functions, prompted by their mis-use in staging.
With these function removed, all cpu functions should only iterate to
nr_cpu_ids, so we finally only allocate that many bits when cpumasks
are allocated offstack.
Thanks,
Rusty.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJVNPMuAAoJENkgDmzRrbjx7ZIP/j65e6xs1jEyXR3WOYSdTU1x
bMo6JcII6O1oEZLgyKXgx9KiBg6uIIDta1NG/H/XIe354dwfHVsHvj5HHHQR5Xof
iRrjLOaHj4XglI3hvsk0eEEl3/OBBLgyo9bUwDvMF1fmr/9tW4caMs3Op6n7Evzm
YIvoAyeJ0A8BfEtOU5lXhcVIGmnHtSw0x6mdGXpXIBmWYQPCtdQP868s4lnl44w0
bSNpAYdzEqg64Ph3SK0prgWPrn5+5EiaAhV7HZzENZ5+o0DAdIXWq/W7uHyCWPKH
536cJDojec+nSUQkPYngngGprxrKO02aBcMw/3JGJ0tdCDj8yw3XAyVAFzz4hmMb
Lkmyv4QHHIILLvJ4ZRH5KHWCjjVBg41LNCs2H3HnoxFACdm0lZYKHsUAh2ucBVtU
Wb/eHmLxOG43UIkpX4yrhy3SfE1ZdnOVzEzOzPXtr51t8ojqk+bLFe/hJ6EkzrQX
X+90qHfBq+PMJlAnc3zdXHjxoJrL6KPWVwVvFrNeibgEKtVvy/BiwZkS6QceC1Ea
TatOYA5r6awFVHHQCooN1DGAxN5Juvu2SmdnTUA9ymsCNDghj1YUoAKRNP81u8Sa
pe3hco/63iCuPna+vlwNDU6SgsaMk9m0p+1n1BiDIfVJIkWYCNeG+u2gQkzbDKlQ
AJuKKQv1QuZiF0ylZ0wq
=VAgA
-----END PGP SIGNATURE-----
Merge tag 'cpumask-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux
Pull final removal of deprecated cpus_* cpumask functions from Rusty Russell:
"This is the final removal (after several years!) of the obsolete
cpus_* functions, prompted by their mis-use in staging.
With these function removed, all cpu functions should only iterate to
nr_cpu_ids, so we finally only allocate that many bits when cpumasks
are allocated offstack"
* tag 'cpumask-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux: (25 commits)
cpumask: remove __first_cpu / __next_cpu
cpumask: resurrect CPU_MASK_CPU0
linux/cpumask.h: add typechecking to cpumask_test_cpu
cpumask: only allocate nr_cpumask_bits.
Fix weird uses of num_online_cpus().
cpumask: remove deprecated functions.
mips: fix obsolete cpumask_of_cpu usage.
x86: fix more deprecated cpu function usage.
ia64: remove deprecated cpus_ usage.
powerpc: fix deprecated CPU_MASK_CPU0 usage.
CPU_MASK_ALL/CPU_MASK_NONE: remove from deprecated region.
staging/lustre/o2iblnd: Don't use cpus_weight
staging/lustre/libcfs: replace deprecated cpus_ calls with cpumask_
staging/lustre/ptlrpc: Do not use deprecated cpus_* functions
blackfin: fix up obsolete cpu function usage.
parisc: fix up obsolete cpu function usage.
tile: fix up obsolete cpu function usage.
arm64: fix up obsolete cpu function usage.
mips: fix up obsolete cpu function usage.
x86: fix up obsolete cpu function usage.
...
Define the central place the default FCSR value is set from, initialised
in `cpu_probe'. Determine the FCSR mask applied to values written to
the register with CTC1 in the full emulation mode and via ptrace(2),
according to the ISA level of processor hardware or the writability of
bits 31:18 if actual FPU hardware is used.
Software may rely on FCSR bits whose functions our emulator does not
implement, so it should not allow them to be set or software may get
confused. For ptrace(2) it's just sanity.
[ralf@linux-mips.org: Fixed double inclusion of <asm/current.h>.]
Signed-off-by: Maciej W. Rozycki <macro@linux-mips.org>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/9711/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
HPET irq is routed to i8259 and then to MIPS CPU irq (cascade). After
commit a3e6c1eff5 (MIPS: IRQ: Fix disable_irq on CPU IRQs), if without
IRQF_NO_SUSPEND in cascade_irqaction, HPET interrupts will lost during
suspend. The result is machine cannot be waken up.
Signed-off-by: Huacai Chen <chenhc@lemote.com>
Cc: <stable@vger.kernel.org>
Cc: Steven J. Hill <Steven.Hill@imgtec.com>
Cc: linux-mips@linux-mips.org
Cc: Fuxin Zhang <zhangfx@lemote.com>
Cc: Zhangjin Wu <wuzhangjin@gmail.com>
Patchwork: https://patchwork.linux-mips.org/patch/9528/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Thanks to spatch, plus manual removal of "&*". Then a sweep for
for_each_cpu_mask => for_each_cpu.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Kevin Cernekee <cernekee@gmail.com>
Cc: Florian Fainelli <f.fainelli@gmail.com>
Cc: linux-mips@linux-mips.org
CPUFreq driver need external timer, so add hpet at first.
In Loongson 3, only Core-0 can receive external interrupt. As a result,
timekeeping cannot absolutely use HPET timer. We use a hybrid solution:
Core-0 use HPET as its clock event device, but other cores still use
MIPS; clock source is global and doesn't need interrupt, so use HPET.
Signed-off-by: Huacai Chen <chenhc@lemote.com>
Signed-off-by: Hongliang Tao <taohl@lemote.com>
Cc: John Crispin <john@phrozen.org>
Cc: Steven J. Hill <Steven.Hill@imgtec.com>
Cc: linux-mips@linux-mips.org
Cc: Fuxin Zhang <zhangfx@lemote.com>
Cc: Zhangjin Wu <wuzhangjin@gmail.com>
Patchwork: https://patchwork.linux-mips.org/patch/8329/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Machtypes of Loongson-3 machines become more and more, but there are
only small differences among different machtypes. Keeping a large table
of machtypes is very ugly and hard to extend. We found that the major
machtype differences are UARTs information (number of UARTs, UART IRQs,
UART clocks, etc.), platform devices (EC, temperature sensors, fan
controllers, etc.) and some workarounds (because of some CPU bugs or
mainboard bugs).
In this patch we improve the UEFI-like (LEFI) interface to make all
Loongson-3 machines use a same machtype "generic-loongson-machine".
Signed-off-by: Huacai Chen <chenhc@lemote.com>
Cc: John Crispin <john@phrozen.org>
Cc: Steven J. Hill <Steven.Hill@imgtec.com>
Cc: linux-mips@linux-mips.org
Cc: Fuxin Zhang <zhangfx@lemote.com>
Cc: Zhangjin Wu <wuzhangjin@gmail.com>
Patchwork: https://patchwork.linux-mips.org/patch/8324/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
By offering Logical->Physical core id mapping, so as to reserve some
physical cores via mask. This allow booting from any core when core-0
has problems. Since the maximun cores supported by Loongson-3 is 16,
32-bit cpu_startup_core_id can be split to 16-bit cpu_startup_core_id
and 16-bit reserved_cores_mask for compatibility.
Signed-off-by: Huacai Chen <chenhc@lemote.com>
Cc: John Crispin <john@phrozen.org>
Cc: Steven J. Hill <Steven.Hill@imgtec.com>
Cc: linux-mips@linux-mips.org
Cc: Fuxin Zhang <zhangfx@lemote.com>
Cc: Zhangjin Wu <wuzhangjin@gmail.com>
Patchwork: https://patchwork.linux-mips.org/patch/8323/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
export the __node_distances symbol in the loongson3 numa code to fix the
build error:
Building modules, stage 2.
MODPOST 221 modules
ERROR: "__node_distances" [drivers/block/nvme.ko] undefined!
scripts/Makefile.modpost:90: recipe for target '__modpost' failed
when building the kernel with:
CONFIG_CPU_LOONGSON3=y
CONFIG_NUMA=y
CONFIG_BLK_DEV_NVME=m
Signed-off-by: James Cowgill <James.Cowgill@imgtec.com>
Cc: <stable@vger.kernel.org> # v3.17+
Reviewed-by: James Hogan <james.hogan@imgtec.com>
Reviewed-by: Huacai Chen <chenhc@lemote.com>
Cc: linux-mips@linux-mips.org
Cc: Wei Yongjun <yongjun_wei@trendmicro.com.cn>
Patchwork: https://patchwork.linux-mips.org/patch/8444/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Pull percpu consistent-ops changes from Tejun Heo:
"Way back, before the current percpu allocator was implemented, static
and dynamic percpu memory areas were allocated and handled separately
and had their own accessors. The distinction has been gone for many
years now; however, the now duplicate two sets of accessors remained
with the pointer based ones - this_cpu_*() - evolving various other
operations over time. During the process, we also accumulated other
inconsistent operations.
This pull request contains Christoph's patches to clean up the
duplicate accessor situation. __get_cpu_var() uses are replaced with
with this_cpu_ptr() and __this_cpu_ptr() with raw_cpu_ptr().
Unfortunately, the former sometimes is tricky thanks to C being a bit
messy with the distinction between lvalues and pointers, which led to
a rather ugly solution for cpumask_var_t involving the introduction of
this_cpu_cpumask_var_ptr().
This converts most of the uses but not all. Christoph will follow up
with the remaining conversions in this merge window and hopefully
remove the obsolete accessors"
* 'for-3.18-consistent-ops' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu: (38 commits)
irqchip: Properly fetch the per cpu offset
percpu: Resolve ambiguities in __get_cpu_var/cpumask_var_t -fix
ia64: sn_nodepda cannot be assigned to after this_cpu conversion. Use __this_cpu_write.
percpu: Resolve ambiguities in __get_cpu_var/cpumask_var_t
Revert "powerpc: Replace __get_cpu_var uses"
percpu: Remove __this_cpu_ptr
clocksource: Replace __this_cpu_ptr with raw_cpu_ptr
sparc: Replace __get_cpu_var uses
avr32: Replace __get_cpu_var with __this_cpu_write
blackfin: Replace __get_cpu_var uses
tile: Use this_cpu_ptr() for hardware counters
tile: Replace __get_cpu_var uses
powerpc: Replace __get_cpu_var uses
alpha: Replace __get_cpu_var
ia64: Replace __get_cpu_var uses
s390: cio driver &__get_cpu_var replacements
s390: Replace __get_cpu_var uses
mips: Replace __get_cpu_var uses
MIPS: Replace __get_cpu_var uses in FPU emulator.
arm: Replace __this_cpu_ptr with raw_cpu_ptr
...
__get_cpu_var() is used for multiple purposes in the kernel source. One of
them is address calculation via the form &__get_cpu_var(x). This calculates
the address for the instance of the percpu variable of the current processor
based on an offset.
Other use cases are for storing and retrieving data from the current
processors percpu area. __get_cpu_var() can be used as an lvalue when
writing data or on the right side of an assignment.
__get_cpu_var() is defined as :
#define __get_cpu_var(var) (*this_cpu_ptr(&(var)))
__get_cpu_var() always only does an address determination. However, store
and retrieve operations could use a segment prefix (or global register on
other platforms) to avoid the address calculation.
this_cpu_write() and this_cpu_read() can directly take an offset into a
percpu area and use optimized assembly code to read and write per cpu
variables.
This patch converts __get_cpu_var into either an explicit address
calculation using this_cpu_ptr() or into a use of this_cpu operations that
use the offset. Thereby address calculations are avoided and less registers
are used when code is generated.
At the end of the patch set all uses of __get_cpu_var have been removed so
the macro is removed too.
The patch set includes passes over all arches as well. Once these operations
are used throughout then specialized macros can be defined in non -x86
arches as well in order to optimize per cpu access by f.e. using a global
register that may be set to the per cpu base.
Transformations done to __get_cpu_var()
1. Determine the address of the percpu instance of the current processor.
DEFINE_PER_CPU(int, y);
int *x = &__get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(&y);
2. Same as #1 but this time an array structure is involved.
DEFINE_PER_CPU(int, y[20]);
int *x = __get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(y);
3. Retrieve the content of the current processors instance of a per cpu
variable.
DEFINE_PER_CPU(int, y);
int x = __get_cpu_var(y)
Converts to
int x = __this_cpu_read(y);
4. Retrieve the content of a percpu struct
DEFINE_PER_CPU(struct mystruct, y);
struct mystruct x = __get_cpu_var(y);
Converts to
memcpy(&x, this_cpu_ptr(&y), sizeof(x));
5. Assignment to a per cpu variable
DEFINE_PER_CPU(int, y)
__get_cpu_var(y) = x;
Converts to
__this_cpu_write(y, x);
6. Increment/Decrement etc of a per cpu variable
DEFINE_PER_CPU(int, y);
__get_cpu_var(y)++
Converts to
__this_cpu_inc(y)
Cc: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
In preemptible kernel, only TIF_USEDFPU flag is reliable to distinguish
whether _init_fpu()/_restore_fp() is needed. Because the value of the
CP0_Status.CU1 isn't changed during preemption.
V2: Fix coding style.
Signed-off-by: Huacai Chen <chenhc@lemote.com>
Cc: John Crispin <john@phrozen.org>
Cc: Steven J. Hill <Steven.Hill@imgtec.com>
Cc: Aurelien Jarno <aurelien@aurel32.net>
Cc: linux-mips@linux-mips.org
Cc: Fuxin Zhang <zhangfx@lemote.com>
Cc: Zhangjin Wu <wuzhangjin@gmail.com>
Patchwork: https://patchwork.linux-mips.org/patch/7515/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Loongson-3 has some specific instructions (MMI/SIMD) in coprocessor 2.
COP2 isn't independent because it share COP1 (FPU)'s registers. This
patch enable the COP2 usage so user-space programs can use the MMI/SIMD
instructions. When COP2 exception happens, we enable both COP1 (FPU)
and COP2, only in this way the fp context can be saved and restored
correctly.
Signed-off-by: Huacai Chen <chenhc@lemote.com>
Cc: John Crispin <john@phrozen.org>
Cc: Steven J. Hill <Steven.Hill@imgtec.com>
Cc: Aurelien Jarno <aurelien@aurel32.net>
Cc: linux-mips@linux-mips.org
Cc: Fuxin Zhang <zhangfx@lemote.com>
Cc: Zhangjin Wu <wuzhangjin@gmail.com>
Patchwork: https://patchwork.linux-mips.org/patch/7189/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Loongson-3B is a 8-cores processor. In general it looks like there are
two Loongson-3A integrated in one chip: 8 cores are separated into two
groups (two NUMA node), each node has its own local memory.
Of course there are some differences between one Loongson-3B and two
Loongson-3A. E.g., the base addresses of IPI registers of each node are
not the same; Loongson-3A use ChipConfig register to enable/disable
clock, but Loongson-3B use FreqControl register instead.
There are two revision of Loongson-3B, the first revision is called as
Loongson-3B1000, whose frequency is 1GHz and has a PRid 0x6306, the
second revision is called as Loongson-3B1500, whose frequency is 1.5GHz
and has a PRid 0x6307. Both revisions has a bug that clock cannot be
disabled at runtime, but this will be fixed in future.
Signed-off-by: Huacai Chen <chenhc@lemote.com>
Cc: John Crispin <john@phrozen.org>
Cc: Steven J. Hill <Steven.Hill@imgtec.com>
Cc: Aurelien Jarno <aurelien@aurel32.net>
Cc: linux-mips@linux-mips.org
Cc: Fuxin Zhang <zhangfx@lemote.com>
Cc: Zhangjin Wu <wuzhangjin@gmail.com>
Patchwork: https://patchwork.linux-mips.org/patch/7188/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Multiple Loongson-3A chips can be interconnected with HT0-bus. This is
a CC-NUMA system that every chip (node) has its own local memory and
cache coherency is maintained by hardware. The 64-bit physical memory
address format is as follows:
0x-0000-YZZZ-ZZZZ-ZZZZ
The high 16 bits should be 0, which means the real physical address
supported by Loongson-3 is 48-bit. The "Y" bits is the base address of
each node, which can be also considered as the node-id. The "Z" bits is
the address offset within a node, which means every node has a 44 bits
address space.
Macros XPHYSADDR and MAX_PHYSMEM_BITS are modified unconditionally,
because many other MIPS CPUs have also extended their address spaces.
Signed-off-by: Huacai Chen <chenhc@lemote.com>
Cc: John Crispin <john@phrozen.org>
Cc: Steven J. Hill <Steven.Hill@imgtec.com>
Cc: Aurelien Jarno <aurelien@aurel32.net>
Cc: linux-mips@linux-mips.org
Cc: Fuxin Zhang <zhangfx@lemote.com>
Cc: Zhangjin Wu <wuzhangjin@gmail.com>
Patchwork: https://patchwork.linux-mips.org/patch/7187/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
This patch is prepared for Multi-chip interconnection. Since each chip
has a ChipConfig register, LOONGSON_CHIPCFG should be an array.
Signed-off-by: Huacai Chen <chenhc@lemote.com>
Cc: John Crispin <john@phrozen.org>
Cc: Steven J. Hill <Steven.Hill@imgtec.com>
Cc: Aurelien Jarno <aurelien@aurel32.net>
Cc: linux-mips@linux-mips.org
Cc: Fuxin Zhang <zhangfx@lemote.com>
Cc: Zhangjin Wu <wuzhangjin@gmail.com>
Patchwork: https://patchwork.linux-mips.org/patch/7185/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Nothing was using the method and there isn't any need for this hook. This
leaves smp_cpus_done() empty for the moment.
As suggested by Paul Bolle <pebolle@tiscali.nl>.
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Tips of Loongson's CPU hotplug:
1, To fully shutdown a core in Loongson 3, the target core should go to
CKSEG1 and flush all L1 cache entries at first. Then, another core
(usually Core 0) can safely disable the clock of the target core. So
play_dead() call loongson3_play_dead() via CKSEG1 (both uncached and
unmmaped).
2, The default clocksource of Loongson is MIPS. Since clock source is a
global device, timekeeping need the CP0' Count registers of each core
be synchronous. Thus, when a core is up, we use a SMP_ASK_C0COUNT IPI
to ask Core-0's Count.
Signed-off-by: Huacai Chen <chenhc@lemote.com>
Signed-off-by: Hongliang Tao <taohl@lemote.com>
Signed-off-by: Hua Yan <yanh@lemote.com>
Tested-by: Alex Smith <alex.smith@imgtec.com>
Reviewed-by: Alex Smith <alex.smith@imgtec.com>
Cc: John Crispin <john@phrozen.org>
Cc: Steven J. Hill <Steven.Hill@imgtec.com>
Cc: Aurelien Jarno <aurelien@aurel32.net>
Cc: linux-mips@linux-mips.org
Cc: Fuxin Zhang <zhangfx@lemote.com>
Cc: Zhangjin Wu <wuzhangjin@gmail.com>
Patchwork: https://patchwork.linux-mips.org/patch/6639
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
IPI registers of Loongson-3 include IPI_SET, IPI_CLEAR, IPI_STATUS,
IPI_EN and IPI_MAILBOX_BUF. Each bit of IPI_STATUS indicate a type of
IPI and IPI_EN indicate whether the IPI is enabled. The sender write 1
to IPI_SET bits generate IPIs in IPI_STATUS, and receiver write 1 to
bits of IPI_CLEAR to clear IPIs. IPI_MAILBOX_BUF are used to deliver
more information about IPIs.
Why we change code in arch/mips/loongson/common/setup.c?
If without this change, when SMP configured, system cannot boot since
it hang at printk() in cgroup_init_early(). The root cause is:
console_trylock()
\-->down_trylock(&console_sem)
\-->raw_spin_unlock_irqrestore(&sem->lock, flags)
\-->_raw_spin_unlock_irqrestore()(SMP/UP have different versions)
\-->__raw_spin_unlock_irqrestore() (following is the SMP case)
\-->do_raw_spin_unlock()
\-->arch_spin_unlock()
\-->nudge_writes()
\-->mb()
\-->wbflush()
\-->__wbflush()
In previous code __wbflush() is initialized in plat_mem_setup(), but
cgroup_init_early() is called before plat_mem_setup(). Therefore, In
this patch we make changes to avoid boot failure.
Signed-off-by: Huacai Chen <chenhc@lemote.com>
Signed-off-by: Hongliang Tao <taohl@lemote.com>
Signed-off-by: Hua Yan <yanh@lemote.com>
Tested-by: Alex Smith <alex.smith@imgtec.com>
Reviewed-by: Alex Smith <alex.smith@imgtec.com>
Cc: John Crispin <john@phrozen.org>
Cc: Steven J. Hill <Steven.Hill@imgtec.com>
Cc: Aurelien Jarno <aurelien@aurel32.net>
Cc: linux-mips@linux-mips.org
Cc: Fuxin Zhang <zhangfx@lemote.com>
Cc: Zhangjin Wu <wuzhangjin@gmail.com>
Patchwork: https://patchwork.linux-mips.org/patch/6638
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
IRQ routing path of Loongson-3:
Devices(most) --> I8259 --> HT Controller --> IRQ Routing Table --> CPU
^
|
Device(legacy devices such as UART) --> Bonito ---|
IRQ Routing Table route 32 INTs to CPU's INT0~INT3(IP2~IP5 of CP0), 32
INTs include 16 HT INTs(mostly), 4 PCI INTs, 1 LPC INT, etc. IP6 is used
for IPI and IP7 is used for internal MIPS timer. LOONGSON_INT_ROUTER_*
are IRQ Routing Table registers.
I8259 IRQs are 1:1 mapped to HT1 INTs. LOONGSON_HT1_* are configuration
registers of HT1 controller.
Signed-off-by: Huacai Chen <chenhc@lemote.com>
Signed-off-by: Hongliang Tao <taohl@lemote.com>
Signed-off-by: Hua Yan <yanh@lemote.com>
Tested-by: Alex Smith <alex.smith@imgtec.com>
Reviewed-by: Alex Smith <alex.smith@imgtec.com>
Cc: John Crispin <john@phrozen.org>
Cc: Steven J. Hill <Steven.Hill@imgtec.com>
Cc: Aurelien Jarno <aurelien@aurel32.net>
Cc: linux-mips@linux-mips.org
Cc: Fuxin Zhang <zhangfx@lemote.com>
Cc: Zhangjin Wu <wuzhangjin@gmail.com>
Patchwork: https://patchwork.linux-mips.org/patch/6634
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>