A lot of ground work has been performed on x86 entry code. Fragile path
between user_enter() and user_exit() have IRQs disabled. Uses of RCU and
intrumentation in these fragile areas have been explicitly annotated
and protected.
This architecture doesn't need exception_enter()/exception_exit()
anymore and has therefore earned CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201117151637.259084-6-frederic@kernel.org
Return -ERESTARTSYS instead of -EINTR in sgx_ioc_enclave_add_pages()
when interrupted before any pages have been processed. At this point
ioctl can be obviously safely restarted.
Reported-by: Haitao Huang <haitao.huang@intel.com>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20201118213932.63341-1-jarkko@kernel.org
- Cure the fallout from the MSI irqdomain overhaul which missed that the
Intel IOMMU does not register virtual function devices and therefore
never reaches the point where the MSI interrupt domain is assigned. This
makes the VF devices use the non-remapped MSI domain which is trapped by
the IOMMU/remap unit.
- Remove an extra space in the SGI_UV architecture type procfs output for
UV5.
- Remove a unused function which was missed when removing the UV BAU TLB
shootdown handler.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl+xJi0THHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoVWxD/9Tq4W6Kniln7mtoEWHRvHRceiiGcS3
MocvqurhoJwirH4F2gkvCegTBy0r3FdUORy3OMmChVs6nb8XpPpso84SANCRePWp
JZezpVwLSNC4O1/ZCg1Kjj4eUpzLB/UjUUQV9RsjL5wyQEhfCZgb1D40yLM/2dj5
SkVm/EAqWuQNtYe/jqAOwTX/7mV+k2QEmKCNOigM13R9EWgu6a4J8ta1gtNSbwvN
jWMW+M1KjZ76pfRK+y4OpbuFixteSzhSWYPITSGwQz4IpQ+Ty2Rv0zzjidmDnAR+
Q73cup0dretdVnVDRpMwDc06dBCmt/rbN50w4yGU0YFRFDgjGc8sIbQzuIP81nEQ
XY4l4rcBgyVufFsLrRpQxu1iYPFrcgU38W1kRkkJ3Kl/rY1a2ZU7sLE4kt4Oh55W
A9KCmsfqP1PCYppjAQ0QT4NOp4YtecPvAU4UcBOb722DDBd8TfhLWWGw2yG57Q/d
Wnu8xCJGy7BaLHLGGGseAft+D4aNnCjKC3jgMyvNtRDXaV2cK2Kdd6ehMlWVUapD
xfLlKXE+igXMyoWJIWjTXQJs4dpKu6QpJCPiorwEZ8rmNaRfxsWEJVbeYwEkmUke
bMoBBSCbZT86WVOYhI8WtrIemraY0mMYrrcE03M96HU3eYB8BV92KrIzZWThupcQ
ZqkZbqCZm3vfHA==
=X/P+
-----END PGP SIGNATURE-----
Merge tag 'x86-urgent-2020-11-15' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip into for-next/iommu/fixes
Pull in x86 fixes from Thomas, as they include a change to the Intel DMAR
code on which we depend:
* tag 'x86-urgent-2020-11-15' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
iommu/vt-d: Cure VF irqdomain hickup
x86/platform/uv: Fix copied UV5 output archtype
x86/platform/uv: Drop last traces of uv_flush_tlb_others
The AMD IOMMU has two modes for generating its own interrupts.
The first is very much based on PCI MSI, and can be configured by Linux
precisely that way. But like legacy unmapped PCI MSI it's limited to
8 bits of APIC ID.
The second method does not use PCI MSI at all in hardawre, and instead
configures the INTCAPXT registers in the IOMMU directly with the APIC ID
and vector.
In the latter case, the IOMMU driver would still use pci_enable_msi(),
read back (through MMIO) the MSI message that Linux wrote to the PCI MSI
table, then swizzle those bits into the appropriate register.
Historically, this worked because__irq_compose_msi_msg() would silently
generate an invalid MSI message with the high bits of the APIC ID in the
high bits of the MSI address. That hack was intended only for the Intel
IOMMU, and I recently enforced that, introducing a warning in
__irq_msi_compose_msg() if it was invoked with an APIC ID above 255.
Fix the AMD IOMMU not to depend on that hack any more, by having its own
irqdomain and directly putting the bits from the irq_cfg into the right
place in its ->activate() method.
Fixes: 47bea873cf "x86/msi: Only use high bits of MSI address for DMAR unit")
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Link: https://lore.kernel.org/r/05e3a5ba317f5ff48d2f8356f19e617f8b9d23a4.camel@infradead.org
Short Version:
The SGX section->laundry_list structure is effectively thread-local, but
declared next to some shared structures. Its semantics are clear as mud.
Fix that. No functional changes. Compile tested only.
Long Version:
The SGX hardware keeps per-page metadata. This can provide things like
permissions, integrity and replay protection. It also prevents things
like having an enclave page mapped multiple times or shared between
enclaves.
But, that presents a problem for kexec()'d kernels (or any other kernel
that does not run immediately after a hardware reset). This is because
the last kernel may have been rude and forgotten to reset pages, which
would trigger the "shared page" sanity check.
To fix this, the SGX code "launders" the pages by running the EREMOVE
instruction on all pages at boot. This is slow and can take a long
time, so it is performed off in the SGX-specific ksgxd instead of being
synchronous at boot. The init code hands the list of pages to launder in
a per-SGX-section list: ->laundry_list. The only code to touch this list
is the init code and ksgxd. This means that no locking is necessary for
->laundry_list.
However, a lock is required for section->page_list, which is accessed
while creating enclaves and by ksgxd. This lock (section->lock) is
acquired by ksgxd while also processing ->laundry_list. It is easy to
confuse the purpose of the locking as being for ->laundry_list and
->page_list.
Rename ->laundry_list to ->init_laundry_list to make it clear that this
is not normally used at runtime. Also add some comments clarifying the
locking, and reorganize 'sgx_epc_section' to put 'lock' near the things
it protects.
Note: init_laundry_list is 128 bytes of wasted space at runtime. It
could theoretically be dynamically allocated and then freed after
the laundering process. But it would take nearly 128 bytes of extra
instructions to do that.
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20201116222531.4834-1-dave.hansen@intel.com
Commit
4b47cdbda6 ("x86/head/64: Move early exception dispatch to C code")
removed the usage of GET_CR2_INTO().
Drop the definition as well, and related definitions in paravirt.h and
asm-offsets.h
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20201005151208.2212886-3-nivedita@alum.mit.edu
Enclave memory is normally inaccessible from outside the enclave. This
makes enclaves hard to debug. However, enclaves can be put in a debug
mode when they are being built. In that mode, enclave data *can* be read
and/or written by using the ENCLS[EDBGRD] and ENCLS[EDBGWR] functions.
This is obviously only for debugging and destroys all the protections
present with normal enclaves. But, enclaves know their own debug status
and can adjust their behavior appropriately.
Add a vm_ops->access() implementation which can be used to read and write
memory inside debug enclaves. This is typically used via ptrace() APIs.
[ bp: Massage. ]
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Jethro Beekman <jethro@fortanix.com>
Link: https://lkml.kernel.org/r/20201112220135.165028-23-jarkko@kernel.org
Just like normal RAM, there is a limited amount of enclave memory available
and overcommitting it is a very valuable tool to reduce resource use.
Introduce a simple reclaim mechanism for enclave pages.
In contrast to normal page reclaim, the kernel cannot directly access
enclave memory. To get around this, the SGX architecture provides a set of
functions to help. Among other things, these functions copy enclave memory
to and from normal memory, encrypting it and protecting its integrity in
the process.
Implement a page reclaimer by using these functions. Picks victim pages in
LRU fashion from all the enclaves running in the system. A new kernel
thread (ksgxswapd) reclaims pages in the background based on watermarks,
similar to normal kswapd.
All enclave pages can be reclaimed, architecturally. But, there are some
limits to this, such as the special SECS metadata page which must be
reclaimed last. The page version array (used to mitigate replaying old
reclaimed pages) is also architecturally reclaimable, but not yet
implemented. The end result is that the vast majority of enclave pages are
currently reclaimable.
Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Jethro Beekman <jethro@fortanix.com>
Link: https://lkml.kernel.org/r/20201112220135.165028-22-jarkko@kernel.org
Enclaves encounter exceptions for lots of reasons: everything from enclave
page faults to NULL pointer dereferences, to system calls that must be
“proxied” to the kernel from outside the enclave.
In addition to the code contained inside an enclave, there is also
supporting code outside the enclave called an “SGX runtime”, which is
virtually always implemented inside a shared library. The runtime helps
build the enclave and handles things like *re*building the enclave if it
got destroyed by something like a suspend/resume cycle.
The rebuilding has traditionally been handled in SIGSEGV handlers,
registered by the library. But, being process-wide, shared state, signal
handling and shared libraries do not mix well.
Introduce a vDSO function call that wraps the enclave entry functions
(EENTER/ERESUME functions of the ENCLU instruciton) and returns information
about any exceptions to the caller in the SGX runtime.
Instead of generating a signal, the kernel places exception information in
RDI, RSI and RDX. The kernel-provided userspace portion of the vDSO handler
will place this information in a user-provided buffer or trigger a
user-provided callback at the time of the exception.
The vDSO function calling convention uses the standard RDI RSI, RDX, RCX,
R8 and R9 registers. This makes it possible to declare the vDSO as a C
prototype, but other than that there is no specific support for SystemV
ABI. Things like storing XSAVE are the responsibility of the enclave and
the runtime.
[ bp: Change vsgx.o build dependency to CONFIG_X86_SGX. ]
Suggested-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Co-developed-by: Cedric Xing <cedric.xing@intel.com>
Signed-off-by: Cedric Xing <cedric.xing@intel.com>
Co-developed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Jethro Beekman <jethro@fortanix.com>
Link: https://lkml.kernel.org/r/20201112220135.165028-20-jarkko@kernel.org
vDSO functions can now leverage an exception fixup mechanism similar to
kernel exception fixup. For vDSO exception fixup, the initial user is
Intel's Software Guard Extensions (SGX), which will wrap the low-level
transitions to/from the enclave, i.e. EENTER and ERESUME instructions,
in a vDSO function and leverage fixup to intercept exceptions that would
otherwise generate a signal. This allows the vDSO wrapper to return the
fault information directly to its caller, obviating the need for SGX
applications and libraries to juggle signal handlers.
Attempt to fixup vDSO exceptions immediately prior to populating and
sending signal information. Except for the delivery mechanism, an
exception in a vDSO function should be treated like any other exception
in userspace, e.g. any fault that is successfully handled by the kernel
should not be directly visible to userspace.
Although it's debatable whether or not all exceptions are of interest to
enclaves, defer to the vDSO fixup to decide whether to do fixup or
generate a signal. Future users of vDSO fixup, if there ever are any,
will undoubtedly have different requirements than SGX enclaves, e.g. the
fixup vs. signal logic can be made function specific if/when necessary.
Suggested-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Jethro Beekman <jethro@fortanix.com>
Link: https://lkml.kernel.org/r/20201112220135.165028-19-jarkko@kernel.org
vDSO exception fixup is a replacement for signals in limited situations.
Signals and vDSO exception fixup need to provide similar information to
userspace, including the hardware error code.
That hardware error code needs to be sanitized. For instance, if userspace
accesses a kernel address, the error code could indicate to userspace
whether the address had a Present=1 PTE. That can leak information about
the kernel layout to userspace, which is bad.
The existing signal code does this sanitization, but fairly late in the
signal process. The vDSO exception code runs before the sanitization
happens.
Move error code sanitization out of the signal code and into a helper.
Call the helper in the signal code.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Jethro Beekman <jethro@fortanix.com>
Link: https://lkml.kernel.org/r/20201112220135.165028-18-jarkko@kernel.org
Signals are a horrid little mechanism. They are especially nasty in
multi-threaded environments because signal state like handlers is global
across the entire process. But, signals are basically the only way that
userspace can “gracefully” handle and recover from exceptions.
The kernel generally does not like exceptions to occur during execution.
But, exceptions are a fact of life and must be handled in some
circumstances. The kernel handles them by keeping a list of individual
instructions which may cause exceptions. Instead of truly handling the
exception and returning to the instruction that caused it, the kernel
instead restarts execution at a *different* instruction. This makes it
obvious to that thread of execution that the exception occurred and lets
*that* code handle the exception instead of the handler.
This is not dissimilar to the try/catch exceptions mechanisms that some
programming languages have, but applied *very* surgically to single
instructions. It effectively changes the visible architecture of the
instruction.
Problem
=======
SGX generates a lot of signals, and the code to enter and exit enclaves and
muck with signal handling is truly horrid. At the same time, an approach
like kernel exception fixup can not be easily applied to userspace
instructions because it changes the visible instruction architecture.
Solution
========
The vDSO is a special page of kernel-provided instructions that run in
userspace. Any userspace calling into the vDSO knows that it is special.
This allows the kernel a place to legitimately rewrite the user/kernel
contract and change instruction behavior.
Add support for fixing up exceptions that occur while executing in the
vDSO. This replaces what could traditionally only be done with signal
handling.
This new mechanism will be used to replace previously direct use of SGX
instructions by userspace.
Just introduce the vDSO infrastructure. Later patches will actually
replace signal generation with vDSO exception fixup.
Suggested-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Jethro Beekman <jethro@fortanix.com>
Link: https://lkml.kernel.org/r/20201112220135.165028-17-jarkko@kernel.org
The whole point of SGX is to create a hardware protected place to do
“stuff”. But, before someone is willing to hand over the keys to
the castle , an enclave must often prove that it is running on an
SGX-protected processor. Provisioning enclaves play a key role in
providing proof.
There are actually three different enclaves in play in order to make this
happen:
1. The application enclave. The familiar one we know and love that runs
the actual code that’s doing real work. There can be many of these on
a single system, or even in a single application.
2. The quoting enclave (QE). The QE is mentioned in lots of silly
whitepapers, but, for the purposes of kernel enabling, just pretend they
do not exist.
3. The provisioning enclave. There is typically only one of these
enclaves per system. Provisioning enclaves have access to a special
hardware key.
They can use this key to help to generate certificates which serve as
proof that enclaves are running on trusted SGX hardware. These
certificates can be passed around without revealing the special key.
Any user who can create a provisioning enclave can access the
processor-unique Provisioning Certificate Key which has privacy and
fingerprinting implications. Even if a user is permitted to create
normal application enclaves (via /dev/sgx_enclave), they should not be
able to create provisioning enclaves. That means a separate permissions
scheme is needed to control provisioning enclave privileges.
Implement a separate device file (/dev/sgx_provision) which allows
creating provisioning enclaves. This device will typically have more
strict permissions than the plain enclave device.
The actual device “driver” is an empty stub. Open file descriptors for
this device will represent a token which allows provisioning enclave duty.
This file descriptor can be passed around and ultimately given as an
argument to the /dev/sgx_enclave driver ioctl().
[ bp: Touchups. ]
Suggested-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: linux-security-module@vger.kernel.org
Link: https://lkml.kernel.org/r/20201112220135.165028-16-jarkko@kernel.org
Enclaves have two basic states. They are either being built and are
malleable and can be modified by doing things like adding pages. Or,
they are locked down and not accepting changes. They can only be run
after they have been locked down. The ENCLS[EINIT] function induces the
transition from being malleable to locked-down.
Add an ioctl() that performs ENCLS[EINIT]. After this, new pages can
no longer be added with ENCLS[EADD]. This is also the time where the
enclave can be measured to verify its integrity.
Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Jethro Beekman <jethro@fortanix.com>
Link: https://lkml.kernel.org/r/20201112220135.165028-15-jarkko@kernel.org
SGX enclave pages are inaccessible to normal software. They must be
populated with data by copying from normal memory with the help of the
EADD and EEXTEND functions of the ENCLS instruction.
Add an ioctl() which performs EADD that adds new data to an enclave, and
optionally EEXTEND functions that hash the page contents and use the
hash as part of enclave “measurement” to ensure enclave integrity.
The enclave author gets to decide which pages will be included in the
enclave measurement with EEXTEND. Measurement is very slow and has
sometimes has very little value. For instance, an enclave _could_
measure every page of data and code, but would be slow to initialize.
Or, it might just measure its code and then trust that code to
initialize the bulk of its data after it starts running.
Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Jethro Beekman <jethro@fortanix.com>
Link: https://lkml.kernel.org/r/20201112220135.165028-14-jarkko@kernel.org
Add an ioctl() that performs the ECREATE function of the ENCLS
instruction, which creates an SGX Enclave Control Structure (SECS).
Although the SECS is an in-memory data structure, it is present in
enclave memory and is not directly accessible by software.
Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Jethro Beekman <jethro@fortanix.com>
Link: https://lkml.kernel.org/r/20201112220135.165028-13-jarkko@kernel.org
Intel(R) SGX is a new hardware functionality that can be used by
applications to set aside private regions of code and data called
enclaves. New hardware protects enclave code and data from outside
access and modification.
Add a driver that presents a device file and ioctl API to build and
manage enclaves.
[ bp: Small touchups, remove unused encl variable in sgx_encl_find() as
Reported-by: kernel test robot <lkp@intel.com> ]
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Jethro Beekman <jethro@fortanix.com>
Link: https://lkml.kernel.org/r/20201112220135.165028-12-jarkko@kernel.org
Commit
8570978ea0 ("x86/boot/compressed/64: Don't pre-map memory in KASLR code")
removed all the references to finalize_identity_maps(), but neglected to
delete the actual function. Remove it.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20201005151208.2212886-2-nivedita@alum.mit.edu
"intel_iommu=off" command line is used to disable iommu but iommu is force
enabled in a tboot system for security reason.
However for better performance on high speed network device, a new option
"intel_iommu=tboot_noforce" is introduced to disable the force on.
By default kernel should panic if iommu init fail in tboot for security
reason, but it's unnecessory if we use "intel_iommu=tboot_noforce,off".
Fix the code setting force_on and move intel_iommu_tboot_noforce
from tboot code to intel iommu code.
Fixes: 7304e8f28b ("iommu/vt-d: Correctly disable Intel IOMMU force on")
Signed-off-by: Zhenzhong Duan <zhenzhong.duan@gmail.com>
Tested-by: Lukasz Hawrylko <lukasz.hawrylko@linux.intel.com>
Acked-by: Lu Baolu <baolu.lu@linux.intel.com>
Link: https://lore.kernel.org/r/20201110071908.3133-1-zhenzhong.duan@gmail.com
Signed-off-by: Will Deacon <will@kernel.org>
Document the functionality of copy_from_user_nmi() to avoid further
confusion. Fix the typo in the existing comment while at it.
Requested-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20201117202753.806376613@linutronix.de
sysrq-t ends up invoking show_opcodes() for each task which tries to access
the user space code of other processes, which is obviously bogus.
It either manages to dump where the foreign task's regs->ip points to in a
valid mapping of the current task or triggers a pagefault and prints "Code:
Bad RIP value.". Both is just wrong.
Add a safeguard in copy_code() and check whether the @regs pointer matches
currents pt_regs. If not, do not even try to access it.
While at it, add commentary why using copy_from_user_nmi() is safe in
copy_code() even if the function name suggests otherwise.
Reported-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Tested-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20201117202753.667274723@linutronix.de
Drop the dma_direct_set_offset export and move the declaration to
dma-map-ops.h now that the Allwinner drivers have stopped calling it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Maxime Ripard <maxime@cerno.tech>
show_trace_log_lvl() is not used by other compilation units so make it
static and remove the declaration from the header file.
Signed-off-by: Hui Su <sh_def@163.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20201113133943.GA136221@rlk
Now that we have a static inline helper to discover the platform's secure
boot mode that can be shared between the EFI stub and the kernel proper,
switch to it, and drop some comments about keeping them in sync manually.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Add functions for runtime allocation and free.
This allocator and its algorithms are as simple as it gets. They do a
linear search across all EPC sections and find the first free page. They
are not NUMA-aware and only hand out individual pages. The SGX hardware
does not support large pages, so something more complicated like a buddy
allocator is unwarranted.
The free function (sgx_free_epc_page()) implicitly calls ENCLS[EREMOVE],
which returns the page to the uninitialized state. This ensures that the
page is ready for use at the next allocation.
Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Jethro Beekman <jethro@fortanix.com>
Link: https://lkml.kernel.org/r/20201112220135.165028-10-jarkko@kernel.org
Add a kernel parameter to disable SGX kernel support and document it.
[ bp: Massage. ]
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Acked-by: Jethro Beekman <jethro@fortanix.com>
Tested-by: Sean Christopherson <sean.j.christopherson@intel.com>
Link: https://lkml.kernel.org/r/20201112220135.165028-9-jarkko@kernel.org
Kernel support for SGX is ultimately decided by the state of the launch
control bits in the feature control MSR (MSR_IA32_FEAT_CTL). If the
hardware supports SGX, but neglects to support flexible launch control, the
kernel will not enable SGX.
Enable SGX at feature control MSR initialization and update the associated
X86_FEATURE flags accordingly. Disable X86_FEATURE_SGX (and all
derivatives) if the kernel is not able to establish itself as the authority
over SGX Launch Control.
All checks are performed for each logical CPU (not just boot CPU) in order
to verify that MSR_IA32_FEATURE_CONTROL is correctly configured on all
CPUs. All SGX code in this series expects the same configuration from all
CPUs.
This differs from VMX where X86_FEATURE_VMX is intentionally cleared only
for the current CPU so that KVM can provide additional information if KVM
fails to load like which CPU doesn't support VMX. There’s not much the
kernel or an administrator can do to fix the situation, so SGX neglects to
convey additional details about these kinds of failures if they occur.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Co-developed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Jethro Beekman <jethro@fortanix.com>
Link: https://lkml.kernel.org/r/20201112220135.165028-8-jarkko@kernel.org
The x86 architecture has a set of page fault error codes. These indicate
things like whether the fault occurred from a write, or whether it
originated in userspace.
The SGX hardware architecture has its own per-page memory management
metadata (EPCM) [*] and hardware which is separate from the normal x86 MMU.
The architecture has a new page fault error code: PF_SGX. This new error
code bit is set whenever a page fault occurs as the result of the SGX MMU.
These faults occur for a variety of reasons. For instance, an access
attempt to enclave memory from outside the enclave causes a PF_SGX fault.
PF_SGX would also be set for permission conflicts, such as if a write to an
enclave page occurs and the page is marked read-write in the x86 page
tables but is read-only in the EPCM.
These faults do not always indicate errors, though. SGX pages are
encrypted with a key that is destroyed at hardware reset, including
suspend. Throwing a SIGSEGV allows user space software to react and recover
when these events occur.
Include PF_SGX in the PF error codes list and throw SIGSEGV when it is
encountered.
[*] Intel SDM: 36.5.1 Enclave Page Cache Map (EPCM)
[ bp: Add bit 15 to the comment above enum x86_pf_error_code too. ]
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Jethro Beekman <jethro@fortanix.com>
Link: https://lkml.kernel.org/r/20201112220135.165028-7-jarkko@kernel.org
Although carved out of normal DRAM, enclave memory is marked in the
system memory map as reserved and is not managed by the core mm. There
may be several regions spread across the system. Each contiguous region
is called an Enclave Page Cache (EPC) section. EPC sections are
enumerated via CPUID
Enclave pages can only be accessed when they are mapped as part of an
enclave, by a hardware thread running inside the enclave.
Parse CPUID data, create metadata for EPC pages and populate a simple
EPC page allocator. Although much smaller, ‘struct sgx_epc_page’
metadata is the SGX analog of the core mm ‘struct page’.
Similar to how the core mm’s page->flags encode zone and NUMA
information, embed the EPC section index to the first eight bits of
sgx_epc_page->desc. This allows a quick reverse lookup from EPC page to
EPC section. Existing client hardware supports only a single section,
while upcoming server hardware will support at most eight sections.
Thus, eight bits should be enough for long term needs.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Co-developed-by: Serge Ayoun <serge.ayoun@intel.com>
Signed-off-by: Serge Ayoun <serge.ayoun@intel.com>
Co-developed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Jethro Beekman <jethro@fortanix.com>
Link: https://lkml.kernel.org/r/20201112220135.165028-6-jarkko@kernel.org
The SGX Launch Control hardware helps restrict which enclaves the
hardware will run. Launch control is intended to restrict what software
can run with enclave protections, which helps protect the overall system
from bad enclaves.
For the kernel's purposes, there are effectively two modes in which the
launch control hardware can operate: rigid and flexible. In its rigid
mode, an entity other than the kernel has ultimate authority over which
enclaves can be run (firmware, Intel, etc...). In its flexible mode, the
kernel has ultimate authority over which enclaves can run.
Enable X86_FEATURE_SGX_LC to enumerate when the CPU supports SGX Launch
Control in general.
Add MSR_IA32_SGXLEPUBKEYHASH{0, 1, 2, 3}, which when combined contain a
SHA256 hash of a 3072-bit RSA public key. The hardware allows SGX enclaves
signed with this public key to initialize and run [*]. Enclaves not signed
with this key can not initialize and run.
Add FEAT_CTL_SGX_LC_ENABLED, which informs whether the SGXLEPUBKEYHASH MSRs
can be written by the kernel.
If the MSRs do not exist or are read-only, the launch control hardware is
operating in rigid mode. Linux does not and will not support creating
enclaves when hardware is configured in rigid mode because it takes away
the authority for launch decisions from the kernel. Note, this does not
preclude KVM from virtualizing/exposing SGX to a KVM guest when launch
control hardware is operating in rigid mode.
[*] Intel SDM: 38.1.4 Intel SGX Launch Control Configuration
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Co-developed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Jethro Beekman <jethro@fortanix.com>
Link: https://lkml.kernel.org/r/20201112220135.165028-5-jarkko@kernel.org
Populate X86_FEATURE_SGX feature from CPUID and tie it to the Kconfig
option with disabled-features.h.
IA32_FEATURE_CONTROL.SGX_ENABLE must be examined in addition to the CPUID
bits to enable full SGX support. The BIOS must both set this bit and lock
IA32_FEATURE_CONTROL for SGX to be supported (Intel SDM section 36.7.1).
The setting or clearing of this bit has no impact on the CPUID bits above,
which is why it needs to be detected separately.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Co-developed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Jethro Beekman <jethro@fortanix.com>
Link: https://lkml.kernel.org/r/20201112220135.165028-4-jarkko@kernel.org
ENCLS is the userspace instruction which wraps virtually all
unprivileged SGX functionality for managing enclaves. It is essentially
the ioctl() of instructions with each function implementing different
SGX-related functionality.
Add macros to wrap the ENCLS functionality. There are two main groups,
one for functions which do not return error codes and a “ret_” set for
those that do.
ENCLS functions are documented in Intel SDM section 36.6.
Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Jethro Beekman <jethro@fortanix.com>
Link: https://lkml.kernel.org/r/20201112220135.165028-3-jarkko@kernel.org
Define the SGX architectural data structures used by various SGX
functions. This is not an exhaustive representation of all SGX data
structures but only those needed by the kernel.
The goal is to sequester hardware structures in "sgx/arch.h" and keep
them separate from kernel-internal or uapi structures.
The data structures are described in Intel SDM section 37.6.
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Jethro Beekman <jethro@fortanix.com>
Link: https://lkml.kernel.org/r/20201112220135.165028-2-jarkko@kernel.org
This change switches rapl to use PMU_FORMAT_ATTR, and fixes two other
macros to use device_attribute instead of kobj_attribute to avoid
callback type mismatches that trip indirect call checking with Clang's
Control-Flow Integrity (CFI).
Reported-by: Sedat Dilek <sedat.dilek@gmail.com>
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lkml.kernel.org/r/20201113183126.1239404-1-samitolvanen@google.com
Currently, scan_microcode() leverages microcode_matches() to check
if the microcode matches the CPU by comparing the family and model.
However, the processor stepping and flags of the microcode signature
should also be considered when saving a microcode patch for early
update.
Use find_matching_signature() in scan_microcode() and get rid of the
now-unused microcode_matches() which is a good cleanup in itself.
Complete the verification of the patch being saved for early loading in
save_microcode_patch() directly. This needs to be done there too because
save_mc_for_early() will call save_microcode_patch() too.
The second reason why this needs to be done is because the loader still
tries to support, at least hypothetically, mixed-steppings systems and
thus adds all patches to the cache that belong to the same CPU model
albeit with different steppings.
For example:
microcode: CPU: sig=0x906ec, pf=0x2, rev=0xd6
microcode: mc_saved[0]: sig=0x906e9, pf=0x2a, rev=0xd6, total size=0x19400, date = 2020-04-23
microcode: mc_saved[1]: sig=0x906ea, pf=0x22, rev=0xd6, total size=0x19000, date = 2020-04-27
microcode: mc_saved[2]: sig=0x906eb, pf=0x2, rev=0xd6, total size=0x19400, date = 2020-04-23
microcode: mc_saved[3]: sig=0x906ec, pf=0x22, rev=0xd6, total size=0x19000, date = 2020-04-27
microcode: mc_saved[4]: sig=0x906ed, pf=0x22, rev=0xd6, total size=0x19400, date = 2020-04-23
The patch which is being saved for early loading, however, can only be
the one which fits the CPU this runs on so do the signature verification
before saving.
[ bp: Do signature verification in save_microcode_patch()
and rewrite commit message. ]
Fixes: ec400ddeff ("x86/microcode_intel_early.c: Early update ucode on Intel's CPU")
Signed-off-by: Chen Yu <yu.c.chen@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: stable@vger.kernel.org
Link: https://bugzilla.kernel.org/show_bug.cgi?id=208535
Link: https://lkml.kernel.org/r/20201113015923.13960-1-yu.c.chen@intel.com
Fix to return a negative error code from the error handling case
instead of 0 in function svm_create_vcpu(), as done elsewhere in this
function.
Fixes: f4c847a956 ("KVM: SVM: refactor msr permission bitmap allocation")
Reported-by: Hulk Robot <hulkci@huawei.com>
Signed-off-by: Chen Zhou <chenzhou10@huawei.com>
Message-Id: <20201117025426.167824-1-chenzhou10@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reclaim TI flags that were migrated to syscall_work flags.
Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20201116174206.2639648-11-krisman@collabora.com
This field will be used by SYSCALL_WORK flags, migrated from TI flags.
Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20201116174206.2639648-2-krisman@collabora.com
Fix offset computation in __sev_dbg_decrypt() to include the
source paddr before it is rounded down to be aligned to 16 bytes
as required by SEV API. This fixes incorrect guest memory dumps
observed when using qemu monitor.
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Message-Id: <20201110224205.29444-1-Ashish.Kalra@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Similarly to what vmx/vmx.c does, use vcpu->arch.cr4 to check if CR4
bits PGE, PKE and OSXSAVE have changed. When switching between VMCB01
and VMCB02, CPUID has to be adjusted every time if CR4.PKE or CR4.OSXSAVE
change; without this patch, instead, CR4 would be checked against the
previous value for L2 on vmentry, and against the previous value for
L1 on vmexit, and CPUID would not be updated.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM does not have separate ASIDs for L1 and L2; either the nested
hypervisor and nested guests share a single ASID, or on older processor
the ASID is used only to implement TLB flushing.
Either way, ASIDs are handled at the VM level. In preparation
for having different VMCBs passed to VMLOAD/VMRUN/VMSAVE for L1 and
L2, store the current ASID to struct vcpu_svm and only move it to
the VMCB in svm_vcpu_run. This way, TLB flushes can be applied
no matter which VMCB will be active during the next svm_vcpu_run.
Signed-off-by: Cathy Avery <cavery@redhat.com>
Message-Id: <20201011184818.3609-2-cavery@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This macro is useless, and could cause gcc warning:
arch/x86/kernel/kvmclock.c:47:0: warning: macro "HV_CLOCK_SIZE" is not
used [-Wunused-macros]
Let's remove it.
Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: x86@kernel.org
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Message-Id: <1604651963-10067-1-git-send-email-alex.shi@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that all in-kernel-tree users are converted to using the sysfs file,
remove the MSR from the "allowlist".
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Shuah Khan <skhan@linuxfoundation.org>
Link: https://lkml.kernel.org/r/20201029190259.3476-5-bp@alien8.de
Booting as a guest under KVM results in error messages about
unchecked MSR access:
unchecked MSR access error: RDMSR from 0x17f at rIP: 0xffffffff84483f16 (mce_intel_feature_init+0x156/0x270)
because KVM doesn't provide emulation for random model specific
registers.
Switch to using rdmsrl_safe()/wrmsrl_safe() to avoid the message.
Fixes: 68299a42f8 ("x86/mce: Enable additional error logging on certain Intel CPUs")
Reported-by: Qian Cai <cai@redhat.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20201111003954.GA11878@agluck-desk2.amr.corp.intel.com
without two-dimensional paging (EPT/NPT).
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAl+xQ54UHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroMzeQf+JP9NpXgeB7dhiODhmO5SyLdw0u9j
kVOM6+kHcEvG6o0yU1uUZr2ZPh9vIAwIjXi8Luiodcazdp6jvxvJ32CeMYJz2lel
y+3Gjp3WS2+FExOjBephBztaMHLihlWQt3E0EKuCc7StyfMhaZooiTRMpvrmiLWe
HQ/epM9oLMyrCqG9MKkvTwH0lDyB5CprV1BNt6YyKjt7d5swEqC75A6lOXnmdAah
utgx1agSIVQPv6vDF9HLaQaoelHT7ucudx+zIkvOAmoQ56AJMPfCr0+Af3ZVW+f/
I5tXVfBhoOV3BVSIsJS7Px0HcZt7siVtl6ISZZos8ox85S4ysjWm2vXFcQ==
=MiOr
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm fixes from Paolo Bonzini:
"Fixes for ARM and x86, the latter especially for old processors
without two-dimensional paging (EPT/NPT)"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
kvm: mmu: fix is_tdp_mmu_check when the TDP MMU is not in use
KVM: SVM: Update cr3_lm_rsvd_bits for AMD SEV guests
KVM: x86: Introduce cr3_lm_rsvd_bits in kvm_vcpu_arch
KVM: x86: clflushopt should be treated as a no-op by emulation
KVM: arm64: Handle SCXTNUM_ELx traps
KVM: arm64: Unify trap handlers injecting an UNDEF
KVM: arm64: Allow setting of ID_AA64PFR0_EL1.CSV2 from userspace
- Cure the fallout from the MSI irqdomain overhaul which missed that the
Intel IOMMU does not register virtual function devices and therefore
never reaches the point where the MSI interrupt domain is assigned. This
makes the VF devices use the non-remapped MSI domain which is trapped by
the IOMMU/remap unit.
- Remove an extra space in the SGI_UV architecture type procfs output for
UV5.
- Remove a unused function which was missed when removing the UV BAU TLB
shootdown handler.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl+xJi0THHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoVWxD/9Tq4W6Kniln7mtoEWHRvHRceiiGcS3
MocvqurhoJwirH4F2gkvCegTBy0r3FdUORy3OMmChVs6nb8XpPpso84SANCRePWp
JZezpVwLSNC4O1/ZCg1Kjj4eUpzLB/UjUUQV9RsjL5wyQEhfCZgb1D40yLM/2dj5
SkVm/EAqWuQNtYe/jqAOwTX/7mV+k2QEmKCNOigM13R9EWgu6a4J8ta1gtNSbwvN
jWMW+M1KjZ76pfRK+y4OpbuFixteSzhSWYPITSGwQz4IpQ+Ty2Rv0zzjidmDnAR+
Q73cup0dretdVnVDRpMwDc06dBCmt/rbN50w4yGU0YFRFDgjGc8sIbQzuIP81nEQ
XY4l4rcBgyVufFsLrRpQxu1iYPFrcgU38W1kRkkJ3Kl/rY1a2ZU7sLE4kt4Oh55W
A9KCmsfqP1PCYppjAQ0QT4NOp4YtecPvAU4UcBOb722DDBd8TfhLWWGw2yG57Q/d
Wnu8xCJGy7BaLHLGGGseAft+D4aNnCjKC3jgMyvNtRDXaV2cK2Kdd6ehMlWVUapD
xfLlKXE+igXMyoWJIWjTXQJs4dpKu6QpJCPiorwEZ8rmNaRfxsWEJVbeYwEkmUke
bMoBBSCbZT86WVOYhI8WtrIemraY0mMYrrcE03M96HU3eYB8BV92KrIzZWThupcQ
ZqkZbqCZm3vfHA==
=X/P+
-----END PGP SIGNATURE-----
Merge tag 'x86-urgent-2020-11-15' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Thomas Gleixner:
"A small set of fixes for x86:
- Cure the fallout from the MSI irqdomain overhaul which missed that
the Intel IOMMU does not register virtual function devices and
therefore never reaches the point where the MSI interrupt domain is
assigned. This made the VF devices use the non-remapped MSI domain
which is trapped by the IOMMU/remap unit
- Remove an extra space in the SGI_UV architecture type procfs output
for UV5
- Remove a unused function which was missed when removing the UV BAU
TLB shootdown handler"
* tag 'x86-urgent-2020-11-15' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
iommu/vt-d: Cure VF irqdomain hickup
x86/platform/uv: Fix copied UV5 output archtype
x86/platform/uv: Drop last traces of uv_flush_tlb_others
- A set of commits which reduce the stack usage of various perf event
handling functions which allocated large data structs on stack causing
stack overflows in the worst case.
- Use the proper mechanism for detecting soft interrupts in the recursion
protection.
- Make the resursion protection simpler and more robust.
- Simplify the scheduling of event groups to make the code more robust and
prepare for fixing the issues vs. scheduling of exclusive event groups.
- Prevent event multiplexing and rotation for exclusive event groups
- Correct the perf event attribute exclusive semantics to take pinned
events, e.g. the PMU watchdog, into account
- Make the anythread filtering conditional for Intel's generic PMU
counters as it is not longer guaranteed to be supported on newer
CPUs. Check the corresponding CPUID leaf to make sure.
- Fixup a duplicate initialization in an array which was probably cause by
the usual copy & paste - forgot to edit mishap.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl+xIi0THHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYofixD/4+4gc8DhOmAkMrN0Z9tiW8ebgMKmb9
wZRkMr5Osi0GzLJOPZ6SdY6jd0A3rMN/sW6P1DT6pDtcty4bKFoW5VZBuUDIAhel
BC4C93L3y1En/GEZu1GTy3LvsBwLBQTOoY4goDjbdAbk60S/0RTHOGyQsRsOQFe6
fVs3iXozAFuaR6I6N3dlxuJAE51zvr8MyBWaUoByNDB//1+lLNW+JfClaAOG1oXx
qZIg/niatBVGzSGgKNRUyh3g8G1HJtabsA/NZ4PH8ZHuYABfmj4lmmUPR77ICLfV
wMITEBG7eaktB8EqM9hvaoOZLA5kpXHO2JbCFSs4c4x11mlC8g7QMV3poCw33YoN
a5TmT1A3muri1riy1/Ee9lXACOq7/tf2+Xfn9o6dvDdBwd6s5pzlhLGR8gILp2lF
2bcg3IwYvHT/Kiurb/WGNpbCqQIPJpcUcfs3tNBCCtKegahUQNnGjxN3NVo9RCit
zfL6xIJ8eZiYnsxXx4NKm744AukWiql3aRNgRkOdBP5WC68xt6VLcxG1YZKUoDhy
jRSOCD/DuPSMSvAAgN7S8OWlPsKWBxVxxWYV+K8FpwhgzbQ3WbS3UDiYkhgjeOxu
OlM692oWpllKvQWlvYthr2Be6oPCRRi1vvADNNbTKzgHk5i61bwympsGl1EZx3Pz
2ROp7NJFRESnqw==
=FzCf
-----END PGP SIGNATURE-----
Merge tag 'perf-urgent-2020-11-15' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf fixes from Thomas Gleixner:
"A set of fixes for perf:
- A set of commits which reduce the stack usage of various perf
event handling functions which allocated large data structs on
stack causing stack overflows in the worst case
- Use the proper mechanism for detecting soft interrupts in the
recursion protection
- Make the resursion protection simpler and more robust
- Simplify the scheduling of event groups to make the code more
robust and prepare for fixing the issues vs. scheduling of
exclusive event groups
- Prevent event multiplexing and rotation for exclusive event groups
- Correct the perf event attribute exclusive semantics to take
pinned events, e.g. the PMU watchdog, into account
- Make the anythread filtering conditional for Intel's generic PMU
counters as it is not longer guaranteed to be supported on newer
CPUs. Check the corresponding CPUID leaf to make sure
- Fixup a duplicate initialization in an array which was probably
caused by the usual 'copy & paste - forgot to edit' mishap"
* tag 'perf-urgent-2020-11-15' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/x86/intel/uncore: Fix Add BW copypasta
perf/x86/intel: Make anythread filter support conditional
perf: Tweak perf_event_attr::exclusive semantics
perf: Fix event multiplexing for exclusive groups
perf: Simplify group_sched_in()
perf: Simplify group_sched_out()
perf/x86: Make dummy_iregs static
perf/arch: Remove perf_sample_data::regs_user_copy
perf: Optimize get_recursion_context()
perf: Fix get_recursion_context()
perf/x86: Reduce stack usage for x86_pmu::drain_pebs()
perf: Reduce stack usage of perf_output_begin()
On emulated VM-entry and VM-exit, update the CPUID bits that reflect
CR4.OSXSAVE and CR4.PKE.
This fixes a bug where the CPUID bits could continue to reflect L2 CR4
values after emulated VM-exit to L1. It also fixes a related bug where
the CPUID bits could continue to reflect L1 CR4 values after emulated
VM-entry to L2. The latter bug is mainly relevant to SVM, wherein
CPUID is not a required intercept. However, it could also be relevant
to VMX, because the code to conditionally update these CPUID bits
assumes that the guest CPUID and the guest CR4 are always in sync.
Fixes: 8eb3f87d90 ("KVM: nVMX: fix guest CR4 loading when emulating L2 to L1 exit")
Fixes: 2acf923e38 ("KVM: VMX: Enable XSAVE/XRSTOR for guest")
Fixes: b9baba8614 ("KVM, pkeys: expose CPUID/CR4 to guest")
Reported-by: Abhiroop Dabral <adabral@paloaltonetworks.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Ricardo Koller <ricarkol@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Cc: Haozhong Zhang <haozhong.zhang@intel.com>
Cc: Dexuan Cui <dexuan.cui@intel.com>
Cc: Huaitong Han <huaitong.han@intel.com>
Message-Id: <20201029170648.483210-1-jmattson@google.com>
Because kvm dirty rings and kvm dirty log is used in an exclusive way,
Let's avoid creating the dirty_bitmap when kvm dirty ring is enabled.
At the meantime, since the dirty_bitmap will be conditionally created
now, we can't use it as a sign of "whether this memory slot enabled
dirty tracking". Change users like that to check against the kvm
memory slot flags.
Note that there still can be chances where the kvm memory slot got its
dirty_bitmap allocated, _if_ the memory slots are created before
enabling of the dirty rings and at the same time with the dirty
tracking capability enabled, they'll still with the dirty_bitmap.
However it should not hurt much (e.g., the bitmaps will always be
freed if they are there), and the real users normally won't trigger
this because dirty bit tracking flag should in most cases only be
applied to kvm slots only before migration starts, that should be far
latter than kvm initializes (VM starts).
Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20201001012226.5868-1-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch is heavily based on previous work from Lei Cao
<lei.cao@stratus.com> and Paolo Bonzini <pbonzini@redhat.com>. [1]
KVM currently uses large bitmaps to track dirty memory. These bitmaps
are copied to userspace when userspace queries KVM for its dirty page
information. The use of bitmaps is mostly sufficient for live
migration, as large parts of memory are be dirtied from one log-dirty
pass to another. However, in a checkpointing system, the number of
dirty pages is small and in fact it is often bounded---the VM is
paused when it has dirtied a pre-defined number of pages. Traversing a
large, sparsely populated bitmap to find set bits is time-consuming,
as is copying the bitmap to user-space.
A similar issue will be there for live migration when the guest memory
is huge while the page dirty procedure is trivial. In that case for
each dirty sync we need to pull the whole dirty bitmap to userspace
and analyse every bit even if it's mostly zeros.
The preferred data structure for above scenarios is a dense list of
guest frame numbers (GFN). This patch series stores the dirty list in
kernel memory that can be memory mapped into userspace to allow speedy
harvesting.
This patch enables dirty ring for X86 only. However it should be
easily extended to other archs as well.
[1] https://patchwork.kernel.org/patch/10471409/
Signed-off-by: Lei Cao <lei.cao@stratus.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20201001012222.5767-1-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Originally, we have three code paths that can dirty a page without
vcpu context for X86:
- init_rmode_identity_map
- init_rmode_tss
- kvmgt_rw_gpa
init_rmode_identity_map and init_rmode_tss will be setup on
destination VM no matter what (and the guest cannot even see them), so
it does not make sense to track them at all.
To do this, allow __x86_set_memory_region() to return the userspace
address that just allocated to the caller. Then in both of the
functions we directly write to the userspace address instead of
calling kvm_write_*() APIs.
Another trivial change is that we don't need to explicitly clear the
identity page table root in init_rmode_identity_map() because no
matter what we'll write to the whole page with 4M huge page entries.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20201001012044.5151-4-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM_GET_SUPPORTED_HV_CPUID is a vCPU ioctl but its output is now
independent from vCPU and in some cases VMMs may want to use it as a system
ioctl instead. In particular, QEMU doesn CPU feature expansion before any
vCPU gets created so KVM_GET_SUPPORTED_HV_CPUID can't be used.
Convert KVM_GET_SUPPORTED_HV_CPUID to 'dual' system/vCPU ioctl with the
same meaning.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20200929150944.1235688-2-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Background: We have a lightweight HV, it needs INIT-VMExit and
SIPI-VMExit to wake-up APs for guests since it do not monitor
the Local APIC. But currently virtual wait-for-SIPI(WFS) state
is not supported in nVMX, so when running on top of KVM, the L1
HV cannot receive the INIT-VMExit and SIPI-VMExit which cause
the L2 guest cannot wake up the APs.
According to Intel SDM Chapter 25.2 Other Causes of VM Exits,
SIPIs cause VM exits when a logical processor is in
wait-for-SIPI state.
In this patch:
1. introduce SIPI exit reason,
2. introduce wait-for-SIPI state for nVMX,
3. advertise wait-for-SIPI support to guest.
When L1 hypervisor is not monitoring Local APIC, L0 need to emulate
INIT-VMExit and SIPI-VMExit to L1 to emulate INIT-SIPI-SIPI for
L2. L2 LAPIC write would be traped by L0 Hypervisor(KVM), L0 should
emulate the INIT/SIPI vmexit to L1 hypervisor to set proper state
for L2's vcpu state.
Handle procdure:
Source vCPU:
L2 write LAPIC.ICR(INIT).
L0 trap LAPIC.ICR write(INIT): inject a latched INIT event to target
vCPU.
Target vCPU:
L0 emulate an INIT VMExit to L1 if is guest mode.
L1 set guest VMCS, guest_activity_state=WAIT_SIPI, vmresume.
L0 set vcpu.mp_state to INIT_RECEIVED if (vmcs12.guest_activity_state
== WAIT_SIPI).
Source vCPU:
L2 write LAPIC.ICR(SIPI).
L0 trap LAPIC.ICR write(INIT): inject a latched SIPI event to traget
vCPU.
Target vCPU:
L0 emulate an SIPI VMExit to L1 if (vcpu.mp_state == INIT_RECEIVED).
L1 set CS:IP, guest_activity_state=ACTIVE, vmresume.
L0 resume to L2.
L2 start-up.
Signed-off-by: Yadong Qi <yadong.qi@intel.com>
Message-Id: <20200922052343.84388-1-yadong.qi@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20201106065122.403183-1-yadong.qi@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
vmx_apic_init_signal_blocked is buggy in that it returns true
even in VMX non-root mode. In non-root mode, however, INITs
are not latched, they just cause a vmexit. Previously,
KVM was waiting for them to be processed when kvm_apic_accept_events
and in the meanwhile it ate the SIPIs that the processor received.
However, in order to implement the wait-for-SIPI activity state,
KVM will have to process KVM_APIC_SIPI in vmx_check_nested_events,
and it will not be possible anymore to disregard SIPIs in non-root
mode as the code is currently doing.
By calling kvm_x86_ops.nested_ops->check_events, we can force a vmexit
(with the side-effect of latching INITs) before incorrectly injecting
an INIT or SIPI in a guest, and therefore vmx_apic_init_signal_blocked
can do the right thing.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rework the common CR4 and SREGS checks to return a bool instead of an
int, i.e. true/false instead of 0/-EINVAL, and add "is" to the name to
clarify the polarity of the return value (which is effectively inverted
by this change).
No functional changed intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20201007014417.29276-6-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Split out VMX's checks on CR4.VMXE to a dedicated hook, .is_valid_cr4(),
and invoke the new hook from kvm_valid_cr4(). This fixes an issue where
KVM_SET_SREGS would return success while failing to actually set CR4.
Fixing the issue by explicitly checking kvm_x86_ops.set_cr4()'s return
in __set_sregs() is not a viable option as KVM has already stuffed a
variety of vCPU state.
Note, kvm_valid_cr4() and is_valid_cr4() have different return types and
inverted semantics. This will be remedied in a future patch.
Fixes: 5e1746d620 ("KVM: nVMX: Allow setting the VMXE bit in CR4")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20201007014417.29276-5-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop svm_set_cr4()'s explicit check CR4.VMXE now that common x86 handles
the check by incorporating VMXE into the CR4 reserved bits, via
kvm_cpu_caps. SVM obviously does not set X86_FEATURE_VMX.
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20201007014417.29276-4-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop vmx_set_cr4()'s explicit check on the 'nested' module param now
that common x86 handles the check by incorporating VMXE into the CR4
reserved bits, via kvm_cpu_caps. X86_FEATURE_VMX is set in kvm_cpu_caps
(by vmx_set_cpu_caps()), if and only if 'nested' is true.
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20201007014417.29276-3-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop vmx_set_cr4()'s somewhat hidden guest_cpuid_has() check on VMXE now
that common x86 handles the check by incorporating VMXE into the CR4
reserved bits, i.e. in cr4_guest_rsvd_bits. This fixes a bug where KVM
incorrectly rejects KVM_SET_SREGS with CR4.VMXE=1 if it's executed
before KVM_SET_CPUID{,2}.
Fixes: 5e1746d620 ("KVM: nVMX: Allow setting the VMXE bit in CR4")
Reported-by: Stas Sergeev <stsp@users.sourceforge.net>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20201007014417.29276-2-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In some cases where shadow paging is in use, the root page will
be either mmu->pae_root or vcpu->arch.mmu->lm_root. Then it will
not have an associated struct kvm_mmu_page, because it is allocated
with alloc_page instead of kvm_mmu_alloc_page.
Just return false quickly from is_tdp_mmu_root if the TDP MMU is
not in use, which also includes the case where shadow paging is
enabled.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When CONFIG_HAVE_DYNAMIC_FTRACE_WITH_ARGS is available, the ftrace call
will be able to set the ip of the calling function. This will improve the
performance of live kernel patching where it does not need all the regs to
be stored just to change the instruction pointer.
If all archs that support live kernel patching also support
HAVE_DYNAMIC_FTRACE_WITH_ARGS, then the architecture specific function
klp_arch_set_pc() could be made generic.
It is possible that an arch can support HAVE_DYNAMIC_FTRACE_WITH_ARGS but
not HAVE_DYNAMIC_FTRACE_WITH_REGS and then have access to live patching.
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: live-patching@vger.kernel.org
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Currently, the only way to get access to the registers of a function via a
ftrace callback is to set the "FL_SAVE_REGS" bit in the ftrace_ops. But as this
saves all regs as if a breakpoint were to trigger (for use with kprobes), it
is expensive.
The regs are already saved on the stack for the default ftrace callbacks, as
that is required otherwise a function being traced will get the wrong
arguments and possibly crash. And on x86, the arguments are already stored
where they would be on a pt_regs structure to use that code for both the
regs version of a callback, it makes sense to pass that information always
to all functions.
If an architecture does this (as x86_64 now does), it is to set
HAVE_DYNAMIC_FTRACE_WITH_ARGS, and this will let the generic code that it
could have access to arguments without having to set the flags.
This also includes having the stack pointer being saved, which could be used
for accessing arguments on the stack, as well as having the function graph
tracer not require its own trampoline!
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
In preparation to have arguments of a function passed to callbacks attached
to functions as default, change the default callback prototype to receive a
struct ftrace_regs as the forth parameter instead of a pt_regs.
For callbacks that set the FL_SAVE_REGS flag in their ftrace_ops flags, they
will now need to get the pt_regs via a ftrace_get_regs() helper call. If
this is called by a callback that their ftrace_ops did not have a
FL_SAVE_REGS flag set, it that helper function will return NULL.
This will allow the ftrace_regs to hold enough just to get the parameters
and stack pointer, but without the worry that callbacks may have a pt_regs
that is not completely filled.
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
For AMD SEV guests, update the cr3_lm_rsvd_bits to mask
the memory encryption bit in reserved bits.
Signed-off-by: Babu Moger <babu.moger@amd.com>
Message-Id: <160521948301.32054.5783800787423231162.stgit@bmoger-ubuntu>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
SEV guests fail to boot on a system that supports the PCID feature.
While emulating the RSM instruction, KVM reads the guest CR3
and calls kvm_set_cr3(). If the vCPU is in the long mode,
kvm_set_cr3() does a sanity check for the CR3 value. In this case,
it validates whether the value has any reserved bits set. The
reserved bit range is 63:cpuid_maxphysaddr(). When AMD memory
encryption is enabled, the memory encryption bit is set in the CR3
value. The memory encryption bit may fall within the KVM reserved
bit range, causing the KVM emulation failure.
Introduce a new field cr3_lm_rsvd_bits in kvm_vcpu_arch which will
cache the reserved bits in the CR3 value. This will be initialized
to rsvd_bits(cpuid_maxphyaddr(vcpu), 63).
If the architecture has any special bits(like AMD SEV encryption bit)
that needs to be masked from the reserved bits, should be cleared
in vendor specific kvm_x86_ops.vcpu_after_set_cpuid handler.
Fixes: a780a3ea62 ("KVM: X86: Fix reserved bits check for MOV to CR3")
Signed-off-by: Babu Moger <babu.moger@amd.com>
Message-Id: <160521947657.32054.3264016688005356563.stgit@bmoger-ubuntu>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The instruction emulator ignores clflush instructions, yet fails to
support clflushopt. Treat both similarly.
Fixes: 13e457e0ee ("KVM: x86: Emulator does not decode clflush well")
Signed-off-by: David Edmondson <david.edmondson@oracle.com>
Message-Id: <20201103120400.240882-1-david.edmondson@oracle.com>
Reviewed-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
A test shows that the output contains a space:
# cat /proc/sgi_uv/archtype
NSGI4 U/UVX
Remove that embedded space by copying the "trimmed" buffer instead of the
untrimmed input character list. Use sizeof to remove size dependency on
copy out length. Increase output buffer size by one character just in case
BIOS sends an 8 character string for archtype.
Fixes: 1e61f5a95f ("Add and decode Arch Type in UVsystab")
Signed-off-by: Mike Travis <mike.travis@hpe.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Steve Wahl <steve.wahl@hpe.com>
Link: https://lore.kernel.org/r/20201111010418.82133-1-mike.travis@hpe.com
Non RT kernels need to protect FPU against preemption and bottom half
processing. This is achieved by disabling bottom halfs via
local_bh_disable() which implictly disables preemption.
On RT kernels this protection mechanism is not sufficient because
local_bh_disable() does not disable preemption. It serializes bottom half
related processing via a CPU local lock.
As bottom halfs are running always in thread context on RT kernels
disabling preemption is the proper choice as it implicitly prevents bottom
half processing.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201027101349.588965083@linutronix.de
There is no point in disabling preemption and then disabling bottom
halfs.
Just disabling bottom halfs is sufficient as it implicitly disables
preemption on !RT kernels.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201027101349.455380473@linutronix.de
Commit 39297dde73 ("x86/platform/uv: Remove UV BAU TLB Shootdown
Handler") removed uv_flush_tlb_others. Its declaration was removed also
from asm/uv/uv.h. But only for the CONFIG_X86_UV=y case. The inline
definition (!X86_UV case) is still in place.
So remove this implementation with everything what was added to support
uv_flush_tlb_others:
* include of asm/tlbflush.h
* forward declarations of struct cpumask, mm_struct, and flush_tlb_info
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Mike Travis <mike.travis@hpe.com>
Acked-by: Steve Wahl <steve.wahl@hpe.com>
Link: https://lore.kernel.org/r/20201109093653.2042-1-jslaby@suse.cz
Enable AMD Fam17h RAPL support for the power capping framework.
The support is as per AMD Fam17h Model31h (Zen2) and model 00-ffh
(Zen1) PPR.
Tested by comparing the results of following two sysfs entries and the
values directly read from corresponding MSRs via /dev/cpu/[x]/msr:
/sys/class/powercap/intel-rapl/intel-rapl:0/energy_uj
/sys/class/powercap/intel-rapl/intel-rapl:0/intel-rapl:0:0/energy_uj
Signed-off-by: Victor Ding <victording@google.com>
Acked-by: Kim Phillips <kim.phillips@amd.com>
[ rjw: Changelog edits ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
MSRs in the rest of this file are sorted by their addresses; fixing the
two outliers.
No functional changes.
Signed-off-by: Victor Ding <victording@google.com>
Acked-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Commit
d9e9a64180 ("x86/mm/pti: Allocate a separate user PGD")
changed the PGD allocation to allocate PGD_ALLOCATION_ORDER pages, so in
the error path it should be freed using free_pages() rather than
free_page().
Commit
06ace26f4e ("x86/efi: Free efi_pgd with free_pages()")
fixed one instance of this, but missed another.
Move the freeing out-of-line to avoid code duplication and fix this bug.
Fixes: d9e9a64180 ("x86/mm/pti: Allocate a separate user PGD")
Link: https://lore.kernel.org/r/20201110163919.1134431-1-nivedita@alum.mit.edu
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
PCI's default trigger type is level and ISA's is edge. The recent
refactoring made it the other way round, which went unnoticed as it seems
only to cause havoc on some AMD systems.
Make the comment and code do the right thing again.
Fixes: a27dca645d ("x86/io_apic: Cleanup trigger/polarity helpers")
Reported-by: Tom Lendacky <thomas.lendacky@amd.com>
Reported-by: Borislav Petkov <bp@alien8.de>
Reported-by: Qian Cai <cai@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Tom Lendacky <thomas.lendacky@amd.com>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lore.kernel.org/r/87d00lgu13.fsf@nanos.tec.linutronix.de
gcc -Wextra points out a duplicate initialization of one array
member:
arch/x86/events/intel/uncore_snb.c:478:37: warning: initialized field overwritten [-Woverride-init]
478 | [SNB_PCI_UNCORE_IMC_DATA_READS] = { SNB_UNCORE_PCI_IMC_DATA_WRITES_BASE,
The only sensible explanation is that a duplicate 'READS' was used
instead of the correct 'WRITES', so change it back.
Fixes: 24633d901e ("perf/x86/intel/uncore: Add BW counters for GT, IA and IO breakdown")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201026215203.3893972-1-arnd@kernel.org
- Fix compilation error when PMD and PUD are folded
- Fix regression in reads-as-zero behaviour of ID_AA64ZFR0_EL1
- Add aarch64 get-reg-list test
x86:
- fix semantic conflict between two series merged for 5.10
- fix (and test) enforcement of paravirtual cpuid features
Generic:
- various cleanups to memory management selftests
- new selftests testcase for performance of dirty logging
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAl+pVjkUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroO3fAf/ZniW/7FC4pD/M0txXUst3mKNcC16
AbMfN36dvzdWBnAuTVsP2d+XM/sbPNacomcJGfJ5II9TKrb00FUNxU37In7vdbbm
WjpyDEpRDXnCY+OXs7dwY66dEXzv9GTzlQaGuah67AeGpzSuu3zrXlu07di446Gv
ZtHvbzFEvos7cByp3LoPfvbnvv9kkD5mQkOW7wG42hUPrxMNxtHC+qyP92DIpV8d
etDNC95rhdhhZM3LAlvO6Bp4I1uFXpYHEHtIOOT05IB9clNhfdgsuD8wiqWfEo0l
sVhg3yXWbbfGaP3vEZp5QY9qko8I0XjwIWc5hWsIHST7uPqgi8a/wIbbEA==
=jBcA
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm fixes from Paolo Bonzini:
"ARM:
- fix compilation error when PMD and PUD are folded
- fix regression in reads-as-zero behaviour of ID_AA64ZFR0_EL1
- add aarch64 get-reg-list test
x86:
- fix semantic conflict between two series merged for 5.10
- fix (and test) enforcement of paravirtual cpuid features
selftests:
- various cleanups to memory management selftests
- new selftests testcase for performance of dirty logging"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (30 commits)
KVM: selftests: allow two iterations of dirty_log_perf_test
KVM: selftests: Introduce the dirty log perf test
KVM: selftests: Make the number of vcpus global
KVM: selftests: Make the per vcpu memory size global
KVM: selftests: Drop pointless vm_create wrapper
KVM: selftests: Add wrfract to common guest code
KVM: selftests: Simplify demand_paging_test with timespec_diff_now
KVM: selftests: Remove address rounding in guest code
KVM: selftests: Factor code out of demand_paging_test
KVM: selftests: Use a single binary for dirty/clear log test
KVM: selftests: Always clear dirty bitmap after iteration
KVM: selftests: Add blessed SVE registers to get-reg-list
KVM: selftests: Add aarch64 get-reg-list test
selftests: kvm: test enforcement of paravirtual cpuid features
selftests: kvm: Add exception handling to selftests
selftests: kvm: Clear uc so UCALL_NONE is being properly reported
selftests: kvm: Fix the segment descriptor layout to match the actual layout
KVM: x86: handle MSR_IA32_DEBUGCTLMSR with report_ignored_msrs
kvm: x86: request masterclock update any time guest uses different msr
kvm: x86: ensure pv_cpuid.features is initialized when enabling cap
...
Starting with Arch Perfmon v5, the anythread filter on generic counters may be
deprecated. The current kernel was exporting the any filter without checking.
On Icelake, it means you could do cpu/event=0x3c,any/ even though the filter
does not exist. This patch corrects the problem by relying on the CPUID 0xa leaf
function to determine if anythread is supported or not as described in the
Intel SDM Vol3b 18.2.5.1 AnyThread Deprecation section.
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201028194247.3160610-1-eranian@google.com
Having pt_regs on-stack is unfortunate, it's 168 bytes. Since it isn't
actually used, make it a static variable. This both gets if off the
stack and ensures it gets 0 initialized, just in case someone does
look at it.
Reported-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201030151955.324273677@infradead.org
struct perf_sample_data lives on-stack, we should be careful about it's
size. Furthermore, the pt_regs copy in there is only because x86_64 is a
trainwreck, solve it differently.
Reported-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Steven Rostedt <rostedt@goodmis.org>
Link: https://lkml.kernel.org/r/20201030151955.258178461@infradead.org
intel_pmu_drain_pebs_*() is typically called from handle_pmi_common(),
both have an on-stack struct perf_sample_data, which is *big*. Rewire
things so that drain_pebs() can use the one handle_pmi_common() has.
Reported-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201030151955.054099690@infradead.org
__perf_output_begin() has an on-stack struct perf_sample_data in the
unlikely case it needs to generate a LOST record. However, every call
to perf_output_begin() must already have a perf_sample_data on-stack.
Reported-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201030151954.985416146@infradead.org
When booting a hyperthreaded system with the kernel parameter
'mitigations=auto,nosmt', the following warning occurs:
WARNING: CPU: 0 PID: 1 at drivers/xen/events/events_base.c:1112 unbind_from_irqhandler+0x4e/0x60
...
Hardware name: Xen HVM domU, BIOS 4.2.amazon 08/24/2006
...
Call Trace:
xen_uninit_lock_cpu+0x28/0x62
xen_hvm_cpu_die+0x21/0x30
takedown_cpu+0x9c/0xe0
? trace_suspend_resume+0x60/0x60
cpuhp_invoke_callback+0x9a/0x530
_cpu_up+0x11a/0x130
cpu_up+0x7e/0xc0
bringup_nonboot_cpus+0x48/0x50
smp_init+0x26/0x79
kernel_init_freeable+0xea/0x229
? rest_init+0xaa/0xaa
kernel_init+0xa/0x106
ret_from_fork+0x35/0x40
The secondary CPUs are not activated with the nosmt mitigations and only
the primary thread on each CPU core is used. In this situation,
xen_hvm_smp_prepare_cpus(), and more importantly xen_init_lock_cpu(), is
not called, so the lock_kicker_irq is not initialized for the secondary
CPUs. Let's fix this by exiting early in xen_uninit_lock_cpu() if the
irq is not set to avoid the warning from above for each secondary CPU.
Signed-off-by: Brian Masney <bmasney@redhat.com>
Link: https://lore.kernel.org/r/20201107011119.631442-1-bmasney@redhat.com
Reviewed-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
- Use SYM_FUNC_START_WEAK in the mem* ASM functions instead of a
combination of .weak and SYM_FUNC_START_LOCAL which makes LLVMs
integrated assembler upset.
- Correct the mitigation selection logic which prevented the related prctl
to work correctly.
- Make the UV5 hubless system work correctly by fixing up the malformed
table entries and adding the missing ones.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl+oDNYTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoaN0EACPWY15k1YuAEIjiQxRBhq22J8Y6wNX
Ui/rF2AZcAnNEJDTIyvjP6COnT9mjX/tuuluMaI6i/XY/9Xp5LpKvivkL2PXNN3X
onW01ouIc1iYxXwQEVZvhYHsOyhkR9Z8yNG/q9I7xYAXNSZcAHwXVar4VlPBT7Ay
iP75i8pGmb/NCc4oHNXuBp/dV/0/dCoLTndb5p5pX8oS60AAt9ZuK3IRc3ucayhI
M4rTTEya1oY+ZNbtP4A4Jp7Qc/NGYDo6q04za+jcxZ5Gqacs+fk/PNuWgL1fZZtW
sn1D+SMWEb55Xcsdy976b29FFU/DcOcf7TRASzyKgyPW5jg1dP6BZ6U0wpVV3KZw
S2h5/pt48JZI7olrDsLQ0tzjALlk2CcFNrnRtOMDduHdw9wyz+Sg58lZYuvH3sXK
5ZblWRJ3JiBNsNO0sA3kd4sp7xWQB3ey6mkYD8Vqb7zRIt8aXT9jqBxhDrP+Vqs/
/UKv+BJfD6WxC0nQ4x6MS3g4sDvI+1SLfHSZ/UjWJ6NfYJW5/w429pFCaF73xCTd
cqxja1dZYixn7ioFZjolMUdvuDiC5B2+5+RzEV87kaDzO9QZQyvsl7G74MSfwx6G
DAydvuyJoxP2qVASobOBcVOzLQO7DsLzFZzJTttZcnkK2iprcz4qrsFLMxF9SxTD
Amb8qck60dLfqA==
=JdPk
-----END PGP SIGNATURE-----
Merge tag 'x86-urgent-2020-11-08' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Thomas Gleixner:
"A set of x86 fixes:
- Use SYM_FUNC_START_WEAK in the mem* ASM functions instead of a
combination of .weak and SYM_FUNC_START_LOCAL which makes LLVMs
integrated assembler upset
- Correct the mitigation selection logic which prevented the related
prctl to work correctly
- Make the UV5 hubless system work correctly by fixing up the
malformed table entries and adding the missing ones"
* tag 'x86-urgent-2020-11-08' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/platform/uv: Recognize UV5 hubless system identifier
x86/platform/uv: Remove spaces from OEM IDs
x86/platform/uv: Fix missing OEM_TABLE_ID
x86/speculation: Allow IBPB to be conditionally enabled on CPUs with always-on STIBP
x86/lib: Change .weak to SYM_FUNC_START_WEAK for arch/x86/lib/mem*_64.S
Windows2016 guest tries to enable LBR by setting the corresponding bits
in MSR_IA32_DEBUGCTLMSR. KVM does not emulate MSR_IA32_DEBUGCTLMSR and
spams the host kernel logs with error messages like:
kvm [...]: vcpu1, guest rIP: 0xfffff800a8b687d3 kvm_set_msr_common: MSR_IA32_DEBUGCTLMSR 0x1, nop"
This patch fixes this by enabling error logging only with
'report_ignored_msrs=1'.
Signed-off-by: Pankaj Gupta <pankaj.gupta@cloud.ionos.com>
Message-Id: <20201105153932.24316-1-pankaj.gupta.linux@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit 5b9bb0ebbc ("kvm: x86: encapsulate wrmsr(MSR_KVM_SYSTEM_TIME)
emulation in helper fn", 2020-10-21) subtly changed the behavior of guest
writes to MSR_KVM_SYSTEM_TIME(_NEW). Restore the previous behavior; update
the masterclock any time the guest uses a different msr than before.
Fixes: 5b9bb0ebbc ("kvm: x86: encapsulate wrmsr(MSR_KVM_SYSTEM_TIME) emulation in helper fn", 2020-10-21)
Signed-off-by: Oliver Upton <oupton@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Message-Id: <20201027231044.655110-6-oupton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Make the paravirtual cpuid enforcement mechanism idempotent to ioctl()
ordering by updating pv_cpuid.features whenever userspace requests the
capability. Extract this update out of kvm_update_cpuid_runtime() into a
new helper function and move its other call site into
kvm_vcpu_after_set_cpuid() where it more likely belongs.
Fixes: 66570e966d ("kvm: x86: only provide PV features if enabled in guest's CPUID")
Signed-off-by: Oliver Upton <oupton@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Message-Id: <20201027231044.655110-5-oupton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
commit 66570e966d ("kvm: x86: only provide PV features if enabled in
guest's CPUID") only protects against disallowed guest writes to KVM
paravirtual msrs, leaving msr reads unchecked. Fix this by enforcing
KVM_CPUID_FEATURES for msr reads as well.
Fixes: 66570e966d ("kvm: x86: only provide PV features if enabled in guest's CPUID")
Signed-off-by: Oliver Upton <oupton@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Message-Id: <20201027231044.655110-4-oupton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Recent introduction of the userspace msr filtering added code that uses
negative error codes for cases that result in either #GP delivery to
the guest, or handled by the userspace msr filtering.
This breaks an assumption that a negative error code returned from the
msr emulation code is a semi-fatal error which should be returned
to userspace via KVM_RUN ioctl and usually kill the guest.
Fix this by reusing the already existing KVM_MSR_RET_INVALID error code,
and by adding a new KVM_MSR_RET_FILTERED error code for the
userspace filtered msrs.
Fixes: 291f35fb2c1d1 ("KVM: x86: report negative values from wrmsr emulation to userspace")
Reported-by: Qian Cai <cai@redhat.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20201101115523.115780-1-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Fix an off-by-one style bug in pte_list_add() where it failed to
account the last full set of SPTEs, i.e. when desc->sptes is full
and desc->more is NULL.
Merge the two "PTE_LIST_EXT-1" checks as part of the fix to avoid
an extra comparison.
Signed-off-by: Li RongQing <lirongqing@baidu.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <1601196297-24104-1-git-send-email-lirongqing@baidu.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Conflicts:
include/asm-generic/atomic-instrumented.h
kernel/kprobes.c
Use the upstream atomic-instrumented.h checksum, and pick
the kprobes version of kernel/kprobes.c, which effectively
reverts this upstream workaround:
645f224e7ba2: ("kprobes: Tell lockdep about kprobe nesting")
Since the new code *should* be fine without nesting.
Knock on wood ...
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Testing shows a problem in that UV5 hubless systems were not being
recognized. Add them to the list of OEM IDs checked.
Fixes: 6c7794423a ("Add UV5 direct references")
Signed-off-by: Mike Travis <mike.travis@hpe.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201105222741.157029-4-mike.travis@hpe.com
Testing shows that trailing spaces caused problems with the OEM_ID and
the OEM_TABLE_ID. One being that the OEM_ID would not string compare
correctly. Another the OEM_ID and OEM_TABLE_ID would be concatenated
in the printout. Remove any trailing spaces.
Fixes: 1e61f5a95f ("Add and decode Arch Type in UVsystab")
Signed-off-by: Mike Travis <mike.travis@hpe.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201105222741.157029-3-mike.travis@hpe.com
Testing shows a problem in that the OEM_TABLE_ID was missing for
hubless systems. This is used to determine the APIC type (legacy or
extended). Add the OEM_TABLE_ID to the early hubless processing.
Fixes: 1e61f5a95f ("Add and decode Arch Type in UVsystab")
Signed-off-by: Mike Travis <mike.travis@hpe.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201105222741.157029-2-mike.travis@hpe.com
Currently, accessing /proc/cpuinfo sends IPIs to idle CPUs in order to
learn their clock frequency. Which is a bit strange, given that waking
them from idle likely significantly changes their clock frequency.
This commit therefore avoids sending /proc/cpuinfo-induced IPIs to
idle CPUs.
[ paulmck: Also check for idle in arch_freq_prepare_all(). ]
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: <x86@kernel.org>
The aperfmperf_snapshot_cpu() function is invoked upon access to
/proc/cpuinfo, and it does do an early exit if the specified CPU has
recently done a snapshot. Unfortunately, the indication that a snapshot
has been completed is set in an IPI handler, and the execution of this
handler can be delayed by any number of unfortunate events. This means
that a system that starts a number of applications, each of which
parses /proc/cpuinfo, can suffer from an smp_call_function_single()
storm, especially given that each access to /proc/cpuinfo invokes
smp_call_function_single() for all CPUs. Please note that this is not
theoretical speculation. Note also that one CPU's pending IPI serves
all requests, so there is no point in ever having more than one IPI
pending to a given CPU.
This commit therefore suppresses duplicate IPIs to a given CPU via a
new ->scfpending field in the aperfmperf_sample structure. This field
is set to the value one if an IPI is pending to the corresponding CPU
and to zero otherwise.
The aperfmperf_snapshot_cpu() function uses atomic_xchg() to set this
field to the value one and sample the old value. If this function's
"wait" parameter is zero, smp_call_function_single() is called only if
the old value of the ->scfpending field was zero. The IPI handler uses
atomic_set_release() to set this new field to zero just before returning,
so that the prior stores into the aperfmperf_sample structure are seen
by future requests that get to the atomic_xchg(). Future requests that
pass the elapsed-time check are ordered by the fact that on x86 loads act
as acquire loads, just as was the case prior to this change. The return
value is based off of the age of the prior snapshot, just as before.
Reported-by: Dave Jones <davej@codemonkey.org.uk>
[ paulmck: Allow /proc/cpuinfo to take advantage of arch_freq_get_on_cpu(). ]
[ paulmck: Add comment on memory barrier. ]
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: <x86@kernel.org>
Switch the atomic iomap implementation over to kmap_local and stick the
preempt/pagefault mechanics into the generic code similar to the
kmap_atomic variants.
Rename the x86 map function in preparation for a non-atomic variant.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linuxfoundation.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: https://lore.kernel.org/r/20201103095858.625310005@linutronix.de
Commit
c9c6d216ed ("x86/mce: Rename "first" function as "early"")
changed the enumeration of MCE notifier priorities. Correct the check
for notifier priorities to cover the new range.
[ bp: Rewrite commit message, remove superfluous brackets in
conditional. ]
Fixes: c9c6d216ed ("x86/mce: Rename "first" function as "early"")
Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20201106141216.2062-2-thunder.leizhen@huawei.com
This adds CONFIG_FTRACE_RECORD_RECURSION that will record to a file
"recursed_functions" all the functions that caused recursion while a
callback to the function tracer was running.
Link: https://lkml.kernel.org/r/20201106023548.102375687@goodmis.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Guo Ren <guoren@kernel.org>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: x86@kernel.org
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Anton Vorontsov <anton@enomsg.org>
Cc: Colin Cross <ccross@android.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Miroslav Benes <mbenes@suse.cz>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Joe Lawrence <joe.lawrence@redhat.com>
Cc: Kamalesh Babulal <kamalesh@linux.vnet.ibm.com>
Cc: Mauro Carvalho Chehab <mchehab+huawei@kernel.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: linux-doc@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-csky@vger.kernel.org
Cc: linux-parisc@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: linux-s390@vger.kernel.org
Cc: live-patching@vger.kernel.org
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
If a ftrace callback does not supply its own recursion protection and
does not set the RECURSION_SAFE flag in its ftrace_ops, then ftrace will
make a helper trampoline to do so before calling the callback instead of
just calling the callback directly.
The default for ftrace_ops is going to change. It will expect that handlers
provide their own recursion protection, unless its ftrace_ops states
otherwise.
Link: https://lkml.kernel.org/r/20201028115613.140212174@goodmis.org
Link: https://lkml.kernel.org/r/20201106023546.944907560@goodmis.org
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Miroslav Benes <mbenes@suse.cz>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Guo Ren <guoren@kernel.org>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: x86@kernel.org
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com>
Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: linux-csky@vger.kernel.org
Cc: linux-parisc@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: linux-s390@vger.kernel.org
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Move the x86 IMA arch code into security/integrity/ima/ima_efi.c,
so that we will be able to wire it up for arm64 in a future patch.
Co-developed-by: Chester Lin <clin@suse.com>
Signed-off-by: Chester Lin <clin@suse.com>
Acked-by: Mimi Zohar <zohar@linux.ibm.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
On AMD CPUs which have the feature X86_FEATURE_AMD_STIBP_ALWAYS_ON,
STIBP is set to on and
spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED
At the same time, IBPB can be set to conditional.
However, this leads to the case where it's impossible to turn on IBPB
for a process because in the PR_SPEC_DISABLE case in ib_prctl_set() the
spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED
condition leads to a return before the task flag is set. Similarly,
ib_prctl_get() will return PR_SPEC_DISABLE even though IBPB is set to
conditional.
More generally, the following cases are possible:
1. STIBP = conditional && IBPB = on for spectre_v2_user=seccomp,ibpb
2. STIBP = on && IBPB = conditional for AMD CPUs with
X86_FEATURE_AMD_STIBP_ALWAYS_ON
The first case functions correctly today, but only because
spectre_v2_user_ibpb isn't updated to reflect the IBPB mode.
At a high level, this change does one thing. If either STIBP or IBPB
is set to conditional, allow the prctl to change the task flag.
Also, reflect that capability when querying the state. This isn't
perfect since it doesn't take into account if only STIBP or IBPB is
unconditionally on. But it allows the conditional feature to work as
expected, without affecting the unconditional one.
[ bp: Massage commit message and comment; space out statements for
better readability. ]
Fixes: 21998a3515 ("x86/speculation: Avoid force-disabling IBPB based on STIBP and enhanced IBRS.")
Signed-off-by: Anand K Mistry <amistry@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lkml.kernel.org/r/20201105163246.v2.1.Ifd7243cd3e2c2206a893ad0a5b9a4f19549e22c6@changeid
Generalize the efi_get_secureboot() function so not only efistub but also
other subsystems can use it.
Note that the MokSbState handling is not factored out: the variable is
boot time only, and so it cannot be parameterized as easily. Also, the
IMA code will switch to this version in a future patch, and it does not
incorporate the MokSbState exception in the first place.
Note that the new efi_get_secureboot_mode() helper treats any failures
to read SetupMode as setup mode being disabled.
Co-developed-by: Chester Lin <clin@suse.com>
Signed-off-by: Chester Lin <clin@suse.com>
Acked-by: Mimi Zohar <zohar@linux.ibm.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Lockdep state handling on NMI enter and exit is nothing specific to X86. It's
not any different on other architectures. Also the extra state type is not
necessary, irqentry_state_t can carry the necessary information as well.
Move it to common code and extend irqentry_state_t to carry lockdep state.
[ Ira: Make exit_rcu and lockdep a union as they are mutually exclusive
between the IRQ and NMI exceptions, and add kernel documentation for
struct irqentry_state_t ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201102205320.1458656-7-ira.weiny@intel.com
Commit
393f203f5f ("x86_64: kasan: add interceptors for memset/memmove/memcpy functions")
added .weak directives to arch/x86/lib/mem*_64.S instead of changing the
existing ENTRY macros to WEAK. This can lead to the assembly snippet
.weak memcpy
...
.globl memcpy
which will produce a STB_WEAK memcpy with GNU as but STB_GLOBAL memcpy
with LLVM's integrated assembler before LLVM 12. LLVM 12 (since
https://reviews.llvm.org/D90108) will error on such an overridden symbol
binding.
Commit
ef1e03152c ("x86/asm: Make some functions local")
changed ENTRY in arch/x86/lib/memcpy_64.S to SYM_FUNC_START_LOCAL, which
was ineffective due to the preceding .weak directive.
Use the appropriate SYM_FUNC_START_WEAK instead.
Fixes: 393f203f5f ("x86_64: kasan: add interceptors for memset/memmove/memcpy functions")
Fixes: ef1e03152c ("x86/asm: Make some functions local")
Reported-by: Sami Tolvanen <samitolvanen@google.com>
Signed-off-by: Fangrui Song <maskray@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20201103012358.168682-1-maskray@google.com
In commit b643128b91 ("x86/ioapic: Use irq_find_matching_fwspec() to
find remapping irqdomain") the I/O-APIC code was changed to find its
parent irqdomain using irq_find_matching_fwspec(), but the key used
for the lookup was wrong. It shouldn't use 'ioapic' which is the index
into its own ioapics[] array. It should use the actual arbitration
ID of the I/O-APIC in question, which is mpc_ioapic_id(ioapic).
Fixes: b643128b91 ("x86/ioapic: Use irq_find_matching_fwspec() to find remapping irqdomain")
Reported-by: lkp <oliver.sang@intel.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/57adf2c305cd0c5e9d860b2f3007a7e676fd0f9f.camel@infradead.org
When a Linux VM runs on Hyper-V, if the VM has CPUs with >255 APIC IDs,
the CPUs can't be the destination of IOAPIC interrupts, because the
IOAPIC RTE's Dest Field has only 8 bits. Currently the hackery driver
drivers/iommu/hyperv-iommu.c is used to ensure IOAPIC interrupts are
only routed to CPUs that don't have >255 APIC IDs. However, there is
an issue with kdump, because the kdump kernel can run on any CPU, and
hence IOAPIC interrupts can't work if the kdump kernel run on a CPU
with a >255 APIC ID.
The kdump issue can be fixed by the Extended Dest ID, which is introduced
recently by David Woodhouse (for IOAPIC, see the field virt_destid_8_14 in
struct IO_APIC_route_entry). Of course, the Extended Dest ID needs the
support of the underlying hypervisor. The latest Hyper-V has added the
support recently: with this commit, on such a Hyper-V host, Linux VM
does not use hyperv-iommu.c because hyperv_prepare_irq_remapping()
returns -ENODEV; instead, Linux kernel's generic support of Extended Dest
ID from David is used, meaning that Linux VM is able to support up to
32K CPUs, and IOAPIC interrupts can be routed to all the CPUs.
On an old Hyper-V host that doesn't support the Extended Dest ID, nothing
changes with this commit: Linux VM is still able to bring up the CPUs with
> 255 APIC IDs with the help of hyperv-iommu.c, but IOAPIC interrupts still
can not go to such CPUs, and the kdump kernel still can not work properly
on such CPUs.
[ tglx: Updated comment as suggested by David ]
Signed-off-by: Dexuan Cui <decui@microsoft.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lore.kernel.org/r/20201103011136.59108-1-decui@microsoft.com
hypervisor checks before enabling encryption. (Joerg Roedel)
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAl+hKN8ACgkQEsHwGGHe
VUrkZQ/+LWjbDrbkLCQpWuzLagAocZMKKvr4+2ujU+krj0QU5FFJbfuzhkktQD+H
cbfOW7+E8lqTDoj/dwoJPj2Xs8HvW4Ua6sbxF5lCPhlEr3NIetRfQ7SPj3qFvQG+
FKP/55RSnjKIx7aZXKN9YAw2FF3EC1BisjszCBKid5S8HbGqjLMb2Ue0i/nssksY
CvLwaxtDOGuSzJ8FwL+vmI70NkeLZ0ulTxbuxXAqfMTvJX3e1QA9dgeZMgfU1hng
eA1Pjlm0X7FOsnwihYP2EZ6NzRrTkYeGl1Iagz1apqlDlQ+bcaxvs2btIyb7MKt5
6PPDGg0P0WVMNfOEUYTZob31QcLnakA/p8kG8sYE6h2PlqO9Tf5cpmOJ6pv+DYFz
hfcjAZfamStUbWdWpr33RVCXN5pwZRu+UytD3JYykzgwmKXQxLHqrbjHXLO3zJ7k
+L0JE+N2vmi/7M5Ghsv3yKwy5fR5rMT5V6qEHSd1qrr9VpKBceNMJgPA8wh4882F
SD5sD2b6L/Cf9L4FAFqICHb/p4rxPRf5VnUoybo70U7EiwfbZQik5g3X5cO4KO2N
0z8nMk7dIZncQF0LYJNElIvKonrU8sIa+TbHjYyBWdQlOPgK4IlCvZeyjVUvUG24
kYx2WbANhCxGFd86rsl5P7xNXvBiSALf1afbQPvU0VTbZ43vSnQ=
=Pvgr
-----END PGP SIGNATURE-----
Merge tag 'x86_seves_for_v5.10_rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 SEV-ES fixes from Borislav Petkov:
"A couple of changes to the SEV-ES code to perform more stringent
hypervisor checks before enabling encryption (Joerg Roedel)"
* tag 'x86_seves_for_v5.10_rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/sev-es: Do not support MMIO to/from encrypted memory
x86/head/64: Check SEV encryption before switching to kernel page-table
x86/boot/compressed/64: Check SEV encryption in 64-bit boot-path
x86/boot/compressed/64: Sanity-check CPUID results in the early #VC handler
x86/boot/compressed/64: Introduce sev_status
The Xeon versions of Sandy Bridge, Ivy Bridge and Haswell support an
optional additional error logging mode which is enabled by an MSR.
Previously, this mode was enabled from the mcelog(8) tool via /dev/cpu,
but userspace should not be poking at MSRs. So move the enabling into
the kernel.
[ bp: Correct the explanation why this is done. ]
Suggested-by: Boris Petkov <bp@alien8.de>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20201030190807.GA13884@agluck-desk2.amr.corp.intel.com
- Handle the BTF bit correctly so it doesn't get lost due to a kernel #DB
- Only clear and set the virtual DR6 value used by ptrace on user space
triggered #DB. A kernel #DB must leave it alone to ensure data
consistency for ptrace.
- Make the bitmasking of the virtual DR6 storage correct so it does not
lose DR_STEP.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl+evlcTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYofaAD/4gzRDGRZiorwX60o+RuJjgBN/iS1BN
SEpprlC2TGtdiOvGNKxMxwMZFbpSExgGtwku6xya1VDDLJS+NwartL0AEnCsei2e
O4KqUiU6HuBsKi+M0LARVm8bHRzb1s3YjrFFMwrarTm40joOvxNiw2w+nvTtamfJ
tlkQMp5/iX0KNO5FBLMPDDwVyE3xY+yAyiI0Z7bPmrhNSlNWW6x8QKoBpp8T5v2a
ATIhAnOAClZVH/ig9A/fbUgsBqxyyIZRSW2wudAtHZg8NhDox+TitUIWG+IEoRDL
uW2hKSqxrBsapTWxv2+tN5Kk0ORUSqEMqWaog80pjP3o0ezUKZxQsYuAZ430bzDr
qqVWGpX42UjYet6V4S9P+I/gN3lCZmYoc24zfWLT8T8KRaDOOebYmC7EiJjudaXd
sEYCKRv10ysBlFqXyzz2LDOyjFOiXodyFbhdBQVCPUuis99mHdYIJHoUxpYhgZSH
IIbYn9RUsij6mMaCfPhNVoJwRVtY+AGGisfEnk+v5dfFYQruliFWgyjDYWT5+IxQ
ZsJOJVCqR8JT9bL0xiTNbcZ3SvRfMQ2pLfd6MWX9fQZ9o6LvVSg32gPjgneKpQ/y
QLRtiyVW3oBw2rJZeoYVIHrD8r3SUOI8iQLcCjXwxQoBiei6G+4GNdFtkUmqAFB3
VvtPZYyjj05gCw==
=Hfek
-----END PGP SIGNATURE-----
Merge tag 'x86-urgent-2020-11-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Thomas Gleixner:
"Three fixes all related to #DB:
- Handle the BTF bit correctly so it doesn't get lost due to a kernel
#DB
- Only clear and set the virtual DR6 value used by ptrace on user
space triggered #DB. A kernel #DB must leave it alone to ensure
data consistency for ptrace.
- Make the bitmasking of the virtual DR6 storage correct so it does
not lose DR_STEP"
* tag 'x86-urgent-2020-11-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/debug: Fix DR_STEP vs ptrace_get_debugreg(6)
x86/debug: Only clear/set ->virtual_dr6 for userspace #DB
x86/debug: Fix BTF handling
* selftest fix
* Force PTE mapping on device pages provided via VFIO
* Fix detection of cacheable mapping at S2
* Fallback to PMD/PTE mappings for composite huge pages
* Fix accounting of Stage-2 PGD allocation
* Fix AArch32 handling of some of the debug registers
* Simplify host HYP entry
* Fix stray pointer conversion on nVHE TLB invalidation
* Fix initialization of the nVHE code
* Simplify handling of capabilities exposed to HYP
* Nuke VCPUs caught using a forbidden AArch32 EL0
x86:
* new nested virtualization selftest
* Miscellaneous fixes
* make W=1 fixes
* Reserve new CPUID bit in the KVM leaves
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAl+dhRAUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroPWCgf/U997UW/11IdNtkehQO/DFdx7lHev
+IahN1Pnbt92ZoR5nGhK9pgvDahIVhqTmUvgV+3fD24OnqXTpYTu1fliBvL6ynbN
J9Ycf0zFAgwfgTTD5UexTlEovnhX4xz7NDmd6rpxGDZdMaBHQFPkCXBFK45pf4nd
O349aHV0X1AA7Tt/sLhpXpi74Vake1xErLHKhIVLHKyo/zDm+Q0UZry068NNBzTr
St3+QSGlFXhuekVrZLh+DShh6rZGLyY9tcySt6o0Jk7fSs1lmEnPbBgeeqYmyHMd
Yn+ybhthmNkkpI8so70TA9roiVar4UmjnMBOiav62bo7ue26pKE5cWQyXw==
=mvBr
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm fixes from Paolo Bonzini:
"ARM:
- selftest fix
- force PTE mapping on device pages provided via VFIO
- fix detection of cacheable mapping at S2
- fallback to PMD/PTE mappings for composite huge pages
- fix accounting of Stage-2 PGD allocation
- fix AArch32 handling of some of the debug registers
- simplify host HYP entry
- fix stray pointer conversion on nVHE TLB invalidation
- fix initialization of the nVHE code
- simplify handling of capabilities exposed to HYP
- nuke VCPUs caught using a forbidden AArch32 EL0
x86:
- new nested virtualization selftest
- miscellaneous fixes
- make W=1 fixes
- reserve new CPUID bit in the KVM leaves"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: vmx: remove unused variable
KVM: selftests: Don't require THP to run tests
KVM: VMX: eVMCS: make evmcs_sanitize_exec_ctrls() work again
KVM: selftests: test behavior of unmapped L2 APIC-access address
KVM: x86: Fix NULL dereference at kvm_msr_ignored_check()
KVM: x86: replace static const variables with macros
KVM: arm64: Handle Asymmetric AArch32 systems
arm64: cpufeature: upgrade hyp caps to final
arm64: cpufeature: reorder cpus_have_{const, final}_cap()
KVM: arm64: Factor out is_{vhe,nvhe}_hyp_code()
KVM: arm64: Force PTE mapping on fault resulting in a device mapping
KVM: arm64: Use fallback mapping sizes for contiguous huge page sizes
KVM: arm64: Fix masks in stage2_pte_cacheable()
KVM: arm64: Fix AArch32 handling of DBGD{CCINT,SCRext} and DBGVCR
KVM: arm64: Allocate stage-2 pgd pages with GFP_KERNEL_ACCOUNT
KVM: arm64: Drop useless PAN setting on host EL1 to EL2 transition
KVM: arm64: Remove leftover kern_hyp_va() in nVHE TLB invalidation
KVM: arm64: Don't corrupt tpidr_el2 on failed HVC call
x86/kvm: Reserve KVM_FEATURE_MSI_EXT_DEST_ID
It was noticed that evmcs_sanitize_exec_ctrls() is not being executed
nowadays despite the code checking 'enable_evmcs' static key looking
correct. Turns out, static key magic doesn't work in '__init' section
(and it is unclear when things changed) but setup_vmcs_config() is called
only once per CPU so we don't really need it to. Switch to checking
'enlightened_vmcs' instead, it is supposed to be in sync with
'enable_evmcs'.
Opportunistically make evmcs_sanitize_exec_ctrls '__init' and drop unneeded
extra newline from it.
Reported-by: Yang Weijiang <weijiang.yang@intel.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20201014143346.2430936-1-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Almost all machines use GENERIC_CLOCKEVENTS, so it feels wrong to
require each one to select that symbol manually.
Instead, enable it whenever CONFIG_LEGACY_TIMER_TICK is disabled as
a simplification. It should be possible to select both
GENERIC_CLOCKEVENTS and LEGACY_TIMER_TICK from an architecture now
and decide at runtime between the two.
For the clockevents arch-support.txt file, this means that additional
architectures are marked as TODO when they have at least one machine
that still uses LEGACY_TIMER_TICK, rather than being marked 'ok' when
at least one machine has been converted. This means that both m68k and
arm (for riscpc) revert to TODO.
At this point, we could just always enable CONFIG_GENERIC_CLOCKEVENTS
rather than leaving it off when not needed. I built an m68k
defconfig kernel (using gcc-10.1.0) and found that this would add
around 5.5KB in kernel image size:
text data bss dec hex filename
3861936 1092236 196656 5150828 4e986c obj-m68k/vmlinux-no-clockevent
3866201 1093832 196184 5156217 4ead79 obj-m68k/vmlinux-clockevent
On Arm (MACH_RPC), that difference appears to be twice as large,
around 11KB on top of an 6MB vmlinux.
Reviewed-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Tested-by: Geert Uytterhoeven <geert@linux-m68k.org>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
The newly introduced kvm_msr_ignored_check() tries to print error or
debug messages via vcpu_*() macros, but those may cause Oops when NULL
vcpu is passed for KVM_GET_MSRS ioctl.
Fix it by replacing the print calls with kvm_*() macros.
(Note that this will leave vcpu argument completely unused in the
function, but I didn't touch it to make the fix as small as
possible. A clean up may be applied later.)
Fixes: 12bc2132b1 ("KVM: X86: Do the same ignore_msrs check for feature msrs")
BugLink: https://bugzilla.suse.com/show_bug.cgi?id=1178280
Cc: <stable@vger.kernel.org>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Message-Id: <20201030151414.20165-1-tiwai@suse.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Even though the compiler is able to replace static const variables with
their value, it will warn about them being unused when Linux is built with W=1.
Use good old macros instead, this is not C++.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Without the barrier_data() inside memzero_explicit(), the compiler may
optimize away the state-clearing if it can tell that the state is not
used afterwards.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Commit 1d2c327931 ("crypto: x86/aes - drop scalar assembler
implementations") was meant to remove aes_glue.c, but it actually left
it as an unused one-line file. Remove this unused file.
Cc: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Commit
b4e0409a36 ("x86: check vmlinux limits, 64-bit")
added a check that the size of the 64-bit kernel is less than
KERNEL_IMAGE_SIZE.
The check uses (_end - _text), but this is not enough. The initial
PMD used in startup_64() (level2_kernel_pgt) can only map upto
KERNEL_IMAGE_SIZE from __START_KERNEL_map, not from _text, and the
modules area (MODULES_VADDR) starts at KERNEL_IMAGE_SIZE.
The correct check is what is currently done for 32-bit, since
LOAD_OFFSET is defined appropriately for the two architectures. Just
check (_end - LOAD_OFFSET) against KERNEL_IMAGE_SIZE unconditionally.
Note that on 32-bit, the limit is not strict: KERNEL_IMAGE_SIZE is not
really used by the main kernel. The higher the kernel is located, the
less the space available for the vmalloc area. However, it is used by
KASLR in the compressed stub to limit the maximum address of the kernel
to a safe value.
Clean up various comments to clarify that despite the name,
KERNEL_IMAGE_SIZE is not a limit on the size of the kernel image, but a
limit on the maximum virtual address that the image can occupy.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20201029161903.2553528-1-nivedita@alum.mit.edu
MMIO memory is usually not mapped encrypted, so there is no reason to
support emulated MMIO when it is mapped encrypted.
Prevent a possible hypervisor attack where a RAM page is mapped as
an MMIO page in the nested page-table, so that any guest access to it
will trigger a #VC exception and leak the data on that page to the
hypervisor via the GHCB (like with valid MMIO). On the read side this
attack would allow the HV to inject data into the guest.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lkml.kernel.org/r/20201028164659.27002-6-joro@8bytes.org
When SEV is enabled, the kernel requests the C-bit position again from
the hypervisor to build its own page-table. Since the hypervisor is an
untrusted source, the C-bit position needs to be verified before the
kernel page-table is used.
Call sev_verify_cbit() before writing the CR3.
[ bp: Massage. ]
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lkml.kernel.org/r/20201028164659.27002-5-joro@8bytes.org
Check whether the hypervisor reported the correct C-bit when running as
an SEV guest. Using a wrong C-bit position could be used to leak
sensitive data from the guest to the hypervisor.
The check function is in a separate file:
arch/x86/kernel/sev_verify_cbit.S
so that it can be re-used in the running kernel image.
[ bp: Massage. ]
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lkml.kernel.org/r/20201028164659.27002-4-joro@8bytes.org
The early #VC handler which doesn't have a GHCB can only handle CPUID
exit codes. It is needed by the early boot code to handle #VC exceptions
raised in verify_cpu() and to get the position of the C-bit.
But the CPUID information comes from the hypervisor which is untrusted
and might return results which trick the guest into the no-SEV boot path
with no C-bit set in the page-tables. All data written to memory would
then be unencrypted and could leak sensitive data to the hypervisor.
Add sanity checks to the early #VC handler to make sure the hypervisor
can not pretend that SEV is disabled.
[ bp: Massage a bit. ]
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lkml.kernel.org/r/20201028164659.27002-3-joro@8bytes.org
The generic entry code has support for TIF_NOTIFY_SIGNAL already. Just
provide the TIF bit.
[ tglx: Adopted to other TIF changes in x86 ]
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201026203230.386348-4-axboe@kernel.dk
The event CYCLE_ACTIVITY.STALLS_MEM_ANY (0x14a3) should be available on
all 8 GP counters on ICL, but it's only scheduled on the first four
counters due to the current ICL constraint table.
Add a line for the CYCLE_ACTIVITY.STALLS_MEM_ANY event in the ICL
constraint table.
Correct the comments for the CYCLE_ACTIVITY.CYCLES_MEM_ANY event.
Fixes: 6017608936 ("perf/x86/intel: Add Icelake support")
Reported-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20201019164529.32154-1-kan.liang@linux.intel.com
For Rocket Lake, the MSR uncore, e.g., CBOX, ARB and CLOCKBOX, are the
same as Tiger Lake. Share the perf code with it.
For Rocket Lake and Tiger Lake, the 8th CBOX is not mapped into a
different MSR space anymore. Add rkl_uncore_msr_init_box() to replace
skl_uncore_msr_init_box().
The IMC uncore is the similar to Ice Lake. Add new PCIIDs of IMC for
Rocket Lake.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201019153528.13850-4-kan.liang@linux.intel.com
From the perspective of Intel cstate residency counters, Rocket Lake is
the same as Ice Lake and Tiger Lake. Share the code with them. Update
the comments for Rocket Lake.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201019153528.13850-2-kan.liang@linux.intel.com
From the perspective of Intel PMU, Rocket Lake is the same as Ice Lake
and Tiger Lake. Share the perf code with them.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201019153528.13850-1-kan.liang@linux.intel.com
When studying code layout, it is useful to capture the page size of the
sampled code address.
Add a new sample type for code page size.
The new sample type requires collecting the ip. The code page size can
be calculated from the NMI-safe perf_get_page_size().
For large PEBS, it's very unlikely that the mapping is gone for the
earlier PEBS records. Enable the feature for the large PEBS. The worst
case is that page-size '0' is returned.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201001135749.2804-5-kan.liang@linux.intel.com
The new sample type, PERF_SAMPLE_DATA_PAGE_SIZE, requires the virtual
address. Update the data->addr if the sample type is set.
The large PEBS is disabled with the sample type, because perf doesn't
support munmap tracking yet. The PEBS buffer for large PEBS cannot be
flushed for each munmap. Wrong page size may be calculated. The large
PEBS can be enabled later separately when munmap tracking is supported.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201001135749.2804-3-kan.liang@linux.intel.com
Introduce sev_status and initialize it together with sme_me_mask to have
an indicator which SEV features are enabled.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lkml.kernel.org/r/20201028164659.27002-2-joro@8bytes.org
Add TIF_NOTIFY_SIGNAL handling in the generic entry code, which if set,
will return true if signal_pending() is used in a wait loop. That causes an
exit of the loop so that notify_signal tracehooks can be run. If the wait
loop is currently inside a system call, the system call is restarted once
task_work has been processed.
In preparation for only having arch_do_signal() handle syscall restarts if
_TIF_SIGPENDING isn't set, rename it to arch_do_signal_or_restart(). Pass
in a boolean that tells the architecture specific signal handler if it
should attempt to get a signal, or just process a potential syscall
restart.
For !CONFIG_GENERIC_ENTRY archs, add the TIF_NOTIFY_SIGNAL handling to
get_signal(). This is done to minimize the needed architecture changes to
support this feature.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Link: https://lore.kernel.org/r/20201026203230.386348-3-axboe@kernel.dk
Some hypervisors can allow the guest to use the Extended Destination ID
field in the MSI address to address up to 32768 CPUs.
This applies to all downstream devices which generate MSI cycles,
including HPET, I/O-APIC and PCI MSI.
HPET and PCI MSI use the same __irq_msi_compose_msg() function, while
I/O-APIC generates its own and had support for the extended bits added in
a previous commit.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201024213535.443185-33-dwmw2@infradead.org
Bits 63-48 of the I/OAPIC Redirection Table Entry map directly to bits 19-4
of the address used in the resulting MSI cycle.
Historically, the x86 MSI format only used the top 8 of those 16 bits as
the destination APIC ID, and the "Extended Destination ID" in the lower 8
bits was unused.
With interrupt remapping, the lowest bit of the Extended Destination ID
(bit 48 of RTE, bit 4 of MSI address) is now used to indicate a remappable
format MSI.
A hypervisor can use the other 7 bits of the Extended Destination ID to
permit guests to address up to 15 bits of APIC IDs, thus allowing 32768
vCPUs before having to expose a vIOMMU and interrupt remapping to the
guest.
No behavioural change in this patch, since nothing yet permits APIC IDs
above 255 to be used with the non-IR I/OAPIC domain.
[ tglx: Converted it to the cleaned up entry/msi_msg format and added
commentry ]
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201024213535.443185-32-dwmw2@infradead.org
The I/O-APIC generates an MSI cycle with address/data bits taken from its
Redirection Table Entry in some combination which used to make sense, but
now is just a bunch of bits which get passed through in some seemingly
arbitrary order.
Instead of making IRQ remapping drivers directly frob the I/OA-PIC RTE, let
them just do their job and generate an MSI message. The bit swizzling to
turn that MSI message into the I/O-APIC's RTE is the same in all cases,
since it's a function of the I/O-APIC hardware. The IRQ remappers have no
real need to get involved with that.
The only slight caveat is that the I/OAPIC is interpreting some of those
fields too, and it does want the 'vector' field to be unique to make EOI
work. The AMD IOMMU happens to put its IRTE index in the bits that the
I/O-APIC thinks are the vector field, and accommodates this requirement by
reserving the first 32 indices for the I/O-APIC. The Intel IOMMU doesn't
actually use the bits that the I/O-APIC thinks are the vector field, so it
fills in the 'pin' value there instead.
[ tglx: Replaced the unreadably macro maze with the cleaned up RTE/msi_msg
bitfields and added commentry to explain the mapping magic ]
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201024213535.443185-22-dwmw2@infradead.org
Having two seperate structs for the I/O-APIC RTE entries (non-remapped and
DMAR remapped) requires type casts and makes it hard to map.
Combine them in IO_APIC_routing_entry by defining a union of two 64bit
bitfields. Use naming which reflects which bits are shared and which bits
are actually different for the operating modes.
[dwmw2: Fix it up and finish the job, pulling the 32-bit w1,w2 words for
register access into the same union and eliminating a few more
places where bits were accessed through masks and shifts.]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201024213535.443185-21-dwmw2@infradead.org
'trigger' and 'polarity' are used throughout the I/O-APIC code for handling
the trigger type (edge/level) and the active low/high configuration. While
there are defines for initializing these variables and struct members, they
are not used consequently and the meaning of 'trigger' and 'polarity' is
opaque and confusing at best.
Rename them to 'is_level' and 'active_low' and make them boolean in various
structs so it's entirely clear what the meaning is.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201024213535.443185-20-dwmw2@infradead.org
Use the msi_msg shadow structs and compose the message with named bitfields
instead of the unreadable macro maze.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201024213535.443185-18-dwmw2@infradead.org
Use the bitfields in the x86 shadow structs instead of decomposing the
32bit value with macros.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201024213535.443185-17-dwmw2@infradead.org
Create shadow structs with named bitfields for msi_msg data, address_lo and
address_hi and use them in the MSI message composer.
Provide a function to retrieve the destination ID. This could be inline,
but that'd create a circular header dependency.
[dwmw2: fix bitfields not all to be a union]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201024213535.443185-13-dwmw2@infradead.org
This isn't really dependent on PCI MSI; it's just generic MSI which is now
supported by the generic x86_vector_domain. Move the HPET MSI support back
into hpet.c with the rest of the HPET support.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201024213535.443185-11-dwmw2@infradead.org
This shouldn't be dependent on PCI_MSI. HPET and I/O-APIC can deliver
interrupts through MSI without having any PCI in the system at all.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201024213535.443185-10-dwmw2@infradead.org
apic::irq_dest_mode is actually a boolean, but defined as u32 and named in
a way which does not explain what it means.
Make it a boolean and rename it to 'dest_mode_logical'
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201024213535.443185-9-dwmw2@infradead.org
struct apic has two members which store information about the destination
mode: dest_logical and irq_dest_mode.
dest_logical contains a mask which was historically used to set the
destination mode in IPI messages. Over time the usage was reduced and the
logical/physical functions were seperated.
There are only a few places which still use 'dest_logical' but they can
use 'irq_dest_mode' instead.
irq_dest_mode is actually a boolean where 0 means physical destination mode
and 1 means logical destination mode. Of course the name does not reflect
the functionality. This will be cleaned up in a subsequent change.
Remove apic::dest_logical and fixup the remaining users.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201024213535.443185-8-dwmw2@infradead.org
All these functions are only used for logical destination mode. So reading
the destination mode mask from the apic structure is a pointless
exercise. Just hand in the proper constant: APIC_DEST_LOGICAL.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201024213535.443185-7-dwmw2@infradead.org
The enum ioapic_irq_destination_types and the enumerated constants starting
with 'dest_' are gross misnomers because they describe the delivery mode.
Rename then enum and the constants so they actually make sense.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201024213535.443185-6-dwmw2@infradead.org
The ioapic interrupt type table is wrong as it assumes that polarity in
IO/APIC context means active high when set. But the IO/APIC polarity is
working the other way round. This works because the ordering of the entries
is consistent with the device tree and the type information is not used by
the IO/APIC interrupt chip.
The whole trigger and polarity business of IO/APIC is misleading and the
corresponding constants which are defined as 0/1 are not used consistently
and are going to be removed.
Rename the type table members to 'is_level' and 'active_low' and adjust the
type information for consistency sake.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201024213535.443185-5-dwmw2@infradead.org
The UV x2apic is strictly using physical destination mode, but
apic::dest_logical is initialized with APIC_DEST_LOGICAL.
This does not matter much because UV does not use any of the generic
functions which use apic::dest_logical, but is still inconsistent.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201024213535.443185-4-dwmw2@infradead.org
The Intel IOMMU has an MSI-like configuration for its interrupt, but it
isn't really MSI. So it gets to abuse the high 32 bits of the address, and
puts the high 24 bits of the extended APIC ID there.
This isn't something that can be used in the general case for real MSIs,
since external devices using the high bits of the address would be
performing writes to actual memory space above 4GiB, not targeted at the
APIC.
Factor the hack out and allow it only to be used when appropriate, adding a
WARN_ON_ONCE() if other MSIs are targeted at an unreachable APIC ID. That
should never happen since the compatibility MSI messages are not used when
Interrupt Remapping is enabled.
The x2apic_enabled() check isn't needed because Linux won't bring up CPUs
with higher APIC IDs unless IR and x2apic are enabled anyway.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201024213535.443185-3-dwmw2@infradead.org
Currently, Linux as a hypervisor guest will enable x2apic only if there are
no CPUs present at boot time with an APIC ID above 255.
Hotplugging a CPU later with a higher APIC ID would result in a CPU which
cannot be targeted by external interrupts.
Add a filter in x2apic_apic_id_valid() which can be used to prevent such
CPUs from coming online, and allow x2apic to be enabled even if they are
present at boot time.
Fixes: ce69a78450 ("x86/apic: Enable x2APIC without interrupt remapping under KVM")
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201024213535.443185-2-dwmw2@infradead.org
No functional change; just reserve the feature bit for now so that VMMs
can start to implement it.
This will allow the host to indicate that MSI emulation supports 15-bit
destination IDs, allowing up to 32768 CPUs without interrupt remapping.
cf. https://patchwork.kernel.org/patch/11816693/ for qemu
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <4cd59bed05f4b7410d3d1ffd1e997ab53683874d.camel@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit
bb8187d35f ("MCA: delete all remaining traces of microchannel bus support.")
removed the remaining traces of Micro Channel Architecture support but
one trace remained - three variables in setup.c which have been unused
since 2012 at least.
Drop them finally.
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20201021165614.23023-1-bp@alien8.de
Commit
ea3b5e60ce ("x86/mm/ident_map: Add 5-level paging support")
added ident_p4d_init() to support 5-level paging, but this function
doesn't check and return errors from ident_pud_init().
For example, the decompressor stub uses this code to create an identity
mapping. If it runs out of pages while trying to allocate a PMD
pagetable, the error will be currently ignored.
Fix this to propagate errors.
[ bp: Space out statements for better readability. ]
Fixes: ea3b5e60ce ("x86/mm/ident_map: Add 5-level paging support")
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Joerg Roedel <jroedel@suse.de>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Link: https://lkml.kernel.org/r/20201027230648.1885111-1-nivedita@alum.mit.edu
Commit d53d9bc0cf ("x86/debug: Change thread.debugreg6 to
thread.virtual_dr6") changed the semantics of the variable from random
collection of bits, to exactly only those bits that ptrace() needs.
Unfortunately this lost DR_STEP for PTRACE_{BLOCK,SINGLE}STEP.
Furthermore, it turns out that userspace expects DR_STEP to be
unconditionally available, even for manual TF usage outside of
PTRACE_{BLOCK,SINGLE}_STEP.
Fixes: d53d9bc0cf ("x86/debug: Change thread.debugreg6 to thread.virtual_dr6")
Reported-by: Kyle Huey <me@kylehuey.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Kyle Huey <me@kylehuey.com>
Link: https://lore.kernel.org/r/20201027183330.GM2628@hirez.programming.kicks-ass.net
The ->virtual_dr6 is the value used by ptrace_{get,set}_debugreg(6). A
kernel #DB clearing it could mean spurious malfunction of ptrace()
expectations.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Kyle Huey <me@kylehuey.com>
Link: https://lore.kernel.org/r/20201027093608.028952500@infradead.org
The SDM states that #DB clears DEBUGCTLMSR_BTF, this means that when the
bit is set for userspace (TIF_BLOCKSTEP) and a kernel #DB happens first,
the BTF bit meant for userspace execution is lost.
Have the kernel #DB handler restore the BTF bit when it was requested
for userspace.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Kyle Huey <me@kylehuey.com>
Link: https://lore.kernel.org/r/20201027093607.956147736@infradead.org
- Drop lazy TLB mode before switching to the temporary address space for
text patching. text_poke() switches to the temporary mm which clears
the lazy mode and restores the original mm afterwards. Due to clearing
lazy mode this might restore a already dead mm if exit_mmap() runs in
parallel on another CPU.
- Document the x32 syscall design fail vs. syscall numbers 512-547
properly.
- Fix the ORC unwinder to handle the inactive task frame correctly. This
was unearthed due to the slightly different code generation of GCC10.
- Use an up to date screen_info for the boot params of kexec instead of
the possibly stale and invalid version which happened to be valid when
the kexec kernel was loaded.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl+Yf5YTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoY6HD/4vlFNTVR19JhICQM64XINoaWOOjdIq
M3wWyh+lmW5+JqNYCYY3M5LX2ZLwYOlNgabE1W6KJgnJsN26GRztBN3z037Vllka
lS1pONg2a3StpVUEJ3AGDnFgaYrKRSyHBhi/0TazXmvOlscjwPIPxI53oLohyc23
vSd9ivIFl9jD894OsLjJtWt1rKK6k9p4FqR8bv+u/GwtYGQk9HXlk/XW/uOeH3oU
ozQhlHCnqN9VnHGHS/nRz3BwIiPJRCYl7h4PdC4MqT+WL1e4pIKEJqyN9uPWeC6L
b7DzX5KVO0Zcvgvl5OtuR6radXzrMvBwcY6BSOxylfoM+7SIE24PlRFW24EQGKv2
WHtOKSGsvooU8KWVw4FvHUkSFAgNWUTjZ9x1kzEw1oUANceJUuM74n4rIFUXv3Kf
gxhcPm2flrB3WrHKuXtQ3QxD9SyGuqk4QUraeNMYyS3DqnnBycgUkd72KiY9H0g8
9XBvHEFs5G9apA8MSdumHKgrluHVcvdpe3YGy0/vugJvolSvDWkx3EbxpWbhilYS
WyboQGOwSH1vgEGHHnoiksY/Ofhv+rxBknDUJOiJazVZFbOwFvdKIPDNTQTjrzw1
NENSBtMkCLG8XvuZ1E1l57wd7BN7fJENYLnG2k9gUsnouWV0pK6x8w9GPn9DW4Do
0IB3hScRgIIuvQ==
=e60h
-----END PGP SIGNATURE-----
Merge tag 'x86-urgent-2020-10-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Thomas Gleixner:
"A couple of x86 fixes which missed rc1 due to my stupidity:
- Drop lazy TLB mode before switching to the temporary address space
for text patching.
text_poke() switches to the temporary mm which clears the lazy mode
and restores the original mm afterwards. Due to clearing lazy mode
this might restore a already dead mm if exit_mmap() runs in
parallel on another CPU.
- Document the x32 syscall design fail vs. syscall numbers 512-547
properly.
- Fix the ORC unwinder to handle the inactive task frame correctly.
This was unearthed due to the slightly different code generation of
gcc-10.
- Use an up to date screen_info for the boot params of kexec instead
of the possibly stale and invalid version which happened to be
valid when the kexec kernel was loaded"
* tag 'x86-urgent-2020-10-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/alternative: Don't call text_poke() in lazy TLB mode
x86/syscalls: Document the fact that syscalls 512-547 are a legacy mistake
x86/unwind/orc: Fix inactive tasks with stack pointer in %sp on GCC 10 compiled kernels
hyperv_fb: Update screen_info after removing old framebuffer
x86/kexec: Use up-to-dated screen_info copy to fill boot params
Intel Memory Bandwidth Monitoring (MBM) counters may report system
memory bandwidth incorrectly on some Intel processors. The errata SKX99
for Skylake server, BDF102 for Broadwell server, and the correction
factor table are documented in Documentation/x86/resctrl.rst.
Intel MBM counters track metrics according to the assigned Resource
Monitor ID (RMID) for that logical core. The IA32_QM_CTR register
(MSR 0xC8E) used to report these metrics, may report incorrect system
bandwidth for certain RMID values.
Due to the errata, system memory bandwidth may not match what is
reported.
To work around the errata, correct MBM total and local readings using a
correction factor table. If rmid > rmid threshold, MBM total and local
values should be multiplied by the correction factor.
[ bp: Mark mbm_cf_table[] __initdata. ]
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/20201014004927.1839452-3-fenghua.yu@intel.com
A couple of um files ended up not including the header file that defines
the __section() macro, and the simplest fix is to just revert the change
for those files.
Fixes: 33def8498f treewide: Convert macro and uses of __section(foo) to __section("foo")
Reported-and-tested-by: Guenter Roeck <linux@roeck-us.net>
Cc: Joe Perches <joe@perches.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull crypto fix from Herbert Xu:
"This fixes a regression in x86/poly1305"
* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6:
crypto: x86/poly1305 - add back a needed assignment
The COPY_MC_TEST facility has served its purpose for validating the
early termination conditions of the copy_mc_fragile() implementation.
Remove it and the EXPORT_SYMBOL_GPL of copy_mc_fragile().
Reported-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/160316688322.3374697.8648308115165836243.stgit@dwillia2-desk3.amr.corp.intel.com
The comment about Hyper-V accessors is unclear regarding their
potential use in x2apic mode, as is the associated commit message
in e211288b72. Clarify that while the architectural and
synthetic MSRs are equivalent in x2apic mode, the full set of xapic
accessors cannot be used because of register layout differences.
Fixes: e211288b72 ("x86/hyperv: Make vapic support x2apic mode")
Signed-off-by: Michael Kelley <mikelley@microsoft.com>
Link: https://lore.kernel.org/r/1603723972-81303-1-git-send-email-mikelley@microsoft.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
The ia32_compat attribute is a weird thing. It mirrors TIF_IA32 and
TIF_X32 and is used only in two very unrelated places: (1) to decide if
the vsyscall page is accessible (2) for uprobes to find whether the
patched instruction is 32 or 64 bit.
In preparation to remove the TIF flags, a new mechanism is required for
ia32_compat, but given its odd semantics, adding a real flags field which
configures these specific behaviours is the best option.
So, set_personality_x64() can ask for the vsyscall page, which is not
available in x32/ia32 and set_personality_ia32() can configure the uprobe
code as needed.
uprobe cannot rely on other methods like user_64bit_mode() to decide how
to patch, so it needs some specific flag like this.
Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Andy Lutomirski<luto@kernel.org>
Link: https://lore.kernel.org/r/20201004032536.1229030-10-krisman@collabora.com
Since TIF_X32 is going away, avoid using it to find the ELF type when
choosing which additional pages to set up.
According to SysV AMD64 ABI Draft, an AMD64 ELF object using ILP32 must
have ELFCLASS32 with (E_MACHINE == EM_X86_64), so use that ELF field to
differentiate a x32 object from a IA32 object when executing
setup_additional_pages() in compat mode.
Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201004032536.1229030-9-krisman@collabora.com
Since TIF_X32 is going away, avoid using it to find the ELF type in
compat_start_thread.
According to SysV AMD64 ABI Draft, an AMD64 ELF object using ILP32 must
have ELFCLASS32 with (E_MACHINE == EM_X86_64), so use that ELF field to
differentiate a x32 object from a IA32 object when executing start_thread()
in compat mode.
Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20201004032536.1229030-7-krisman@collabora.com
Since TIF_X32 is going away, avoid using it to find the ELF type on
ARCH_DLINFO.
According to SysV AMD64 ABI Draft, an AMD64 ELF object using ILP32 must
have ELFCLASS32 with (E_MACHINE == EM_X86_64), so use that ELF field to
differentiate a x32 object from a IA32 object when loading ARCH_DLINFO in
compat mode.
Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20201004032536.1229030-5-krisman@collabora.com
In preparation to remove TIF_IA32, stop using it in oprofile code. Use
user_64bit_mode() instead.
Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201004032536.1229030-4-krisman@collabora.com
When allocating user memory space for a compat system call, don't consider
whether the originating code is IA32 or X32, just allocate from a safe
region for both, beyond the redzone. This should be safe for IA32, and has
the benefit of avoiding TIF_IA32, which is about to be removed.
Suggested-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201004032536.1229030-3-krisman@collabora.com
In preparation to remove TIF_IA32, stop using it in perf events code.
Tested by running perf on 32-bit, 64-bit and x32 applications.
Suggested-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20201004032536.1229030-2-krisman@collabora.com
CONFIG_EFI_MIXED depends on CONFIG_X86_64=y.
There is no need to check CONFIG_X86_64 again.
Signed-off-by: Heinrich Schuchardt <xypron.glpk@gmx.de>
Link: https://lore.kernel.org/r/20201003060356.4913-1-xypron.glpk@gmx.de
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Use a more generic form for __section that requires quotes to avoid
complications with clang and gcc differences.
Remove the quote operator # from compiler_attributes.h __section macro.
Convert all unquoted __section(foo) uses to quoted __section("foo").
Also convert __attribute__((section("foo"))) uses to __section("foo")
even if the __attribute__ has multiple list entry forms.
Conversion done using the script at:
https://lore.kernel.org/lkml/75393e5ddc272dc7403de74d645e6c6e0f4e70eb.camel@perches.com/2-convert_section.pl
Signed-off-by: Joe Perches <joe@perches.com>
Reviewed-by: Nick Desaulniers <ndesaulniers@gooogle.com>
Reviewed-by: Miguel Ojeda <ojeda@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQRTLbB6QfY48x44uB6AXGG7T9hjvgUCX5VVeQAKCRCAXGG7T9hj
voI0AQD3ol/EN9uHW1qKduBI/nl5tgv325Zri8CMu60kS45pgAD/ccUXRcHojs3l
YIfgcgT4qKQFWzv57Fc9FUBQJMahJgM=
=6ZgH
-----END PGP SIGNATURE-----
Merge tag 'for-linus-5.10b-rc1c-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull more xen updates from Juergen Gross:
- a series for the Xen pv block drivers adding module parameters for
better control of resource usge
- a cleanup series for the Xen event driver
* tag 'for-linus-5.10b-rc1c-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip:
Documentation: add xen.fifo_events kernel parameter description
xen/events: unmask a fifo event channel only if it was masked
xen/events: only register debug interrupt for 2-level events
xen/events: make struct irq_info private to events_base.c
xen: remove no longer used functions
xen-blkfront: Apply changed parameter name to the document
xen-blkfront: add a parameter for disabling of persistent grants
xen-blkback: add a parameter for disabling of persistent grants
a host hang.
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAl+T6RoUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroMx2gf+PjoeMjLKtstdKDdiLFV46X7YdYKz
sUoDhpSbiLpEus5BF6OauUWwKgB7GcsoDUnLgjN5jqkAQzoFm0YOcI2GlXS999SL
5QIg6Vw5WF8X/7EVt6gxzC6KcWjbQvv38R/Ktd/0sMqRBPiZG7kVcWeXlopb9DaQ
Rdgg0hNVpgDiTNrBNl5RnM7Wz/SrOZmwaotW1LcII+BkCnj9Av77v77TxN9YuvG4
o+GMMQseFAzDjQ+jHZkHuBmPRy5dQB9ywzEIrUCubqhT04sWbQ6DhGfx45a0IgsY
33iT28omYdMVlRd/i3KcHQ86JJSo5g7pOqLwGd1L9HjNTS5VmQ8HXNJWBA==
=ECL9
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM fixes from Paolo Bonzini:
"Two fixes for this merge window, and an unrelated bugfix for a host
hang"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: ioapic: break infinite recursion on lazy EOI
KVM: vmx: rename pi_init to avoid conflict with paride
KVM: x86/mmu: Avoid modulo operator on 64-bit value to fix i386 build
on 5-level paging machines, to always map boot_params and the kernel
cmdline, and disable stack protector for ../compressed/head{32,64}.c.
(Arvind Sankar)
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAl+T8ZcACgkQEsHwGGHe
VUoaTRAAnc1LUAbf6dgsKBf84VPMbyPS2pZa4CL/5HGg+ZQOL6lK91dhT9nmsB6U
gr5u/9x4mGF5YEvYUUXB1yYEcyGBSW1JCBUFyQdAxIpBnlk2VmuKr5E3uA/ioprl
mxgvO1dCfZUXboGGb2Keo6EP3Z+FMm9o9LifdO7udeXUYAFAjB6FpUV0egXbaUSo
nT8f+OqavhD9nsChW5kFTtWTHkTbei9aTfAei54ADQPe+3KNud1i/YynzCSmoB9a
Frc9xFEgComUptsDhPR4nshuogZgH6q2tz6J3e7og+zdInUUQ1q7E6sweXWJ17sw
8o+dp1X5uwziH1tmfcS+3Z8Mpy64LLVoywM7WkcMGcqnwzoOaUWkjItbf68UQPKx
fRCO87JMCYifh3El6IgbOglXZKtdYRy5nkPDfb0NtIQdko4nc/yXLGZxoQJOSM/F
bnMokk/+etrzu9BlxTSxV7q2GS5kza1TZP0LB3q8km+zQOdYHNfYgnZtUiVqpOKl
HmlY4LSFv7FV+yr1or+XbOVfhsBqFqO8YkAC7xqtHcmo3OgLwL+0d399U+7O0Nk1
aU5zK1TmiQHQBoLNkBDcnXSZJ78ooXfup4WK7Oxk4SuiGd3vW4FG6QtoBtMY+Ads
sLEsjAHjvJJQg14AgO1LDwdmTSABHd/SoLit8+SrGbScctwkx3w=
=iVqC
-----END PGP SIGNATURE-----
Merge tag 'x86_seves_fixes_for_v5.10_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 SEV-ES fixes from Borislav Petkov:
"Three fixes to SEV-ES to correct setting up the new early pagetable on
5-level paging machines, to always map boot_params and the kernel
cmdline, and disable stack protector for ../compressed/head{32,64}.c.
(Arvind Sankar)"
* tag 'x86_seves_fixes_for_v5.10_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/boot/64: Explicitly map boot_params and command line
x86/head/64: Disable stack protection for head$(BITS).o
x86/boot/64: Initialize 5-level paging variables earlier
During shutdown the IOAPIC trigger mode is reset to edge triggered
while the vfio-pci INTx is still registered with a resampler.
This allows us to get into an infinite loop:
ioapic_set_irq
-> ioapic_lazy_update_eoi
-> kvm_ioapic_update_eoi_one
-> kvm_notify_acked_irq
-> kvm_notify_acked_gsi
-> (via irq_acked fn ptr) irqfd_resampler_ack
-> kvm_set_irq
-> (via set fn ptr) kvm_set_ioapic_irq
-> kvm_ioapic_set_irq
-> ioapic_set_irq
Commit 8be8f932e3 ("kvm: ioapic: Restrict lazy EOI update to
edge-triggered interrupts", 2020-05-04) acknowledges that this recursion
loop exists and tries to avoid it at the call to ioapic_lazy_update_eoi,
but at this point the scenario is already set, we have an edge interrupt
with resampler on the same gsi.
Fortunately, the only user of irq ack notifiers (in addition to resamplefd)
is i8254 timer interrupt reinjection. These are edge-triggered, so in
principle they would need the call to kvm_ioapic_update_eoi_one from
ioapic_lazy_update_eoi, but they already disable AVIC(*), so they don't
need the lazy EOI behavior. Therefore, remove the call to
kvm_ioapic_update_eoi_one from ioapic_lazy_update_eoi.
This fixes CVE-2020-27152. Note that this issue cannot happen with
SR-IOV assigned devices because virtual functions do not have INTx,
only MSI.
Fixes: f458d039db ("kvm: ioapic: Lazy update IOAPIC EOI")
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Tested-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
allyesconfig results in:
ld: drivers/block/paride/paride.o: in function `pi_init':
(.text+0x1340): multiple definition of `pi_init'; arch/x86/kvm/vmx/posted_intr.o:posted_intr.c:(.init.text+0x0): first defined here
make: *** [Makefile:1164: vmlinux] Error 1
because commit:
commit 8888cdd099
Author: Xiaoyao Li <xiaoyao.li@intel.com>
Date: Wed Sep 23 11:31:11 2020 -0700
KVM: VMX: Extract posted interrupt support to separate files
added another pi_init(), though one already existed in the paride code.
Reported-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Replace a modulo operator with the more common pattern for computing the
gfn "offset" of a huge page to fix an i386 build error.
arch/x86/kvm/mmu/tdp_mmu.c:212: undefined reference to `__umoddi3'
In fact, almost all of tdp_mmu.c can be elided on 32-bit builds, but
that is a much larger patch.
Fixes: 2f2fad0897 ("kvm: x86/mmu: Add functions to handle changed TDP SPTEs")
Reported-by: Daniel Díaz <daniel.diaz@linaro.org>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20201024031150.9318-1-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
One of the assignments that was removed by commit 4a0c1de64b ("crypto:
x86/poly1305 - Remove assignments with no effect") is actually needed,
since it affects the return value.
This fixes the following crypto self-test failure:
alg: shash: poly1305-simd test failed (wrong result) on test vector 2, cfg="init+update+final aligned buffer"
Fixes: 4a0c1de64b ("crypto: x86/poly1305 - Remove assignments with no effect")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Quoting https://gcc.gnu.org/onlinedocs/gcc/Local-Register-Variables.html:
You can define a local register variable and associate it with a
specified register...
The only supported use for this feature is to specify registers for
input and output operands when calling Extended asm (see Extended
Asm). This may be necessary if the constraints for a particular
machine don't provide sufficient control to select the desired
register.
On 32-bit x86, this is used to ensure that gcc will put an 8-byte value
into the %edx:%eax pair, while all other cases will just use the single
register %eax (%rax on x86-64). While the _ASM_AX actually just expands
to "%eax", note this comment next to get_user() which does something
very similar:
* The use of _ASM_DX as the register specifier is a bit of a
* simplification, as gcc only cares about it as the starting point
* and not size: for a 64-bit value it will use %ecx:%edx on 32 bits
* (%ecx being the next register in gcc's x86 register sequence), and
* %rdx on 64 bits.
However, getting this to work requires that there is no code between the
assignment to the local register variable and its use as an input to the
asm() which can possibly clobber any of the registers involved -
including evaluation of the expressions making up other inputs.
In the current code, the ptr expression used directly as an input may
cause such code to be emitted. For example, Sean Christopherson
observed that with KASAN enabled and ptr being current->set_child_tid
(from chedule_tail()), the load of current->set_child_tid causes a call
to __asan_load8() to be emitted immediately prior to the __put_user_4
call, and Naresh Kamboju reports that various mmstress tests fail on
KASAN-enabled builds.
It's also possible to synthesize a broken case without KASAN if one uses
"foo()" as the ptr argument, with foo being some "extern u64 __user
*foo(void);" (though I don't know if that appears in real code).
Fix it by making sure ptr gets evaluated before the assignment to
__val_pu, and add a comment that __val_pu must be the last thing
computed before the asm() is entered.
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Fixes: d55564cfc2 ("x86: Make __put_user() generate an out-of-line call")
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- New page table code for both hypervisor and guest stage-2
- Introduction of a new EL2-private host context
- Allow EL2 to have its own private per-CPU variables
- Support of PMU event filtering
- Complete rework of the Spectre mitigation
PPC:
- Fix for running nested guests with in-kernel IRQ chip
- Fix race condition causing occasional host hard lockup
- Minor cleanups and bugfixes
x86:
- allow trapping unknown MSRs to userspace
- allow userspace to force #GP on specific MSRs
- INVPCID support on AMD
- nested AMD cleanup, on demand allocation of nested SVM state
- hide PV MSRs and hypercalls for features not enabled in CPUID
- new test for MSR_IA32_TSC writes from host and guest
- cleanups: MMU, CPUID, shared MSRs
- LAPIC latency optimizations ad bugfixes
For x86, also included in this pull request is a new alternative and
(in the future) more scalable implementation of extended page tables
that does not need a reverse map from guest physical addresses to
host physical addresses. For now it is disabled by default because
it is still lacking a few of the existing MMU's bells and whistles.
However it is a very solid piece of work and it is already available
for people to hammer on it.
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAl+S8dsUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroM40Af+M46NJmuS5rcwFfybvK/c42KT6svX
Co1NrZDwzSQ2mMy3WQzH9qeLvb+nbY4sT3n5BPNPNsT+aIDPOTDt//qJ2/Ip9UUs
tRNea0MAR96JWLE7MSeeRxnTaQIrw/AAZC0RXFzZvxcgytXwdqBExugw4im+b+dn
Dcz8QxX1EkwT+4lTm5HC0hKZAuo4apnK1QkqCq4SdD2QVJ1YE6+z7pgj4wX7xitr
STKD6q/Yt/0ndwqS0GSGbyg0jy6mE620SN6isFRkJYwqfwLJci6KnqvEK67EcNMu
qeE017K+d93yIVC46/6TfVHzLR/D1FpQ8LZ16Yl6S13OuGIfAWBkQZtPRg==
=AD6a
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"For x86, there is a new alternative and (in the future) more scalable
implementation of extended page tables that does not need a reverse
map from guest physical addresses to host physical addresses.
For now it is disabled by default because it is still lacking a few of
the existing MMU's bells and whistles. However it is a very solid
piece of work and it is already available for people to hammer on it.
Other updates:
ARM:
- New page table code for both hypervisor and guest stage-2
- Introduction of a new EL2-private host context
- Allow EL2 to have its own private per-CPU variables
- Support of PMU event filtering
- Complete rework of the Spectre mitigation
PPC:
- Fix for running nested guests with in-kernel IRQ chip
- Fix race condition causing occasional host hard lockup
- Minor cleanups and bugfixes
x86:
- allow trapping unknown MSRs to userspace
- allow userspace to force #GP on specific MSRs
- INVPCID support on AMD
- nested AMD cleanup, on demand allocation of nested SVM state
- hide PV MSRs and hypercalls for features not enabled in CPUID
- new test for MSR_IA32_TSC writes from host and guest
- cleanups: MMU, CPUID, shared MSRs
- LAPIC latency optimizations ad bugfixes"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (232 commits)
kvm: x86/mmu: NX largepage recovery for TDP MMU
kvm: x86/mmu: Don't clear write flooding count for direct roots
kvm: x86/mmu: Support MMIO in the TDP MMU
kvm: x86/mmu: Support write protection for nesting in tdp MMU
kvm: x86/mmu: Support disabling dirty logging for the tdp MMU
kvm: x86/mmu: Support dirty logging for the TDP MMU
kvm: x86/mmu: Support changed pte notifier in tdp MMU
kvm: x86/mmu: Add access tracking for tdp_mmu
kvm: x86/mmu: Support invalidate range MMU notifier for TDP MMU
kvm: x86/mmu: Allocate struct kvm_mmu_pages for all pages in TDP MMU
kvm: x86/mmu: Add TDP MMU PF handler
kvm: x86/mmu: Remove disallowed_hugepage_adjust shadow_walk_iterator arg
kvm: x86/mmu: Support zapping SPTEs in the TDP MMU
KVM: Cache as_id in kvm_memory_slot
kvm: x86/mmu: Add functions to handle changed TDP SPTEs
kvm: x86/mmu: Allocate and free TDP MMU roots
kvm: x86/mmu: Init / Uninit the TDP MMU
kvm: x86/mmu: Introduce tdp_iter
KVM: mmu: extract spte.h and spte.c
KVM: mmu: Separate updating a PTE from kvm_set_pte_rmapp
...
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAl+SOXIQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgptrcD/93VUDmRAn73ChKNd0TtXUicJlAlNLVjvfs
VFTXWBDnlJnGkZT7ElkDD9b8dsz8l4xGf/QZ5dzhC/th2OsfObQkSTfe0lv5cCQO
mX7CRSrDpjaHtW+WGPDa0oQsGgIfpqUz2IOg9NKbZZ1LJ2uzYfdOcf3oyRgwZJ9B
I3sh1vP6OzjZVVCMmtMTM+sYZEsDoNwhZwpkpiwMmj8tYtOPgKCYKpqCiXrGU0x2
ML5FtDIwiwU+O3zYYdCBWqvCb2Db0iA9Aov2whEBz/V2jnmrN5RMA/90UOh1E2zG
br4wM1Wt3hNrtj5qSxZGlF/HEMYJVB8Z2SgMjYu4vQz09qRVVqpGdT/dNvLAHQWg
w4xNCj071kVZDQdfwnqeWSKYUau9Xskvi8xhTT+WX8a5CsbVrM9vGslnS5XNeZ6p
h2D3Q+TAYTvT756icTl0qsYVP7PrPY7DdmQYu0q+Lc3jdGI+jyxO2h9OFBRLZ3p6
zFX2N8wkvvCCzP2DwVnnhIi/GovpSh7ksHnb039F36Y/IhZPqV1bGqdNQVdanv6I
8fcIDM6ltRQ7dO2Br5f1tKUZE9Pm6x60b/uRVjhfVh65uTEKyGRhcm5j9ztzvQfI
cCBg4rbVRNKolxuDEkjsAFXVoiiEEsb7pLf4pMO+Dr62wxFG589tQNySySneUIVZ
J9ILnGAAeQ==
=aVWo
-----END PGP SIGNATURE-----
Merge tag 'arch-cleanup-2020-10-22' of git://git.kernel.dk/linux-block
Pull arch task_work cleanups from Jens Axboe:
"Two cleanups that don't fit other categories:
- Finally get the task_work_add() cleanup done properly, so we don't
have random 0/1/false/true/TWA_SIGNAL confusing use cases. Updates
all callers, and also fixes up the documentation for
task_work_add().
- While working on some TIF related changes for 5.11, this
TIF_NOTIFY_RESUME cleanup fell out of that. Remove some arch
duplication for how that is handled"
* tag 'arch-cleanup-2020-10-22' of git://git.kernel.dk/linux-block:
task_work: cleanup notification modes
tracehook: clear TIF_NOTIFY_RESUME in tracehook_notify_resume()
xen_debug_interrupt() is specific to 2-level event handling. So don't
register it with fifo event handling being active.
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Jan Beulich <jbeulich@suse.com>
Link: https://lore.kernel.org/r/20201022094907.28560-4-jgross@suse.com
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
When KVM maps a largepage backed region at a lower level in order to
make it executable (i.e. NX large page shattering), it reduces the TLB
performance of that region. In order to avoid making this degradation
permanent, KVM must periodically reclaim shattered NX largepages by
zapping them and allowing them to be rebuilt in the page fault handler.
With this patch, the TDP MMU does not respect KVM's rate limiting on
reclaim. It traverses the entire TDP structure every time. This will be
addressed in a future patch.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-21-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Direct roots don't have a write flooding count because the guest can't
affect that paging structure. Thus there's no need to clear the write
flooding count on a fast CR3 switch for direct roots.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-20-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In order to support MMIO, KVM must be able to walk the TDP paging
structures to find mappings for a given GFN. Support this walk for
the TDP MMU.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
v2: Thanks to Dan Carpenter and kernel test robot for finding that root
was used uninitialized in get_mmio_spte.
Signed-off-by: Ben Gardon <bgardon@google.com>
Reported-by: kernel test robot <lkp@intel.com>
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Message-Id: <20201014182700.2888246-19-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
To support nested virtualization, KVM will sometimes need to write
protect pages which are part of a shadowed paging structure or are not
writable in the shadowed paging structure. Add a function to write
protect GFN mappings for this purpose.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-18-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Dirty logging ultimately breaks down MMU mappings to 4k granularity.
When dirty logging is no longer needed, these granaular mappings
represent a useless performance penalty. When dirty logging is disabled,
search the paging structure for mappings that could be re-constituted
into a large page mapping. Zap those mappings so that they can be
faulted in again at a higher mapping level.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-17-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Dirty logging is a key feature of the KVM MMU and must be supported by
the TDP MMU. Add support for both the write protection and PML dirty
logging modes.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-16-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In order to interoperate correctly with the rest of KVM and other Linux
subsystems, the TDP MMU must correctly handle various MMU notifiers. Add
a hook and handle the change_pte MMU notifier.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-15-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In order to interoperate correctly with the rest of KVM and other Linux
subsystems, the TDP MMU must correctly handle various MMU notifiers. The
main Linux MM uses the access tracking MMU notifiers for swap and other
features. Add hooks to handle the test/flush HVA (range) family of
MMU notifiers.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-14-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In order to interoperate correctly with the rest of KVM and other Linux
subsystems, the TDP MMU must correctly handle various MMU notifiers. Add
hooks to handle the invalidate range family of MMU notifiers.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-13-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Attach struct kvm_mmu_pages to every page in the TDP MMU to track
metadata, facilitate NX reclaim, and enable inproved parallelism of MMU
operations in future patches.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-12-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add functions to handle page faults in the TDP MMU. These page faults
are currently handled in much the same way as the x86 shadow paging
based MMU, however the ordering of some operations is slightly
different. Future patches will add eager NX splitting, a fast page fault
handler, and parallel page faults.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-11-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Support 'make compile_commands.json' to generate the compilation
database more easily, avoiding stale entries
- Support 'make clang-analyzer' and 'make clang-tidy' for static checks
using clang-tidy
- Preprocess scripts/modules.lds.S to allow CONFIG options in the module
linker script
- Drop cc-option tests from compiler flags supported by our minimal
GCC/Clang versions
- Use always 12-digits commit hash for CONFIG_LOCALVERSION_AUTO=y
- Use sha1 build id for both BFD linker and LLD
- Improve deb-pkg for reproducible builds and rootless builds
- Remove stale, useless scripts/namespace.pl
- Turn -Wreturn-type warning into error
- Fix build error of deb-pkg when CONFIG_MODULES=n
- Replace 'hostname' command with more portable 'uname -n'
- Various Makefile cleanups
-----BEGIN PGP SIGNATURE-----
iQJJBAABCgAzFiEEbmPs18K1szRHjPqEPYsBB53g2wYFAl+RfS0VHG1hc2FoaXJv
eUBrZXJuZWwub3JnAAoJED2LAQed4NsGG1QP/2hzoMzK1YXErPUhGrhYU1rxz7Nu
HkLTIkyKF1HPwSJf5XyNW/FTBI4SDlkNoVg/weEDCS1yFxxpvQLIck8ChzA1kIIM
P+1IfBWOTzqn91XsapU2zwSno3gylphVchVIvYAB3oLUotGeMSluy1cQtBRzyA5D
rj2Q7H8fzkzk3YoBcBC/BOKDlfo/usqQ1X/gsfRFwN/BJxeZSYoujNBE7KtHaDsd
8K/ggBIqmST4NBn+M8c11d8CxzvWbtG1gq3EkUL5nG8T13DsGn1EFC0SPt85bkvv
f9YywfJi37HixhZzK6tXYjN/PWoiEY6z90mhd0NtZghQT7kQMiTQ3sWrM8dX3ssf
phBzO94uFQDjhyxOaSSsCoI/TIciAPo4+G8PNjcaEtj63IEfhEz/dnlstYwY5Y9P
Pp3aZtVjSGJwGW2u2EUYj6paFVqjf6DXQjQKPNHnsYCEidIvFTjjguRGvx9gl6mx
yd8oseOsAtOEf0alRe9MMdvN17O3UrRAxgBdap7fktg02TLVRGxZIbuwKmBf29ho
ORl9zeFkYBn6XQFyuItJoXy/kYFyHDaBEPYCRQcY4dwqcjZIiAc/FhYbqYthJ59L
5vLN2etmDIVSuUv1J5nBqHHGCqJChykbqg7riQ651dCNKw4gZB8ctCay2lXhBXMg
1mqOcoG5WWL7//F+
=tZRN
-----END PGP SIGNATURE-----
Merge tag 'kbuild-v5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild
Pull Kbuild updates from Masahiro Yamada:
- Support 'make compile_commands.json' to generate the compilation
database more easily, avoiding stale entries
- Support 'make clang-analyzer' and 'make clang-tidy' for static checks
using clang-tidy
- Preprocess scripts/modules.lds.S to allow CONFIG options in the
module linker script
- Drop cc-option tests from compiler flags supported by our minimal
GCC/Clang versions
- Use always 12-digits commit hash for CONFIG_LOCALVERSION_AUTO=y
- Use sha1 build id for both BFD linker and LLD
- Improve deb-pkg for reproducible builds and rootless builds
- Remove stale, useless scripts/namespace.pl
- Turn -Wreturn-type warning into error
- Fix build error of deb-pkg when CONFIG_MODULES=n
- Replace 'hostname' command with more portable 'uname -n'
- Various Makefile cleanups
* tag 'kbuild-v5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild: (34 commits)
kbuild: Use uname for LINUX_COMPILE_HOST detection
kbuild: Only add -fno-var-tracking-assignments for old GCC versions
kbuild: remove leftover comment for filechk utility
treewide: remove DISABLE_LTO
kbuild: deb-pkg: clean up package name variables
kbuild: deb-pkg: do not build linux-headers package if CONFIG_MODULES=n
kbuild: enforce -Werror=return-type
scripts: remove namespace.pl
builddeb: Add support for all required debian/rules targets
builddeb: Enable rootless builds
builddeb: Pass -n to gzip for reproducible packages
kbuild: split the build log of kallsyms
kbuild: explicitly specify the build id style
scripts/setlocalversion: make git describe output more reliable
kbuild: remove cc-option test of -Werror=date-time
kbuild: remove cc-option test of -fno-stack-check
kbuild: remove cc-option test of -fno-strict-overflow
kbuild: move CFLAGS_{KASAN,UBSAN,KCSAN} exports to relevant Makefiles
kbuild: remove redundant CONFIG_KASAN check from scripts/Makefile.kasan
kbuild: do not create built-in objects for external module builds
...
Pull initial set_fs() removal from Al Viro:
"Christoph's set_fs base series + fixups"
* 'work.set_fs' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
fs: Allow a NULL pos pointer to __kernel_read
fs: Allow a NULL pos pointer to __kernel_write
powerpc: remove address space overrides using set_fs()
powerpc: use non-set_fs based maccess routines
x86: remove address space overrides using set_fs()
x86: make TASK_SIZE_MAX usable from assembly code
x86: move PAGE_OFFSET, TASK_SIZE & friends to page_{32,64}_types.h
lkdtm: remove set_fs-based tests
test_bitmap: remove user bitmap tests
uaccess: add infrastructure for kernel builds with set_fs()
fs: don't allow splice read/write without explicit ops
fs: don't allow kernel reads and writes without iter ops
sysctl: Convert to iter interfaces
proc: add a read_iter method to proc proc_ops
proc: cleanup the compat vs no compat file ops
proc: remove a level of indentation in proc_get_inode
When running in lazy TLB mode the currently active page tables might
be the ones of a previous process, e.g. when running a kernel thread.
This can be problematic in case kernel code is being modified via
text_poke() in a kernel thread, and on another processor exit_mmap()
is active for the process which was running on the first cpu before
the kernel thread.
As text_poke() is using a temporary address space and the former
address space (obtained via cpu_tlbstate.loaded_mm) is restored
afterwards, there is a race possible in case the cpu on which
exit_mmap() is running wants to make sure there are no stale
references to that address space on any cpu active (this e.g. is
required when running as a Xen PV guest, where this problem has been
observed and analyzed).
In order to avoid that, drop off TLB lazy mode before switching to the
temporary address space.
Fixes: cefa929c03 ("x86/mm: Introduce temporary mm structs")
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201009144225.12019-1-jgross@suse.com
In order to avoid creating executable hugepages in the TDP MMU PF
handler, remove the dependency between disallowed_hugepage_adjust and
the shadow_walk_iterator. This will open the function up to being used
by the TDP MMU PF handler in a future patch.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-10-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add functions to zap SPTEs to the TDP MMU. These are needed to tear down
TDP MMU roots properly and implement other MMU functions which require
tearing down mappings. Future patches will add functions to populate the
page tables, but as for this patch there will not be any work for these
functions to do.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-8-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The existing bookkeeping done by KVM when a PTE is changed is spread
around several functions. This makes it difficult to remember all the
stats, bitmaps, and other subsystems that need to be updated whenever a
PTE is modified. When a non-leaf PTE is marked non-present or becomes a
leaf PTE, page table memory must also be freed. To simplify the MMU and
facilitate the use of atomic operations on SPTEs in future patches, create
functions to handle some of the bookkeeping required as a result of
a change.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The TDP MMU must be able to allocate paging structure root pages and track
the usage of those pages. Implement a similar, but separate system for root
page allocation to that of the x86 shadow paging implementation. When
future patches add synchronization model changes to allow for parallel
page faults, these pages will need to be handled differently from the
x86 shadow paging based MMU's root pages.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The TDP MMU offers an alternative mode of operation to the x86 shadow
paging based MMU, optimized for running an L1 guest with TDP. The TDP MMU
will require new fields that need to be initialized and torn down. Add
hooks into the existing KVM MMU initialization process to do that
initialization / cleanup. Currently the initialization and cleanup
fucntions do not do very much, however more operations will be added in
future patches.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-4-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The TDP iterator implements a pre-order traversal of a TDP paging
structure. This iterator will be used in future patches to create
an efficient implementation of the KVM MMU for the TDP case.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The SPTE format will be common to both the shadow and the TDP MMU.
Extract code that implements the format to a separate module, as a
first step towards adding the TDP MMU and putting mmu.c on a diet.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The TDP MMU's own function for the changed-PTE notifier will need to be
update a PTE in the exact same way as the shadow MMU. Rather than
re-implementing this logic, factor the SPTE creation out of kvm_set_pte_rmapp.
Extracted out of a patch by Ben Gardon. <bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Separate the functions for generating leaf page table entries from the
function that inserts them into the paging structure. This refactoring
will facilitate changes to the MMU sychronization model to use atomic
compare / exchanges (which are not guaranteed to succeed) instead of a
monolithic MMU lock.
No functional change expected.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This commit introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The TDP MMU page fault handler will need to be able to create non-leaf
SPTEs to build up the paging structures. Rather than re-implementing the
function, factor the SPTE creation out of link_shadow_page.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20200925212302.3979661-9-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add FSGSBASE to the set of possible guest-owned CR4 bits, i.e. let the
guest own it on VMX. KVM never queries the guest's CR4.FSGSBASE value,
thus there is no reason to force VM-Exit on FSGSBASE being toggled.
Note, because FSGSBASE is conditionally available, this is dependent on
recent changes to intercept reserved CR4 bits and to update the CR4
guest/host mask in response to guest CPUID changes.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
[sean: added justification in changelog]
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200930041659.28181-6-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Intercept CR4 bits that are guest reserved so that KVM correctly injects
a #GP fault if the guest attempts to set a reserved bit. If a feature
is supported by the CPU but is not exposed to the guest, and its
associated CR4 bit is not intercepted by KVM by default, then KVM will
fail to inject a #GP if the guest sets the CR4 bit without triggering
an exit, e.g. by toggling only the bit in question.
Note, KVM doesn't give the guest direct access to any CR4 bits that are
also dependent on guest CPUID. Yet.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200930041659.28181-5-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that vcpu_after_set_cpuid() and update_exception_bitmap() are called
back-to-back, subsume the exception bitmap update into the common CPUID
update. Drop the SVM invocation entirely as SVM's exception bitmap
doesn't vary with respect to guest CPUID.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200930041659.28181-4-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the call to kvm_x86_ops.vcpu_after_set_cpuid() to the very end of
kvm_vcpu_after_set_cpuid() to allow the vendor implementation to react
to changes made by the common code. In the near future, this will be
used by VMX to update its CR4 guest/host masks to account for reserved
bits. In the long term, SGX support will update the allowed XCR0 mask
for enclaves based on the vCPU's allowed XCR0.
vcpu_after_set_cpuid() (nee kvm_update_cpuid()) was originally added by
commit 2acf923e38 ("KVM: VMX: Enable XSAVE/XRSTOR for guest"), and was
called separately after kvm_x86_ops.vcpu_after_set_cpuid() (nee
kvm_x86_ops->cpuid_update()). There is no indication that the placement
of the common code updates after the vendor updates was anything more
than a "new function at the end" decision.
Inspection of the current code reveals no dependency on kvm_x86_ops'
vcpu_after_set_cpuid() in kvm_vcpu_after_set_cpuid() or any of its
helpers. The bulk of the common code depends only on the guest's CPUID
configuration, kvm_mmu_reset_context() does not consume dynamic vendor
state, and there are no collisions between kvm_pmu_refresh() and VMX's
update of PT state.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200930041659.28181-3-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Unconditionally intercept changes to CR4.LA57 so that KVM correctly
injects a #GP fault if the guest attempts to set CR4.LA57 when it's
supported in hardware but not exposed to the guest.
Long term, KVM needs to properly handle CR4 bits that can be under guest
control but also may be reserved from the guest's perspective. But, KVM
currently sets the CR4 guest/host mask only during vCPU creation, and
reworking flows to change that will take a bit of elbow grease.
Even if/when generic support for intercepting reserved bits exists, it's
probably not worth letting the guest set CR4.LA57 directly. LA57 can't
be toggled while long mode is enabled, thus it's all but guaranteed to
be set once (maybe twice, e.g. by BIOS and kernel) during boot and never
touched again. On the flip side, letting the guest own CR4.LA57 may
incur extra VMREADs. In other words, this temporary "hack" is probably
also the right long term fix.
Fixes: fd8cb43373 ("KVM: MMU: Expose the LA57 feature to VM.")
Cc: stable@vger.kernel.org
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
[sean: rewrote changelog]
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200930041659.28181-2-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The function amd_ir_set_vcpu_affinity makes use of the parameter struct
amd_iommu_pi_data.prev_ga_tag to determine if it should delete struct
amd_iommu_pi_data from a list when not running in AVIC mode.
However, prev_ga_tag is initialized only when AVIC is enabled. The non-zero
uninitialized value can cause unintended code path, which ends up making
use of the struct vcpu_svm.ir_list and ir_list_lock without being
initialized (since they are intended only for the AVIC case).
This triggers NULL pointer dereference bug in the function vm_ir_list_del
with the following call trace:
svm_update_pi_irte+0x3c2/0x550 [kvm_amd]
? proc_create_single_data+0x41/0x50
kvm_arch_irq_bypass_add_producer+0x40/0x60 [kvm]
__connect+0x5f/0xb0 [irqbypass]
irq_bypass_register_producer+0xf8/0x120 [irqbypass]
vfio_msi_set_vector_signal+0x1de/0x2d0 [vfio_pci]
vfio_msi_set_block+0x77/0xe0 [vfio_pci]
vfio_pci_set_msi_trigger+0x25c/0x2f0 [vfio_pci]
vfio_pci_set_irqs_ioctl+0x88/0xb0 [vfio_pci]
vfio_pci_ioctl+0x2ea/0xed0 [vfio_pci]
? alloc_file_pseudo+0xa5/0x100
vfio_device_fops_unl_ioctl+0x26/0x30 [vfio]
? vfio_device_fops_unl_ioctl+0x26/0x30 [vfio]
__x64_sys_ioctl+0x96/0xd0
do_syscall_64+0x37/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Therefore, initialize prev_ga_tag to zero before use. This should be safe
because ga_tag value 0 is invalid (see function avic_vm_init).
Fixes: dfa20099e2 ("KVM: SVM: Refactor AVIC vcpu initialization into avic_init_vcpu()")
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Message-Id: <20201003232707.4662-1-suravee.suthikulpanit@amd.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This way we don't waste memory on VMs which don't use nesting
virtualization even when the host enabled it for them.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20201001112954.6258-5-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This will be used to signal an error to the userspace, in case
the vendor code failed during handling of this msr. (e.g -ENOMEM)
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20201001112954.6258-4-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This will allow the KVM to report such errors (e.g -ENOMEM)
to the userspace.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20201001112954.6258-3-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Return 1 on errors that are caused by wrong guest behavior
(which will inject #GP to the guest)
And return a negative error value on issues that are
the kernel's fault (e.g -ENOMEM)
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20201001112954.6258-2-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
These should be const, so make it so.
Signed-off-by: Joe Perches <joe@perches.com>
Message-Id: <ed95eef4f10fc1317b66936c05bc7dd8f943a6d5.1601770305.git.joe@perches.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
As vcpu->arch.cpuid_entries is now allocated dynamically, the only
remaining use for KVM_MAX_CPUID_ENTRIES is to check KVM_SET_CPUID/
KVM_SET_CPUID2 input for sanity. Since it was reported that the
current limit (80) is insufficient for some CPUs, bump
KVM_MAX_CPUID_ENTRIES and use an arbitrary value '256' as the new
limit.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20201001130541.1398392-4-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The current limit for guest CPUID leaves (KVM_MAX_CPUID_ENTRIES, 80)
is reported to be insufficient but before we bump it let's switch to
allocating vcpu->arch.cpuid_entries[] array dynamically. Currently,
'struct kvm_cpuid_entry2' is 40 bytes so vcpu->arch.cpuid_entries is
3200 bytes which accounts for 1/4 of the whole 'struct kvm_vcpu_arch'
but having it pre-allocated (for all vCPUs which we also pre-allocate)
gives us no real benefits.
Another plus of the dynamic allocation is that we now do kvm_check_cpuid()
check before we assign anything to vcpu->arch.cpuid_nent/cpuid_entries so
no changes are made in case the check fails.
Opportunistically remove unneeded 'out' labels from
kvm_vcpu_ioctl_set_cpuid()/kvm_vcpu_ioctl_set_cpuid2() and return
directly whenever possible.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20201001130541.1398392-3-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
As a preparatory step to allocating vcpu->arch.cpuid_entries dynamically
make kvm_check_cpuid() check work with an arbitrary 'struct kvm_cpuid_entry2'
array.
Currently, when kvm_check_cpuid() fails we reset vcpu->arch.cpuid_nent to
0 and this is kind of weird, i.e. one would expect CPUIDs to remain
unchanged when KVM_SET_CPUID[2] call fails.
No functional change intended. It would've been possible to move the updated
kvm_check_cpuid() in kvm_vcpu_ioctl_set_cpuid2() and check the supplied
input before we start updating vcpu->arch.cpuid_entries/nent but we
can't do the same in kvm_vcpu_ioctl_set_cpuid() as we'll have to copy
'struct kvm_cpuid_entry' entries first. The change will be made when
vcpu->arch.cpuid_entries[] array becomes allocated dynamically.
Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20201001130541.1398392-2-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM unconditionally provides PV features to the guest, regardless of the
configured CPUID. An unwitting guest that doesn't check
KVM_CPUID_FEATURES before use could access paravirt features that
userspace did not intend to provide. Fix this by checking the guest's
CPUID before performing any paravirtual operations.
Introduce a capability, KVM_CAP_ENFORCE_PV_FEATURE_CPUID, to gate the
aforementioned enforcement. Migrating a VM from a host w/o this patch to
a host with this patch could silently change the ABI exposed to the
guest, warranting that we default to the old behavior and opt-in for
the new one.
Reviewed-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Signed-off-by: Oliver Upton <oupton@google.com>
Change-Id: I202a0926f65035b872bfe8ad15307c026de59a98
Message-Id: <20200818152429.1923996-4-oupton@google.com>
Reviewed-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Small change to avoid meaningless duplication in the subsequent patch.
No functional change intended.
Reviewed-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Signed-off-by: Oliver Upton <oupton@google.com>
Change-Id: I77ab9cdad239790766b7a49d5cbae5e57a3005ea
Message-Id: <20200818152429.1923996-3-oupton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
No functional change intended.
Reviewed-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Reviewed-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Oliver Upton <oupton@google.com>
Change-Id: I7cbe71069db98d1ded612fd2ef088b70e7618426
Message-Id: <20200818152429.1923996-2-oupton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM was switched to interrupt-based mechanism for 'page ready' event
delivery in Linux-5.8 (see commit 2635b5c4a0 ("KVM: x86: interrupt based
APF 'page ready' event delivery")) and #PF (ab)use for 'page ready' event
delivery was removed. Linux guest switched to this new mechanism
exclusively in 5.9 (see commit b1d405751c ("KVM: x86: Switch KVM guest to
using interrupts for page ready APF delivery")) so it is not possible to
get #PF for a 'page ready' event even when the guest is running on top
of an older KVM (APF mechanism won't be enabled). Update the comment in
exc_page_fault() to reflect the new reality.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20201002154313.1505327-1-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Let KVM_WERROR depend on KVM, so it doesn't show in menuconfig alone.
Signed-off-by: Matteo Croce <mcroce@microsoft.com>
Message-Id: <20201001112014.9561-1-mcroce@linux.microsoft.com>
Fixes: 4f337faf1c ("KVM: allow disabling -Werror")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Allowing userspace to intercept reads to x2APIC MSRs when APICV is
fully enabled for the guest simply can't work. But more in general,
the LAPIC could be set to in-kernel after the MSR filter is setup
and allowing accesses by userspace would be very confusing.
We could in principle allow userspace to intercept reads and writes to TPR,
and writes to EOI and SELF_IPI, but while that could be made it work, it
would still be silly.
Cc: Alexander Graf <graf@amazon.com>
Cc: Aaron Lewis <aaronlewis@google.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rework the resetting of the MSR bitmap for x2APIC MSRs to ignore userspace
filtering. Allowing userspace to intercept reads to x2APIC MSRs when
APICV is fully enabled for the guest simply can't work; the LAPIC and thus
virtual APIC is in-kernel and cannot be directly accessed by userspace.
To keep things simple we will in fact forbid intercepting x2APIC MSRs
altogether, independent of the default_allow setting.
Cc: Alexander Graf <graf@amazon.com>
Cc: Aaron Lewis <aaronlewis@google.com>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20201005195532.8674-3-sean.j.christopherson@intel.com>
[Modified to operate even if APICv is disabled, adjust documentation. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Remove unnecessary #includes (Gustavo Pimentel)
- Fix intel_mid_pci.c build error when !CONFIG_ACPI (Randy Dunlap)
- Use scnprintf(), not snprintf(), in sysfs "show" functions (Krzysztof
Wilczyński)
- Simplify pci-pf-stub by using module_pci_driver() (Liu Shixin)
- Print IRQ used by Link Bandwidth Notification (Dongdong Liu)
- Update sysfs mmap-related #ifdef comments (Clint Sbisa)
- Simplify pci_dev_reset_slot_function() (Lukas Wunner)
- Use "NULL" instead of "0" to fix sparse warnings (Gustavo Pimentel)
- Simplify bool comparisons (Krzysztof Wilczyński)
- Drop double zeroing for P2PDMA sg_init_table() (Julia Lawall)
* pci/misc:
PCI: v3-semi: Remove unneeded break
PCI/P2PDMA: Drop double zeroing for sg_init_table()
PCI: Simplify bool comparisons
PCI: endpoint: Use "NULL" instead of "0" as a NULL pointer
PCI: Simplify pci_dev_reset_slot_function()
PCI: Update mmap-related #ifdef comments
PCI/LINK: Print IRQ number used by port
PCI/IOV: Simplify pci-pf-stub with module_pci_driver()
PCI: Use scnprintf(), not snprintf(), in sysfs "show" functions
x86/PCI: Fix intel_mid_pci.c build error when ACPI is not enabled
PCI: Remove unnecessary header includes
This change removes all instances of DISABLE_LTO from
Makefiles, as they are currently unused, and the preferred
method of disabling LTO is to filter out the flags instead.
Note added by Masahiro Yamada:
DISABLE_LTO was added as preparation for GCC LTO, but GCC LTO was
not pulled into the mainline. (https://lkml.org/lkml/2014/4/8/272)
Suggested-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Commits
ca0e22d4f0 ("x86/boot/compressed/64: Always switch to own page table")
8570978ea0 ("x86/boot/compressed/64: Don't pre-map memory in KASLR code")
set up a new page table in the decompressor stub, but without explicit
mappings for boot_params and the kernel command line, relying on the #PF
handler instead.
This is fragile, as boot_params and the command line mappings are
required for the main kernel. If EARLY_PRINTK and RANDOMIZE_BASE are
disabled, a QEMU/OVMF boot never accesses the command line in the
decompressor stub, and so it never gets mapped. The main kernel accesses
it from the identity mapping if AMD_MEM_ENCRYPT is enabled, and will
crash.
Fix this by adding back the explicit mapping of boot_params and the
command line.
Note: the changes also removed the explicit mapping of the main kernel,
with the result that .bss and .brk may not be in the identity mapping,
but those don't get accessed by the main kernel before it switches to
its own page tables.
[ bp: Pass boot_params with a MOV %rsp... instead of PUSH/POP. Use
block formatting for the comment. ]
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Joerg Roedel <jroedel@suse.de>
Link: https://lkml.kernel.org/r/20201016200404.1615994-1-nivedita@alum.mit.edu