Changeset 3869c4aa18
that went in after 2.6.30-rc1 was a seemingly small change to _set_memory_wc()
to make it complaint with SDM requirements. But, introduced a nasty bug, which
can result in crash and/or strange corruptions when set_memory_wc is used.
One such crash reported here
http://lkml.org/lkml/2009/7/30/94
Actually, that changeset introduced two bugs.
* change_page_attr_set() takes &addr as first argument and can the addr value
might have changed on return, even for single page change_page_attr_set()
call. That will make the second change_page_attr_set() in this routine
operate on unrelated addr, that can eventually cause strange corruptions
and bad page state crash.
* The second change_page_attr_set() call, before setting _PAGE_CACHE_WC, should
clear the earlier _PAGE_CACHE_UC_MINUS, as otherwise cache attribute will not
be WC (will be UC instead).
The patch below fixes both these problems. Sending a single patch to fix both
the problems, as the change is to the same line of code. The change to have a
addr_copy is not very clean. But, it is simpler than making more changes
through various routines in pageattr.c.
A huge thanks to Jerome for reporting this problem and providing a simple test
case that helped us root cause the problem.
Reported-by: Jerome Glisse <glisse@freedesktop.org>
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
LKML-Reference: <20090730214319.GA1889@linux-os.sc.intel.com>
Acked-by: Dave Airlie <airlied@redhat.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
lpage allocator aliases a PMD page for each cpu and returns whatever
is unused to the page allocator. When the pageattr of the recycled
pages are changed, this makes the two aliases point to the overlapping
regions with different attributes which isn't allowed and known to
cause subtle data corruption in certain cases.
This can be handled in simliar manner to the x86_64 highmap alias.
pageattr code should detect if the target pages have PMD alias and
split the PMD alias and synchronize the attributes.
pcpur allocator is updated to keep the allocated PMD pages map sorted
in ascending address order and provide pcpu_lpage_remapped() function
which binary searches the array to determine whether the given address
is aliased and if so to which address. pageattr is updated to use
pcpu_lpage_remapped() to detect the PMD alias and split it up as
necessary from cpa_process_alias().
Jan Beulich spotted the original problem and incorrect usage of vaddr
instead of laddr for lookup.
With this, lpage percpu allocator should work correctly. Re-enable
it.
[ Impact: fix subtle lpage pageattr bug and re-enable lpage ]
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Jan Beulich <JBeulich@novell.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Reorganize cpa_process_alias() so that new alias condition can be
added easily.
Jan Beulich spotted problem in the original cleanup thread which
incorrectly assumed the two existing conditions were mutially
exclusive.
[ Impact: code reorganization ]
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jan Beulich <JBeulich@novell.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
As these are allocated using the page allocator, we need to pass
__GFP_NOTRACK before we add page allocator support to kmemcheck.
Signed-off-by: Vegard Nossum <vegard.nossum@gmail.com>
* 'x86-xen-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (42 commits)
xen: cache cr0 value to avoid trap'n'emulate for read_cr0
xen/x86-64: clean up warnings about IST-using traps
xen/x86-64: fix breakpoints and hardware watchpoints
xen: reserve Xen start_info rather than e820 reserving
xen: add FIX_TEXT_POKE to fixmap
lguest: update lazy mmu changes to match lguest's use of kvm hypercalls
xen: honour VCPU availability on boot
xen: add "capabilities" file
xen: drop kexec bits from /sys/hypervisor since kexec isn't implemented yet
xen/sys/hypervisor: change writable_pt to features
xen: add /sys/hypervisor support
xen/xenbus: export xenbus_dev_changed
xen: use device model for suspending xenbus devices
xen: remove suspend_cancel hook
xen/dev-evtchn: clean up locking in evtchn
xen: export ioctl headers to userspace
xen: add /dev/xen/evtchn driver
xen: add irq_from_evtchn
xen: clean up gate trap/interrupt constants
xen: set _PAGE_NX in __supported_pte_mask before pagetable construction
...
Cleanup cpa_flush_array() to avoid back to back on_each_cpu() calls.
[ Impact: optimizes fix 0af48f42df ]
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
cpa_flush_array seems to prefer wbinvd() over clflush at 4M threshold.
clflush needs to be done on only one CPU as per instruction definition.
wbinvd() however, should be done on all CPUs.
[ Impact: fix missing flush which could cause data corruption ]
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
wbinvd is supported on all CPUs 486 or later. But,
pageattr.c is checking x86_model >= 4 before wbinvd(), which looks like
an oversight bug. It was first introduced at one place by changeset
d7c8f21a8c and got copied over to second
place in the same file later.
[ Impact: fix missing cache flush on early-model CPUs, potential data corruption ]
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Conflicts:
arch/frv/include/asm/pgtable.h
arch/x86/include/asm/required-features.h
arch/x86/xen/mmu.c
Merge reason: x86/xen was on a .29 base still, move it to a fresher
branch and pick up Xen fixes as well, plus resolve
conflicts
Signed-off-by: Ingo Molnar <mingo@elte.hu>
As per SDM, there should not be any aliasing of a WC with any cacheable
type across CPUs. That is if one CPU is changing the identity map
memtype to _WC, no other CPU at the time of this change should not have a
TLB for this page that carries a WB attribute. SDM suggests to make the
page not present. But for that we will have to handle any page faults
that can potentially happen due to these pages being not present.
Other way to deal with this without having any WB mapping is to change
the page first to UC and then to WC. This ensures that we meet the SDM
requirement of no cacheable alais to WC page. This also has same or
lower overhead than marking the page not present and making it present
later.
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
LKML-Reference: <20090409212708.797481000@intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Handle faults and do proper cleanups in set_memory_*() functions. In
some cases, these functions were not doing proper free on failure paths.
With the changes to tracking memtype of RAM pages in struct page instead
of pat list, we do not need the changes in commits c5e147. This patch
reverts that change.
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
LKML-Reference: <20090409212708.653222000@intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
To be free of aliasing due to races, set_memory_* interfaces should
follow ordering of reserving, changing memtype to UC/WC, changing
memtype back to WB followed by free.
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
LKML-Reference: <20090409212708.512280000@intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* commit 'origin/master': (4825 commits)
Fix build errors due to CONFIG_BRANCH_TRACER=y
parport: Use the PCI IRQ if offered
tty: jsm cleanups
Adjust path to gpio headers
KGDB_SERIAL_CONSOLE check for module
Change KCONFIG name
tty: Blackin CTS/RTS
Change hardware flow control from poll to interrupt driven
Add support for the MAX3100 SPI UART.
lanana: assign a device name and numbering for MAX3100
serqt: initial clean up pass for tty side
tty: Use the generic RS485 ioctl on CRIS
tty: Correct inline types for tty_driver_kref_get()
splice: fix deadlock in splicing to file
nilfs2: support nanosecond timestamp
nilfs2: introduce secondary super block
nilfs2: simplify handling of active state of segments
nilfs2: mark minor flag for checkpoint created by internal operation
nilfs2: clean up sketch file
nilfs2: super block operations fix endian bug
...
Conflicts:
arch/x86/include/asm/thread_info.h
arch/x86/lguest/boot.c
drivers/xen/manage.c
Impact: simplification, robustness
Make paravirt_lazy_mode() always return PARAVIRT_LAZY_NONE
when in an interrupt. This prevents interrupt code from
accidentally inheriting an outer lazy state, and instead
does everything synchronously. Outer batched operations
are left deferred.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Thomas Gleixner <tglx@linutronix.de>
Add new interfaces:
set_pages_array_uc()
set_pages_array_wb()
that can be used change the page attribute for a bunch of pages with
flush etc done once at the end of all the changes. These interfaces
are similar to existing set_memory_array_uc() and set_memory_array_wc().
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Cc: arjan@infradead.org
Cc: eric@anholt.net
Cc: airlied@redhat.com
LKML-Reference: <20090319215358.901545000@intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Add struct page array pointer to cpa struct and CPA_PAGES_ARRAY.
With that we can add change_page_attr_set_clr() a parameter to pass
struct page array pointer and that can be handled by the underlying
cpa code.
cpa_flush_array() is also changed to support both addr array or
struct page pointer array, depending on the flag.
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Cc: arjan@infradead.org
Cc: eric@anholt.net
Cc: airlied@redhat.com
LKML-Reference: <20090319215358.758513000@intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Change change_page_attr_set_clr() array parameter to a flag. This helps
following patches which adds an interface to change attr to uc/wb over a
set of pages referred by struct page.
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Cc: arjan@infradead.org
Cc: eric@anholt.net
Cc: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Cc: airlied@redhat.com
LKML-Reference: <20090319215358.611346000@intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: new interface
Add a brk()-like allocator which effectively extends the bss in order
to allow very early code to do dynamic allocations. This is better than
using statically allocated arrays for data in subsystems which may never
get used.
The space for brk allocations is in the bss ELF segment, so that the
space is mapped properly by the code which maps the kernel, and so
that bootloaders keep the space free rather than putting a ramdisk or
something into it.
The bss itself, delimited by __bss_stop, ends before the brk area
(__brk_base to __brk_limit). The kernel text, data and bss is reserved
up to __bss_stop.
Any brk-allocated data is reserved separately just before the kernel
pagetable is built, as that code allocates from unreserved spaces
in the e820 map, potentially allocating from any unused brk memory.
Ultimately any unused memory in the brk area is used in the general
kernel memory pool.
Initially the brk space is set to 1MB, which is probably much larger
than any user needs (the largest current user is i386 head_32.S's code
to build the pagetables to map the kernel, which can get fairly large
with a big kernel image and no PSE support). So long as the system
has sufficient memory for the bootloader to reserve the kernel+1MB brk,
there are no bad effects resulting from an over-large brk.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Impact: work around boot crash
Work around Intel Atom erratum AAH41 (probabilistically) - it's triggering
in the field.
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Tested-by: Kyle McMartin <kyle@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: future-proof the split_large_page() function
Linus noticed that split_large_page() is not safe wrt. the
PAT bit: it is bit 12 on the 1GB and 2MB page table level
(_PAGE_BIT_PAT_LARGE), and it is bit 7 on the 4K page
table level (_PAGE_BIT_PAT).
Currently it is not a problem because we never set
_PAGE_BIT_PAT_LARGE on any of the large-page mappings - but
should this happen in the future the split_large_page() would
silently lift bit 12 into the lowlevel 4K pte and would start
corrupting the physical page frame offset. Not fun.
So add a debug warning, to make sure if something ever sets
the PAT bit then this function gets updated too.
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Steven Rostedt found a bug in where in his modified kernel
ftrace was unable to modify the kernel text, due to the PMD
itself having been marked read-only as well in
split_large_page().
The fix, suggested by Linus, is to not try to 'clone' the
reference protection of a huge-page, but to use the standard
(and permissive) page protection bits of KERNPG_TABLE.
The 'cloning' makes sense for the ptes but it's a confused and
incorrect concept at the page table level - because the
pagetable entry is a set of all ptes and hence cannot
'clone' any single protection attribute - the ptes can be any
mixture of protections.
With the permissive KERNPG_TABLE, even if the pte protections
get changed after this point (due to ftrace doing code-patching
or other similar activities like kprobes), the resulting combined
protections will still be correct and the pte's restrictive
(or permissive) protections will control it.
Also update the comment.
This bug was there for a long time but has not caused visible
problems before as it needs a rather large read-only area to
trigger. Steve possibly hacked his kernel with some really
large arrays or so. Anyway, the bug is definitely worth fixing.
[ Huang Ying also experienced problems in this area when writing
the EFI code, but the real bug in split_large_page() was not
realized back then. ]
Reported-by: Steven Rostedt <rostedt@goodmis.org>
Reported-by: Huang Ying <ying.huang@intel.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: Flush the lazy MMU only once
Pending mmu updates only need to be flushed once to bring the
in-memory pagetable state up to date.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Impact: fix race leading to crash under KVM and Xen
The CPA code may be called while we're in lazy mmu update mode - for
example, when using DEBUG_PAGE_ALLOC and doing a slab allocation
in an interrupt handler which interrupted a lazy mmu update. In this
case, the in-memory pagetable state may be out of date due to pending
queued updates. We need to flush any pending updates before inspecting
the page table. Similarly, we must explicitly flush any modifications
CPA may have made (which comes down to flushing queued operations when
flushing the TLB).
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Acked-by: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Stable Kernel <stable@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: fix sporadic slowdowns and warning messages
This patch fixes a performance issue reported by Linus on his
Nehalem system. While Linus reverted the PAT patch (commit
58dab916df) which exposed the issue,
existing cpa() code can potentially still cause wrong(page attribute
corruption) behavior.
This patch also fixes the "WARNING: at arch/x86/mm/pageattr.c:560" that
various people reported.
In 64bit kernel, kernel identity mapping might have holes depending
on the available memory and how e820 reports the address range
covering the RAM, ACPI, PCI reserved regions. If there is a 2MB/1GB hole
in the address range that is not listed by e820 entries, kernel identity
mapping will have a corresponding hole in its 1-1 identity mapping.
If cpa() happens on the kernel identity mapping which falls into these holes,
existing code fails like this:
__change_page_attr_set_clr()
__change_page_attr()
returns 0 because of if (!kpte). But doesn't
set cpa->numpages and cpa->pfn.
cpa_process_alias()
uses uninitialized cpa->pfn (random value)
which can potentially lead to changing the page
attribute of kernel text/data, kernel identity
mapping of RAM pages etc. oops!
This bug was easily exposed by another PAT patch which was doing
cpa() more often on kernel identity mapping holes (physical range between
max_low_pfn_mapped and 4GB), where in here it was setting the
cache disable attribute(PCD) for kernel identity mappings aswell.
Fix cpa() to handle the kernel identity mapping holes. Retain
the WARN() for cpa() calls to other not present address ranges
(kernel-text/data, ioremap() addresses)
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Cc: <stable@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: right-align /proc/meminfo consistent with other fields
When the split-LRU patches added Inactive(anon) and Inactive(file) lines
to /proc/meminfo, all counts were moved two columns rightwards to fit in.
Now move x86's DirectMap lines two columns rightwards to line up.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and
provide a fast, scalable percpu frontend for small vmaps (requires a
slightly different API, though).
The biggest problem with vmap is actually vunmap. Presently this requires
a global kernel TLB flush, which on most architectures is a broadcast IPI
to all CPUs to flush the cache. This is all done under a global lock. As
the number of CPUs increases, so will the number of vunmaps a scaled
workload will want to perform, and so will the cost of a global TLB flush.
This gives terrible quadratic scalability characteristics.
Another problem is that the entire vmap subsystem works under a single
lock. It is a rwlock, but it is actually taken for write in all the fast
paths, and the read locking would likely never be run concurrently anyway,
so it's just pointless.
This is a rewrite of vmap subsystem to solve those problems. The existing
vmalloc API is implemented on top of the rewritten subsystem.
The TLB flushing problem is solved by using lazy TLB unmapping. vmap
addresses do not have to be flushed immediately when they are vunmapped,
because the kernel will not reuse them again (would be a use-after-free)
until they are reallocated. So the addresses aren't allocated again until
a subsequent TLB flush. A single TLB flush then can flush multiple
vunmaps from each CPU.
XEN and PAT and such do not like deferred TLB flushing because they can't
always handle multiple aliasing virtual addresses to a physical address.
They now call vm_unmap_aliases() in order to flush any deferred mappings.
That call is very expensive (well, actually not a lot more expensive than
a single vunmap under the old scheme), however it should be OK if not
called too often.
The virtual memory extent information is stored in an rbtree rather than a
linked list to improve the algorithmic scalability.
There is a per-CPU allocator for small vmaps, which amortizes or avoids
global locking.
To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces
must be used in place of vmap and vunmap. Vmalloc does not use these
interfaces at the moment, so it will not be quite so scalable (although it
will use lazy TLB flushing).
As a quick test of performance, I ran a test that loops in the kernel,
linearly mapping then touching then unmapping 4 pages. Different numbers
of tests were run in parallel on an 4 core, 2 socket opteron. Results are
in nanoseconds per map+touch+unmap.
threads vanilla vmap rewrite
1 14700 2900
2 33600 3000
4 49500 2800
8 70631 2900
So with a 8 cores, the rewritten version is already 25x faster.
In a slightly more realistic test (although with an older and less
scalable version of the patch), I ripped the not-very-good vunmap batching
code out of XFS, and implemented the large buffer mapping with vm_map_ram
and vm_unmap_ram... along with a couple of other tricks, I was able to
speed up a large directory workload by 20x on a 64 CPU system. I believe
vmap/vunmap is actually sped up a lot more than 20x on such a system, but
I'm running into other locks now. vmap is pretty well blown off the
profiles.
Before:
1352059 total 0.1401
798784 _write_lock 8320.6667 <- vmlist_lock
529313 default_idle 1181.5022
15242 smp_call_function 15.8771 <- vmap tlb flushing
2472 __get_vm_area_node 1.9312 <- vmap
1762 remove_vm_area 4.5885 <- vunmap
316 map_vm_area 0.2297 <- vmap
312 kfree 0.1950
300 _spin_lock 3.1250
252 sn_send_IPI_phys 0.4375 <- tlb flushing
238 vmap 0.8264 <- vmap
216 find_lock_page 0.5192
196 find_next_bit 0.3603
136 sn2_send_IPI 0.2024
130 pio_phys_write_mmr 2.0312
118 unmap_kernel_range 0.1229
After:
78406 total 0.0081
40053 default_idle 89.4040
33576 ia64_spinlock_contention 349.7500
1650 _spin_lock 17.1875
319 __reg_op 0.5538
281 _atomic_dec_and_lock 1.0977
153 mutex_unlock 1.5938
123 iget_locked 0.1671
117 xfs_dir_lookup 0.1662
117 dput 0.1406
114 xfs_iget_core 0.0268
92 xfs_da_hashname 0.1917
75 d_alloc 0.0670
68 vmap_page_range 0.0462 <- vmap
58 kmem_cache_alloc 0.0604
57 memset 0.0540
52 rb_next 0.1625
50 __copy_user 0.0208
49 bitmap_find_free_region 0.2188 <- vmap
46 ia64_sn_udelay 0.1106
45 find_inode_fast 0.1406
42 memcmp 0.2188
42 finish_task_switch 0.1094
42 __d_lookup 0.0410
40 radix_tree_lookup_slot 0.1250
37 _spin_unlock_irqrestore 0.3854
36 xfs_bmapi 0.0050
36 kmem_cache_free 0.0256
35 xfs_vn_getattr 0.0322
34 radix_tree_lookup 0.1062
33 __link_path_walk 0.0035
31 xfs_da_do_buf 0.0091
30 _xfs_buf_find 0.0204
28 find_get_page 0.0875
27 xfs_iread 0.0241
27 __strncpy_from_user 0.2812
26 _xfs_buf_initialize 0.0406
24 _xfs_buf_lookup_pages 0.0179
24 vunmap_page_range 0.0250 <- vunmap
23 find_lock_page 0.0799
22 vm_map_ram 0.0087 <- vmap
20 kfree 0.0125
19 put_page 0.0330
18 __kmalloc 0.0176
17 xfs_da_node_lookup_int 0.0086
17 _read_lock 0.0885
17 page_waitqueue 0.0664
vmap has gone from being the top 5 on the profiles and flushing the crap
out of all TLBs, to using less than 1% of kernel time.
[akpm@linux-foundation.org: cleanups, section fix]
[akpm@linux-foundation.org: fix build on alpha]
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Krzysztof Helt <krzysztof.h1@poczta.fm>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Do a global flush tlb after splitting the large page and before we do the
actual change page attribute in the PTE.
With out this, we violate the TLB application note, which says
"The TLBs may contain both ordinary and large-page translations for
a 4-KByte range of linear addresses. This may occur if software
modifies the paging structures so that the page size used for the
address range changes. If the two translations differ with respect
to page frame or attributes (e.g., permissions), processor behavior
is undefined and may be implementation-specific."
And also serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity
mappings) using cpa_lock. So that we don't allow any other cpu, with stale
large tlb entries change the page attribute in parallel to some other cpu
splitting a large page entry along with changing the attribute.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: arjan@linux.intel.com
Cc: venkatesh.pallipadi@intel.com
Cc: jeremy@goop.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Interrupt context no longer splits large page in cpa(). So we can do away
with cpa memory pool code.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: arjan@linux.intel.com
Cc: venkatesh.pallipadi@intel.com
Cc: jeremy@goop.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
No alias checking needed for setting present/not-present mapping. Otherwise,
we may need to break large pages for 64-bit kernel text mappings (this adds to
complexity if we want to do this from atomic context especially, for ex:
with CONFIG_DEBUG_PAGEALLOC). Let's keep it simple!
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: arjan@linux.intel.com
Cc: venkatesh.pallipadi@intel.com
Cc: jeremy@goop.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Export set_memory_ro() and set_memory_rw() calls for use by drivers that need
to have more debug information about who might be writing to memory space.
this was initially developed for use while debugging a memory corruption
problem with e1000e.
Signed-off-by: Bruce Allan <bruce.w.allan@intel.com>
Signed-off-by: Jesse Brandeburg <jesse.brandeburg@intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Fix the start addr for free_memtype calls in the error path.
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Acked-by: Rene Herman <rene.herman@keyaccess.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Actually, might as well simply reconstruct the memtype list at free time
I guess. How is this for a coalescing version of the array functions?
Compiles, boots and provides me with:
root@7ixe4:~# wc -l /debug/x86/pat_memtype_list
53 /debug/x86/pat_memtype_list
otherwise (down from 16384+).
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The new set_memory_array_{uc,wb}() pass virtual addresses to
{reserve,free}_memtype() it seems.
Signed-off-by: Rene Herman <rene.herman@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Add array interface APIs of pageattr. page based cache flush is quite
slow for a lot of pages. If pages are more than 1024 (4M), the patch
will use a wbinvd(). We have a simple test here (run a 3d game - open
arena), nearly all agp memory allocation are small (< 1M), so suppose
this will not impact runtime performance.
Signed-off-by: Dave Airlie <airlied@gmail.com>
Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Big thinko in pat memtype tracking code. reserve_memtype should be called
with physical address and not virtual address.
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Highmem code can leave ptes and tlb entries around for a given page even after
kunmap, and after it has been freed.
>From what I can gather, the PAT code may change the cache attributes of
arbitrary physical addresses (ie. including highmem pages), which would result
in aliases in the case that it operates on one of these lazy tlb highmem
pages.
Flushing kmaps should solve the problem.
I've also just added code for conditional flushing if we haven't got
any dangling highmem aliases -- this should help performance if we
change page attributes frequently or systems that aren't using much
highmem pages (eg. if < 4G RAM). Should be turned into 2 patches, but
just for RFC...
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Introduce two APIs for page attribute. flushing tlb/cache in every page
attribute is expensive. AGP gart usually will do a lot of operations to
change a page to uc, new APIs can reduce flush.
Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Cc: airlied@linux.ie
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arjan van de Ven <arjan@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Do we actually want these DirectMap lines in the x86 /proc/meminfo?
I can see they're interesting to CPA developers and TLB optimizers,
but they don't fit its usual "where has all my memory gone?" usage.
If they are to stay, here are some fixes.
1. On x86_32 without PAE, they're not 2M but 4M pages: no need to
mess with the internal enum, but show the right name to users.
2. Many machines can never show anything but 0 for DirectMap1G,
so suppress that line unless direct_gbpages are really enabled.
3. The unit in /proc/meminfo is kB not number of pages: HugePages
messed that up, but they're an example to regret not to follow.
4. Once we use kB, it's easy to see that 1GB has gone missing (which
explains why CONFIG_CPA_DEBUG=y soon wraps DirectMap2M negative):
because head_64.S's level2_ident_pgt entries were not counted.
My fix is not ideal, but works for more and for less than 1G,
and avoids interfering with early bootup pagetable contortions.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Cc: Andi Kleen <andi@firstfloor.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Use WARN() instead of a printk+WARN_ON() pair; this way the message becomes
part of the warning section for better reporting/collection.
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: akpm@linux-foundation.org
Cc: arjan@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>