Move the di_mode value from the xfs_icdinode to the VFS inode, reducing
the xfs_icdinode byte another 2 bytes and collapsing another 2 byte hole
in the structure.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Factor xfs_seek_hole_data into an unlocked helper which takes
an xfs inode rather than a file for internal use.
Also allow specification of "end" - the vfs lseek interface is
defined such that any offset past eof/i_size shall return -ENXIO,
but we will use this for quota code which does not maintain i_size,
and we want to be able to SEEK_DATA past i_size as well. So the
lseek path can send in i_size, and the quota code can determine
its own ending offset.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Pull final vfs updates from Al Viro:
- The ->i_mutex wrappers (with small prereq in lustre)
- a fix for too early freeing of symlink bodies on shmem (they need to
be RCU-delayed) (-stable fodder)
- followup to dedupe stuff merged this cycle
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
vfs: abort dedupe loop if fatal signals are pending
make sure that freeing shmem fast symlinks is RCU-delayed
wrappers for ->i_mutex access
lustre: remove unused declaration
To properly support the new DAX fsync/msync infrastructure filesystems
need to call dax_pfn_mkwrite() so that DAX can track when user pages are
dirtied.
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "J. Bruce Fields" <bfields@fieldses.org>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jan Kara <jack@suse.com>
Cc: Jeff Layton <jlayton@poochiereds.net>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
parallel to mutex_{lock,unlock,trylock,is_locked,lock_nested},
inode_foo(inode) being mutex_foo(&inode->i_mutex).
Please, use those for access to ->i_mutex; over the coming cycle
->i_mutex will become rwsem, with ->lookup() done with it held
only shared.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Doing a splice read (generic/249) generates a lockdep splat because
we recursively lock the inode iolock in this path:
SyS_sendfile64
do_sendfile
do_splice_direct
splice_direct_to_actor
do_splice_to
xfs_file_splice_read <<<<<< lock here
default_file_splice_read
vfs_readv
do_readv_writev
do_iter_readv_writev
xfs_file_read_iter <<<<<< then here
The issue here is that for DAX inodes we need to avoid the page
cache path and hence simply push it into the normal read path.
Unfortunately, we can't tell down at xfs_file_read_iter() whether we
are being called from the splice path and hence we cannot avoid the
locking at this layer. Hence we simply have to drop the inode
locking at the higher splice layer for DAX.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Tested-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
This update contains:
o per-mount operational statistics in sysfs
o fixes for concurrent aio append write submission
o various logging fixes
o detection of zeroed logs and invalid log sequence numbers on v5 filesystems
o memory allocation failure message improvements
o a bunch of xattr/ACL fixes
o fdatasync optimisation
o miscellaneous other fixes and cleanups
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.12 (GNU/Linux)
iQIcBAABAgAGBQJWQ7GzAAoJEK3oKUf0dfodJakP/3s3N5ngqRWa+PQwBQPdTO0r
MBQppSKXWdT7YLhiFt1ZRlvXiMQOIZPNx0yBS9mzQghL9sTGvcPdxjbQnNh6LUnE
fGC2Yzi/J8lM2M80ezk3JoFqdqAQ/U78ARA/VpZct4imrps/h+s2Klkx87xPJsiK
/wY56FXFtoUS1ADYhL8qCeiAGOFpyIttiDNOVW3O2ZXn4iJUsa2nLCoiFwF/yFvU
S85iUJWAsvVSW5WgfUufmodC4u+WOT+9isNRxEmBjpxYYAFrFb5+8DYY3Coh6z0V
HqYPhpzBOG9gXbAue5v+ccsp2w60atXIFUQkR2HFBblvxsDMkvsgycJWJgDNmJiw
RYDMBJ26epxUdTScUxijKiGfnnbZW5b+uzp6FvVsE4KPdP62ol7YNqxj8/FFIjQN
JBl2ooiczOgvhCdvdWmWNEGWHccBcJ8UJ2RzJ0owVIIJZZYwjkZNzeSieWzYc7tr
b9wBC4wnaYAK/V7aEGLJxMXVjkanrqAnaXf5ymICSFv8me/qAfZ2sLcY2P6SHuhO
Fmkj6R5Thh1SYxk3thgGFZg7LGuxJW9cmypvFGpKhIvEaNGIM6ScdIwO7kCHYWv7
3EkP42mmJLIYxKz/q2nHqt7R246YFraIRowLWptJUl32uyzO7SrdKbc8+o5WD4Wl
2byjE9TjXOa1jGuPa3kN
=zu+5
-----END PGP SIGNATURE-----
Merge tag 'xfs-for-linus-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs
Pull xfs updates from Dave Chinner:
"There is nothing really major here - the only significant addition is
the per-mount operation statistics infrastructure. Otherwises there's
various ACL, xattr, DAX, AIO and logging fixes, and a smattering of
small cleanups and fixes elsewhere.
Summary:
- per-mount operational statistics in sysfs
- fixes for concurrent aio append write submission
- various logging fixes
- detection of zeroed logs and invalid log sequence numbers on v5 filesystems
- memory allocation failure message improvements
- a bunch of xattr/ACL fixes
- fdatasync optimisation
- miscellaneous other fixes and cleanups"
* tag 'xfs-for-linus-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs: (39 commits)
xfs: give all workqueues rescuer threads
xfs: fix log recovery op header validation assert
xfs: Fix error path in xfs_get_acl
xfs: optimise away log forces on timestamp updates for fdatasync
xfs: don't leak uuid table on rmmod
xfs: invalidate cached acl if set via ioctl
xfs: Plug memory leak in xfs_attrmulti_attr_set
xfs: Validate the length of on-disk ACLs
xfs: invalidate cached acl if set directly via xattr
xfs: xfs_filemap_pmd_fault treats read faults as write faults
xfs: add ->pfn_mkwrite support for DAX
xfs: DAX does not use IO completion callbacks
xfs: Don't use unwritten extents for DAX
xfs: introduce BMAPI_ZERO for allocating zeroed extents
xfs: fix inode size update overflow in xfs_map_direct()
xfs: clear PF_NOFREEZE for xfsaild kthread
xfs: fix an error code in xfs_fs_fill_super()
xfs: stats are no longer dependent on CONFIG_PROC_FS
xfs: simplify /proc teardown & error handling
xfs: per-filesystem stats counter implementation
...
The function currently called "__block_page_mkwrite()" used to be called
"block_page_mkwrite()" until a wrapper for this function was added by:
commit 24da4fab5a ("vfs: Create __block_page_mkwrite() helper passing
error values back")
This wrapper, the current "block_page_mkwrite()", is currently unused.
__block_page_mkwrite() is used directly by ext4, nilfs2 and xfs.
Remove the unused wrapper, rename __block_page_mkwrite() back to
block_page_mkwrite() and update the comment above block_page_mkwrite().
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.com>
Cc: Jan Kara <jack@suse.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
xfs: timestamp updates cause excessive fdatasync log traffic
Sage Weil reported that a ceph test workload was writing to the
log on every fdatasync during an overwrite workload. Event tracing
showed that the only metadata modification being made was the
timestamp updates during the write(2) syscall, but fdatasync(2)
is supposed to ignore them. The key observation was that the
transactions in the log all looked like this:
INODE: #regs: 4 ino: 0x8b flags: 0x45 dsize: 32
And contained a flags field of 0x45 or 0x85, and had data and
attribute forks following the inode core. This means that the
timestamp updates were triggering dirty relogging of previously
logged parts of the inode that hadn't yet been flushed back to
disk.
There are two parts to this problem. The first is that XFS relogs
dirty regions in subsequent transactions, so it carries around the
fields that have been dirtied since the last time the inode was
written back to disk, not since the last time the inode was forced
into the log.
The second part is that on v5 filesystems, the inode change count
update during inode dirtying also sets the XFS_ILOG_CORE flag, so
on v5 filesystems this makes a timestamp update dirty the entire
inode.
As a result when fdatasync is run, it looks at the dirty fields in
the inode, and sees more than just the timestamp flag, even though
the only metadata change since the last fdatasync was just the
timestamps. Hence we force the log on every subsequent fdatasync
even though it is not needed.
To fix this, add a new field to the inode log item that tracks
changes since the last time fsync/fdatasync forced the log to flush
the changes to the journal. This flag is updated when we dirty the
inode, but we do it before updating the change count so it does not
carry the "core dirty" flag from timestamp updates. The fields are
zeroed when the inode is marked clean (due to writeback/freeing) or
when an fsync/datasync forces the log. Hence if we only dirty the
timestamps on the inode between fsync/fdatasync calls, the fdatasync
will not trigger another log force.
Over 100 runs of the test program:
Ext4 baseline:
runtime: 1.63s +/- 0.24s
avg lat: 1.59ms +/- 0.24ms
iops: ~2000
XFS, vanilla kernel:
runtime: 2.45s +/- 0.18s
avg lat: 2.39ms +/- 0.18ms
log forces: ~400/s
iops: ~1000
XFS, patched kernel:
runtime: 1.49s +/- 0.26s
avg lat: 1.46ms +/- 0.25ms
log forces: ~30/s
iops: ~1500
Reported-by: Sage Weil <sage@redhat.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The code initially committed didn't have the same checks for write
faults as the dax_pmd_fault code and hence treats all faults as
write faults. We can get read faults through this path because they
is no pmd_mkwrite path for write faults similar to the normal page
fault path. Hence we need to ensure that we only do c/mtime updates
on write faults, and freeze protection is unnecessary for read
faults.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
->pfn_mkwrite support is needed so that when a page with allocated
backing store takes a write fault we can check that the fault has
not raced with a truncate and is pointing to a region beyond the
current end of file.
This also allows us to update the timestamp on the inode, too, which
fixes a generic/080 failure.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
For DAX, we are now doing block zeroing during allocation. This
means we no longer need a special DAX fault IO completion callback
to do unwritten extent conversion. Because mmap never extends the
file size (it SEGVs the process) we don't need a callback to update
the file size, either. Hence we can remove the completion callbacks
from the __dax_fault and __dax_mkwrite calls.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Both direct IO and DAX pass an offset and count into get_blocks that
will overflow a s64 variable when an IO goes into the last supported
block in a file (i.e. at offset 2^63 - 1FSB bytes). This can be seen
from the tracing:
xfs_get_blocks_alloc: [...] offset 0x7ffffffffffff000 count 4096
xfs_gbmap_direct: [...] offset 0x7ffffffffffff000 count 4096
xfs_gbmap_direct_none:[...] offset 0x7ffffffffffff000 count 4096
0x7ffffffffffff000 + 4096 = 0x8000000000000000, and hence that
overflows the s64 offset and we fail to detect the need for a
filesize update and an ioend is not allocated.
This is *mostly* avoided for direct IO because such extending IOs
occur with full block allocation, and so the "IS_UNWRITTEN()" check
still evaluates as true and we get an ioend that way. However, doing
single sector extending IOs to this last block will expose the fact
that file size updates will not occur after the first allocating
direct IO as the overflow will then be exposed.
There is one further complexity: the DAX page fault path also
exposes the same issue in block allocation. However, page faults
cannot extend the file size, so in this case we want to allocate the
block but do not want to allocate an ioend to enable file size
update at IO completion. Hence we now need to distinguish between
the direct IO patch allocation and dax fault path allocation to
avoid leaking ioend structures.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
This patch modifies the stats counting macros and the callers
to those macros to properly increment, decrement, and add-to
the xfs stats counts. The counts for global and per-fs stats
are correctly advanced, and cleared by writing a "1" to the
corresponding clear file.
global counts: /sys/fs/xfs/stats/stats
per-fs counts: /sys/fs/xfs/sda*/stats/stats
global clear: /sys/fs/xfs/stats/stats_clear
per-fs clear: /sys/fs/xfs/sda*/stats/stats_clear
[dchinner: cleaned up macro variables, removed CONFIG_FS_PROC around
stats structures and macros. ]
Signed-off-by: Bill O'Donnell <billodo@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Add a tracepoint in xfs_zero_eof() to facilitate tracking and debugging
EOF zeroing events. This has proven useful in the context of other
direct I/O tracepoints to ensure EOF zeroing occurs within appropriate
file ranges.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
XFS supports and typically allows concurrent asynchronous direct I/O
submission to a single file. One exception to the rule is that file
extending dio writes that start beyond the current EOF (e.g.,
potentially create a hole at EOF) require exclusive I/O access to the
file. This is because such writes must zero any pre-existing blocks
beyond EOF that are exposed by virtue of now residing within EOF as a
result of the write about to be submitted.
Before EOF zeroing can occur, the current file i_size must be stabilized
to avoid data corruption. In this scenario, XFS upgrades the iolock to
exclude any further I/O submission, waits on in-flight I/O to complete
to ensure i_size is up to date (i_size is updated on dio write
completion) and restarts the various checks against the state of the
file. The problem is that this protection sequence is triggered only
when the iolock is currently held shared. While this is true for async
dio in most cases, the caller may upgrade the lock in advance based on
arbitrary circumstances with respect to EOF zeroing. For example, the
iolock is always acquired exclusively if the start offset is not block
aligned. This means that even though the iolock is already held
exclusive for such I/Os, pending I/O is not drained and thus EOF zeroing
can occur based on an unstable i_size.
This problem has been reproduced as guest data corruption in virtual
machines with file-backed qcow2 virtual disks hosted on an XFS
filesystem. The virtual disks must be configured with aio=native mode
and the must not be truncated out to the maximum file size (as some virt
managers will do).
Update xfs_file_aio_write_checks() to unconditionally drain in-flight
dio before EOF zeroing can occur. Rather than trigger the wait based on
iolock state, use a new flag and upgrade the iolock when necessary. Note
that this results in a full restart of the inode checks even when the
iolock was already held exclusive when technically it is only required
to recheck i_size. This should be a rare enough occurrence that it is
preferable to keep the code simple rather than create an alternate
restart jump target.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Use DAX to provide support for huge pages.
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Filesystems are responsible to manage file coherency between the page
cache and direct I/O. The generic dio code flushes dirty pages over the
range of a dio to ensure that the dio read or a future buffered read
returns the correct data. XFS has generally followed this pattern,
though traditionally has flushed and invalidated the range from the
start of the I/O all the way to the end of the file. This changed after
the following commit:
7d4ea3ce xfs: use ranged writeback and invalidation for direct IO
... as the full file flush was no longer necessary to deal with the
strange post-eof delalloc issues that were since fixed. Unfortunately,
we have since received complaints about performance degradation due to
the increased exclusive iolock cycles (which locks out parallel dio
submission) that occur when a file has cached pages. This does not occur
on filesystems that use the generic code as it also does not incorporate
locking.
The exclusive iolock is acquired any time the inode mapping has cached
pages, regardless of whether they reside in the range of the I/O or not.
If not, the flush/inval calls do no work and the lock was cycled for no
reason.
Under consideration of the cost of the exclusive iolock, update the dio
read and write handlers to flush and invalidate the entire mapping when
cached pages exist. In most cases, this increases the cost of the
initial flush sequence but eliminates the need for further lock cycles
and flushes so long as the workload does not actively mix direct and
buffered I/O. This also more closely matches historical behavior and
performance characteristics that users have come to expect.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When modifying the patch series to handle the XFS MMAP_LOCK nesting
of page faults, I botched the conversion of the read page fault
path, and so it is only every calling through the page cache. Re-add
the necessary __dax_fault() call for such files.
Because the get_blocks callback on read faults may not set up the
mapping buffer correctly to allow unwritten extent completion to be
run, we need to allow callers of __dax_fault() to pass a null
complete_unwritten() callback. The DAX code always zeros the
unwritten page when it is read faulted so there are no stale data
exposure issues with not doing the conversion. The only downside
will be the potential for increased CPU overhead on repeated read
faults of the same page. If this proves to be a problem, then the
filesystem needs to fix it's get_block callback and provide a
convert_unwritten() callback to the read fault path.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Matthew Wilcox <willy@linux.intel.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Pull more vfs updates from Al Viro:
"Assorted VFS fixes and related cleanups (IMO the most interesting in
that part are f_path-related things and Eric's descriptor-related
stuff). UFS regression fixes (it got broken last cycle). 9P fixes.
fs-cache series, DAX patches, Jan's file_remove_suid() work"
[ I'd say this is much more than "fixes and related cleanups". The
file_table locking rule change by Eric Dumazet is a rather big and
fundamental update even if the patch isn't huge. - Linus ]
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (49 commits)
9p: cope with bogus responses from server in p9_client_{read,write}
p9_client_write(): avoid double p9_free_req()
9p: forgetting to cancel request on interrupted zero-copy RPC
dax: bdev_direct_access() may sleep
block: Add support for DAX reads/writes to block devices
dax: Use copy_from_iter_nocache
dax: Add block size note to documentation
fs/file.c: __fget() and dup2() atomicity rules
fs/file.c: don't acquire files->file_lock in fd_install()
fs:super:get_anon_bdev: fix race condition could cause dev exceed its upper limitation
vfs: avoid creation of inode number 0 in get_next_ino
namei: make set_root_rcu() return void
make simple_positive() public
ufs: use dir_pages instead of ufs_dir_pages()
pagemap.h: move dir_pages() over there
remove the pointless include of lglock.h
fs: cleanup slight list_entry abuse
xfs: Correctly lock inode when removing suid and file capabilities
fs: Call security_ops->inode_killpriv on truncate
fs: Provide function telling whether file_remove_privs() will do anything
...
This update contains:
o A new sparse on-disk inode record format to allow small extents to
be used for inode allocation when free space is fragmented.
o DAX support. This includes minor changes to the DAX core code to
fix problems with lock ordering and bufferhead mapping abuse.
o transaction commit interface cleanup
o removal of various unnecessary XFS specific type definitions
o cleanup and optimisation of freelist preparation before allocation
o various minor cleanups
o bug fixes for
- transaction reservation leaks
- incorrect inode logging in unwritten extent conversion
- mmap lock vs freeze ordering
- remote symlink mishandling
- attribute fork removal issues.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.12 (GNU/Linux)
iQIcBAABAgAGBQJVkhI0AAoJEK3oKUf0dfod45MQAJCOEkNduBdlfPvTCMPjj/7z
vzcfDdzgKwhpPTMXSDRvw4zDPt3C2FLMBJqxtPpC4sKGKG/8G0kFvw8bDtBag1m9
ru5nI5LaQ6LC5RcU40zxBx1s/L8qYvyfUlxeoOT5lSwN9c6ENGOCQ3bUk4pSKaee
pWDplag9LbfQomW2GHtxd8agMUZEYx0R1vgfv88V8xgPka8CvQo81XUgkb4PcDZV
ugR+wDUsvwMS01aLYBmRFkMXuExNuCJVwtvdTJS+ZWGHzyTpulFoANUW6QT24gAM
eP4yRXN4bv9vXrXpg8JkF25DHsfw4HBwNEL17ZvoB8t3oJp1/NYaH8ce1jS0+I8i
NCtaO+qUqDSTGQZKgmeDPwCciQp54ra9LEdmIJFxpZxiBof9g/tIYEFgRklyFLwR
GZU6Io6VpBa1oTGlC4D1cmG6bdcnhMB9MGVVCbqnB5mRRDKCmVgCyJwusd1pi7Re
G4O6KkFt21O7+fP13VsjP57KoaJzsIgZ/+H3Ff/fJOJ33AKYTRCmwi8+IMi2n5JI
zz+V0AIBQZAx9dlVyENnxufh9eJYcnwta0lUSLCCo91fZKxbo3ktK1kVHNZP5EGs
IMFM1Ka6hibY20rWlR3GH0dfyP5/yNcvNgTMYPKjj9SVjTar1aSfF2rGpkqYXYyH
D4FICbtDgtOc2ClfpI2k
=3x+W
-----END PGP SIGNATURE-----
Merge tag 'xfs-for-linus-4.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs
Pul xfs updates from Dave Chinner:
"There's a couple of small API changes to the core DAX code which
required small changes to the ext2 and ext4 code bases, but otherwise
everything is within the XFS codebase.
This update contains:
- A new sparse on-disk inode record format to allow small extents to
be used for inode allocation when free space is fragmented.
- DAX support. This includes minor changes to the DAX core code to
fix problems with lock ordering and bufferhead mapping abuse.
- transaction commit interface cleanup
- removal of various unnecessary XFS specific type definitions
- cleanup and optimisation of freelist preparation before allocation
- various minor cleanups
- bug fixes for
- transaction reservation leaks
- incorrect inode logging in unwritten extent conversion
- mmap lock vs freeze ordering
- remote symlink mishandling
- attribute fork removal issues"
* tag 'xfs-for-linus-4.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs: (49 commits)
xfs: don't truncate attribute extents if no extents exist
xfs: clean up XFS_MIN_FREELIST macros
xfs: sanitise error handling in xfs_alloc_fix_freelist
xfs: factor out free space extent length check
xfs: xfs_alloc_fix_freelist() can use incore perag structures
xfs: remove xfs_caddr_t
xfs: use void pointers in log validation helpers
xfs: return a void pointer from xfs_buf_offset
xfs: remove inst_t
xfs: remove __psint_t and __psunsigned_t
xfs: fix remote symlinks on V5/CRC filesystems
xfs: fix xfs_log_done interface
xfs: saner xfs_trans_commit interface
xfs: remove the flags argument to xfs_trans_cancel
xfs: pass a boolean flag to xfs_trans_free_items
xfs: switch remaining xfs_trans_dup users to xfs_trans_roll
xfs: check min blks for random debug mode sparse allocations
xfs: fix sparse inodes 32-bit compile failure
xfs: add initial DAX support
xfs: add DAX IO path support
...
Pull cgroup writeback support from Jens Axboe:
"This is the big pull request for adding cgroup writeback support.
This code has been in development for a long time, and it has been
simmering in for-next for a good chunk of this cycle too. This is one
of those problems that has been talked about for at least half a
decade, finally there's a solution and code to go with it.
Also see last weeks writeup on LWN:
http://lwn.net/Articles/648292/"
* 'for-4.2/writeback' of git://git.kernel.dk/linux-block: (85 commits)
writeback, blkio: add documentation for cgroup writeback support
vfs, writeback: replace FS_CGROUP_WRITEBACK with SB_I_CGROUPWB
writeback: do foreign inode detection iff cgroup writeback is enabled
v9fs: fix error handling in v9fs_session_init()
bdi: fix wrong error return value in cgwb_create()
buffer: remove unusued 'ret' variable
writeback: disassociate inodes from dying bdi_writebacks
writeback: implement foreign cgroup inode bdi_writeback switching
writeback: add lockdep annotation to inode_to_wb()
writeback: use unlocked_inode_to_wb transaction in inode_congested()
writeback: implement unlocked_inode_to_wb transaction and use it for stat updates
writeback: implement [locked_]inode_to_wb_and_lock_list()
writeback: implement foreign cgroup inode detection
writeback: make writeback_control track the inode being written back
writeback: relocate wb[_try]_get(), wb_put(), inode_{attach|detach}_wb()
mm: vmscan: disable memcg direct reclaim stalling if cgroup writeback support is in use
writeback: implement memcg writeback domain based throttling
writeback: reset wb_domain->dirty_limit[_tstmp] when memcg domain size changes
writeback: implement memcg wb_domain
writeback: update wb_over_bg_thresh() to use wb_domain aware operations
...
Currently XFS calls file_remove_privs() without holding i_mutex. This is
wrong because that function can end up messing with file permissions and
file capabilities stored in xattrs for which we need i_mutex held.
Fix the problem by grabbing iolock exclusively when we will need to
change anything in permissions / xattrs.
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
file_remove_suid() is a misnomer since it removes also file capabilities
stored in xattrs and sets S_NOSEC flag. Also should_remove_suid() tells
something else than whether file_remove_suid() call is necessary which
leads to bugs.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The flags argument to xfs_trans_commit is not useful for most callers, as
a commit of a transaction without a permanent log reservation must pass
0 here, and all callers for a transaction with a permanent log reservation
except for xfs_trans_roll must pass XFS_TRANS_RELEASE_LOG_RES. So remove
the flags argument from the public xfs_trans_commit interfaces, and
introduce low-level __xfs_trans_commit variant just for xfs_trans_roll
that regrants a log reservation instead of releasing it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs_trans_cancel takes two flags arguments: XFS_TRANS_RELEASE_LOG_RES and
XFS_TRANS_ABORT. Both of them are a direct product of the transaction
state, and can be deducted:
- any dirty transaction needs XFS_TRANS_ABORT to be properly canceled,
and XFS_TRANS_ABORT is a noop for a transaction that is not dirty.
- any transaction with a permanent log reservation needs
XFS_TRANS_RELEASE_LOG_RES to be properly canceled, and passing
XFS_TRANS_RELEASE_LOG_RES for a transaction without a permanent
log reservation is invalid.
So just remove the flags argument and do the right thing.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Add initial support for DAX block zeroing operations to XFS. DAX
cannot use buffered IO through the page cache for zeroing, nor do we
need to issue IO for uncached block zeroing. In both cases, we can
simply call out to the dax block zeroing function.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Add the initial support for DAX file operations to XFS. This
includes the necessary block allocation and mmap page fault hooks
for DAX to function.
Note that there are changes to the splice interfaces to ensure that
for DAX splice avoids direct page cache manipulations and instead
takes the DAX IO paths for read/write operations.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Lock ordering for the new mmap lock needs to be:
mmap_sem
sb_start_pagefault
i_mmap_lock
page lock
<fault processsing>
Right now xfs_vm_page_mkwrite gets this the wrong way around,
While technically it cannot deadlock due to the current freeze
ordering, it's still a landmine that might explode if we change
anything in future. Hence we need to nest the locks correctly.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
With the planned cgroup writeback support, backing-dev related
declarations will be more widely used across block and cgroup;
unfortunately, including backing-dev.h from include/linux/blkdev.h
makes cyclic include dependency quite likely.
This patch separates out backing-dev-defs.h which only has the
essential definitions and updates blkdev.h to include it. c files
which need access to more backing-dev details now include
backing-dev.h directly. This takes backing-dev.h off the common
include dependency chain making it a lot easier to use it across block
and cgroup.
v2: fs/fat build failure fixed.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Jens Axboe <axboe@fb.com>
It was missed when we converted everything in XFs to use negative error
numbers, so fix it now. Bug introduced in 3.17 by commit 2451337 ("xfs: global
error sign conversion"), and should go back to stable kernels.
Thanks to Brian Foster for noticing it.
cc: <stable@vger.kernel.org> # 3.17, 3.18, 3.19, 4.0
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
This update contains:
o RENAME_WHITEOUT support
o conversion of per-cpu superblock accounting to use generic counters
o new inode mmap lock so that we can lock page faults out of truncate, hole
punch and other direct extent manipulation functions to avoid racing mmap
writes from causing data corruption
o rework of direct IO submission and completion to solve data corruption issue
when running concurrent extending DIO writes. Also solves problem of running
IO completion transactions in interrupt context during size extending AIO
writes.
o FALLOC_FL_INSERT_RANGE support for inserting holes into a file via direct
extent manipulation to avoid needing to copy data within the file
o attribute block header field overflow fix for 64k block size filesystems
o Lots of changes to log messaging to be more informative and concise when
errors occur. Also prevent a lot of unnecessary log spamming due to cascading
failures in error conditions.
o lots of cleanups and bug fixes
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.12 (GNU/Linux)
iQIcBAABAgAGBQJVOE8oAAoJEK3oKUf0dfodx1kQAIIH8CwqcBrIslOntfHlFPHz
P9aQl5uiI6JcnFqMiHG6mfnjWGpn+Z6XMDGIBwrSTzHj8IEnHTeXqYiS6SDPAnrH
+VmlJEvW01ucAv7vcXKPrfutcc8dxLpy4fs63HOWmXh4rmrTcpel5S+0JSQxyGd6
OriLg1nfD4Sid7R9CFEXAKLghJFK+gbao2CmT0wo6ZrTwiZl2p62Y187ou+d+u3k
BRol99pI/Sp9bKpWZpUv3q2RnfD1v/k4oDP/JG4Ohdt2dx+nDqCjLvL8B5hJu74B
ZI+R+N28sAkMmbtR61kk06F7MS9RZqzBNIZalugaSuspKoenDZzmURZX+i77ogPQ
Ii3XLUMUzdwmi55/tBhpI7VkpFxahaEbWzTT1sMBh/Ka3GXO56BMIYTPvntjoN4w
ElcbFAMAZl8O56ruGBnc/k72CfFbq8qp93KkOfBGIKwwiPN+eCK8bQYL4G3sIZzx
f6k/WLbbShyViX9qoWLiX7qUfvh0NU/EcmGcJBsTmn0NFNOP4WmuojAq6SrvTgEz
No6zYJtnJvEPDa/v5A0dZyYfLqz2cTkEyTM9uwSixcCa1qAS+8IBcCGgTKfQOYkV
hCUWugiHwj4OQ/6WgP6oYLtIYdw6gqXgUKZy1Iy+ThDRwLbg9emYWixQTi4GAuRO
2SEBbFGSk7KIpoPENDUC
=WE6f
-----END PGP SIGNATURE-----
Merge tag 'xfs-for-linus-4.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs
Pull xfs update from Dave Chinner:
"This update contains:
- RENAME_WHITEOUT support
- conversion of per-cpu superblock accounting to use generic counters
- new inode mmap lock so that we can lock page faults out of
truncate, hole punch and other direct extent manipulation functions
to avoid racing mmap writes from causing data corruption
- rework of direct IO submission and completion to solve data
corruption issue when running concurrent extending DIO writes.
Also solves problem of running IO completion transactions in
interrupt context during size extending AIO writes.
- FALLOC_FL_INSERT_RANGE support for inserting holes into a file via
direct extent manipulation to avoid needing to copy data within the
file
- attribute block header field overflow fix for 64k block size
filesystems
- Lots of changes to log messaging to be more informative and concise
when errors occur. Also prevent a lot of unnecessary log spamming
due to cascading failures in error conditions.
- lots of cleanups and bug fixes
One thing of note is the direct IO fixes that we merged last week
after the window opened. Even though a little late, they fix a user
reported data corruption and have been pretty well tested. I figured
there was not much point waiting another 2 weeks for -rc1 to be
released just so I could send them to you..."
* tag 'xfs-for-linus-4.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs: (49 commits)
xfs: using generic_file_direct_write() is unnecessary
xfs: direct IO EOF zeroing needs to drain AIO
xfs: DIO write completion size updates race
xfs: DIO writes within EOF don't need an ioend
xfs: handle DIO overwrite EOF update completion correctly
xfs: DIO needs an ioend for writes
xfs: move DIO mapping size calculation
xfs: factor DIO write mapping from get_blocks
xfs: unlock i_mutex in xfs_break_layouts
xfs: kill unnecessary firstused overflow check on attr3 leaf removal
xfs: use larger in-core attr firstused field and detect overflow
xfs: pass attr geometry to attr leaf header conversion functions
xfs: disallow ro->rw remount on norecovery mount
xfs: xfs_shift_file_space can be static
xfs: Add support FALLOC_FL_INSERT_RANGE for fallocate
fs: Add support FALLOC_FL_INSERT_RANGE for fallocate
xfs: Fix incorrect positive ENOMEM return
xfs: xfs_mru_cache_insert() should use GFP_NOFS
xfs: %pF is only for function pointers
xfs: fix shadow warning in xfs_da3_root_split()
...
generic_file_direct_write() does all sorts of things to make DIO
work "sorta ok" with mixed buffered IO workloads. We already do
most of this work in xfs_file_aio_dio_write() because of the locking
requirements, so there's only a couple of things it does for us.
The first thing is that it does a page cache invalidation after the
->direct_IO callout. This can easily be added to the XFS code.
The second thing it does is that if data was written, it updates the
iov_iter structure to reflect the data written, and then does EOF
size updates if necessary. For XFS, these EOF size updates are now
not necessary, as we do them safely and race-free in IO completion
context. That leaves just the iov_iter update, and that's also moved
to the XFS code.
Therefore we don't need to call generic_file_direct_write() and in
doing so remove redundant buffered writeback and page cache
invalidation calls from the DIO submission path. We also remove a
racy EOF size update, and make the DIO submission code in XFS much
easier to follow. Wins all round, really.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When we are doing AIO DIO writes, the IOLOCK only provides an IO
submission barrier. When we need to do EOF zeroing, we need to ensure
that no other IO is in progress and all pending in-core EOF updates
have been completed. This requires us to wait for all outstanding
AIO DIO writes to the inode to complete and, if necessary, run their
EOF updates.
Once all the EOF updates are complete, we can then restart
xfs_file_aio_write_checks() while holding the IOLOCK_EXCL, knowing
that EOF is up to date and we have exclusive IO access to the file
so we can run EOF block zeroing if we need to without interference.
This gives EOF zeroing the same exclusivity against other IO as we
provide truncate operations.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs_end_io_direct_write() can race with other IO completions when
updating the in-core inode size. The IO completion processing is not
serialised for direct IO - they are done either under the
IOLOCK_SHARED for non-AIO DIO, and without any IOLOCK held at all
during AIO DIO completion. Hence the non-atomic test-and-set update
of the in-core inode size is racy and can result in the in-core
inode size going backwards if the race if hit just right.
If the inode size goes backwards, this can trigger the EOF zeroing
code to run incorrectly on the next IO, which then will zero data
that has successfully been written to disk by a previous DIO.
To fix this bug, we need to serialise the test/set updates of the
in-core inode size. This first patch introduces locking around the
relevant updates and checks in the DIO path. Because we now have an
ioend in xfs_end_io_direct_write(), we know exactly then we are
doing an IO that requires an in-core EOF update, and we know that
they are not running in interrupt context. As such, we do not need to
use irqsave() spinlock variants to protect against interrupts while
the lock is held.
Hence we can use an existing spinlock in the inode to do this
serialisation and so not need to grow the struct xfs_inode just to
work around this problem.
This patch does not address the test/set EOF update in
generic_file_write_direct() for various reasons - that will be done
as a followup with separate explanation.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We want to drop all I/O path locks when recalling layouts, and that includes
i_mutex for the write path. Without this we get stuck processe when recalls
take too long.
[dchinner: fix build with !CONFIG_PNFS]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
... returning -E... upon error and amount of data left in iter after
(possible) truncation upon success. Note, that normal case gives
a non-zero (positive) return value, so any tests for != 0 _must_ be
updated.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Conflicts:
fs/ext4/file.c
All places outside of core VFS that checked ->read and ->write for being NULL or
called the methods directly are gone now, so NULL {read,write} with non-NULL
{read,write}_iter will do the right thing in all cases.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>