At this moment the following is supported:
* Link state management through phylib
* Autonomous L2 forwarding managed through iproute2 bridge commands.
IP termination must be done currently through the master netdevice,
since the switch is unmanaged at this point and using
DSA_TAG_PROTO_NONE.
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: Georg Waibel <georg.waibel@sensor-technik.de>
Acked-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This adds the DSA driver for the GSWIP Switch found in the VRX200 SoC.
This switch is integrated in the DSL SoC, this SoC uses a GSWIP version
2.1, there are other SoCs using different versions of this IP block, but
this driver was only tested with the version found in the VRX200.
Currently only the basic features are implemented which will forward all
packages to the CPU and let the CPU do the forwarding. The hardware also
support Layer 2 offloading which is not yet implemented in this driver.
The GPHY FW loaded is now done by this driver and not any more by the
separate driver in drivers/soc/lantiq/gphy.c, I will remove this driver
is a separate patch. to make use of the GPHY this switch driver is
needed anyway. Other SoCs have more embedded GPHYs so this driver should
support a variable number of GPHYs. After the firmware was loaded the
GPHY can be probed on the MDIO bus and it behaves like an external GPHY,
without the firmware it can not be probed on the MDIO bus.
The clock names in the sysctrl.c file have to be changed because the
clocks are now used by a different driver. This should be cleaned up and
a real common clock driver should provide the clocks instead.
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
This adds a driver core for the Realtek SMI chips and a
subdriver for the RTL8366RB. I just added this chip simply
because it is all I can test.
The code is a massaged variant of the code that has been
sitting out-of-tree in OpenWRT for years in the absence of
a proper switch subsystem. This creates a DSA driver for it.
I have tried to credit the original authors wherever
possible.
The main changes I've done from the OpenWRT code:
- Added an IRQ chip inside the RTL8366RB switch to demux and
handle the line state IRQs.
- Distributed the phy handling out to the PHY driver.
- Added some RTL8366RB code that was missing in the driver at
the time, such as setting up "green ethernet" with a funny
jam table and forcing MAC5 (the CPU port) into 1 GBit.
- Select jam table and add the default jam table from the
vendor driver, also for ASIC "version 0" if need be.
- Do not store jam tables in the device tree, store them
in the driver.
- Pick in the "initvals" jam tables from OpenWRT's driver
and make those get selected per compatible for the
whole system. It's apparently about electrical settings
for this system and whatnot, not really configuration
from device tree.
- Implemented LED control: beware of bugs because there are
no LEDs on the device I am using!
We do not implement custom DSA tags. This is explained in
a comment in the driver as well: this "tagging protocol" is
not simply a few extra bytes tagged on to the ethernet
frame as DSA is used to. Instead, enabling the CPU tags
will make the switch start talking Realtek RRCP internally.
For example a simple ping will make this kind of packets
appear inside the switch:
0000 ff ff ff ff ff ff bc ae c5 6b a8 3d 88 99 a2 00
0010 08 06 00 01 08 00 06 04 00 01 bc ae c5 6b a8 3d
0020 a9 fe 01 01 00 00 00 00 00 00 a9 fe 01 02 00 00
0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
As you can see a custom "8899" tagged packet using the
protocol 0xa2. Norm RRCP appears to always have this
protocol set to 0x01 according to OpenRRCP. You can also
see that this is not a ping packet at all, instead the
switch is starting to talk network management issues
with the CPU port.
So for now custom "tagging" is disabled.
This was tested on the D-Link DIR-685 with initramfs and
OpenWRT userspaces and works fine on all the LAN ports
(lan0 .. lan3). The WAN port is yet not working.
Cc: Antti Seppälä <a.seppala@gmail.com>
Cc: Roman Yeryomin <roman@advem.lv>
Cc: Colin Leitner <colin.leitner@googlemail.com>
Cc: Gabor Juhos <juhosg@openwrt.org>
Cc: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
This adds a DSA driver for:
Vitesse VSC7385 SparX-G5 5-port Integrated Gigabit Ethernet Switch
Vitesse VSC7388 SparX-G8 8-port Integrated Gigabit Ethernet Switch
Vitesse VSC7395 SparX-G5e 5+1-port Integrated Gigabit Ethernet Switch
Vitesse VSC7398 SparX-G8e 8-port Integrated Gigabit Ethernet Switch
These switches have a built-in 8051 CPU and can download and execute
firmware in this CPU. They can also be configured to use an external
CPU handling the switch in a memory-mapped manner by connecting to
that external CPU's memory bus.
This driver (currently) only takes control of the switch chip over
SPI and configures it to route packages around when connected to a
CPU port. The chip has embedded PHYs and VLAN support so we model it
using DSA as a best fit so we can easily add VLAN support and maybe
later also exploit the internal frame header to get more direct
control over the switch.
The four built-in GPIO lines are exposed using a standard GPIO chip.
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
We have a functional dependency on the FIXED_PHY MDIO bus because we register
fixed PHY devices "the old way" which only works if the code that does this has
had a chance to run before the fixed MDIO bus is probed. Make sure we account
for that and have dsa_loop_bdinfo.o be either built-in or modular depending on
whether CONFIG_FIXED_PHY reflects that too.
Fixes: 98cd1552ea ("net: dsa: Mock-up driver")
Signed-off-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The KSZ9477 is a fully integrated layer 2, managed, 7 ports GigE switch
with numerous advanced features. 5 ports incorporate 10/100/1000 Mbps PHYs.
The other 2 ports have interfaces that can be configured as SGMII, RGMII, MII
or RMII. Either of these may connect directly to a host processor or
to an external PHY. The SGMII port may interface to a fiber optic transceiver.
This driver currently supports vlan, fdb, mdb & mirror dsa switch operations.
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Woojung Huh <Woojung.Huh@microchip.com>
Reviewed-by: Andrew Lunn <andrew@lunn.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
With more drivers being added, it is time to sort the drivers to
impose some order.
Signed-off-by: Andrew Lunn <andrew@lunn.ch>
Reviewed-by: Vivien Didelot <vivien.didelot@savoirfairelinux.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When the LAN9303 device is in MDIO manged mode, all register accesses must
be done via MDIO.
Please note: this code is compile time tested only due to the absence of such
configured hardware. It is based on a patch from Stefan Roese from 2014.
Signed-off-by: Juergen Borleis <jbe@pengutronix.de>
CC: devicetree@vger.kernel.org
CC: robh+dt@kernel.org
CC: mark.rutland@arm.com
CC: sr@denx.de
Acked-by: Rob Herring <robh@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
In this mode the switch device and the internal phys will be managed via
I2C interface. The MDIO interface is still supported, but for the
(emulated) CPU port only.
Signed-off-by: Juergen Borleis <jbe@pengutronix.de>
CC: devicetree@vger.kernel.org
CC: robh+dt@kernel.org
CC: mark.rutland@arm.com
Acked-by: Rob Herring <robh@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
MT7530 is a 7-ports Gigabit Ethernet Switch that could be found on
Mediatek router platforms such as MT7623A or MT7623N platform which
includes 7-port Gigabit Ethernet MAC and 5-port Gigabit Ethernet PHY.
Among these ports, The port from 0 to 4 are the user ports connecting
with the remote devices while the port 5 and 6 are the CPU ports
connecting into Mediatek Ethernet GMAC.
For port 6, it can communicate with the CPU via Mediatek Ethernet GMAC
through either the TRGMII or RGMII which could be controlled by phy-mode
in the dt-bindings to specify which mode is preferred to use. And for
port 5, only RGMII can be specified. However, currently, only port 6 is
being supported in this DSA driver.
The driver is made with the reference to qca8k and other existing DSA
driver. The most of the essential callbacks of the DSA are already
support in the driver, including tag insert for user port distinguishing,
port control, bridge offloading, STP setup and ethtool operation to allow
DSA to model each user port into a standalone netdevice as the other DSA
driver had done.
Signed-off-by: Sean Wang <sean.wang@mediatek.com>
Signed-off-by: Landen Chao <Landen.Chao@mediatek.com>
Reviewed-by: Andrew Lunn <andrew@lunn.ch>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch adds support for a DSA mock-up driver which essentially does
the following:
- registers/unregisters 4 fixed PHYs to the slave network devices
- uses eth0 (configurable) as the master netdev
- registers the switch as a fixed MDIO device against the fixed MDIO bus
at address 31
- includes dynamic debug prints for dsa_switch_ops functions that can be
enabled to get call traces
This is a good way to test modular builds as well as exercise the DSA
APIs without requiring access to real hardware. This does not test the
data-path, although this could be added later on.
Signed-off-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Commit 7318166cac ("net: dsa: bcm_sf2: Add support for
ethtool::rxnfc") added a new object to build: bcm_sf2_cfp.o, but in
doing so, we essentially just built this object and no longer bcm_sf2.o.
Fix this by creating a module named bcm-sf2.ko which links in bcm_sf2.o
and bcm_sf2_cfp.o.
Fixes: 7318166cac ("net: dsa: bcm_sf2: Add support for ethtool::rxnfc")
Signed-off-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add support for configuring classification rules using the
ethtool::rxnfc API. This is useful to program the switch's CFP/TCAM to
redirect specific packets to specific ports/queues for instance. For
now, we allow any kind of IPv4 5-tuple matching.
Signed-off-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch contains initial support for the QCA8337 switch. It
will detect a QCA8337 switch, if present and declared in the DT.
Each port will be represented through a standalone net_device interface,
as for other DSA switches. CPU can communicate with any of the ports by
setting an IP@ on ethN interface. Most of the extra callbacks of the DSA
subsystem are already supported, such as bridge offloading, stp, fdb.
Signed-off-by: John Crispin <john@phrozen.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
With the upcoming support for cross-chip operations and other mv88e6xxx
enhancements, new files will be added.
Similarly to mlxsw or b53, move mv88e6xxx files into their own folder.
In the meantime, update the MAINTAINERS entry to please checkpatch.pl,
by replacing the invalid 88E6352 entry with 88E6XXX, maintained by
Andrew and myself.
Signed-off-by: Vivien Didelot <vivien.didelot@savoirfairelinux.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch adds support for Broadcom's BCM53xx switch family, also known
as RoboSwitch. Some of these switches are ubiquituous, found in home
routers, Wi-Fi routers, DSL and cable modem gateways and other
networking related products.
This drivers adds the library driver (b53_common.c) as well as a few bus
glue drivers for MDIO, SPI, Switch Register Access Block (SRAB) and
memory-mapped I/O into a SoC's address space (Broadcom BCM63xx/33xx).
Basic operations are supported to bring the Layer 1/2 up and running,
but not much more at this point, subsequent patches add the remaining
features.
Signed-off-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Now that all drivers support the same set of functions and the same
setup code, drop every model-specific DSA switch driver and replace them
with a common mv88e6xxx driver.
This merges the info tables into one, removes the function exports, the
model-specific files, and update the defconfigs.
Signed-off-by: Vivien Didelot <vivien.didelot@savoirfairelinux.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
All the drivers support multiple chips, but mv88e6123_61_65 is the
only one that reflects this in its naming. Change it to be consistent
with the other drivers.
Signed-off-by: Andrew Lunn <andrew@lunn.ch>
Reviewed-by: Vivien Didelot <vivien.didelot@savoirfairelinux.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Marvell 88E6352 is mostly compatible to MV88E6123/61/65,
but requires indirect phy access. Also, its configuration
registers are a bit different.
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
This is the Marvell driver with some cleanups by Claudio Leite
and myself.
Signed-off-by: Andrew Lunn <andrew@lunn.ch>
Cc: Claudio Leite <leitec@staticky.com>
Signed-off-by: Claudio Leite <leitec@staticky.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add support for the Broadcom Starfigther 2 switch chip using a DSA
driver. This switch driver supports the following features:
- configuration of the external switch port interface: MII, RevMII,
RGMII and RGMII_NO_ID are supported
- support for the per-port MIB counters
- support for link interrupts for special ports (e.g: MoCA)
- powering up/down of switch memories to conserve power when ports are
unused
Finally, update the compatible property for the DSA core code to match
our switch top-level compatible node.
Signed-off-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Support for specific hardware belongs under drivers/net/ not net/.
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Acked-by: Lennert Buytenhek <buytenh@wantstofly.org>
Signed-off-by: David S. Miller <davem@davemloft.net>