dsterba@suse.com>
2016-01-07 14:26:58 +01:00
David Sterba f5cdedd73f btrfs: handle invalid num_stripes in sys_array
We can handle the special case of num_stripes == 0 directly inside
btrfs_read_sys_array. The BUG_ON in btrfs_chunk_item_size is there to
catch other unhandled cases where we fail to validate external data.

A crafted or corrupted image crashes at mount time:

BTRFS: device fsid 9006933e-2a9a-44f0-917f-514252aeec2c devid 1 transid 7 /dev/loop0
BTRFS info (device loop0): disk space caching is enabled
BUG: failure at fs/btrfs/ctree.h:337/btrfs_chunk_item_size()!
Kernel panic - not syncing: BUG!
CPU: 0 PID: 313 Comm: mount Not tainted 4.2.5-00657-ge047887-dirty #25
Stack:
 637af890 60062489 602aeb2e 604192ba
 60387961 00000011 637af8a0 6038a835
 637af9c0 6038776b 634ef32b 00000000
Call Trace:
 [<6001c86d>] show_stack+0xfe/0x15b
 [<6038a835>] dump_stack+0x2a/0x2c
 [<6038776b>] panic+0x13e/0x2b3
 [<6020f099>] btrfs_read_sys_array+0x25d/0x2ff
 [<601cfbbe>] open_ctree+0x192d/0x27af
 [<6019c2c1>] btrfs_mount+0x8f5/0xb9a
 [<600bc9a7>] mount_fs+0x11/0xf3
 [<600d5167>] vfs_kern_mount+0x75/0x11a
 [<6019bcb0>] btrfs_mount+0x2e4/0xb9a
 [<600bc9a7>] mount_fs+0x11/0xf3
 [<600d5167>] vfs_kern_mount+0x75/0x11a
 [<600d710b>] do_mount+0xa35/0xbc9
 [<600d7557>] SyS_mount+0x95/0xc8
 [<6001e884>] handle_syscall+0x6b/0x8e

Reported-by: Jiri Slaby <jslaby@suse.com>
Reported-by: Vegard Nossum <vegard.nossum@oracle.com>
CC: stable@vger.kernel.org	# 3.19+
Signed-off-by: David Sterba <dsterba@suse.com>
2016-01-07 14:26:58 +01:00
David Sterba 35b3ad50ba btrfs: better packing of btrfs_delayed_extent_op
btrfs_delayed_extent_op can be packed in a better way, it's 40 bytes now
and has 8 unused bytes. Reducing the level type to u8 makes it possible
to squeeze it to the padding byte after key. The bitfields were switched
to bool as there's space to store the full byte without increasing the
whole structure, besides that the generated assembly is smaller.

struct btrfs_delayed_extent_op {
	struct btrfs_disk_key      key;                  /*     0    17 */
	u8                         level;                /*    17     1 */
	bool                       update_key;           /*    18     1 */
	bool                       update_flags;         /*    19     1 */
	bool                       is_data;              /*    20     1 */

	/* XXX 3 bytes hole, try to pack */

	u64                        flags_to_set;         /*    24     8 */

	/* size: 32, cachelines: 1, members: 6 */
	/* sum members: 29, holes: 1, sum holes: 3 */
	/* last cacheline: 32 bytes */
};

The final size is 32 bytes which gives +26 object per slab page.

   text	   data	    bss	    dec	    hex	filename
 938811	  43670	  23144	1005625	  f5839	fs/btrfs/btrfs.ko.before
 938747	  43670	  23144	1005561	  f57f9	fs/btrfs/btrfs.ko.after

Signed-off-by: David Sterba <dsterba@suse.com>
2016-01-07 14:26:58 +01:00
David Sterba 8089fe62c6 btrfs: put delayed item hook into inode
Inodes for delayed iput allocate a trivial helper structure, let's place
the list hook directly into the inode and save a kmalloc (killing a
__GFP_NOFAIL as a bonus) at the cost of increasing size of btrfs_inode.

The inode can be put into the delayed_iputs list more than once and we
have to keep the count. This means we can't use the list_splice to
process a bunch of inodes because we'd lost track of the count if the
inode is put into the delayed iputs again while it's processed.

Signed-off-by: David Sterba <dsterba@suse.com>
2016-01-07 14:26:58 +01:00
Zhao Lei c5ca87819d btrfs: Support convert to -d dup for btrfs-convert
Since we will add support for -d dup for non-mixed filesystem,
kernel need to support converting to this raid-type.

This patch remove limitation of above case.

Tested by following script:
(combination of dup conversion with fsck):

export TEST_DEV='/dev/vdc'
export TEST_DIR='/var/ltf/tester/mnt'

do_dup_test()
{
    local m_from="$1"
    local d_from="$2"
    local m_to="$3"
    local d_to="$4"

    echo "Convert from -m $m_from -d $d_from to -m $m_to -d $d_to"

    umount "$TEST_DIR" &>/dev/null
    ./mkfs.btrfs -f -m "$m_from" -d "$d_from" "$TEST_DEV" >/dev/null || return 1
    mount "$TEST_DEV" "$TEST_DIR" || return 1

    cp -a /sbin/* "$TEST_DIR"

    [[ "$m_from" != "$m_to" ]] && {
        ./btrfs balance start -f -mconvert="$m_to" "$TEST_DIR" || return 1
    }

    [[ "$d_from" != "$d_to" ]] && {
	local opt=()
	[[ "$d_to" == single ]] && opt+=("-f")
        ./btrfs balance start "${opt[@]}" -dconvert="$d_to" "$TEST_DIR" || return 1
    }

    umount "$TEST_DIR" || return 1
    ./btrfsck "$TEST_DEV" || return 1
    echo

    return 0
}

test_all()
{
    for m_from in single dup; do
    for d_from in single dup; do
    for m_to in single dup; do
    for d_to in single dup; do
    do_dup_test "$m_from" "$d_from" "$m_to" "$d_to" || return 1
    done
    done
    done
    done
}

test_all

Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-01-07 14:26:58 +01:00
Josef Bacik be7bd73084 Btrfs: igrab inode in writepage
We hit this panic on a few of our boxes this week where we have an
ordered_extent with an NULL inode.  We do an igrab() of the inode in writepages,
but weren't doing it in writepage which can be called directly from the VM on
dirty pages.  If the inode has been unlinked then we could have I_FREEING set
which means igrab() would return NULL and we get this panic.  Fix this by trying
to igrab in btrfs_writepage, and if it returns NULL then just redirty the page
and return AOP_WRITEPAGE_ACTIVATE; so the VM knows it wasn't successful.  Thanks,

Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-01-07 14:26:58 +01:00
Anand Jain b2acdddfad Btrfs: add missing brelse when superblock checksum fails
Looks like oversight, call brelse() when checksum fails. Further down the
code, in the non error path, we do call brelse() and so we don't see
brelse() in the goto error paths.

Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-01-07 14:26:53 +01:00
Filipe Manana 271dba4521 Btrfs: fix transaction handle leak on failure to create hard link
If we failed to create a hard link we were not always releasing the
the transaction handle we got before, resulting in a memory leak and
preventing any other tasks from being able to commit the current
transaction.
Fix this by always releasing our transaction handle.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
2016-01-06 22:52:38 +00:00
Dmitry Monakhov a1c6f05733 fs: use block_device name vsprintf helper
Signed-off-by: Dmitry Monakhov <dmonakhov@openvz.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-01-06 13:03:18 -05:00
Darrick J. Wong 2b3909f8a7 btrfs: use new dedupe data function pointer
Now that the VFS encapsulates the dedupe ioctl, wire up btrfs to it.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-01-01 02:36:40 -05:00
Filipe Manana 9269d12b2d Btrfs: fix number of transaction units required to create symlink
We weren't accounting for the insertion of an inline extent item for the
symlink inode nor that we need to update the parent inode item (through
the call to btrfs_add_nondir()). So fix this by including two more
transaction units.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
2015-12-31 18:18:40 +00:00
Filipe Manana d50866d00f Btrfs: don't leave dangling dentry if symlink creation failed
When we are creating a symlink we might fail with an error after we
created its inode and added the corresponding directory indexes to its
parent inode. In this case we end up never removing the directory indexes
because the inode eviction handler, called for our symlink inode on the
final iput(), only removes items associated with the symlink inode and
not with the parent inode.

Example:

  $ mkfs.btrfs -f /dev/sdi
  $ mount /dev/sdi /mnt
  $ touch /mnt/foo
  $ ln -s /mnt/foo /mnt/bar
  ln: failed to create symbolic link ‘bar’: Cannot allocate memory
  $ umount /mnt
  $ btrfsck /dev/sdi
  Checking filesystem on /dev/sdi
  UUID: d5acb5ba-31bd-42da-b456-89dca2e716e1
  checking extents
  checking free space cache
  checking fs roots
  root 5 inode 258 errors 2001, no inode item, link count wrong
	unresolved ref dir 256 index 3 namelen 3 name bar filetype 7 errors 4, no inode ref
  found 131073 bytes used err is 1
  total csum bytes: 0
  total tree bytes: 131072
  total fs tree bytes: 32768
  total extent tree bytes: 16384
  btree space waste bytes: 124305
  file data blocks allocated: 262144
   referenced 262144
  btrfs-progs v4.2.3

So fix this by adding the directory index entries as the very last
step of symlink creation.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
2015-12-31 18:10:56 +00:00
Filipe Manana a879719b8c Btrfs: send, don't BUG_ON() when an empty symlink is found
When a symlink is successfully created it always has an inline extent
containing the source path. However if an error happens when creating
the symlink, we can leave in the subvolume's tree a symlink inode without
any such inline extent item - this happens if after btrfs_symlink() calls
btrfs_end_transaction() and before it calls the inode eviction handler
(through the final iput() call), the transaction gets committed and a
crash happens before the eviction handler gets called, or if a snapshot
of the subvolume is made before the eviction handler gets called. Sadly
we can't just avoid this by making btrfs_symlink() call
btrfs_end_transaction() after it calls the eviction handler, because the
later can commit the current transaction before it removes any items from
the subvolume tree (if it encounters ENOSPC errors while reserving space
for removing all the items).

So make send fail more gracefully, with an -EIO error, and print a
message to dmesg/syslog informing that there's an empty symlink inode,
so that the user can delete the empty symlink or do something else
about it.

Reported-by: Stephen R. van den Berg <srb@cuci.nl>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
2015-12-31 18:08:20 +00:00
Al Viro fceef393a5 switch ->get_link() to delayed_call, kill ->put_link()
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-12-30 13:01:03 -05:00
Filipe Manana 2bc0bb5fe7 Btrfs: fix race between free space endio workers and space cache writeout
While running a stress test I ran into the following trace/transaction
abort:

[471626.672243] ------------[ cut here ]------------
[471626.673322] WARNING: CPU: 9 PID: 19107 at fs/btrfs/extent-tree.c:3740 btrfs_write_dirty_block_groups+0x17c/0x214 [btrfs]()
[471626.675492] BTRFS: Transaction aborted (error -2)
[471626.676748] Modules linked in: btrfs dm_flakey dm_mod crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop fuse parport_pc i2c_piix
[471626.688802] CPU: 14 PID: 19107 Comm: fsstress Tainted: G        W       4.3.0-rc5-btrfs-next-17+ #1
[471626.690148] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.8.1-0-g4adadbd-20150316_085822-nilsson.home.kraxel.org 04/01/2014
[471626.691901]  0000000000000000 ffff880016037cf0 ffffffff812566f4 ffff880016037d38
[471626.695009]  ffff880016037d28 ffffffff8104d0a6 ffffffffa040c84e 00000000fffffffe
[471626.697490]  ffff88011fe855f8 ffff88000c484cb0 ffff88000d195000 ffff880016037d90
[471626.699201] Call Trace:
[471626.699804]  [<ffffffff812566f4>] dump_stack+0x4e/0x79
[471626.701049]  [<ffffffff8104d0a6>] warn_slowpath_common+0x9f/0xb8
[471626.702542]  [<ffffffffa040c84e>] ? btrfs_write_dirty_block_groups+0x17c/0x214 [btrfs]
[471626.704326]  [<ffffffff8104d107>] warn_slowpath_fmt+0x48/0x50
[471626.705636]  [<ffffffffa0403717>] ? write_one_cache_group.isra.32+0x77/0x82 [btrfs]
[471626.707048]  [<ffffffffa040c84e>] btrfs_write_dirty_block_groups+0x17c/0x214 [btrfs]
[471626.708616]  [<ffffffffa048a50a>] commit_cowonly_roots+0x1d7/0x25a [btrfs]
[471626.709950]  [<ffffffffa041e34a>] btrfs_commit_transaction+0x4c4/0x991 [btrfs]
[471626.711286]  [<ffffffff81081c61>] ? signal_pending_state+0x31/0x31
[471626.712611]  [<ffffffffa03f6df4>] btrfs_sync_fs+0x145/0x1ad [btrfs]
[471626.715610]  [<ffffffff811962a2>] ? SyS_tee+0x226/0x226
[471626.716718]  [<ffffffff811962c2>] sync_fs_one_sb+0x20/0x22
[471626.717672]  [<ffffffff8116fc01>] iterate_supers+0x75/0xc2
[471626.718800]  [<ffffffff8119669a>] sys_sync+0x52/0x80
[471626.719990]  [<ffffffff8147cd97>] entry_SYSCALL_64_fastpath+0x12/0x6f
[471626.721835] ---[ end trace baf57f43d76693f4 ]---
[471626.722954] BTRFS: error (device sdc) in btrfs_write_dirty_block_groups:3740: errno=-2 No such entry

This is a very rare situation and it happened due to a race between a free
space endio worker and writing the space caches for dirty block groups at
a transaction's commit critical section. The steps leading to this are:

1) A task calls btrfs_commit_transaction() and starts the writeout of the
   space caches for all currently dirty block groups (i.e. it calls
   btrfs_start_dirty_block_groups());

2) The previous step starts writeback for space caches;

3) When the writeback finishes it queues jobs for free space endio work
   queue (fs_info->endio_freespace_worker) that execute
   btrfs_finish_ordered_io();

4) The task committing the transaction sets the transaction's state
   to TRANS_STATE_COMMIT_DOING and shortly after calls
   btrfs_write_dirty_block_groups();

5) A free space endio job joins the transaction, through
   btrfs_join_transaction_nolock(), and updates a free space inode item
   in the root tree through btrfs_update_inode_fallback();

6) Updating the free space inode item resulted in COWing one or more
   nodes/leaves of the root tree, and that resulted in creating a new
   metadata block group, which gets added to the transaction's list
   of dirty block groups (this is a very rare case);

7) The free space endio job has not released yet its transaction handle
   at this point, so the new metadata block group was not yet fully
   created (didn't go through btrfs_create_pending_block_groups() yet);

8) The transaction commit task sees the new metadata block group in
   the transaction's list of dirty block groups and processes it.
   When it attempts to update the block group's block group item in
   the extent tree, through write_one_cache_group(), it isn't able
   to find it and aborts the transaction with error -ENOENT - this
   is because the free space endio job hasn't yet released its
   transaction handle (which calls btrfs_create_pending_block_groups())
   and therefore the block group item was not yet added to the extent
   tree.

Fix this waiting for free space endio jobs if we fail to find a block
group item in the extent tree and then retry once updating the block
group item.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
2015-12-30 16:08:13 +00:00
Chris Mason 511711af91 btrfs: don't run delayed references while we are creating the free space tree
This is a short term solution to make sure btrfs_run_delayed_refs()
doesn't change the extent tree while we are scanning it to create the
free space tree.

Longer term we need to synchronize scanning the block groups one by one,
similar to what happens during a balance.

Signed-off-by: Chris Mason <clm@fb.com>
2015-12-30 07:52:35 -08:00
Chris Mason b4570aa994 btrfs: fix compiling with CONFIG_BTRFS_DEBUG enabled.
Merging in the free space tree deleted a variable needed when
CONFIG_BTRFS_DEBUG=y

Signed-off-by: Chris Mason <clm@fb.com>
2015-12-30 07:37:26 -08:00
Chris Mason 140e639f1a btrfs: fix warning on uninit variable in btrfs_finish_chunk_alloc
map->num_stripes really can't be zero, but just in case.

Signed-off-by: Chris Mason <clm@fb.com>
2015-12-23 13:30:51 -08:00
Chris Mason f0f76413d3 Merge branch 'freespace-4.5' into for-linus-4.5 2015-12-23 13:29:09 -08:00
Chris Mason a53fe25769 Merge branch 'for-chris-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/fdmanana/linux into for-linus-4.5 2015-12-23 13:28:35 -08:00
Chris Mason bb9d687618 Merge branch 'dev/simplify-set-bit' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux into for-linus-4.5
Signed-off-by: Chris Mason <clm@fb.com>
2015-12-23 13:17:42 -08:00
Chris Mason 13d5d15d63 Merge branch 'dev/gfp-flags' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux into for-linus-4.5 2015-12-23 13:11:27 -08:00
Chris Mason afa427cf9d Merge branch 'cleanup/misc-simplify' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux into for-linus-4.5 2015-12-23 13:10:26 -08:00
Filipe Manana e44081ef61 Btrfs: fix unprotected list operations at btrfs_write_dirty_block_groups
We call btrfs_write_dirty_block_groups() in the critical section of a
transaction's commit, when no other tasks can join the transaction and
add more block groups to the transaction's list of dirty block groups,
so we not taking the dirty block groups spinlock when checking for the
list's emptyness, grabbing its first element or deleting elements from
it.

However there's a special and rare case where we can have a concurrent
task adding elements to this list. We trigger writeback for space
caches before at btrfs_start_dirty_block_groups() and in past iterations
of the loop at btrfs_write_dirty_block_groups(), this means that when
the writeback finishes (which happens asynchronously) it creates a
task for the endio free space work queue that executes
btrfs_finish_ordered_io() - this function is able to join the transaction,
through btrfs_join_transaction_nolock(), and update the free space cache's
inode item in the root tree, which can result in COWing nodes of this tree
and therefore allocation of a new block group can happen, which gets added
to the transaction's list of dirty block groups while the transaction
commit task is operating on it concurrently.

So fix this by taking the dirty block groups spinlock before doing
operations on the dirty block groups list at
btrfs_write_dirty_block_groups().

Signed-off-by: Filipe Manana <fdmanana@suse.com>
2015-12-21 17:51:22 +00:00
Borislav Petkov 362f924b64 x86/cpufeature: Remove unused and seldomly used cpu_has_xx macros
Those are stupid and code should use static_cpu_has_safe() or
boot_cpu_has() instead. Kill the least used and unused ones.

The remaining ones need more careful inspection before a conversion can
happen. On the TODO.

Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1449481182-27541-4-git-send-email-bp@alien8.de
Cc: David Sterba <dsterba@suse.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Chris Mason <clm@fb.com>
Cc: Josef Bacik <jbacik@fb.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2015-12-19 11:49:55 +01:00
Linus Torvalds fc315e3e5c Merge branch 'for-linus-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs fixes from Chris Mason:
 "A couple of small fixes"

* 'for-linus-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
  Btrfs: check prepare_uptodate_page() error code earlier
  Btrfs: check for empty bitmap list in setup_cluster_bitmaps
  btrfs: fix misleading warning when space cache failed to load
  Btrfs: fix transaction handle leak in balance
  Btrfs: fix unprotected list move from unused_bgs to deleted_bgs list
2015-12-18 15:35:08 -08:00
Chris Mason f7d3d2f99e Merge branch 'freespace-tree' into for-linus-4.5
Signed-off-by: Chris Mason <clm@fb.com>
2015-12-18 11:11:10 -08:00
Filipe Manana 0376374a98 Btrfs: fix locking bugs when defragging leaves
When running fstests btrfs/070, with a higher number of fsstress
operations, I ran frequently into two different locking bugs when
defragging directories.

The first bug produced the following traces:

[133860.229792] ------------[ cut here ]------------
[133860.251062] WARNING: CPU: 2 PID: 26057 at fs/btrfs/locking.c:46 btrfs_set_lock_blocking_rw+0x57/0xbd [btrfs]()
[133860.253576] Modules linked in: btrfs crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop fuse parport_pc i2c_piix4 psmouse parport
[133860.282566] CPU: 2 PID: 26057 Comm: btrfs Tainted: G        W       4.3.0-rc5-btrfs-next-17+ #1
[133860.284393] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.8.1-0-g4adadbd-20150316_085822-nilsson.home.kraxel.org 04/01/2014
[133860.286827]  0000000000000000 ffff880207697b78 ffffffff812566f4 0000000000000000
[133860.288341]  ffff880207697bb0 ffffffff8104d0a6 ffffffffa052d4c1 ffff880178f60e00
[133860.294219]  ffff880178f60e00 0000000000000000 00000000000000f6 ffff880207697bc0
[133860.295831] Call Trace:
[133860.306518]  [<ffffffff812566f4>] dump_stack+0x4e/0x79
[133860.307473]  [<ffffffff8104d0a6>] warn_slowpath_common+0x9f/0xb8
[133860.308619]  [<ffffffffa052d4c1>] ? btrfs_set_lock_blocking_rw+0x57/0xbd [btrfs]
[133860.310068]  [<ffffffff8104d172>] warn_slowpath_null+0x1a/0x1c
[133860.312552]  [<ffffffffa052d4c1>] btrfs_set_lock_blocking_rw+0x57/0xbd [btrfs]
[133860.314630]  [<ffffffffa04d5787>] btrfs_set_lock_blocking+0xe/0x10 [btrfs]
[133860.323596]  [<ffffffffa04d99cb>] btrfs_realloc_node+0xb3/0x341 [btrfs]
[133860.325233]  [<ffffffffa050e396>] btrfs_defrag_leaves+0x239/0x2fa [btrfs]
[133860.332427]  [<ffffffffa04fc2ce>] btrfs_defrag_root+0x63/0xca [btrfs]
[133860.337259]  [<ffffffffa052a34e>] btrfs_ioctl_defrag+0x78/0x14e [btrfs]
[133860.340147]  [<ffffffffa052b00b>] btrfs_ioctl+0x746/0x24c6 [btrfs]
[133860.344833]  [<ffffffff81087481>] ? arch_local_irq_save+0x9/0xc
[133860.346343]  [<ffffffff8113ad61>] ? __might_fault+0x4c/0xa7
[133860.353248]  [<ffffffff8113ad61>] ? __might_fault+0x4c/0xa7
[133860.354242]  [<ffffffff8113adba>] ? __might_fault+0xa5/0xa7
[133860.355232]  [<ffffffff81171139>] ? cp_new_stat+0x15d/0x174
[133860.356237]  [<ffffffff8117c610>] do_vfs_ioctl+0x427/0x4e6
[133860.358587]  [<ffffffff81171175>] ? SYSC_newfstat+0x25/0x2e
[133860.360195]  [<ffffffff8118574d>] ? __fget_light+0x4d/0x71
[133860.361380]  [<ffffffff8117c726>] SyS_ioctl+0x57/0x79
[133860.363578]  [<ffffffff8147cd97>] entry_SYSCALL_64_fastpath+0x12/0x6f
[133860.366217] ---[ end trace 2cadb2f653437e49 ]---
[133860.367399] ------------[ cut here ]------------
[133860.368162] kernel BUG at fs/btrfs/locking.c:307!
[133860.369430] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC
[133860.370205] Modules linked in: btrfs crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop fuse parport_pc i2c_piix4 psmouse parport
[133860.370205] CPU: 2 PID: 26057 Comm: btrfs Tainted: G        W       4.3.0-rc5-btrfs-next-17+ #1
[133860.370205] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.8.1-0-g4adadbd-20150316_085822-nilsson.home.kraxel.org 04/01/2014
[133860.370205] task: ffff8800aec6db40 ti: ffff880207694000 task.ti: ffff880207694000
[133860.370205] RIP: 0010:[<ffffffffa052d466>]  [<ffffffffa052d466>] btrfs_assert_tree_locked+0x10/0x14 [btrfs]
[133860.370205] RSP: 0018:ffff880207697bc0  EFLAGS: 00010246
[133860.370205] RAX: 0000000000000000 RBX: ffff880178f60e00 RCX: 0000000000000000
[133860.370205] RDX: ffff88023ec4fb50 RSI: 00000000ffffffff RDI: ffff880178f60e00
[133860.370205] RBP: ffff880207697bc0 R08: 0000000000000001 R09: 0000000000000000
[133860.370205] R10: 0000160000000000 R11: ffffffff81651000 R12: ffff880178f60e00
[133860.370205] R13: 0000000000000000 R14: 00000000000000f6 R15: ffff8801ff409000
[133860.370205] FS:  00007f763efd48c0(0000) GS:ffff88023ec40000(0000) knlGS:0000000000000000
[133860.370205] CS:  0010 DS: 0000 ES: 0000 CR0: 000000008005003b
[133860.370205] CR2: 0000000002158048 CR3: 000000003fd6c000 CR4: 00000000000006e0
[133860.370205] Stack:
[133860.370205]  ffff880207697bd8 ffffffffa052d4d0 0000000000000000 ffff880207697be8
[133860.370205]  ffffffffa04d5787 ffff880207697c80 ffffffffa04d99cb ffff8801ff409590
[133860.370205]  ffff880207697ca8 000000f507697c80 ffff880183c11bb8 0000000000000000
[133860.370205] Call Trace:
[133860.370205]  [<ffffffffa052d4d0>] btrfs_set_lock_blocking_rw+0x66/0xbd [btrfs]
[133860.370205]  [<ffffffffa04d5787>] btrfs_set_lock_blocking+0xe/0x10 [btrfs]
[133860.370205]  [<ffffffffa04d99cb>] btrfs_realloc_node+0xb3/0x341 [btrfs]
[133860.370205]  [<ffffffffa050e396>] btrfs_defrag_leaves+0x239/0x2fa [btrfs]
[133860.370205]  [<ffffffffa04fc2ce>] btrfs_defrag_root+0x63/0xca [btrfs]
[133860.370205]  [<ffffffffa052a34e>] btrfs_ioctl_defrag+0x78/0x14e [btrfs]
[133860.370205]  [<ffffffffa052b00b>] btrfs_ioctl+0x746/0x24c6 [btrfs]
[133860.370205]  [<ffffffff81087481>] ? arch_local_irq_save+0x9/0xc
[133860.370205]  [<ffffffff8113ad61>] ? __might_fault+0x4c/0xa7
[133860.370205]  [<ffffffff8113ad61>] ? __might_fault+0x4c/0xa7
[133860.370205]  [<ffffffff8113adba>] ? __might_fault+0xa5/0xa7
[133860.370205]  [<ffffffff81171139>] ? cp_new_stat+0x15d/0x174
[133860.370205]  [<ffffffff8117c610>] do_vfs_ioctl+0x427/0x4e6
[133860.370205]  [<ffffffff81171175>] ? SYSC_newfstat+0x25/0x2e
[133860.370205]  [<ffffffff8118574d>] ? __fget_light+0x4d/0x71
[133860.370205]  [<ffffffff8117c726>] SyS_ioctl+0x57/0x79
[133860.370205]  [<ffffffff8147cd97>] entry_SYSCALL_64_fastpath+0x12/0x6f

This bug happened because we assumed that by setting keep_locks to 1 in
our search path, our path after a call to btrfs_search_slot() would have
all nodes locked, which is not always true because unlock_up() (called by
btrfs_search_slot()) will unlock a node in a path if the slot of the node
below it doesn't point to the last item or beyond the last item. For
example, when the tree has a heigth of 2 and path->slots[0] has a value
smaller than btrfs_header_nritems(path->nodes[0]) - 1, the node at level 2
will be unlocked (also because lowest_unlock is set to 1 due to the fact
that the value passed as ins_len to btrfs_search_slot is 0).
This resulted in btrfs_find_next_key(), called before btrfs_realloc_node(),
to release out path and call again btrfs_search_slot(), but this time with
the cow parameter set to 0, meaning the resulting path got only read locks.
Therefore when we called btrfs_realloc_node(), with path->nodes[1] having
a read lock, it resulted in the warning and BUG_ON when calling
btrfs_set_lock_blocking() against the node, as that function expects the
node to have a write lock.

The second bug happened often when the first bug didn't happen, and made
us hang and hitting the following warning at fs/btrfs/locking.c:

   251  void btrfs_tree_lock(struct extent_buffer *eb)
   252  {
   253          WARN_ON(eb->lock_owner == current->pid);

This happened because the tree search we made at btrfs_defrag_leaves()
before calling btrfs_find_next_key() locked a leaf and all the other
nodes in the path, so btrfs_find_next_key() had no need to release the
path and make a new search (with path->lowest_level set to 1). This
made btrfs_realloc_node() attempt to write lock the same leaf again,
resulting in a hang/deadlock.

So fix these issues by calling btrfs_find_next_key() after calling
btrfs_realloc_node() and setting the search path's lowest_level to 1
to avoid the hang/deadlock when attempting to write lock the leaves
at btrfs_realloc_node().

Signed-off-by: Filipe Manana <fdmanana@suse.com>
2015-12-18 02:51:32 +00:00
Omar Sandoval 70f6d82ec7 Btrfs: add free space tree mount option
Now we can finally hook up everything so we can actually use free space
tree. The free space tree is enabled by passing the space_cache=v2 mount
option. On the first mount with the this option set, the free space tree
will be created and the FREE_SPACE_TREE read-only compat bit will be
set. Any time the filesystem is mounted from then on, we must use the
free space tree. The clear_cache option will also clear the free space
tree.

Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-12-17 12:16:47 -08:00
Omar Sandoval 1e144fb8f4 Btrfs: wire up the free space tree to the extent tree
The free space tree is updated in tandem with the extent tree. There are
only a handful of places where we need to hook in:

1. Block group creation
2. Block group deletion
3. Delayed refs (extent creation and deletion)
4. Block group caching

Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-12-17 12:16:47 -08:00
Omar Sandoval 7c55ee0c4a Btrfs: add free space tree sanity tests
This tests the operations on the free space tree trying to excercise all
of the main cases for both formats. Between this and xfstests, the free
space tree should have pretty good coverage.

Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-12-17 12:16:47 -08:00
Omar Sandoval a5ed918285 Btrfs: implement the free space B-tree
The free space cache has turned out to be a scalability bottleneck on
large, busy filesystems. When the cache for a lot of block groups needs
to be written out, we can get extremely long commit times; if this
happens in the critical section, things are especially bad because we
block new transactions from happening.

The main problem with the free space cache is that it has to be written
out in its entirety and is managed in an ad hoc fashion. Using a B-tree
to store free space fixes this: updates can be done as needed and we get
all of the benefits of using a B-tree: checksumming, RAID handling,
well-understood behavior.

With the free space tree, we get commit times that are about the same as
the no cache case with load times slower than the free space cache case
but still much faster than the no cache case. Free space is represented
with extents until it becomes more space-efficient to use bitmaps,
giving us similar space overhead to the free space cache.

The operations on the free space tree are: adding and removing free
space, handling the creation and deletion of block groups, and loading
the free space for a block group. We can also create the free space tree
by walking the extent tree and clear the free space tree.

Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-12-17 12:16:47 -08:00
Omar Sandoval 208acb8c72 Btrfs: introduce the free space B-tree on-disk format
The on-disk format for the free space tree is straightforward. Each
block group is represented in the free space tree by a free space info
item that stores accounting information: whether the free space for this
block group is stored as bitmaps or extents and how many extents of free
space exist for this block group (regardless of which format is being
used in the tree). Extents are (start, FREE_SPACE_EXTENT, length) keys
with no corresponding item, and bitmaps instead have the
FREE_SPACE_BITMAP type and have a bitmap item attached, which is just an
array of bytes.

Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-12-17 12:16:46 -08:00
Omar Sandoval 73fa48b674 Btrfs: refactor caching_thread()
We're also going to load the free space tree from caching_thread(), so
we should refactor some of the common code.

Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-12-17 12:16:46 -08:00
Omar Sandoval 1abfbcdf56 Btrfs: add helpers for read-only compat bits
We're finally going to add one of these for the free space tree, so
let's add the same nice helpers that we have for the incompat bits.
While we're add it, also add helpers to clear the bits.

Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-12-17 12:16:46 -08:00
Omar Sandoval 0f3312295d Btrfs: add extent buffer bitmap sanity tests
Sanity test the extent buffer bitmap operations (test, set, and clear)
against the equivalent standard kernel operations.

Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-12-17 12:16:46 -08:00
Omar Sandoval 3e1e8bb770 Btrfs: add extent buffer bitmap operations
These are going to be used for the free space tree bitmap items.

Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-12-17 12:16:46 -08:00
Filipe Manana f28a492878 Btrfs: fix leaking of ordered extents after direct IO write error
When doing a direct IO write, __blockdev_direct_IO() can call the
btrfs_get_blocks_direct() callback one or more times before it calls the
btrfs_submit_direct() callback. However it can fail after calling the
first callback and before calling the second callback, which is a problem
because the first one creates ordered extents and the second one is the
one that submits bios that cover the ordered extents created by the first
one. That means the ordered extents will never complete nor have any of
the flags BTRFS_ORDERED_IO_DONE / BTRFS_ORDERED_IOERR set, resulting in
subsequent operations (such as other direct IO writes, buffered writes or
hole punching) that lock the same IO range and lookup for ordered extents
in the range to hang forever waiting for those ordered extents because
they can not complete ever, since no bio was submitted.

Fix this by tracking a range of created ordered extents that don't have
yet corresponding bios submitted and completing the ordered extents in
the range if __blockdev_direct_IO() fails with an error.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
2015-12-17 10:59:51 +00:00
Filipe Manana b850ae1427 Btrfs: fix deadlock between direct IO write and defrag/readpages
If readpages() (triggered by defrag or buffered reads) is called while a
direct IO write is in progress, we have a small time window where we can
deadlock, resulting in traces like the following being generated:

[84723.212993] INFO: task fio:2849 blocked for more than 120 seconds.
[84723.214310]       Tainted: G        W       4.3.0-rc5-btrfs-next-17+ #1
[84723.215640] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[84723.217313] fio        D ffff88023ec75218     0  2849   2835 0x00000000
[84723.218778]  ffff880122dfb6e8 0000000000000092 0000000000000000 ffff88023ec75200
[84723.220458]  ffff88000e05d2c0 ffff880122dfc000 ffff88023ec75200 7fffffffffffffff
[84723.230597]  0000000000000002 ffffffff8147891a ffff880122dfb700 ffffffff8147856a
[84723.232085] Call Trace:
[84723.232625]  [<ffffffff8147891a>] ? bit_wait+0x3c/0x3c
[84723.233529]  [<ffffffff8147856a>] schedule+0x7d/0x95
[84723.234398]  [<ffffffff8147baa3>] schedule_timeout+0x43/0x10b
[84723.235384]  [<ffffffff810f82eb>] ? time_hardirqs_on+0x15/0x28
[84723.236426]  [<ffffffff8108a23d>] ? trace_hardirqs_on+0xd/0xf
[84723.237502]  [<ffffffff810af8a3>] ? read_seqcount_begin.constprop.20+0x57/0x6d
[84723.238807]  [<ffffffff8108a09b>] ? trace_hardirqs_on_caller+0x16/0x1ab
[84723.242012]  [<ffffffff8108a23d>] ? trace_hardirqs_on+0xd/0xf
[84723.243064]  [<ffffffff810af2ad>] ? timekeeping_get_ns+0xe/0x33
[84723.244116]  [<ffffffff810afa2e>] ? ktime_get+0x41/0x52
[84723.245029]  [<ffffffff81477cff>] io_schedule_timeout+0xb7/0x12b
[84723.245942]  [<ffffffff81477cff>] ? io_schedule_timeout+0xb7/0x12b
[84723.246596]  [<ffffffff81478953>] bit_wait_io+0x39/0x45
[84723.247503]  [<ffffffff81478b93>] __wait_on_bit_lock+0x49/0x8d
[84723.248540]  [<ffffffff8111684f>] __lock_page+0x66/0x68
[84723.249558]  [<ffffffff81081c9b>] ? autoremove_wake_function+0x3a/0x3a
[84723.250844]  [<ffffffff81124a04>] lock_page+0x2c/0x2f
[84723.251871]  [<ffffffff81124afc>] invalidate_inode_pages2_range+0xf5/0x2aa
[84723.253274]  [<ffffffff81117c34>] ? filemap_fdatawait_range+0x12d/0x146
[84723.254757]  [<ffffffff81118191>] ? filemap_fdatawrite_range+0x13/0x15
[84723.256378]  [<ffffffffa05139a2>] btrfs_get_blocks_direct+0x1b0/0x664 [btrfs]
[84723.258556]  [<ffffffff8119e3f9>] ? submit_page_section+0x7b/0x111
[84723.260064]  [<ffffffff8119eb90>] do_blockdev_direct_IO+0x658/0xbdb
[84723.261479]  [<ffffffffa05137f2>] ? btrfs_page_exists_in_range+0x1a9/0x1a9 [btrfs]
[84723.262961]  [<ffffffffa050a8a6>] ? btrfs_writepage_start_hook+0xce/0xce [btrfs]
[84723.264449]  [<ffffffff8119f144>] __blockdev_direct_IO+0x31/0x33
[84723.265614]  [<ffffffff8119f144>] ? __blockdev_direct_IO+0x31/0x33
[84723.266769]  [<ffffffffa050a8a6>] ? btrfs_writepage_start_hook+0xce/0xce [btrfs]
[84723.268264]  [<ffffffffa050935d>] btrfs_direct_IO+0x1b9/0x259 [btrfs]
[84723.270954]  [<ffffffffa050a8a6>] ? btrfs_writepage_start_hook+0xce/0xce [btrfs]
[84723.272465]  [<ffffffff8111878c>] generic_file_direct_write+0xb3/0x128
[84723.273734]  [<ffffffffa051955c>] btrfs_file_write_iter+0x228/0x404 [btrfs]
[84723.275101]  [<ffffffff8116ca6f>] __vfs_write+0x7c/0xa5
[84723.276200]  [<ffffffff8116cfab>] vfs_write+0xa0/0xe4
[84723.277298]  [<ffffffff8116d79d>] SyS_write+0x50/0x7e
[84723.278327]  [<ffffffff8147cd97>] entry_SYSCALL_64_fastpath+0x12/0x6f
[84723.279595] INFO: lockdep is turned off.
[84723.379035] INFO: task btrfs:2923 blocked for more than 120 seconds.
[84723.380323]       Tainted: G        W       4.3.0-rc5-btrfs-next-17+ #1
[84723.381608] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[84723.383003] btrfs           D ffff88023ed75218     0  2923   2859 0x00000000
[84723.384277]  ffff88001311f860 0000000000000082 ffff88001311f840 ffff88023ed75200
[84723.385748]  ffff88012c6751c0 ffff880013120000 ffff88012042fe68 ffff88012042fe30
[84723.387152]  ffff880221571c88 0000000000000001 ffff88001311f878 ffffffff8147856a
[84723.388620] Call Trace:
[84723.389105]  [<ffffffff8147856a>] schedule+0x7d/0x95
[84723.391882]  [<ffffffffa051da32>] btrfs_start_ordered_extent+0x161/0x1fa [btrfs]
[84723.393718]  [<ffffffff81081c61>] ? signal_pending_state+0x31/0x31
[84723.395659]  [<ffffffffa0522c5b>] __do_contiguous_readpages.constprop.21+0x81/0xdc [btrfs]
[84723.397383]  [<ffffffffa050ac96>] ? btrfs_submit_direct+0x3f0/0x3f0 [btrfs]
[84723.398852]  [<ffffffffa0522da3>] __extent_readpages.constprop.20+0xed/0x100 [btrfs]
[84723.400561]  [<ffffffff81123f6c>] ? __lru_cache_add+0x5d/0x72
[84723.401787]  [<ffffffffa0523896>] extent_readpages+0x111/0x1a7 [btrfs]
[84723.403121]  [<ffffffffa050ac96>] ? btrfs_submit_direct+0x3f0/0x3f0 [btrfs]
[84723.404583]  [<ffffffffa05088fa>] btrfs_readpages+0x1f/0x21 [btrfs]
[84723.406007]  [<ffffffff811226df>] __do_page_cache_readahead+0x168/0x1f4
[84723.407502]  [<ffffffff81122988>] ondemand_readahead+0x21d/0x22e
[84723.408937]  [<ffffffff81122988>] ? ondemand_readahead+0x21d/0x22e
[84723.410487]  [<ffffffff81122af1>] page_cache_sync_readahead+0x3d/0x3f
[84723.411710]  [<ffffffffa0535388>] btrfs_defrag_file+0x419/0xaaf [btrfs]
[84723.413007]  [<ffffffffa0531db0>] ? kzalloc+0xf/0x11 [btrfs]
[84723.414085]  [<ffffffffa0535b43>] btrfs_ioctl_defrag+0x125/0x14e [btrfs]
[84723.415307]  [<ffffffffa0536753>] btrfs_ioctl+0x746/0x24c6 [btrfs]
[84723.416532]  [<ffffffff81087481>] ? arch_local_irq_save+0x9/0xc
[84723.417731]  [<ffffffff8113ad61>] ? __might_fault+0x4c/0xa7
[84723.418699]  [<ffffffff8113ad61>] ? __might_fault+0x4c/0xa7
[84723.421532]  [<ffffffff8113adba>] ? __might_fault+0xa5/0xa7
[84723.422629]  [<ffffffff81171139>] ? cp_new_stat+0x15d/0x174
[84723.423712]  [<ffffffff8117c610>] do_vfs_ioctl+0x427/0x4e6
[84723.424801]  [<ffffffff81171175>] ? SYSC_newfstat+0x25/0x2e
[84723.425968]  [<ffffffff8118574d>] ? __fget_light+0x4d/0x71
[84723.427063]  [<ffffffff8117c726>] SyS_ioctl+0x57/0x79
[84723.428138]  [<ffffffff8147cd97>] entry_SYSCALL_64_fastpath+0x12/0x6f

Consider the following logical and physical file layout:

logical:    ... [ prealloc extent A ] [ prealloc extent B ] [ extent C ] ...
                4K                    8K                    16K

physical:   ... 12853248              12857344              1103101952   ...
                                      (= 12853248 + 4K)

Extents A and B are physically adjacent. The following diagram shows a
sequence of events that lead to the deadlock when we attempt to do a
direct IO write against the file range [4K, 16K[ and a defrag is triggered
simultaneously.

           CPU 1                                               CPU 2

 btrfs_direct_IO()

   btrfs_get_blocks_direct()
     creates ordered extent A, covering
     the 4k prealloc extent A (range [4K, 8K[)

                                                    btrfs_defrag_file()
                                                      page_cache_sync_readahead([0K, 1M[)
                                                        btrfs_readpages()
                                                          extent_readpages()

                                                            locks all pages in the file
                                                            range [0K, 128K[ through calls
                                                            to add_to_page_cache_lru()

                                                            __do_contiguous_readpages()

                                                               finds ordered extent A

                                                               waits for it to complete

   btrfs_get_blocks_direct() called again

     lock_extent_direct(range [8K, 16K[)

       finds a page in range [8K, 16K[ through
       btrfs_page_exists_in_range()

       invalidate_inode_pages2_range([8K, 16K[)

         --> tries to lock pages that are already
             locked by the task at CPU 2

         --> our task, running __blockdev_direct_IO(),
             hangs waiting to lock the pages and the
             submit bio callback, btrfs_submit_direct(),
             ends up never being called, resulting in the
             ordered extent A never completing (because a
             corresponding bio is never submitted) and
             CPU 2 will wait for it forever while holding
             the pages locked
              ---> deadlock!

Fix this by removing the page invalidation approach when attempting to
lock the range for IO from the callback btrfs_get_blocks_direct() and
falling back buffered IO. This was a rare case anyway and well behaved
applications do not mix concurrent direct IO writes with buffered reads
anyway, being a concurrent defrag the only normal case that could lead
to the deadlock.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
2015-12-17 10:59:50 +00:00
Filipe Manana 14543774bd Btrfs: fix error path when failing to submit bio for direct IO write
Commit 61de718fce ("Btrfs: fix memory corruption on failure to submit
bio for direct IO") fixed problems with the error handling code after we
fail to submit a bio for direct IO. However there were 2 problems that it
did not address when the failure is due to memory allocation failures for
direct IO writes:

1) We considered that there could be only one ordered extent for the whole
   IO range, which is not always true, as we can have multiple;

2) It did not set the bit BTRFS_ORDERED_IO_DONE in the ordered extent,
   which can make other tasks running btrfs_wait_logged_extents() hang
   forever, since they wait for that bit to be set. The general assumption
   is that regardless of an error, the BTRFS_ORDERED_IO_DONE is always set
   and it precedes setting the bit BTRFS_ORDERED_COMPLETE.

Fix these issues by moving part of the btrfs_endio_direct_write() handler
into a new helper function and having that new helper function called when
we fail to allocate memory to submit the bio (and its private object) for
a direct IO write.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
2015-12-17 10:59:49 +00:00
Filipe Manana 7785a663c4 Btrfs: fix memory leaks after transaction is aborted
When a transaction is aborted, or its commit fails before writing the new
superblock and calling btrfs_finish_extent_commit(), we leak reference
counts on the block groups attached to the transaction's delete_bgs list,
because btrfs_finish_extent_commit() is never called for those two cases.
Fix this by dropping their references at btrfs_put_transaction(), which
is called when transactions are aborted (by making the transaction kthread
commit the transaction) or if their commits fail.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
2015-12-17 10:59:48 +00:00
Filipe Manana 50460e3718 Btrfs: fix race when finishing dev replace leading to transaction abort
During the final phase of a device replace operation, I ran into a
transaction abort that resulted in the following trace:

[23919.655368] WARNING: CPU: 10 PID: 30175 at fs/btrfs/extent-tree.c:9843 btrfs_create_pending_block_groups+0x15e/0x1ab [btrfs]()
[23919.664742] BTRFS: Transaction aborted (error -2)
[23919.665749] Modules linked in: btrfs crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop fuse parport_pc i2c_piix4 parport psmouse acpi_cpufreq processor i2c_core evdev microcode pcspkr button serio_raw ext4 crc16 jbd2 mbcache sd_mod sg sr_mod cdrom virtio_scsi ata_generic ata_piix virtio_pci floppy virtio_ring libata e1000 virtio scsi_mod [last unloaded: btrfs]
[23919.679442] CPU: 10 PID: 30175 Comm: fsstress Not tainted 4.3.0-rc5-btrfs-next-17+ #1
[23919.682392] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.8.1-0-g4adadbd-20150316_085822-nilsson.home.kraxel.org 04/01/2014
[23919.689151]  0000000000000000 ffff8804020cbb50 ffffffff812566f4 ffff8804020cbb98
[23919.692604]  ffff8804020cbb88 ffffffff8104d0a6 ffffffffa03eea69 ffff88041b678a48
[23919.694230]  ffff88042ac38000 ffff88041b678930 00000000fffffffe ffff8804020cbbf0
[23919.696716] Call Trace:
[23919.698669]  [<ffffffff812566f4>] dump_stack+0x4e/0x79
[23919.700597]  [<ffffffff8104d0a6>] warn_slowpath_common+0x9f/0xb8
[23919.701958]  [<ffffffffa03eea69>] ? btrfs_create_pending_block_groups+0x15e/0x1ab [btrfs]
[23919.703612]  [<ffffffff8104d107>] warn_slowpath_fmt+0x48/0x50
[23919.705047]  [<ffffffffa03eea69>] btrfs_create_pending_block_groups+0x15e/0x1ab [btrfs]
[23919.706967]  [<ffffffffa0402097>] __btrfs_end_transaction+0x84/0x2dd [btrfs]
[23919.708611]  [<ffffffffa0402300>] btrfs_end_transaction+0x10/0x12 [btrfs]
[23919.710099]  [<ffffffffa03ef0b8>] btrfs_alloc_data_chunk_ondemand+0x121/0x28b [btrfs]
[23919.711970]  [<ffffffffa0413025>] btrfs_fallocate+0x7d3/0xc6d [btrfs]
[23919.713602]  [<ffffffff8108b78f>] ? lock_acquire+0x10d/0x194
[23919.714756]  [<ffffffff81086dbc>] ? percpu_down_read+0x51/0x78
[23919.716155]  [<ffffffff8116ef1d>] ? __sb_start_write+0x5f/0xb0
[23919.718918]  [<ffffffff8116ef1d>] ? __sb_start_write+0x5f/0xb0
[23919.724170]  [<ffffffff8116b579>] vfs_fallocate+0x170/0x1ff
[23919.725482]  [<ffffffff8117c1d7>] ioctl_preallocate+0x89/0x9b
[23919.726790]  [<ffffffff8117c5ef>] do_vfs_ioctl+0x406/0x4e6
[23919.728428]  [<ffffffff81171175>] ? SYSC_newfstat+0x25/0x2e
[23919.729642]  [<ffffffff8118574d>] ? __fget_light+0x4d/0x71
[23919.730782]  [<ffffffff8117c726>] SyS_ioctl+0x57/0x79
[23919.731847]  [<ffffffff8147cd97>] entry_SYSCALL_64_fastpath+0x12/0x6f
[23919.733330] ---[ end trace 166ef301a335832a ]---

This is due to a race between device replace and chunk allocation, which
the following diagram illustrates:

         CPU 1                                    CPU 2

 btrfs_dev_replace_finishing()

   at this point
    dev_replace->tgtdev->devid ==
    BTRFS_DEV_REPLACE_DEVID (0ULL)

   ...

   btrfs_start_transaction()
   btrfs_commit_transaction()

                                               btrfs_fallocate()
                                                 btrfs_alloc_data_chunk_ondemand()
                                                   btrfs_join_transaction()
                                                     --> starts a new transaction
                                                   do_chunk_alloc()
                                                     lock fs_info->chunk_mutex
                                                       btrfs_alloc_chunk()
                                                         --> creates extent map for
                                                             the new chunk with
                                                             em->bdev->map->stripes[i]->dev->devid
                                                             == X (X > 0)
                                                         --> extent map is added to
                                                             fs_info->mapping_tree
                                                         --> initial phase of bg A
                                                             allocation completes
                                                     unlock fs_info->chunk_mutex

   lock fs_info->chunk_mutex

   btrfs_dev_replace_update_device_in_mapping_tree()
     --> iterates fs_info->mapping_tree and
         replaces the device in every extent
         map's map->stripes[] with
         dev_replace->tgtdev, which still has
         an id of 0ULL (BTRFS_DEV_REPLACE_DEVID)

                                                   btrfs_end_transaction()
                                                     btrfs_create_pending_block_groups()
                                                       --> starts final phase of
                                                           bg A creation (update device,
                                                           extent, and chunk trees, etc)
                                                       btrfs_finish_chunk_alloc()

                                                         btrfs_update_device()
                                                           --> attempts to update a device
                                                               item with ID == 0ULL
                                                               (BTRFS_DEV_REPLACE_DEVID)
                                                               which is the current ID of
                                                               bg A's
                                                               em->bdev->map->stripes[i]->dev->devid
                                                           --> doesn't find such item
                                                               returns -ENOENT
                                                           --> the device id should have been X
                                                               and not 0ULL

                                                       got -ENOENT from
                                                       btrfs_finish_chunk_alloc()
                                                       and aborts current transaction

   finishes setting up the target device,
   namely it sets tgtdev->devid to the value
   of srcdev->devid, which is X (and X > 0)

   frees the srcdev

   unlock fs_info->chunk_mutex

So fix this by taking the device list mutex when processing the chunk's
extent map stripes to update the device items. This avoids getting the
wrong device id and use-after-free problems if the task finishing a
chunk allocation grabs the replaced device, which is freed while the
dev replace task is holding the device list mutex.

This happened while running fstest btrfs/071.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
2015-12-17 10:59:46 +00:00
Chris Mason 1d3a5a82fe Merge branch 'for-chris-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/fdmanana/linux into for-linus-4.4 2015-12-15 09:09:59 -08:00
Chris Mason bb1591b4ea Btrfs: check prepare_uptodate_page() error code earlier
prepare_pages() may end up calling prepare_uptodate_page() twice if our
write only spans a single page.  But if the first call returns an error,
our page will be unlocked and its not safe to call it again.

This bug goes all the way back to 2011, and it's not something commonly
hit.

While we're here, add a more explicit check for the page being truncated
away.  The bare lock_page() alone is protected only by good thoughts and
i_mutex, which we're sure to regret eventually.

Reported-by: Dave Jones <dsj@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-12-15 09:09:38 -08:00
Chris Mason 1b9b922a3a Btrfs: check for empty bitmap list in setup_cluster_bitmaps
Dave Jones found a warning from kasan in setup_cluster_bitmaps()

==================================================================
BUG: KASAN: stack-out-of-bounds in setup_cluster_bitmap+0xc4/0x5a0 at
addr ffff88039bef6828
Read of size 8 by task nfsd/1009
page:ffffea000e6fbd80 count:0 mapcount:0 mapping:          (null)
index:0x0
flags: 0x8000000000000000()
page dumped because: kasan: bad access detected
CPU: 1 PID: 1009 Comm: nfsd Tainted: G        W
4.4.0-rc3-backup-debug+ #1
 ffff880065647b50 000000006bb712c2 ffff88039bef6640 ffffffffa680a43e
 0000004559c00000 ffff88039bef66c8 ffffffffa62638d1 ffffffffa61121c0
 ffff8803a5769de8 0000000000000296 ffff8803a5769df0 0000000000046280
Call Trace:
 [<ffffffffa680a43e>] dump_stack+0x4b/0x6d
 [<ffffffffa62638d1>] kasan_report_error+0x501/0x520
 [<ffffffffa61121c0>] ? debug_show_all_locks+0x1e0/0x1e0
 [<ffffffffa6263948>] kasan_report+0x58/0x60
 [<ffffffffa6814b00>] ? rb_last+0x10/0x40
 [<ffffffffa66f8af4>] ? setup_cluster_bitmap+0xc4/0x5a0
 [<ffffffffa6262ead>] __asan_load8+0x5d/0x70
 [<ffffffffa66f8af4>] setup_cluster_bitmap+0xc4/0x5a0
 [<ffffffffa66f675a>] ? setup_cluster_no_bitmap+0x6a/0x400
 [<ffffffffa66fcd16>] btrfs_find_space_cluster+0x4b6/0x640
 [<ffffffffa66fc860>] ? btrfs_alloc_from_cluster+0x4e0/0x4e0
 [<ffffffffa66fc36e>] ? btrfs_return_cluster_to_free_space+0x9e/0xb0
 [<ffffffffa702dc37>] ? _raw_spin_unlock+0x27/0x40
 [<ffffffffa666a1a1>] find_free_extent+0xba1/0x1520

Andrey noticed this was because we were doing list_first_entry on a list
that might be empty.  Rework the tests a bit so we don't do that.

Signed-off-by: Chris Mason <clm@fb.com>
Reprorted-by: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Reported-by:  Dave Jones <dsj@fb.com>
2015-12-15 09:09:33 -08:00
Holger Hoffstätte 94356889c4 btrfs: fix misleading warning when space cache failed to load
When an inconsistent space cache is detected during loading we log a
warning that users frequently mistake as instruction to invalidate the
cache manually, even though this is not required. Fix the message to
indicate that the cache will be rebuilt automatically.

Signed-off-by: Holger Hoffstätte <holger.hoffstaette@googlemail.com>
Acked-by: Filipe Manana <fdmanana@suse.com>
2015-12-10 11:38:08 +00:00
Filipe Manana 8a7d656f3d Btrfs: fix transaction handle leak in balance
If we fail to allocate a new data chunk, we were jumping to the error path
without release the transaction handle we got before. Fix this by always
releasing it before doing the jump.

Fixes: 2c9fe83552 ("btrfs: Fix lost-data-profile caused by balance bg")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
2015-12-10 11:23:24 +00:00
Filipe Manana 348a0013d5 Btrfs: fix unprotected list move from unused_bgs to deleted_bgs list
As of my previous change titled "Btrfs: fix scrub preventing unused block
groups from being deleted", the following warning at
extent-tree.c:btrfs_delete_unused_bgs() can be hit when we mount the a
filesysten with "-o discard":

 10263  void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
 10264  {
 (...)
 10405                  if (trimming) {
 10406                          WARN_ON(!list_empty(&block_group->bg_list));
 10407                          spin_lock(&trans->transaction->deleted_bgs_lock);
 10408                          list_move(&block_group->bg_list,
 10409                                    &trans->transaction->deleted_bgs);
 10410                          spin_unlock(&trans->transaction->deleted_bgs_lock);
 10411                          btrfs_get_block_group(block_group);
 10412                  }
 (...)

This happens because scrub can now add back the block group to the list of
unused block groups (fs_info->unused_bgs). This is dangerous because we
are moving the block group from the unused block groups list to the list
of deleted block groups without holding the lock that protects the source
list (fs_info->unused_bgs_lock).

The following diagram illustrates how this happens:

            CPU 1                                     CPU 2

 cleaner_kthread()
   btrfs_delete_unused_bgs()

     sees bg X in list
      fs_info->unused_bgs

     deletes bg X from list
      fs_info->unused_bgs

                                            scrub_enumerate_chunks()

                                              searches device tree using
                                              its commit root

                                              finds device extent for
                                              block group X

                                              gets block group X from the tree
                                              fs_info->block_group_cache_tree
                                              (via btrfs_lookup_block_group())

                                              sets bg X to RO (again)

                                              scrub_chunk(bg X)

                                              sets bg X back to RW mode

                                              adds bg X to the list
                                              fs_info->unused_bgs again,
                                              since it's still unused and
                                              currently not in that list

     sets bg X to RO mode

     btrfs_remove_chunk(bg X)

     --> discard is enabled and bg X
         is in the fs_info->unused_bgs
         list again so the warning is
         triggered
     --> we move it from that list into
         the transaction's delete_bgs
         list, but we can have another
         task currently manipulating
         the first list (fs_info->unused_bgs)

Fix this by using the same lock (fs_info->unused_bgs_lock) to protect both
the list of unused block groups and the list of deleted block groups. This
makes it safe and there's not much worry for more lock contention, as this
lock is seldom used and only the cleaner kthread adds elements to the list
of deleted block groups. The warning goes away too, as this was previously
an impossible case (and would have been better a BUG_ON/ASSERT) but it's
not impossible anymore.
Reproduced with fstest btrfs/073 (using MOUNT_OPTIONS="-o discard").

Signed-off-by: Filipe Manana <fdmanana@suse.com>
2015-12-10 11:22:38 +00:00
Al Viro 6b2553918d replace ->follow_link() with new method that could stay in RCU mode
new method: ->get_link(); replacement of ->follow_link().  The differences
are:
	* inode and dentry are passed separately
	* might be called both in RCU and non-RCU mode;
the former is indicated by passing it a NULL dentry.
	* when called that way it isn't allowed to block
and should return ERR_PTR(-ECHILD) if it needs to be called
in non-RCU mode.

It's a flagday change - the old method is gone, all in-tree instances
converted.  Conversion isn't hard; said that, so far very few instances
do not immediately bail out when called in RCU mode.  That'll change
in the next commits.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-12-08 22:41:54 -05:00
Al Viro 21fc61c73c don't put symlink bodies in pagecache into highmem
kmap() in page_follow_link_light() needed to go - allowing to hold
an arbitrary number of kmaps for long is a great way to deadlocking
the system.

new helper (inode_nohighmem(inode)) needs to be used for pagecache
symlinks inodes; done for all in-tree cases.  page_follow_link_light()
instrumented to yell about anything missed.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-12-08 22:41:36 -05:00
Christoph Hellwig 04b38d6012 vfs: pull btrfs clone API to vfs layer
The btrfs clone ioctls are now adopted by other file systems, with NFS
and CIFS already having support for them, and XFS being under active
development.  To avoid growth of various slightly incompatible
implementations, add one to the VFS.  Note that clones are different from
file copies in several ways:

 - they are atomic vs other writers
 - they support whole file clones
 - they support 64-bit legth clones
 - they do not allow partial success (aka short writes)
 - clones are expected to be a fast metadata operation

Because of that it would be rather cumbersome to try to piggyback them on
top of the recent clone_file_range infrastructure.  The converse isn't
true and the clone_file_range system call could try clone file range as
a first attempt to copy, something that further patches will enable.

Based on earlier work from Peng Tao.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-12-07 23:11:33 -05:00
David Sterba 35de6db28f btrfs: make set_range_writeback return void
Does not return any errors, nor anything from the callgraph. There's a
BUG_ON but it's a sanity check and not an error condition we could
recover from.

Signed-off-by: David Sterba <dsterba@suse.com>
2015-12-07 15:06:45 +01:00
David Sterba f631157276 btrfs: make extent_range_redirty_for_io return void
Does not return any errors, nor anything from the callgraph. There's a
BUG_ON but it's a sanity check and not an error condition we could
recover from.

Signed-off-by: David Sterba <dsterba@suse.com>
2015-12-07 15:06:45 +01:00
David Sterba bd1fa4f0b0 btrfs: make extent_range_clear_dirty_for_io return void
Does not return any errors, nor anything from the callgraph. There's a
BUG_ON but it's a sanity check and not an error condition we could
recover from.

Signed-off-by: David Sterba <dsterba@suse.com>
2015-12-07 15:06:45 +01:00
David Sterba b5227c075b btrfs: make end_extent_writepage return void
Does not return any errors, nor anything from the callgraph.  The branch
in end_bio_extent_writepage has been skipped since
5fd0204355 ("Btrfs: finish ordered extents in their own thread").

Signed-off-by: David Sterba <dsterba@suse.com>
2015-12-07 15:06:45 +01:00
David Sterba a9d93e1778 btrfs: make extent_clear_unlock_delalloc return void
Does not return any errors, nor anything from the callgraph.

Signed-off-by: David Sterba <dsterba@suse.com>
2015-12-07 15:06:45 +01:00
David Sterba 69ba39272c btrfs: make clear_extent_buffer_uptodate return void
Does not return any errors, nor anything from the callgraph.

Signed-off-by: David Sterba <dsterba@suse.com>
2015-12-07 15:06:45 +01:00
David Sterba 09c25a8cda btrfs: make set_extent_buffer_uptodate return void
Does not return any errors, nor anything from the callgraph.

Signed-off-by: David Sterba <dsterba@suse.com>
2015-12-07 15:06:45 +01:00
David Sterba 4db8c528cd btrfs: remove a trivial helper btrfs_set_buffer_uptodate
Signed-off-by: David Sterba <dsterba@suse.com>
2015-12-07 15:06:45 +01:00
Andreas Gruenbacher 9172abbcd3 btrfs: Use xattr handler infrastructure
Use the VFS xattr handler infrastructure and get rid of similar code in
the filesystem.

Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-12-06 21:34:14 -05:00
Andreas Gruenbacher 97d7929922 posix acls: Remove duplicate xattr name definitions
Remove POSIX_ACL_XATTR_{ACCESS,DEFAULT} and GFS2_POSIX_ACL_{ACCESS,DEFAULT}
and replace them with the definitions in <include/uapi/linux/xattr.h>.

Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Reviewed-by: James Morris <james.l.morris@oracle.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-12-06 21:25:17 -05:00
David Sterba 39a27ec100 btrfs: use GFP_KERNEL for xattr and acl allocations
We don't have to use GFP_NOFS in context of ACL or XATTR actions, not
possible to loop through the allocator and it's safe to fail with
ENOMEM.

Signed-off-by: David Sterba <dsterba@suse.com>
2015-12-03 15:03:44 +01:00
David Sterba 61dd5ae65b btrfs: use GFP_KERNEL for allocations of workqueues
We don't have to use GFP_NOFS to allocate workqueue structures, this is
done from mount context or potentially scrub start context, safe to fail
in both cases.

Signed-off-by: David Sterba <dsterba@suse.com>
2015-12-03 15:03:43 +01:00
David Sterba 8d2db7855e btrfs: use GFP_KERNEL for allocations in ioctl handlers
We don't have to use GFP_NOFS in the ioctl handlers because there's no
risk of looping through the allocators back to the filesystem. This
patch covers only allocations that are directly in the ioctl handlers.

Signed-off-by: David Sterba <dsterba@suse.com>
2015-12-03 15:03:43 +01:00
David Sterba 3042460136 btrfs: remove wait from struct btrfs_delalloc_work
The value is 0 and never changes, we can propagate the value, remove
wait and the implied dead code.

Signed-off-by: David Sterba <dsterba@suse.com>
2015-12-03 15:02:21 +01:00
David Sterba 651d494a67 btrfs: sink parameter wait to btrfs_alloc_delalloc_work
There's only one caller and single value, we can propagate it down to
the callee and remove the unused parameter.

Signed-off-by: David Sterba <dsterba@suse.com>
2015-12-03 15:02:21 +01:00
David Sterba 87ad58c5f0 btrfs: make btrfs_close_one_device static
Signed-off-by: David Sterba <dsterba@suse.com>
2015-12-03 15:02:21 +01:00
David Sterba cd716d8fea btrfs: make lock_extent static inline
One call less reduces stack usage, code slightly reduced as well.

Signed-off-by: David Sterba <dsterba@suse.com>
2015-12-03 14:44:59 +01:00
David Sterba ff13db41f1 btrfs: drop unused parameter from lock_extent_bits
We've always passed 0. Stack usage will slightly decrease.

Signed-off-by: David Sterba <dsterba@suse.com>
2015-12-03 14:30:40 +01:00
David Sterba e83b1d91f8 btrfs: make clear_extent_bit helpers static inline
The funcions just wrap the clear_extent_bit API and generate function
calls. This increases stack consumption and may negatively affect
performance due to icache misses. We can simply make the helpers static
inline and keep the type checking and API untouched. The code slightly
decreases:

   text	   data	    bss	    dec	    hex	filename
 938667	  43670	  23144	1005481	  f57a9	fs/btrfs/btrfs.ko.before
 939651	  43670	  23144	1006465	  f5b81	fs/btrfs/btrfs.ko.after

Signed-off-by: David Sterba <dsterba@suse.com>
2015-12-03 14:17:30 +01:00
David Sterba c63179556a btrfs: make set_extent_bit helpers static inline
The funcions just wrap the set_extent_bit API and generate function
calls. This increases stack consumption and may negatively affect
performance due to icache misses. We can simply make the helpers static
inline and keep the type checking and API untouched. The code slightly
increases:

   text	   data	    bss	    dec	    hex	filename
 938427	  43670	  23144	1005241	  f56b9	fs/btrfs/btrfs.ko.before
 938667	  43670	  23144	1005481	  f57a9	fs/btrfs/btrfs.ko

Signed-off-by: David Sterba <dsterba@suse.com>
2015-12-03 14:08:11 +01:00
Zach Brown 3db11b2eec btrfs: add .copy_file_range file operation
This rearranges the existing COPY_RANGE ioctl implementation so that the
.copy_file_range file operation can call the core loop that copies file
data extent items.

The extent copying loop is lifted up into its own function.  It retains
the core btrfs error checks that should be shared.

Signed-off-by: Zach Brown <zab@redhat.com>
[Anna Schumaker: Make flags an unsigned int,
                 Check for COPY_FR_REFLINK]
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-12-01 14:00:54 -05:00
Linus Torvalds 80e0c505b2 Merge branch 'for-linus-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs fixes from Chris Mason:
 "This has Mark Fasheh's patches to fix quota accounting during subvol
  deletion, which we've been working on for a while now.  The patch is
  pretty small but it's a key fix.

  Otherwise it's a random assortment"

* 'for-linus-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
  btrfs: fix balance range usage filters in 4.4-rc
  btrfs: qgroup: account shared subtree during snapshot delete
  Btrfs: use btrfs_get_fs_root in resolve_indirect_ref
  btrfs: qgroup: fix quota disable during rescan
  Btrfs: fix race between cleaner kthread and space cache writeout
  Btrfs: fix scrub preventing unused block groups from being deleted
  Btrfs: fix race between scrub and block group deletion
  btrfs: fix rcu warning during device replace
  btrfs: Continue replace when set_block_ro failed
  btrfs: fix clashing number of the enhanced balance usage filter
  Btrfs: fix the number of transaction units needed to remove a block group
  Btrfs: use global reserve when deleting unused block group after ENOSPC
  Btrfs: tests: checking for NULL instead of IS_ERR()
  btrfs: fix signed overflows in btrfs_sync_file
2015-11-27 15:45:45 -08:00
Holger Hoffstätte dba72cb30b btrfs: fix balance range usage filters in 4.4-rc
There's a regression in 4.4-rc since commit bc3094673f
(btrfs: extend balance filter usage to take minimum and maximum) in that
existing (non-ranged) balance with -dusage=x no longer works; all chunks
are skipped.

After staring at the code for a while and wondering why a non-ranged
balance would even need min and max thresholds (..which then were not
set correctly, leading to the bug) I realized that the only problem
was the fact that the filter functions were named wrong, thanks to
patching copypasta. Simply renaming both functions lets the existing
btrfs-progs call balance with -dusage=x and now the non-ranged filter
function is invoked, properly using only a single chunk limit.

Signed-off-by: Holger Hoffstätte <holger.hoffstaette@googlemail.com>
Fixes: bc3094673f ("btrfs: extend balance filter usage to take minimum and maximum")
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-11-25 05:27:33 -08:00