Commit Graph

528 Commits

Author SHA1 Message Date
John Hubbard 65462462ff mm/gup: follow_pfn_pte(): -EEXIST cleanup
Remove a quirky special case from follow_pfn_pte(), and adjust its
callers to match.  Caller changes include:

__get_user_pages(): Regardless of any FOLL_* flags, get_user_pages() and
its variants should handle PFN-only entries by stopping early, if the
caller expected **pages to be filled in.  This makes for a more reliable
API, as compared to the previous approach of skipping over such entries
(and thus leaving them silently unwritten).

move_pages(): squash the -EEXIST error return from follow_page() into
-EFAULT, because -EFAULT is listed in the man page, whereas -EEXIST is
not.

Link: https://lkml.kernel.org/r/20220204020010.68930-3-jhubbard@nvidia.com
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Suggested-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Peter Xu <peterx@redhat.com>
Cc: Lukas Bulwahn <lukas.bulwahn@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Claudio Imbrenda <imbrenda@linux.ibm.com>
Cc: Alex Williamson <alex.williamson@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:01 -07:00
Alistair Popple ffa65753c4 mm/migrate.c: rework migration_entry_wait() to not take a pageref
This fixes the FIXME in migrate_vma_check_page().

Before migrating a page migration code will take a reference and check
there are no unexpected page references, failing the migration if there
are.  When a thread faults on a migration entry it will take a temporary
reference to the page to wait for the page to become unlocked signifying
the migration entry has been removed.

This reference is dropped just prior to waiting on the page lock,
however the extra reference can cause migration failures so it is
desirable to avoid taking it.

As migration code already has a reference to the migrating page an extra
reference to wait on PG_locked is unnecessary so long as the reference
can't be dropped whilst setting up the wait.

When faulting on a migration entry the ptl is taken to check the
migration entry.  Removing a migration entry also requires the ptl, and
migration code won't drop its page reference until after the migration
entry has been removed.  Therefore retaining the ptl of a migration
entry is sufficient to ensure the page has a reference.  Reworking
migration_entry_wait() to hold the ptl until the wait setup is complete
means the extra page reference is no longer needed.

[apopple@nvidia.com: v5]
  Link: https://lkml.kernel.org/r/20211213033848.1973946-1-apopple@nvidia.com

Link: https://lkml.kernel.org/r/20211118020754.954425-1-apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-22 08:33:34 +02:00
Linus Torvalds f56caedaf9 Merge branch 'akpm' (patches from Andrew)
Merge misc updates from Andrew Morton:
 "146 patches.

  Subsystems affected by this patch series: kthread, ia64, scripts,
  ntfs, squashfs, ocfs2, vfs, and mm (slab-generic, slab, kmemleak,
  dax, kasan, debug, pagecache, gup, shmem, frontswap, memremap,
  memcg, selftests, pagemap, dma, vmalloc, memory-failure, hugetlb,
  userfaultfd, vmscan, mempolicy, oom-kill, hugetlbfs, migration, thp,
  ksm, page-poison, percpu, rmap, zswap, zram, cleanups, hmm, and
  damon)"

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (146 commits)
  mm/damon: hide kernel pointer from tracepoint event
  mm/damon/vaddr: hide kernel pointer from damon_va_three_regions() failure log
  mm/damon/vaddr: use pr_debug() for damon_va_three_regions() failure logging
  mm/damon/dbgfs: remove an unnecessary variable
  mm/damon: move the implementation of damon_insert_region to damon.h
  mm/damon: add access checking for hugetlb pages
  Docs/admin-guide/mm/damon/usage: update for schemes statistics
  mm/damon/dbgfs: support all DAMOS stats
  Docs/admin-guide/mm/damon/reclaim: document statistics parameters
  mm/damon/reclaim: provide reclamation statistics
  mm/damon/schemes: account how many times quota limit has exceeded
  mm/damon/schemes: account scheme actions that successfully applied
  mm/damon: remove a mistakenly added comment for a future feature
  Docs/admin-guide/mm/damon/usage: update for kdamond_pid and (mk|rm)_contexts
  Docs/admin-guide/mm/damon/usage: mention tracepoint at the beginning
  Docs/admin-guide/mm/damon/usage: remove redundant information
  Docs/admin-guide/mm/damon/usage: update for scheme quotas and watermarks
  mm/damon: convert macro functions to static inline functions
  mm/damon: modify damon_rand() macro to static inline function
  mm/damon: move damon_rand() definition into damon.h
  ...
2022-01-15 20:37:06 +02:00
Colin Ian King f1e8db04b6 mm/migrate: remove redundant variables used in a for-loop
The variable addr is being set and incremented in a for-loop but not
actually being used.  It is redundant and so addr and also variable
start can be removed.

Link: https://lkml.kernel.org/r/20211221185729.609630-1-colin.i.king@gmail.com
Signed-off-by: Colin Ian King <colin.i.king@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15 16:30:31 +02:00
Huang Ying dcee9bf5bf mm/migrate: move node demotion code to near its user
Now, node_demotion and next_demotion_node() are placed between
__unmap_and_move() and unmap_and_move().  This hurts code readability.
So move them near their users in the file.  There's no functionality
change in this patch.

Link: https://lkml.kernel.org/r/20211206031227.3323097-1-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: Wei Xu <weixugc@google.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Keith Busch <kbusch@kernel.org>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15 16:30:31 +02:00
Baolin Wang 7813a1b525 mm: migrate: add more comments for selecting target node randomly
As Yang Shi suggested [1], it will be helpful to explain why we should
select target node randomly now if there are multiple target nodes.

[1] https://lore.kernel.org/all/CAHbLzkqSqCL+g7dfzeOw8fPyeEC0BBv13Ny1UVGHDkadnQdR=g@mail.gmail.com/

Link: https://lkml.kernel.org/r/c31d36bd097c6e9e69fc0f409c43b78e53e64fc2.1637766801.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com>
Cc: Xunlei Pang <xlpang@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15 16:30:31 +02:00
Baolin Wang ac16ec8353 mm: migrate: support multiple target nodes demotion
We have some machines with multiple memory types like below, which have
one fast (DRAM) memory node and two slow (persistent memory) memory
nodes.  According to current node demotion policy, if node 0 fills up,
its memory should be migrated to node 1, when node 1 fills up, its
memory will be migrated to node 2: node 0 -> node 1 -> node 2 ->stop.

But this is not efficient and suitbale memory migration route for our
machine with multiple slow memory nodes.  Since the distance between
node 0 to node 1 and node 0 to node 2 is equal, and memory migration
between slow memory nodes will increase persistent memory bandwidth
greatly, which will hurt the whole system's performance.

Thus for this case, we can treat the slow memory node 1 and node 2 as a
whole slow memory region, and we should migrate memory from node 0 to
node 1 and node 2 if node 0 fills up.

This patch changes the node_demotion data structure to support multiple
target nodes, and establishes the migration path to support multiple
target nodes with validating if the node distance is the best or not.

  available: 3 nodes (0-2)
  node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  node 0 size: 62153 MB
  node 0 free: 55135 MB
  node 1 cpus:
  node 1 size: 127007 MB
  node 1 free: 126930 MB
  node 2 cpus:
  node 2 size: 126968 MB
  node 2 free: 126878 MB
  node distances:
  node   0   1   2
    0:  10  20  20
    1:  20  10  20
    2:  20  20  10

Link: https://lkml.kernel.org/r/00728da107789bb4ed9e0d28b1d08fd8056af2ef.1636697263.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com>
Cc: Xunlei Pang <xlpang@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15 16:30:30 +02:00
Baolin Wang 5d39a7ebc8 mm: migrate: correct the hugetlb migration stats
Correct the migration stats for hugetlb with using compound_nr() instead
of thp_nr_pages(), meanwhile change 'nr_failed_pages' to record the
number of normal pages failed to migrate, including THP and hugetlb, and
'nr_succeeded' will record the number of normal pages migrated
successfully.

[baolin.wang@linux.alibaba.com: fix docs, per Mike]
  Link: https://lkml.kernel.org/r/141bdfc6-f898-3cc3-f692-726c5f6cb74d@linux.alibaba.com

Link: https://lkml.kernel.org/r/71a4b6c22f208728fe8c78ad26375436c4ff9704.1636275127.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15 16:30:30 +02:00
Baolin Wang b5bade978e mm: migrate: fix the return value of migrate_pages()
Patch series "Improve the migration stats".

According to talk with Zi Yan [1], this patch set changes the return
value of migrate_pages() to avoid returning a number which is larger
than the number of pages the users tried to migrate by move_pages()
syscall.  Also fix the hugetlb migration stats and migration stats in
trace_mm_compaction_migratepages().

[1] https://lore.kernel.org/linux-mm/7E44019D-2A5D-4BA7-B4D5-00D4712F1687@nvidia.com/

This patch (of 3):

As Zi Yan pointed out, the syscall move_pages() can return a
non-migrated number larger than the number of pages the users tried to
migrate, when a THP page is failed to migrate.  This is confusing for
users.

Since other migration scenarios do not care about the actual
non-migrated number of pages except the memory compaction migration
which will fix in following patch.  Thus we can change the return value
to return the number of {normal page, THP, hugetlb} instead to avoid
this issue, and the number of THP splits will be considered as the
number of non-migrated THP, no matter how many subpages of the THP are
migrated successfully.  Meanwhile we should still keep the migration
counters using the number of normal pages.

Link: https://lkml.kernel.org/r/cover.1636275127.git.baolin.wang@linux.alibaba.com
Link: https://lkml.kernel.org/r/6486fabc3e8c66ff613e150af25e89b3147977a6.1636275127.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Signed-off-by: Zi Yan <ziy@nvidia.com>
Co-developed-by: Zi Yan <ziy@nvidia.com>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15 16:30:30 +02:00
Pasha Tatashin 1eba86c096 mm: change page type prior to adding page table entry
Patch series "page table check", v3.

Ensure that some memory corruptions are prevented by checking at the
time of insertion of entries into user page tables that there is no
illegal sharing.

We have recently found a problem [1] that existed in kernel since 4.14.
The problem was caused by broken page ref count and led to memory
leaking from one process into another.  The problem was accidentally
detected by studying a dump of one process and noticing that one page
contains memory that should not belong to this process.

There are some other page->_refcount related problems that were recently
fixed: [2], [3] which potentially could also lead to illegal sharing.

In addition to hardening refcount [4] itself, this work is an attempt to
prevent this class of memory corruption issues.

It uses a simple state machine that is independent from regular MM logic
to check for illegal sharing at time pages are inserted and removed from
page tables.

[1] https://lore.kernel.org/all/xr9335nxwc5y.fsf@gthelen2.svl.corp.google.com
[2] https://lore.kernel.org/all/1582661774-30925-2-git-send-email-akaher@vmware.com
[3] https://lore.kernel.org/all/20210622021423.154662-3-mike.kravetz@oracle.com
[4] https://lore.kernel.org/all/20211221150140.988298-1-pasha.tatashin@soleen.com

This patch (of 4):

There are a few places where we first update the entry in the user page
table, and later change the struct page to indicate that this is
anonymous or file page.

In most places, however, we first configure the page metadata and then
insert entries into the page table.  Page table check, will use the
information from struct page to verify the type of entry is inserted.

Change the order in all places to first update struct page, and later to
update page table.

This means that we first do calls that may change the type of page (anon
or file):

	page_move_anon_rmap
	page_add_anon_rmap
	do_page_add_anon_rmap
	page_add_new_anon_rmap
	page_add_file_rmap
	hugepage_add_anon_rmap
	hugepage_add_new_anon_rmap

And after that do calls that add entries to the page table:

	set_huge_pte_at
	set_pte_at

Link: https://lkml.kernel.org/r/20211221154650.1047963-1-pasha.tatashin@soleen.com
Link: https://lkml.kernel.org/r/20211221154650.1047963-2-pasha.tatashin@soleen.com
Signed-off-by: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Paul Turner <pjt@google.com>
Cc: Wei Xu <weixugc@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Will Deacon <will@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Masahiro Yamada <masahiroy@kernel.org>
Cc: Sami Tolvanen <samitolvanen@google.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Jiri Slaby <jirislaby@kernel.org>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15 16:30:28 +02:00
Matthew Wilcox (Oracle) 6b24ca4a1a mm: Use multi-index entries in the page cache
We currently store large folios as 2^N consecutive entries.  While this
consumes rather more memory than necessary, it also turns out to be buggy.
A writeback operation which starts within a tail page of a dirty folio will
not write back the folio as the xarray's dirty bit is only set on the
head index.  With multi-index entries, the dirty bit will be found no
matter where in the folio the operation starts.

This does end up simplifying the page cache slightly, although not as
much as I had hoped.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
2022-01-08 00:28:41 -05:00
Matthew Wilcox (Oracle) 9f2b04a25a filemap: Add folio_put_wait_locked()
Convert all three callers of put_and_wait_on_page_locked() to
folio_put_wait_locked().  This shrinks the kernel overall by 19 bytes.
filemap_update_page() shrinks by 19 bytes while __migration_entry_wait()
is unchanged.  folio_put_wait_locked() is 14 bytes smaller than
put_and_wait_on_page_locked(), but pmd_migration_entry_wait() grows by
14 bytes.  It removes the assumption from pmd_migration_entry_wait()
that pages cannot be larger than a PMD (which is true today, but
may be interesting to explore in the future).

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
2022-01-04 13:15:33 -05:00
Alistair Popple ab09243aa9 mm/migrate.c: remove MIGRATE_PFN_LOCKED
MIGRATE_PFN_LOCKED is used to indicate to migrate_vma_prepare() that a
source page was already locked during migrate_vma_collect().  If it
wasn't then the a second attempt is made to lock the page.  However if
the first attempt failed it's unlikely a second attempt will succeed,
and the retry adds complexity.  So clean this up by removing the retry
and MIGRATE_PFN_LOCKED flag.

Destination pages are also meant to have the MIGRATE_PFN_LOCKED flag
set, but nothing actually checks that.

Link: https://lkml.kernel.org/r/20211025041608.289017-1-apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Acked-by: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Alex Deucher <alexander.deucher@amd.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Ben Skeggs <bskeggs@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-11 09:34:35 -08:00
Baolin Wang 0ef0246214 mm: migrate: simplify the file-backed pages validation when migrating its mapping
There is no need to validate the file-backed page's refcount before
trying to freeze the page's expected refcount, instead we can rely on
the folio_ref_freeze() to validate if the page has the expected refcount
before migrating its mapping.

Moreover we are always under the page lock when migrating the page
mapping, which means nowhere else can remove it from the page cache, so
we can remove the xas_load() validation under the i_pages lock.

Link: https://lkml.kernel.org/r/cover.1629447552.git.baolin.wang@linux.alibaba.com
Link: https://lkml.kernel.org/r/df4c129fd8e86a95dbc55f4663d77441cc0d3bd1.1629447552.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Suggested-by: Matthew Wilcox <willy@infradead.org>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Alistair Popple <apopple@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-11 09:34:35 -08:00
Linus Torvalds 512b7931ad Merge branch 'akpm' (patches from Andrew)
Merge misc updates from Andrew Morton:
 "257 patches.

  Subsystems affected by this patch series: scripts, ocfs2, vfs, and
  mm (slab-generic, slab, slub, kconfig, dax, kasan, debug, pagecache,
  gup, swap, memcg, pagemap, mprotect, mremap, iomap, tracing, vmalloc,
  pagealloc, memory-failure, hugetlb, userfaultfd, vmscan, tools,
  memblock, oom-kill, hugetlbfs, migration, thp, readahead, nommu, ksm,
  vmstat, madvise, memory-hotplug, rmap, zsmalloc, highmem, zram,
  cleanups, kfence, and damon)"

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (257 commits)
  mm/damon: remove return value from before_terminate callback
  mm/damon: fix a few spelling mistakes in comments and a pr_debug message
  mm/damon: simplify stop mechanism
  Docs/admin-guide/mm/pagemap: wordsmith page flags descriptions
  Docs/admin-guide/mm/damon/start: simplify the content
  Docs/admin-guide/mm/damon/start: fix a wrong link
  Docs/admin-guide/mm/damon/start: fix wrong example commands
  mm/damon/dbgfs: add adaptive_targets list check before enable monitor_on
  mm/damon: remove unnecessary variable initialization
  Documentation/admin-guide/mm/damon: add a document for DAMON_RECLAIM
  mm/damon: introduce DAMON-based Reclamation (DAMON_RECLAIM)
  selftests/damon: support watermarks
  mm/damon/dbgfs: support watermarks
  mm/damon/schemes: activate schemes based on a watermarks mechanism
  tools/selftests/damon: update for regions prioritization of schemes
  mm/damon/dbgfs: support prioritization weights
  mm/damon/vaddr,paddr: support pageout prioritization
  mm/damon/schemes: prioritize regions within the quotas
  mm/damon/selftests: support schemes quotas
  mm/damon/dbgfs: support quotas of schemes
  ...
2021-11-06 14:08:17 -07:00
Yang Shi 20f9ba4f99 mm: migrate: make demotion knob depend on migration
The memory demotion needs to call migrate_pages() to do the jobs.  And
it is controlled by a knob, however, the knob doesn't depend on
CONFIG_MIGRATION.  The knob could be truned on even though MIGRATION is
disabled, this will not cause any crash since migrate_pages() would just
return -ENOSYS.  But it is definitely not optimal to go through demotion
path then retry regular swap every time.

And it doesn't make too much sense to have the knob visible to the users
when !MIGRATION.  Move the related code from mempolicy.[h|c] to
migrate.[h|c].

Link: https://lkml.kernel.org/r/20211015005559.246709-1-shy828301@gmail.com
Signed-off-by: Yang Shi <shy828301@gmail.com>
Acked-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:41 -07:00
Linus Torvalds 49f8275c7d Memory folios
Add memory folios, a new type to represent either order-0 pages or
 the head page of a compound page.  This should be enough infrastructure
 to support filesystems converting from pages to folios.
 -----BEGIN PGP SIGNATURE-----
 
 iQEzBAABCgAdFiEEejHryeLBw/spnjHrDpNsjXcpgj4FAmF9uI0ACgkQDpNsjXcp
 gj7MUAf/R7LCZ+xFiIedw7SAgb/DGK0C9uVjuBEIZgAw21ZUw/GuPI6cuKBMFGGf
 rRcdtlvMpwi7yZJcoNXxaqU/xPaaJMjf2XxscIvYJP1mjlZVuwmP9dOx0neNvWOc
 T+8lqR6c1TLl82lpqIjGFLwvj2eVowq2d3J5jsaIJFd4odmmYVInrhJXOzC/LQ54
 Niloj5ksehf+KUIRLDz7ycppvIHhlVsoAl0eM2dWBAtL0mvT7Nyn/3y+vnMfV2v3
 Flb4opwJUgTJleYc16oxTn9svT2yS8q2uuUemRDLW8ABghoAtH3fUUk43RN+5Krd
 LYCtbeawtkikPVXZMfWybsx5vn0c3Q==
 =7SBe
 -----END PGP SIGNATURE-----

Merge tag 'folio-5.16' of git://git.infradead.org/users/willy/pagecache

Pull memory folios from Matthew Wilcox:
 "Add memory folios, a new type to represent either order-0 pages or the
  head page of a compound page. This should be enough infrastructure to
  support filesystems converting from pages to folios.

  The point of all this churn is to allow filesystems and the page cache
  to manage memory in larger chunks than PAGE_SIZE. The original plan
  was to use compound pages like THP does, but I ran into problems with
  some functions expecting only a head page while others expect the
  precise page containing a particular byte.

  The folio type allows a function to declare that it's expecting only a
  head page. Almost incidentally, this allows us to remove various calls
  to VM_BUG_ON(PageTail(page)) and compound_head().

  This converts just parts of the core MM and the page cache. For 5.17,
  we intend to convert various filesystems (XFS and AFS are ready; other
  filesystems may make it) and also convert more of the MM and page
  cache to folios. For 5.18, multi-page folios should be ready.

  The multi-page folios offer some improvement to some workloads. The
  80% win is real, but appears to be an artificial benchmark (postgres
  startup, which isn't a serious workload). Real workloads (eg building
  the kernel, running postgres in a steady state, etc) seem to benefit
  between 0-10%. I haven't heard of any performance losses as a result
  of this series. Nobody has done any serious performance tuning; I
  imagine that tweaking the readahead algorithm could provide some more
  interesting wins. There are also other places where we could choose to
  create large folios and currently do not, such as writes that are
  larger than PAGE_SIZE.

  I'd like to thank all my reviewers who've offered review/ack tags:
  Christoph Hellwig, David Howells, Jan Kara, Jeff Layton, Johannes
  Weiner, Kirill A. Shutemov, Michal Hocko, Mike Rapoport, Vlastimil
  Babka, William Kucharski, Yu Zhao and Zi Yan.

  I'd also like to thank those who gave feedback I incorporated but
  haven't offered up review tags for this part of the series: Nick
  Piggin, Mel Gorman, Ming Lei, Darrick Wong, Ted Ts'o, John Hubbard,
  Hugh Dickins, and probably a few others who I forget"

* tag 'folio-5.16' of git://git.infradead.org/users/willy/pagecache: (90 commits)
  mm/writeback: Add folio_write_one
  mm/filemap: Add FGP_STABLE
  mm/filemap: Add filemap_get_folio
  mm/filemap: Convert mapping_get_entry to return a folio
  mm/filemap: Add filemap_add_folio()
  mm/filemap: Add filemap_alloc_folio
  mm/page_alloc: Add folio allocation functions
  mm/lru: Add folio_add_lru()
  mm/lru: Convert __pagevec_lru_add_fn to take a folio
  mm: Add folio_evictable()
  mm/workingset: Convert workingset_refault() to take a folio
  mm/filemap: Add readahead_folio()
  mm/filemap: Add folio_mkwrite_check_truncate()
  mm/filemap: Add i_blocks_per_folio()
  mm/writeback: Add folio_redirty_for_writepage()
  mm/writeback: Add folio_account_redirty()
  mm/writeback: Add folio_clear_dirty_for_io()
  mm/writeback: Add folio_cancel_dirty()
  mm/writeback: Add folio_account_cleaned()
  mm/writeback: Add filemap_dirty_folio()
  ...
2021-11-01 08:47:59 -07:00
Huang Ying a6a0251c6f mm/migrate: fix CPUHP state to update node demotion order
The node demotion order needs to be updated during CPU hotplug.  Because
whether a NUMA node has CPU may influence the demotion order.  The
update function should be called during CPU online/offline after the
node_states[N_CPU] has been updated.  That is done in
CPUHP_AP_ONLINE_DYN during CPU online and in CPUHP_MM_VMSTAT_DEAD during
CPU offline.  But in commit 884a6e5d1f ("mm/migrate: update node
demotion order on hotplug events"), the function to update node demotion
order is called in CPUHP_AP_ONLINE_DYN during CPU online/offline.  This
doesn't satisfy the order requirement.

For example, there are 4 CPUs (P0, P1, P2, P3) in 2 sockets (P0, P1 in S0
and P2, P3 in S1), the demotion order is

 - S0 -> NUMA_NO_NODE
 - S1 -> NUMA_NO_NODE

After P2 and P3 is offlined, because S1 has no CPU now, the demotion
order should have been changed to

 - S0 -> S1
 - S1 -> NO_NODE

but it isn't changed, because the order updating callback for CPU
hotplug doesn't see the new nodemask.  After that, if P1 is offlined,
the demotion order is changed to the expected order as above.

So in this patch, we added CPUHP_AP_MM_DEMOTION_ONLINE and
CPUHP_MM_DEMOTION_DEAD to be called after CPUHP_AP_ONLINE_DYN and
CPUHP_MM_VMSTAT_DEAD during CPU online and offline, and register the
update function on them.

Link: https://lkml.kernel.org/r/20210929060351.7293-1-ying.huang@intel.com
Fixes: 884a6e5d1f ("mm/migrate: update node demotion order on hotplug events")
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Wei Xu <weixugc@google.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Keith Busch <kbusch@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-10-18 20:22:03 -10:00
Dave Hansen 76af6a054d mm/migrate: add CPU hotplug to demotion #ifdef
Once upon a time, the node demotion updates were driven solely by memory
hotplug events.  But now, there are handlers for both CPU and memory
hotplug.

However, the #ifdef around the code checks only memory hotplug.  A
system that has HOTPLUG_CPU=y but MEMORY_HOTPLUG=n would miss CPU
hotplug events.

Update the #ifdef around the common code.  Add memory and CPU-specific
#ifdefs for their handlers.  These memory/CPU #ifdefs avoid unused
function warnings when their Kconfig option is off.

[arnd@arndb.de: rework hotplug_memory_notifier() stub]
  Link: https://lkml.kernel.org/r/20211013144029.2154629-1-arnd@kernel.org

Link: https://lkml.kernel.org/r/20210924161255.E5FE8F7E@davehans-spike.ostc.intel.com
Fixes: 884a6e5d1f ("mm/migrate: update node demotion order on hotplug events")
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Wei Xu <weixugc@google.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-10-18 20:22:02 -10:00
Dave Hansen 295be91f7e mm/migrate: optimize hotplug-time demotion order updates
Patch series "mm/migrate: 5.15 fixes for automatic demotion", v2.

This contains two fixes for the "automatic demotion" code which was
merged into 5.15:

 * Fix memory hotplug performance regression by watching
   suppressing any real action on irrelevant hotplug events.

 * Ensure CPU hotplug handler is registered when memory hotplug
   is disabled.

This patch (of 2):

== tl;dr ==

Automatic demotion opted for a simple, lazy approach to handling hotplug
events.  This noticeably slows down memory hotplug[1].  Optimize away
updates to the demotion order when memory hotplug events should have no
effect.

This has no effect on CPU hotplug.  There is no known problem on the CPU
side and any work there will be in a separate series.

== Background ==

Automatic demotion is a memory migration strategy to ensure that new
allocations have room in faster memory tiers on tiered memory systems.
The kernel maintains an array (node_demotion[]) to drive these
migrations.

The node_demotion[] path is calculated by starting at nodes with CPUs
and then "walking" to nodes with memory.  Only hotplug events which
online or offline a node with memory (N_ONLINE) or CPUs (N_CPU) will
actually affect the migration order.

== Problem ==

However, the current code is lazy.  It completely regenerates the
migration order on *any* CPU or memory hotplug event.  The logic was
that these events are extremely rare and that the overhead from
indiscriminate order regeneration is minimal.

Part of the update logic involves a synchronize_rcu(), which is a pretty
big hammer.  Its overhead was large enough to be detected by some 0day
tests that watch memory hotplug performance[1].

== Solution ==

Add a new helper (node_demotion_topo_changed()) which can differentiate
between superfluous and impactful hotplug events.  Skip the expensive
update operation for superfluous events.

== Aside: Locking ==

It took me a few moments to declare the locking to be safe enough for
node_demotion_topo_changed() to work.  It all hinges on the memory
hotplug lock:

During memory hotplug events, 'mem_hotplug_lock' is held for write.
This ensures that two memory hotplug events can not be called
simultaneously.

CPU hotplug has a similar lock (cpuhp_state_mutex) which also provides
mutual exclusion between CPU hotplug events.  In addition, the demotion
code acquire and hold the mem_hotplug_lock for read during its CPU
hotplug handlers.  This provides mutual exclusion between the demotion
memory hotplug callbacks and the CPU hotplug callbacks.

This effectively allows treating the migration target generation code to
act as if it is single-threaded.

1. https://lore.kernel.org/all/20210905135932.GE15026@xsang-OptiPlex-9020/

Link: https://lkml.kernel.org/r/20210924161251.093CCD06@davehans-spike.ostc.intel.com
Link: https://lkml.kernel.org/r/20210924161253.D7673E31@davehans-spike.ostc.intel.com
Fixes: 884a6e5d1f ("mm/migrate: update node demotion order on hotplug events")
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reported-by: kernel test robot <oliver.sang@intel.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Wei Xu <weixugc@google.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-10-18 20:22:02 -10:00
Matthew Wilcox (Oracle) 715cbfd6c5 mm/migrate: Add folio_migrate_copy()
This is the folio equivalent of migrate_page_copy(), which is retained
as a wrapper for filesystems which are not yet converted to folios.
Also convert copy_huge_page() to folio_copy().

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
2021-10-18 07:49:39 -04:00
Matthew Wilcox (Oracle) 19138349ed mm/migrate: Add folio_migrate_flags()
Turn migrate_page_states() into a wrapper around folio_migrate_flags().
Also convert two functions only called from folio_migrate_flags() to
be folio-based.  ksm_migrate_page() becomes folio_migrate_ksm() and
copy_page_owner() becomes folio_copy_owner().  folio_migrate_flags()
alone shrinks by two thirds -- 1967 bytes down to 642 bytes.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Reviewed-by: David Howells <dhowells@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
2021-10-18 07:49:39 -04:00
Matthew Wilcox (Oracle) 3417013e0d mm/migrate: Add folio_migrate_mapping()
Reimplement migrate_page_move_mapping() as a wrapper around
folio_migrate_mapping().  Saves 193 bytes of kernel text.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Howells <dhowells@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
2021-10-18 07:49:39 -04:00
Matthew Wilcox (Oracle) d21bba2b7d mm/memcg: Convert mem_cgroup_migrate() to take folios
Convert all callers of mem_cgroup_migrate() to call page_folio() first.
They all look like they're using head pages already, but this proves it.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: David Howells <dhowells@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
2021-09-27 09:27:31 -04:00
Matthew Wilcox (Oracle) 8f425e4ed0 mm/memcg: Convert mem_cgroup_charge() to take a folio
Convert all callers of mem_cgroup_charge() to call page_folio() on the
page they're currently passing in.  Many of them will be converted to
use folios themselves soon.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Howells <dhowells@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
2021-09-27 09:27:31 -04:00
Arnd Bergmann 59ab844eed compat: remove some compat entry points
These are all handled correctly when calling the native system call entry
point, so remove the special cases.

Link: https://lkml.kernel.org/r/20210727144859.4150043-6-arnd@kernel.org
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Feng Tang <feng.tang@intel.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 15:32:35 -07:00
Arnd Bergmann 5b1b561ba7 mm: simplify compat_sys_move_pages
The compat move_pages() implementation uses compat_alloc_user_space() for
converting the pointer array.  Moving the compat handling into the
function itself is a bit simpler and lets us avoid the
compat_alloc_user_space() call.

Link: https://lkml.kernel.org/r/20210727144859.4150043-4-arnd@kernel.org
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Feng Tang <feng.tang@intel.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 15:32:34 -07:00
Baolin Wang 213ecb3157 mm: migrate: change to use bool type for 'page_was_mapped'
Change to use bool type for 'page_was_mapped' variable making it more
readable.

Link: https://lkml.kernel.org/r/ce1279df18d2c163998c403e0b5ec6d3f6f90f7a.1629447552.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 15:32:34 -07:00
Baolin Wang 68a9843f14 mm: migrate: fix the incorrect function name in comments
since commit a98a2f0c8c ("mm/rmap: split migration into its own
function"), the migration ptes establishment has been split into a
separate try_to_migrate() function, thus update the related comments.

Link: https://lkml.kernel.org/r/5b824bad6183259c916ae6cf42f81d14c6118b06.1629447552.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: Alistair Popple <apopple@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 15:32:34 -07:00
Baolin Wang 2b9b624f5a mm: migrate: introduce a local variable to get the number of pages
Use thp_nr_pages() instead of compound_nr() to get the number of pages for
THP page, meanwhile introducing a local variable 'nr_pages' to avoid
getting the number of pages repeatedly.

Link: https://lkml.kernel.org/r/a8e331ac04392ee230c79186330fb05e86a2aa77.1629447552.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 15:32:34 -07:00
Randy Dunlap c9bd7d1836 mm/migrate: correct kernel-doc notation
Use the expected "Return:" format to prevent a kernel-doc warning.

mm/migrate.c:1157: warning: Excess function parameter 'returns' description in 'next_demotion_node'

Link: https://lkml.kernel.org/r/20210808203151.10632-1-rdunlap@infradead.org
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 09:58:18 -07:00
Yang Shi 5ac95884a7 mm/migrate: enable returning precise migrate_pages() success count
Under normal circumstances, migrate_pages() returns the number of pages
migrated.  In error conditions, it returns an error code.  When returning
an error code, there is no way to know how many pages were migrated or not
migrated.

Make migrate_pages() return how many pages are demoted successfully for
all cases, including when encountering errors.  Page reclaim behavior will
depend on this in subsequent patches.

Link: https://lkml.kernel.org/r/20210721063926.3024591-3-ying.huang@intel.com
Link: https://lkml.kernel.org/r/20210715055145.195411-4-ying.huang@intel.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Suggested-by: Oscar Salvador <osalvador@suse.de> [optional parameter]
Reviewed-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Wei Xu <weixugc@google.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Keith Busch <kbusch@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 09:58:16 -07:00
Dave Hansen 884a6e5d1f mm/migrate: update node demotion order on hotplug events
Reclaim-based migration is attempting to optimize data placement in memory
based on the system topology.  If the system changes, so must the
migration ordering.

The implementation is conceptually simple and entirely unoptimized.  On
any memory or CPU hotplug events, assume that a node was added or removed
and recalculate all migration targets.  This ensures that the
node_demotion[] array is always ready to be used in case the new reclaim
mode is enabled.

This recalculation is far from optimal, most glaringly that it does not
even attempt to figure out the hotplug event would have some *actual*
effect on the demotion order.  But, given the expected paucity of hotplug
events, this should be fine.

Link: https://lkml.kernel.org/r/20210721063926.3024591-2-ying.huang@intel.com
Link: https://lkml.kernel.org/r/20210715055145.195411-3-ying.huang@intel.com
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Wei Xu <weixugc@google.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Keith Busch <kbusch@kernel.org>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 09:58:16 -07:00
Dave Hansen 79c28a4167 mm/numa: automatically generate node migration order
Patch series "Migrate Pages in lieu of discard", v11.

We're starting to see systems with more and more kinds of memory such as
Intel's implementation of persistent memory.

Let's say you have a system with some DRAM and some persistent memory.
Today, once DRAM fills up, reclaim will start and some of the DRAM
contents will be thrown out.  Allocations will, at some point, start
falling over to the slower persistent memory.

That has two nasty properties.  First, the newer allocations can end up in
the slower persistent memory.  Second, reclaimed data in DRAM are just
discarded even if there are gobs of space in persistent memory that could
be used.

This patchset implements a solution to these problems.  At the end of the
reclaim process in shrink_page_list() just before the last page refcount
is dropped, the page is migrated to persistent memory instead of being
dropped.

While I've talked about a DRAM/PMEM pairing, this approach would function
in any environment where memory tiers exist.

This is not perfect.  It "strands" pages in slower memory and never brings
them back to fast DRAM.  Huang Ying has follow-on work which repurposes
NUMA balancing to promote hot pages back to DRAM.

This is also all based on an upstream mechanism that allows persistent
memory to be onlined and used as if it were volatile:

	http://lkml.kernel.org/r/20190124231441.37A4A305@viggo.jf.intel.com

With that, the DRAM and PMEM in each socket will be represented as 2
separate NUMA nodes, with the CPUs sit in the DRAM node.  So the
general inter-NUMA demotion mechanism introduced in the patchset can
migrate the cold DRAM pages to the PMEM node.

We have tested the patchset with the postgresql and pgbench.  On a
2-socket server machine with DRAM and PMEM, the kernel with the patchset
can improve the score of pgbench up to 22.1% compared with that of the
DRAM only + disk case.  This comes from the reduced disk read throughput
(which reduces up to 70.8%).

== Open Issues ==

 * Memory policies and cpusets that, for instance, restrict allocations
   to DRAM can be demoted to PMEM whenever they opt in to this
   new mechanism.  A cgroup-level API to opt-in or opt-out of
   these migrations will likely be required as a follow-on.
 * Could be more aggressive about where anon LRU scanning occurs
   since it no longer necessarily involves I/O.  get_scan_count()
   for instance says: "If we have no swap space, do not bother
   scanning anon pages"

This patch (of 9):

Prepare for the kernel to auto-migrate pages to other memory nodes with a
node migration table.  This allows creating single migration target for
each NUMA node to enable the kernel to do NUMA page migrations instead of
simply discarding colder pages.  A node with no target is a "terminal
node", so reclaim acts normally there.  The migration target does not
fundamentally _need_ to be a single node, but this implementation starts
there to limit complexity.

When memory fills up on a node, memory contents can be automatically
migrated to another node.  The biggest problems are knowing when to
migrate and to where the migration should be targeted.

The most straightforward way to generate the "to where" list would be to
follow the page allocator fallback lists.  Those lists already tell us if
memory is full where to look next.  It would also be logical to move
memory in that order.

But, the allocator fallback lists have a fatal flaw: most nodes appear in
all the lists.  This would potentially lead to migration cycles (A->B,
B->A, A->B, ...).

Instead of using the allocator fallback lists directly, keep a separate
node migration ordering.  But, reuse the same data used to generate page
allocator fallback in the first place: find_next_best_node().

This means that the firmware data used to populate node distances
essentially dictates the ordering for now.  It should also be
architecture-neutral since all NUMA architectures have a working
find_next_best_node().

RCU is used to allow lock-less read of node_demotion[] and prevent
demotion cycles been observed.  If multiple reads of node_demotion[] are
performed, a single rcu_read_lock() must be held over all reads to ensure
no cycles are observed.  Details are as follows.

=== What does RCU provide? ===

Imagine a simple loop which walks down the demotion path looking
for the last node:

        terminal_node = start_node;
        while (node_demotion[terminal_node] != NUMA_NO_NODE) {
                terminal_node = node_demotion[terminal_node];
        }

The initial values are:

        node_demotion[0] = 1;
        node_demotion[1] = NUMA_NO_NODE;

and are updated to:

        node_demotion[0] = NUMA_NO_NODE;
        node_demotion[1] = 0;

What guarantees that the cycle is not observed:

        node_demotion[0] = 1;
        node_demotion[1] = 0;

and would loop forever?

With RCU, a rcu_read_lock/unlock() can be placed around the loop.  Since
the write side does a synchronize_rcu(), the loop that observed the old
contents is known to be complete before the synchronize_rcu() has
completed.

RCU, combined with disable_all_migrate_targets(), ensures that the old
migration state is not visible by the time __set_migration_target_nodes()
is called.

=== What does READ_ONCE() provide? ===

READ_ONCE() forbids the compiler from merging or reordering successive
reads of node_demotion[].  This ensures that any updates are *eventually*
observed.

Consider the above loop again.  The compiler could theoretically read the
entirety of node_demotion[] into local storage (registers) and never go
back to memory, and *permanently* observe bad values for node_demotion[].

Note: RCU does not provide any universal compiler-ordering
guarantees:

	https://lore.kernel.org/lkml/20150921204327.GH4029@linux.vnet.ibm.com/

This code is unused for now.  It will be called later in the
series.

Link: https://lkml.kernel.org/r/20210721063926.3024591-1-ying.huang@intel.com
Link: https://lkml.kernel.org/r/20210715055145.195411-1-ying.huang@intel.com
Link: https://lkml.kernel.org/r/20210715055145.195411-2-ying.huang@intel.com
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Wei Xu <weixugc@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Keith Busch <kbusch@kernel.org>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 09:58:16 -07:00
Aneesh Kumar K.V b5916c0254 mm/migrate: fix NR_ISOLATED corruption on 64-bit
Similar to commit 2da9f6305f ("mm/vmscan: fix NR_ISOLATED_FILE
corruption on 64-bit") avoid using unsigned int for nr_pages.  With
unsigned int type the large unsigned int converts to a large positive
signed long.

Symptoms include CMA allocations hanging forever due to
alloc_contig_range->...->isolate_migratepages_block waiting forever in
"while (unlikely(too_many_isolated(pgdat)))".

Link: https://lkml.kernel.org/r/20210728042531.359409-1-aneesh.kumar@linux.ibm.com
Fixes: c5fc5c3ae0 ("mm: migrate: account THP NUMA migration counters correctly")
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reported-by: Michael Ellerman <mpe@ellerman.id.au>
Reported-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-30 10:14:39 -07:00
Matthew Wilcox (Oracle) 79789db03f mm: Make copy_huge_page() always available
Rewrite copy_huge_page() and move it into mm/util.c so it's always
available.  Fixes an exposure of uninitialised memory on configurations
with HUGETLB and UFFD enabled and MIGRATION disabled.

Fixes: 8cc5fcbb5b ("mm, hugetlb: fix racy resv_huge_pages underflow on UFFDIO_COPY")
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-12 11:30:56 -07:00
Alistair Popple 6b49bf6ddb mm: rename migrate_pgmap_owner
MMU notifier ranges have a migrate_pgmap_owner field which is used by
drivers to store a pointer.  This is subsequently used by the driver
callback to filter MMU_NOTIFY_MIGRATE events.  Other notifier event types
can also benefit from this filtering, so rename the 'migrate_pgmap_owner'
field to 'owner' and create a new notifier initialisation function to
initialise this field.

Link: https://lkml.kernel.org/r/20210616105937.23201-6-apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Suggested-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 11:06:03 -07:00
Alistair Popple a98a2f0c8c mm/rmap: split migration into its own function
Migration is currently implemented as a mode of operation for
try_to_unmap_one() generally specified by passing the TTU_MIGRATION flag
or in the case of splitting a huge anonymous page TTU_SPLIT_FREEZE.

However it does not have much in common with the rest of the unmap
functionality of try_to_unmap_one() and thus splitting it into a separate
function reduces the complexity of try_to_unmap_one() making it more
readable.

Several simplifications can also be made in try_to_migrate_one() based on
the following observations:

 - All users of TTU_MIGRATION also set TTU_IGNORE_MLOCK.
 - No users of TTU_MIGRATION ever set TTU_IGNORE_HWPOISON.
 - No users of TTU_MIGRATION ever set TTU_BATCH_FLUSH.

TTU_SPLIT_FREEZE is a special case of migration used when splitting an
anonymous page.  This is most easily dealt with by calling the correct
function from unmap_page() in mm/huge_memory.c - either try_to_migrate()
for PageAnon or try_to_unmap().

Link: https://lkml.kernel.org/r/20210616105937.23201-5-apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 11:06:03 -07:00
Alistair Popple 4dd845b5a3 mm/swapops: rework swap entry manipulation code
Both migration and device private pages use special swap entries that are
manipluated by a range of inline functions.  The arguments to these are
somewhat inconsistent so rework them to remove flag type arguments and to
make the arguments similar for both read and write entry creation.

Link: https://lkml.kernel.org/r/20210616105937.23201-3-apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 11:06:03 -07:00
Alistair Popple af5cdaf822 mm: remove special swap entry functions
Patch series "Add support for SVM atomics in Nouveau", v11.

Introduction
============

Some devices have features such as atomic PTE bits that can be used to
implement atomic access to system memory.  To support atomic operations to
a shared virtual memory page such a device needs access to that page which
is exclusive of the CPU.  This series introduces a mechanism to
temporarily unmap pages granting exclusive access to a device.

These changes are required to support OpenCL atomic operations in Nouveau
to shared virtual memory (SVM) regions allocated with the
CL_MEM_SVM_ATOMICS clSVMAlloc flag.  A more complete description of the
OpenCL SVM feature is available at
https://www.khronos.org/registry/OpenCL/specs/3.0-unified/html/
OpenCL_API.html#_shared_virtual_memory .

Implementation
==============

Exclusive device access is implemented by adding a new swap entry type
(SWAP_DEVICE_EXCLUSIVE) which is similar to a migration entry.  The main
difference is that on fault the original entry is immediately restored by
the fault handler instead of waiting.

Restoring the entry triggers calls to MMU notifers which allows a device
driver to revoke the atomic access permission from the GPU prior to the
CPU finalising the entry.

Patches
=======

Patches 1 & 2 refactor existing migration and device private entry
functions.

Patches 3 & 4 rework try_to_unmap_one() by splitting out unrelated
functionality into separate functions - try_to_migrate_one() and
try_to_munlock_one().

Patch 5 renames some existing code but does not introduce functionality.

Patch 6 is a small clean-up to swap entry handling in copy_pte_range().

Patch 7 contains the bulk of the implementation for device exclusive
memory.

Patch 8 contains some additions to the HMM selftests to ensure everything
works as expected.

Patch 9 is a cleanup for the Nouveau SVM implementation.

Patch 10 contains the implementation of atomic access for the Nouveau
driver.

Testing
=======

This has been tested with upstream Mesa 21.1.0 and a simple OpenCL program
which checks that GPU atomic accesses to system memory are atomic.
Without this series the test fails as there is no way of write-protecting
the page mapping which results in the device clobbering CPU writes.  For
reference the test is available at
https://ozlabs.org/~apopple/opencl_svm_atomics/

Further testing has been performed by adding support for testing exclusive
access to the hmm-tests kselftests.

This patch (of 10):

Remove multiple similar inline functions for dealing with different types
of special swap entries.

Both migration and device private swap entries use the swap offset to
store a pfn.  Instead of multiple inline functions to obtain a struct page
for each swap entry type use a common function pfn_swap_entry_to_page().
Also open-code the various entry_to_pfn() functions as this results is
shorter code that is easier to understand.

Link: https://lkml.kernel.org/r/20210616105937.23201-1-apopple@nvidia.com
Link: https://lkml.kernel.org/r/20210616105937.23201-2-apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 11:06:03 -07:00
Yang Shi 662aeea753 mm: migrate: check mapcount for THP instead of refcount
The generic migration path will check refcount, so no need check refcount
here.  But the old code actually prevents from migrating shared THP
(mapped by multiple processes), so bail out early if mapcount is > 1 to
keep the behavior.

Link: https://lkml.kernel.org/r/20210518200801.7413-7-shy828301@gmail.com
Signed-off-by: Yang Shi <shy828301@gmail.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30 20:47:30 -07:00
Yang Shi b0b515bfb3 mm: migrate: don't split THP for misplaced NUMA page
The old behavior didn't split THP if migration is failed due to lack of
memory on the target node.  But the THP migration does split THP, so keep
the old behavior for misplaced NUMA page migration.

Link: https://lkml.kernel.org/r/20210518200801.7413-6-shy828301@gmail.com
Signed-off-by: Yang Shi <shy828301@gmail.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30 20:47:30 -07:00
Yang Shi c5fc5c3ae0 mm: migrate: account THP NUMA migration counters correctly
Now both base page and THP NUMA migration is done via
migrate_misplaced_page(), keep the counters correctly for THP.

Link: https://lkml.kernel.org/r/20210518200801.7413-5-shy828301@gmail.com
Signed-off-by: Yang Shi <shy828301@gmail.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30 20:47:30 -07:00
Yang Shi c5b5a3dd2c mm: thp: refactor NUMA fault handling
When the THP NUMA fault support was added THP migration was not supported
yet.  So the ad hoc THP migration was implemented in NUMA fault handling.
Since v4.14 THP migration has been supported so it doesn't make too much
sense to still keep another THP migration implementation rather than using
the generic migration code.

This patch reworks the NUMA fault handling to use generic migration
implementation to migrate misplaced page.  There is no functional change.

After the refactor the flow of NUMA fault handling looks just like its
PTE counterpart:
  Acquire ptl
  Prepare for migration (elevate page refcount)
  Release ptl
  Isolate page from lru and elevate page refcount
  Migrate the misplaced THP

If migration fails just restore the old normal PMD.

In the old code anon_vma lock was needed to serialize THP migration
against THP split, but since then the THP code has been reworked a lot, it
seems anon_vma lock is not required anymore to avoid the race.

The page refcount elevation when holding ptl should prevent from THP
split.

Use migrate_misplaced_page() for both base page and THP NUMA hinting fault
and remove all the dead and duplicate code.

[dan.carpenter@oracle.com: fix a double unlock bug]
  Link: https://lkml.kernel.org/r/YLX8uYN01JmfLnlK@mwanda

Link: https://lkml.kernel.org/r/20210518200801.7413-4-shy828301@gmail.com
Signed-off-by: Yang Shi <shy828301@gmail.com>
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30 20:47:30 -07:00
Muchun Song 6acfb5ba15 mm: migrate: fix missing update page_private to hugetlb_page_subpool
Since commit d6995da311 ("hugetlb: use page.private for hugetlb specific
page flags") converts page.private for hugetlb specific page flags.  We
should use hugetlb_page_subpool() to get the subpool pointer instead of
page_private().

This 'could' prevent the migration of hugetlb pages.  page_private(hpage)
is now used for hugetlb page specific flags.  At migration time, the only
flag which could be set is HPageVmemmapOptimized.  This flag will only be
set if the new vmemmap reduction feature is enabled.  In addition,
!page_mapping() implies an anonymous mapping.  So, this will prevent
migration of hugetb pages in anonymous mappings if the vmemmap reduction
feature is enabled.

In addition, that if statement checked for the rare race condition of a
page being migrated while in the process of being freed.  Since that check
is now wrong, we could leak hugetlb subpool usage counts.

The commit forgot to update it in the page migration routine.  So fix it.

[songmuchun@bytedance.com: fix compiler error when !CONFIG_HUGETLB_PAGE reported by Randy]
  Link: https://lkml.kernel.org/r/20210521022747.35736-1-songmuchun@bytedance.com

Link: https://lkml.kernel.org/r/20210520025949.1866-1-songmuchun@bytedance.com
Fixes: d6995da311 ("hugetlb: use page.private for hugetlb specific page flags")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reported-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Tested-by: Anshuman Khandual <anshuman.khandual@arm.com>	[arm64]
Cc: Oscar Salvador <osalvador@suse.de>
Cc: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30 20:47:29 -07:00
Mina Almasry 8cc5fcbb5b mm, hugetlb: fix racy resv_huge_pages underflow on UFFDIO_COPY
On UFFDIO_COPY, if we fail to copy the page contents while holding the
hugetlb_fault_mutex, we will drop the mutex and return to the caller after
allocating a page that consumed a reservation.  In this case there may be
a fault that double consumes the reservation.  To handle this, we free the
allocated page, fix the reservations, and allocate a temporary hugetlb
page and return that to the caller.  When the caller does the copy outside
of the lock, we again check the cache, and allocate a page consuming the
reservation, and copy over the contents.

Test:
Hacked the code locally such that resv_huge_pages underflows produce
a warning and the copy_huge_page_from_user() always fails, then:

./tools/testing/selftests/vm/userfaultfd hugetlb_shared 10
        2 /tmp/kokonut_test/huge/userfaultfd_test && echo test success
./tools/testing/selftests/vm/userfaultfd hugetlb 10
	2 /tmp/kokonut_test/huge/userfaultfd_test && echo test success

Both tests succeed and produce no warnings. After the
test runs number of free/resv hugepages is correct.

[yuehaibing@huawei.com: remove set but not used variable 'vm_alloc_shared']
  Link: https://lkml.kernel.org/r/20210601141610.28332-1-yuehaibing@huawei.com
[almasrymina@google.com: fix allocation error check and copy func name]
  Link: https://lkml.kernel.org/r/20210605010626.1459873-1-almasrymina@google.com

Link: https://lkml.kernel.org/r/20210528005029.88088-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30 20:47:26 -07:00
Christophe Leroy 79c1c594f4 mm/hugetlb: change parameters of arch_make_huge_pte()
Patch series "Subject: [PATCH v2 0/5] Implement huge VMAP and VMALLOC on powerpc 8xx", v2.

This series implements huge VMAP and VMALLOC on powerpc 8xx.

Powerpc 8xx has 4 page sizes:
- 4k
- 16k
- 512k
- 8M

At the time being, vmalloc and vmap only support huge pages which are
leaf at PMD level.

Here the PMD level is 4M, it doesn't correspond to any supported
page size.

For now, implement use of 16k and 512k pages which is done
at PTE level.

Support of 8M pages will be implemented later, it requires use of
hugepd tables.

To allow this, the architecture provides two functions:
- arch_vmap_pte_range_map_size() which tells vmap_pte_range() what
page size to use. A stub returning PAGE_SIZE is provided when the
architecture doesn't provide this function.
- arch_vmap_pte_supported_shift() which tells __vmalloc_node_range()
what page shift to use for a given area size. A stub returning
PAGE_SHIFT is provided when the architecture doesn't provide this
function.

This patch (of 5):

At the time being, arch_make_huge_pte() has the following prototype:

  pte_t arch_make_huge_pte(pte_t entry, struct vm_area_struct *vma,
			   struct page *page, int writable);

vma is used to get the pages shift or size.
vma is also used on Sparc to get vm_flags.
page is not used.
writable is not used.

In order to use this function without a vma, replace vma by shift and
flags.  Also remove the used parameters.

Link: https://lkml.kernel.org/r/cover.1620795204.git.christophe.leroy@csgroup.eu
Link: https://lkml.kernel.org/r/f4633ac6a7da2f22f31a04a89e0a7026bb78b15b.1620795204.git.christophe.leroy@csgroup.eu
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Uladzislau Rezki <uladzislau.rezki@sony.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30 20:47:26 -07:00
Muchun Song ad2fa3717b mm: hugetlb: alloc the vmemmap pages associated with each HugeTLB page
When we free a HugeTLB page to the buddy allocator, we need to allocate
the vmemmap pages associated with it.  However, we may not be able to
allocate the vmemmap pages when the system is under memory pressure.  In
this case, we just refuse to free the HugeTLB page.  This changes behavior
in some corner cases as listed below:

 1) Failing to free a huge page triggered by the user (decrease nr_pages).

    User needs to try again later.

 2) Failing to free a surplus huge page when freed by the application.

    Try again later when freeing a huge page next time.

 3) Failing to dissolve a free huge page on ZONE_MOVABLE via
    offline_pages().

    This can happen when we have plenty of ZONE_MOVABLE memory, but
    not enough kernel memory to allocate vmemmmap pages.  We may even
    be able to migrate huge page contents, but will not be able to
    dissolve the source huge page.  This will prevent an offline
    operation and is unfortunate as memory offlining is expected to
    succeed on movable zones.  Users that depend on memory hotplug
    to succeed for movable zones should carefully consider whether the
    memory savings gained from this feature are worth the risk of
    possibly not being able to offline memory in certain situations.

 4) Failing to dissolve a huge page on CMA/ZONE_MOVABLE via
    alloc_contig_range() - once we have that handling in place. Mainly
    affects CMA and virtio-mem.

    Similar to 3). virito-mem will handle migration errors gracefully.
    CMA might be able to fallback on other free areas within the CMA
    region.

Vmemmap pages are allocated from the page freeing context.  In order for
those allocations to be not disruptive (e.g.  trigger oom killer)
__GFP_NORETRY is used.  hugetlb_lock is dropped for the allocation because
a non sleeping allocation would be too fragile and it could fail too
easily under memory pressure.  GFP_ATOMIC or other modes to access memory
reserves is not used because we want to prevent consuming reserves under
heavy hugetlb freeing.

[mike.kravetz@oracle.com: fix dissolve_free_huge_page use of tail/head page]
  Link: https://lkml.kernel.org/r/20210527231225.226987-1-mike.kravetz@oracle.com
[willy@infradead.org: fix alloc_vmemmap_page_list documentation warning]
  Link: https://lkml.kernel.org/r/20210615200242.1716568-6-willy@infradead.org

Link: https://lkml.kernel.org/r/20210510030027.56044-7-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Barry Song <song.bao.hua@hisilicon.com>
Cc: Bodeddula Balasubramaniam <bodeddub@amazon.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Chen Huang <chenhuang5@huawei.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Oliver Neukum <oneukum@suse.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30 20:47:25 -07:00
Liam Howlett 059b8b4875 mm/migrate: use vma_lookup() in do_pages_stat_array()
Use vma_lookup() to find the VMA at a specific address.  As vma_lookup()
will return NULL if the address is not within any VMA, the start address
no longer needs to be validated.

Link: https://lkml.kernel.org/r/20210521174745.2219620-20-Liam.Howlett@Oracle.com
Signed-off-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Davidlohr Bueso <dbueso@suse.de>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 10:53:52 -07:00
Xu Yu ffc90cbb29 mm, thp: use head page in __migration_entry_wait()
We notice that hung task happens in a corner but practical scenario when
CONFIG_PREEMPT_NONE is enabled, as follows.

Process 0                       Process 1                     Process 2..Inf
split_huge_page_to_list
    unmap_page
        split_huge_pmd_address
                                __migration_entry_wait(head)
                                                              __migration_entry_wait(tail)
    remap_page (roll back)
        remove_migration_ptes
            rmap_walk_anon
                cond_resched

Where __migration_entry_wait(tail) is occurred in kernel space, e.g.,
copy_to_user in fstat, which will immediately fault again without
rescheduling, and thus occupy the cpu fully.

When there are too many processes performing __migration_entry_wait on
tail page, remap_page will never be done after cond_resched.

This makes __migration_entry_wait operate on the compound head page,
thus waits for remap_page to complete, whether the THP is split
successfully or roll back.

Note that put_and_wait_on_page_locked helps to drop the page reference
acquired with get_page_unless_zero, as soon as the page is on the wait
queue, before actually waiting.  So splitting the THP is only prevented
for a brief interval.

Link: https://lkml.kernel.org/r/b9836c1dd522e903891760af9f0c86a2cce987eb.1623144009.git.xuyu@linux.alibaba.com
Fixes: ba98828088 ("thp: add option to setup migration entries during PMD split")
Suggested-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Gang Deng <gavin.dg@linux.alibaba.com>
Signed-off-by: Xu Yu <xuyu@linux.alibaba.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-16 09:24:42 -07:00