Commit Graph

62 Commits

Author SHA1 Message Date
Michal Hocko 8594a21cf7 mm, vmalloc: fix vmalloc users tracking properly
Commit 1f5307b1e0 ("mm, vmalloc: properly track vmalloc users") has
pulled asm/pgtable.h include dependency to linux/vmalloc.h and that
turned out to be a bad idea for some architectures.  E.g.  m68k fails
with

   In file included from arch/m68k/include/asm/pgtable_mm.h:145:0,
                    from arch/m68k/include/asm/pgtable.h:4,
                    from include/linux/vmalloc.h:9,
                    from arch/m68k/kernel/module.c:9:
   arch/m68k/include/asm/mcf_pgtable.h: In function 'nocache_page':
>> arch/m68k/include/asm/mcf_pgtable.h:339:43: error: 'init_mm' undeclared (first use in this function)
    #define pgd_offset_k(address) pgd_offset(&init_mm, address)

as spotted by kernel build bot. nios2 fails for other reason

  In file included from include/asm-generic/io.h:767:0,
                   from arch/nios2/include/asm/io.h:61,
                   from include/linux/io.h:25,
                   from arch/nios2/include/asm/pgtable.h:18,
                   from include/linux/mm.h:70,
                   from include/linux/pid_namespace.h:6,
                   from include/linux/ptrace.h:9,
                   from arch/nios2/include/uapi/asm/elf.h:23,
                   from arch/nios2/include/asm/elf.h:22,
                   from include/linux/elf.h:4,
                   from include/linux/module.h:15,
                   from init/main.c:16:
  include/linux/vmalloc.h: In function '__vmalloc_node_flags':
  include/linux/vmalloc.h:99:40: error: 'PAGE_KERNEL' undeclared (first use in this function); did you mean 'GFP_KERNEL'?

which is due to the newly added #include <asm/pgtable.h>, which on nios2
includes <linux/io.h> and thus <asm/io.h> and <asm-generic/io.h> which
again includes <linux/vmalloc.h>.

Tweaking that around just turns out a bigger headache than necessary.
This patch reverts 1f5307b1e0 and reimplements the original fix in a
different way.  __vmalloc_node_flags can stay static inline which will
cover vmalloc* functions.  We only have one external user
(kvmalloc_node) and we can export __vmalloc_node_flags_caller and
provide the caller directly.  This is much simpler and it doesn't really
need any games with header files.

[akpm@linux-foundation.org: coding-style fixes]
[mhocko@kernel.org: revert old comment]
  Link: http://lkml.kernel.org/r/20170509211054.GB16325@dhcp22.suse.cz
Fixes: 1f5307b1e0 ("mm, vmalloc: properly track vmalloc users")
Link: http://lkml.kernel.org/r/20170509153702.GR6481@dhcp22.suse.cz
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Tobias Klauser <tklauser@distanz.ch>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-12 15:57:15 -07:00
Michal Hocko 1f5307b1e0 mm, vmalloc: properly track vmalloc users
__vmalloc_node_flags used to be static inline but this has changed by
"mm: introduce kv[mz]alloc helpers" because kvmalloc_node needs to use
it as well and the code is outside of the vmalloc proper.  I haven't
realized that changing this will lead to a subtle bug though.  The
function is responsible to track the caller as well.  This caller is
then printed by /proc/vmallocinfo.  If __vmalloc_node_flags is not
inline then we would get only direct users of __vmalloc_node_flags as
callers (e.g.  v[mz]alloc) which reduces usefulness of this debugging
feature considerably.  It simply doesn't help to see that the given
range belongs to vmalloc as a caller:

  0xffffc90002c79000-0xffffc90002c7d000   16384 vmalloc+0x16/0x18 pages=3 vmalloc N0=3
  0xffffc90002c81000-0xffffc90002c85000   16384 vmalloc+0x16/0x18 pages=3 vmalloc N1=3
  0xffffc90002c8d000-0xffffc90002c91000   16384 vmalloc+0x16/0x18 pages=3 vmalloc N1=3
  0xffffc90002c95000-0xffffc90002c99000   16384 vmalloc+0x16/0x18 pages=3 vmalloc N1=3

We really want to catch the _caller_ of the vmalloc function.  Fix this
issue by making __vmalloc_node_flags static inline again.

Link: http://lkml.kernel.org/r/20170502134657.12381-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-08 17:15:12 -07:00
Michal Hocko a7c3e901a4 mm: introduce kv[mz]alloc helpers
Patch series "kvmalloc", v5.

There are many open coded kmalloc with vmalloc fallback instances in the
tree.  Most of them are not careful enough or simply do not care about
the underlying semantic of the kmalloc/page allocator which means that
a) some vmalloc fallbacks are basically unreachable because the kmalloc
part will keep retrying until it succeeds b) the page allocator can
invoke a really disruptive steps like the OOM killer to move forward
which doesn't sound appropriate when we consider that the vmalloc
fallback is available.

As it can be seen implementing kvmalloc requires quite an intimate
knowledge if the page allocator and the memory reclaim internals which
strongly suggests that a helper should be implemented in the memory
subsystem proper.

Most callers, I could find, have been converted to use the helper
instead.  This is patch 6.  There are some more relying on __GFP_REPEAT
in the networking stack which I have converted as well and Eric Dumazet
was not opposed [2] to convert them as well.

[1] http://lkml.kernel.org/r/20170130094940.13546-1-mhocko@kernel.org
[2] http://lkml.kernel.org/r/1485273626.16328.301.camel@edumazet-glaptop3.roam.corp.google.com

This patch (of 9):

Using kmalloc with the vmalloc fallback for larger allocations is a
common pattern in the kernel code.  Yet we do not have any common helper
for that and so users have invented their own helpers.  Some of them are
really creative when doing so.  Let's just add kv[mz]alloc and make sure
it is implemented properly.  This implementation makes sure to not make
a large memory pressure for > PAGE_SZE requests (__GFP_NORETRY) and also
to not warn about allocation failures.  This also rules out the OOM
killer as the vmalloc is a more approapriate fallback than a disruptive
user visible action.

This patch also changes some existing users and removes helpers which
are specific for them.  In some cases this is not possible (e.g.
ext4_kvmalloc, libcfs_kvzalloc) because those seems to be broken and
require GFP_NO{FS,IO} context which is not vmalloc compatible in general
(note that the page table allocation is GFP_KERNEL).  Those need to be
fixed separately.

While we are at it, document that __vmalloc{_node} about unsupported gfp
mask because there seems to be a lot of confusion out there.
kvmalloc_node will warn about GFP_KERNEL incompatible (which are not
superset) flags to catch new abusers.  Existing ones would have to die
slowly.

[sfr@canb.auug.org.au: f2fs fixup]
  Link: http://lkml.kernel.org/r/20170320163735.332e64b7@canb.auug.org.au
Link: http://lkml.kernel.org/r/20170306103032.2540-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Reviewed-by: Andreas Dilger <adilger@dilger.ca>	[ext4 part]
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: David Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-08 17:15:12 -07:00
Andrey Ryabinin bf22e37a64 mm: add vfree_atomic()
We are going to use sleeping lock for freeing vmap.  However some
vfree() users want to free memory from atomic (but not from interrupt)
context.  For this we add vfree_atomic() - deferred variation of vfree()
which can be used in any atomic context (except NMIs).

[akpm@linux-foundation.org: tweak comment grammar]
[aryabinin@virtuozzo.com: use raw_cpu_ptr() instead of this_cpu_ptr()]
  Link: http://lkml.kernel.org/r/1481553981-3856-1-git-send-email-aryabinin@virtuozzo.com
Link: http://lkml.kernel.org/r/1479474236-4139-5-git-send-email-hch@lst.de
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Jisheng Zhang <jszhang@marvell.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: John Dias <joaodias@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:08 -08:00
Linus Torvalds 1d6da87a32 Merge branch 'drm-next' of git://people.freedesktop.org/~airlied/linux
Pull drm updates from Dave Airlie:
 "Here's the main drm pull request for 4.7, it's been a busy one, and
  I've been a bit more distracted in real life this merge window.  Lots
  more ARM drivers, not sure if it'll ever end.  I think I've at least
  one more coming the next merge window.

  But changes are all over the place, support for AMD Polaris GPUs is in
  here, some missing GM108 support for nouveau (found in some Lenovos),
  a bunch of MST and skylake fixes.

  I've also noticed a few fixes from Arnd in my inbox, that I'll try and
  get in asap, but I didn't think they should hold this up.

  New drivers:
   - Hisilicon kirin display driver
   - Mediatek MT8173 display driver
   - ARC PGU - bitstreamer on Synopsys ARC SDP boards
   - Allwinner A13 initial RGB output driver
   - Analogix driver for DisplayPort IP found in exynos and rockchip

  DRM Core:
   - UAPI headers fixes and C++ safety
   - DRM connector reference counting
   - DisplayID mode parsing for Dell 5K monitors
   - Removal of struct_mutex from drivers
   - Connector registration cleanups
   - MST robustness fixes
   - MAINTAINERS updates
   - Lockless GEM object freeing
   - Generic fbdev deferred IO support

  panel:
   - Support for a bunch of new panels

  i915:
   - VBT refactoring
   - PLL computation cleanups
   - DSI support for BXT
   - Color manager support
   - More atomic patches
   - GEM improvements
   - GuC fw loading fixes
   - DP detection fixes
   - SKL GPU hang fixes
   - Lots of BXT fixes

  radeon/amdgpu:
   - Initial Polaris support
   - GPUVM/Scheduler/Clock/Power improvements
   - ASYNC pageflip support
   - New mesa feature support

  nouveau:
   - GM108 support
   - Power sensor support improvements
   - GR init + ucode fixes.
   - Use GPU provided topology information

  vmwgfx:
   - Add host messaging support

  gma500:
   - Some cleanups and fixes

  atmel:
   - Bridge support
   - Async atomic commit support

  fsl-dcu:
   - Timing controller for LCD support
   - Pixel clock polarity support

  rcar-du:
   - Misc fixes

  exynos:
   - Pipeline clock support
   - Exynoss4533 SoC support
   - HW trigger mode support
   - export HDMI_PHY clock
   - DECON5433 fixes
   - Use generic prime functions
   - use DMA mapping APIs

  rockchip:
   - Lots of little fixes

  vc4:
   - Render node support
   - Gamma ramp support
   - DPI output support

  msm:
   - Mostly cleanups and fixes
   - Conversion to generic struct fence

  etnaviv:
   - Fix for prime buffer handling
   - Allow hangcheck to be coalesced with other wakeups

  tegra:
   - Gamme table size fix"

* 'drm-next' of git://people.freedesktop.org/~airlied/linux: (1050 commits)
  drm/edid: add displayid detailed 1 timings to the modelist. (v1.1)
  drm/edid: move displayid validation to it's own function.
  drm/displayid: Iterate over all DisplayID blocks
  drm/edid: move displayid tiled block parsing into separate function.
  drm: Nuke ->vblank_disable_allowed
  drm/vmwgfx: Report vmwgfx version to vmware.log
  drm/vmwgfx: Add VMWare host messaging capability
  drm/vmwgfx: Kill some lockdep warnings
  drm/nouveau/gr/gf100-: fix race condition in fecs/gpccs ucode
  drm/nouveau/core: recognise GM108 chipsets
  drm/nouveau/gr/gm107-: fix touching non-existent ppcs in attrib cb setup
  drm/nouveau/gr/gk104-: share implementation of ppc exception init
  drm/nouveau/gr/gk104-: move rop_active_fbps init to nonctx
  drm/nouveau/bios/pll: check BIT table version before trying to parse it
  drm/nouveau/bios/pll: prevent oops when limits table can't be parsed
  drm/nouveau/volt/gk104: round up in gk104_volt_set
  drm/nouveau/fb/gm200: setup mmu debug buffer registers at init()
  drm/nouveau/fb/gk20a,gm20b: setup mmu debug buffer registers at init()
  drm/nouveau/fb/gf100-: allocate mmu debug buffers
  drm/nouveau/fb: allow chipset-specific actions for oneinit()
  ...
2016-05-23 11:48:48 -07:00
Chris Wilson 80c4bd7a5e mm/vmalloc: keep a separate lazy-free list
When mixing lots of vmallocs and set_memory_*() (which calls
vm_unmap_aliases()) I encountered situations where the performance
degraded severely due to the walking of the entire vmap_area list each
invocation.

One simple improvement is to add the lazily freed vmap_area to a
separate lockless free list, such that we then avoid having to walk the
full list on each purge.

Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Roman Pen <r.peniaev@gmail.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Roman Pen <r.peniaev@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: Shawn Lin <shawn.lin@rock-chips.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Chris Wilson 4da56b99d9 mm/vmap: Add a notifier for when we run out of vmap address space
vmaps are temporary kernel mappings that may be of long duration.
Reusing a vmap on an object is preferrable for a driver as the cost of
setting up the vmap can otherwise dominate the operation on the object.
However, the vmap address space is rather limited on 32bit systems and
so we add a notification for vmap pressure in order for the driver to
release any cached vmappings.

The interface is styled after the oom-notifier where the callees are
passed a pointer to an unsigned long counter for them to indicate if they
have freed any space.

v2: Guard the blocking notifier call with gfpflags_allow_blocking()
v3: Correct typo in forward declaration and move to head of file

Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Roman Peniaev <r.peniaev@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: linux-mm@kvack.org
Cc: linux-kernel@vger.kernel.org
Acked-by: Andrew Morton <akpm@linux-foundation.org> # for inclusion via DRM
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: http://patchwork.freedesktop.org/patch/msgid/1459777603-23618-3-git-send-email-chris@chris-wilson.co.uk
Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
2016-04-05 11:12:04 +01:00
David Rientjes 244d63ee34 mm, vmalloc: remove VM_VPAGES
VM_VPAGES is unnecessary, it's easier to check is_vmalloc_addr() when
reading /proc/vmallocinfo.

[akpm@linux-foundation.org: remove VM_VPAGES reference via kvfree()]
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14 16:00:49 -08:00
Linus Torvalds a5ad88ce8c mm: get rid of 'vmalloc_info' from /proc/meminfo
It turns out that at least some versions of glibc end up reading
/proc/meminfo at every single startup, because glibc wants to know the
amount of memory the machine has.  And while that's arguably insane,
it's just how things are.

And it turns out that it's not all that expensive most of the time, but
the vmalloc information statistics (amount of virtual memory used in the
vmalloc space, and the biggest remaining chunk) can be rather expensive
to compute.

The 'get_vmalloc_info()' function actually showed up on my profiles as
4% of the CPU usage of "make test" in the git source repository, because
the git tests are lots of very short-lived shell-scripts etc.

It turns out that apparently this same silly vmalloc info gathering
shows up on the facebook servers too, according to Dave Jones.  So it's
not just "make test" for git.

We had two patches to just cache the information (one by me, one by
Ingo) to mitigate this issue, but the whole vmalloc information of of
rather dubious value to begin with, and people who *actually* want to
know what the situation is wrt the vmalloc area should just look at the
much more complete /proc/vmallocinfo instead.

In fact, according to my testing - and perhaps more importantly,
according to that big search engine in the sky: Google - there is
nothing out there that actually cares about those two expensive fields:
VmallocUsed and VmallocChunk.

So let's try to just remove them entirely.  Actually, this just removes
the computation and reports the numbers as zero for now, just to try to
be minimally intrusive.

If this breaks anything, we'll obviously have to re-introduce the code
to compute this all and add the caching patches on top.  But if given
the option, I'd really prefer to just remove this bad idea entirely
rather than add even more code to work around our historical mistake
that likely nobody really cares about.

Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-01 17:09:15 -08:00
Andrey Ryabinin a5af5aa8b6 kasan, module, vmalloc: rework shadow allocation for modules
Current approach in handling shadow memory for modules is broken.

Shadow memory could be freed only after memory shadow corresponds it is no
longer used.  vfree() called from interrupt context could use memory its
freeing to store 'struct llist_node' in it:

    void vfree(const void *addr)
    {
    ...
        if (unlikely(in_interrupt())) {
            struct vfree_deferred *p = this_cpu_ptr(&vfree_deferred);
            if (llist_add((struct llist_node *)addr, &p->list))
                    schedule_work(&p->wq);

Later this list node used in free_work() which actually frees memory.
Currently module_memfree() called in interrupt context will free shadow
before freeing module's memory which could provoke kernel crash.

So shadow memory should be freed after module's memory.  However, such
deallocation order could race with kasan_module_alloc() in module_alloc().

Free shadow right before releasing vm area.  At this point vfree()'d
memory is not used anymore and yet not available for other allocations.
New VM_KASAN flag used to indicate that vm area has dynamically allocated
shadow memory so kasan frees shadow only if it was previously allocated.

Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Acked-by: Rusty Russell <rusty@rustcorp.com.au>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-03-12 18:46:08 -07:00
Andrey Ryabinin cb9e3c292d mm: vmalloc: pass additional vm_flags to __vmalloc_node_range()
For instrumenting global variables KASan will shadow memory backing memory
for modules.  So on module loading we will need to allocate memory for
shadow and map it at address in shadow that corresponds to the address
allocated in module_alloc().

__vmalloc_node_range() could be used for this purpose, except it puts a
guard hole after allocated area.  Guard hole in shadow memory should be a
problem because at some future point we might need to have a shadow memory
at address occupied by guard hole.  So we could fail to allocate shadow
for module_alloc().

Now we have VM_NO_GUARD flag disabling guard page, so we need to pass into
__vmalloc_node_range().  Add new parameter 'vm_flags' to
__vmalloc_node_range() function.

Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrey Konovalov <adech.fo@gmail.com>
Cc: Yuri Gribov <tetra2005@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 21:21:42 -08:00
Andrey Ryabinin 71394fe501 mm: vmalloc: add flag preventing guard hole allocation
For instrumenting global variables KASan will shadow memory backing memory
for modules.  So on module loading we will need to allocate memory for
shadow and map it at address in shadow that corresponds to the address
allocated in module_alloc().

__vmalloc_node_range() could be used for this purpose, except it puts a
guard hole after allocated area.  Guard hole in shadow memory should be a
problem because at some future point we might need to have a shadow memory
at address occupied by guard hole.  So we could fail to allocate shadow
for module_alloc().

Add a new vm_struct flag 'VM_NO_GUARD' indicating that vm area doesn't
have a guard hole.

Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrey Konovalov <adech.fo@gmail.com>
Cc: Yuri Gribov <tetra2005@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 21:21:42 -08:00
WANG Chao f6f8ed4735 mm/vmalloc.c: clean up map_vm_area third argument
Currently map_vm_area() takes (struct page *** pages) as third argument,
and after mapping, it moves (*pages) to point to (*pages +
nr_mappped_pages).

It looks like this kind of increment is useless to its caller these
days.  The callers don't care about the increments and actually they're
trying to avoid this by passing another copy to map_vm_area().

The caller can always guarantee all the pages can be mapped into vm_area
as specified in first argument and the caller only cares about whether
map_vm_area() fails or not.

This patch cleans up the pointer movement in map_vm_area() and updates
its callers accordingly.

Signed-off-by: WANG Chao <chaowang@redhat.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06 18:01:19 -07:00
Zhang Yanfei 20fc02b477 mm/vmalloc.c: rename VM_UNLIST to VM_UNINITIALIZED
VM_UNLIST was used to indicate that the vm_struct is not listed in
vmlist.

But after commit 4341fa4547 ("mm, vmalloc: remove list management of
vmlist after initializing vmalloc"), the meaning of this flag changed.
It now means the vm_struct is not fully initialized.  So renaming it to
VM_UNINITIALIZED seems more reasonable.

Also change clear_vm_unlist to clear_vm_uninitialized_flag.

Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-09 10:33:21 -07:00
HATAYAMA Daisuke e69e9d4aee vmalloc: introduce remap_vmalloc_range_partial
We want to allocate ELF note segment buffer on the 2nd kernel in vmalloc
space and remap it to user-space in order to reduce the risk that memory
allocation fails on system with huge number of CPUs and so with huge ELF
note segment that exceeds 11-order block size.

Although there's already remap_vmalloc_range for the purpose of
remapping vmalloc memory to user-space, we need to specify user-space
range via vma.
 Mmap on /proc/vmcore needs to remap range across multiple objects, so
the interface that requires vma to cover full range is problematic.

This patch introduces remap_vmalloc_range_partial that receives user-space
range as a pair of base address and size and can be used for mmap on
/proc/vmcore case.

remap_vmalloc_range is rewritten using remap_vmalloc_range_partial.

[akpm@linux-foundation.org: use PAGE_ALIGNED()]
Signed-off-by: HATAYAMA Daisuke <d.hatayama@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Atsushi Kumagai <kumagai-atsushi@mxc.nes.nec.co.jp>
Cc: Lisa Mitchell <lisa.mitchell@hp.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-03 16:07:30 -07:00
Atsushi Kumagai 13ba3fcbbe kexec, vmalloc: export additional vmalloc layer information
Now, vmap_area_list is exported as VMCOREINFO for makedumpfile to get
the start address of vmalloc region (vmalloc_start).  The address which
contains vmalloc_start value is represented as below:

  vmap_area_list.next - OFFSET(vmap_area.list) + OFFSET(vmap_area.va_start)

However, both OFFSET(vmap_area.va_start) and OFFSET(vmap_area.list)
aren't exported as VMCOREINFO.

So this patch exports them externally with small cleanup.

[akpm@linux-foundation.org: vmalloc.h should include list.h for list_head]
Signed-off-by: Atsushi Kumagai <kumagai-atsushi@mxc.nes.nec.co.jp>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Atsushi Kumagai <kumagai-atsushi@mxc.nes.nec.co.jp>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Dave Anderson <anderson@redhat.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-29 15:54:34 -07:00
Joonsoo Kim f1c4069e1d mm, vmalloc: export vmap_area_list, instead of vmlist
Although our intention is to unexport internal structure entirely, but
there is one exception for kexec.  kexec dumps address of vmlist and
makedumpfile uses this information.

We are about to remove vmlist, then another way to retrieve information
of vmalloc layer is needed for makedumpfile.  For this purpose, we
export vmap_area_list, instead of vmlist.

Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Dave Anderson <anderson@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Atsushi Kumagai <kumagai-atsushi@mxc.nes.nec.co.jp>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-29 15:54:34 -07:00
Joonsoo Kim db3808c1ba mm, vmalloc: move get_vmalloc_info() to vmalloc.c
Now get_vmalloc_info() is in fs/proc/mmu.c.  There is no reason that this
code must be here and it's implementation needs vmlist_lock and it iterate
a vmlist which may be internal data structure for vmalloc.

It is preferable that vmlist_lock and vmlist is only used in vmalloc.c
for maintainability. So move the code to vmalloc.c

Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Atsushi Kumagai <kumagai-atsushi@mxc.nes.nec.co.jp>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Dave Anderson <anderson@redhat.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-29 15:54:33 -07:00
Marek Szyprowski e9da6e9905 ARM: dma-mapping: remove custom consistent dma region
This patch changes dma-mapping subsystem to use generic vmalloc areas
for all consistent dma allocations. This increases the total size limit
of the consistent allocations and removes platform hacks and a lot of
duplicated code.

Atomic allocations are served from special pool preallocated on boot,
because vmalloc areas cannot be reliably created in atomic context.

Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Kyungmin Park <kyungmin.park@samsung.com>
Reviewed-by: Minchan Kim <minchan@kernel.org>
2012-07-30 12:25:45 +02:00
Marek Szyprowski 5e6cafc83e mm: vmalloc: use const void * for caller argument
'const void *' is a safer type for caller function type. This patch
updates all references to caller function type.

Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Kyungmin Park <kyungmin.park@samsung.com>
Reviewed-by: Minchan Kim <minchan@kernel.org>
2012-07-30 12:25:44 +02:00
Russell King 73829af71f Merge branch 'vmalloc' of git://git.linaro.org/people/nico/linux into devel-stable 2011-12-05 23:27:59 +00:00
Nicolas Pitre be9b7335e7 mm: add vm_area_add_early()
The existing vm_area_register_early() allows for early vmalloc space
allocation.  However upcoming cleanups in the ARM architecture require
that some fixed locations in the vmalloc area be reserved also very early.

The name "vm_area_register_early" would have been a good name for the
reservation part without the allocation.  Since it is already in use with
different semantics, let's create vm_area_add_early() instead.

Both vm_area_register_early() and vm_area_add_early() can be used together
meaning that the former is now implemented using the later where it is
ensured that no conflicting areas are added, but no attempt is made to
make the allocation scheme in vm_area_register_early() more sophisticated.
After all, you must know what you're doing when using those functions.

Signed-off-by: Nicolas Pitre <nicolas.pitre@linaro.org>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Cc: linux-mm@kvack.org
2011-11-18 13:51:22 -05:00
David Vrabel cd12909cb5 xen: map foreign pages for shared rings by updating the PTEs directly
When mapping a foreign page with xenbus_map_ring_valloc() with the
GNTTABOP_map_grant_ref hypercall, set the GNTMAP_contains_pte flag and
pass a pointer to the PTE (in init_mm).

After the page is mapped, the usual fault mechanism can be used to
update additional MMs.  This allows the vmalloc_sync_all() to be
removed from alloc_vm_area().

Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
[v1: Squashed fix by Michal for no-mmu case]
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Michal Simek <monstr@monstr.eu>
2011-11-16 12:13:08 -05:00
Mitsuo Hayasaka f5252e009d mm: avoid null pointer access in vm_struct via /proc/vmallocinfo
The /proc/vmallocinfo shows information about vmalloc allocations in
vmlist that is a linklist of vm_struct.  It, however, may access pages
field of vm_struct where a page was not allocated.  This results in a null
pointer access and leads to a kernel panic.

Why this happens: In __vmalloc_node_range() called from vmalloc(), newly
allocated vm_struct is added to vmlist at __get_vm_area_node() and then,
some fields of vm_struct such as nr_pages and pages are set at
__vmalloc_area_node().  In other words, it is added to vmlist before it is
fully initialized.  At the same time, when the /proc/vmallocinfo is read,
it accesses the pages field of vm_struct according to the nr_pages field
at show_numa_info().  Thus, a null pointer access happens.

The patch adds the newly allocated vm_struct to the vmlist *after* it is
fully initialized.  So, it can avoid accessing the pages field with
unallocated page when show_numa_info() is called.

Signed-off-by: Mitsuo Hayasaka <mitsuo.hayasaka.hu@hitachi.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Namhyung Kim <namhyung@gmail.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Cc: <stable@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31 17:30:47 -07:00
Graf Yang b554cb426a NOMMU: support SMP dynamic percpu_alloc
The percpu code requires more functions to be implemented in the mm core
which nommu currently does not provide.  So add inline implementations
since these are largely meaningless on nommu systems.

Signed-off-by: Graf Yang <graf.yang@analog.com>
Signed-off-by: Mike Frysinger <vapier@gentoo.org>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Greg Ungerer <gerg@uclinux.org>
2011-03-28 12:53:29 +01:00
David Rientjes d0a21265df mm: unify module_alloc code for vmalloc
Four architectures (arm, mips, sparc, x86) use __vmalloc_area() for
module_init().  Much of the code is duplicated and can be generalized in a
globally accessible function, __vmalloc_node_range().

__vmalloc_node() now calls into __vmalloc_node_range() with a range of
[VMALLOC_START, VMALLOC_END) for functionally equivalent behavior.

Each architecture may then use __vmalloc_node_range() directly to remove
the duplication of code.

Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:34 -08:00
David Rientjes ec3f64fc9c mm: remove gfp mask from pcpu_get_vm_areas
pcpu_get_vm_areas() only uses GFP_KERNEL allocations, so remove the gfp_t
formal and use the mask internally.

Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:34 -08:00
David Rientjes e5a5623b28 mm: remove unused get_vm_area_node
get_vm_area_node() is unused in the kernel and can thus be removed.

Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:34 -08:00
Jeremy Fitzhardinge 64141da587 vmalloc: eagerly clear ptes on vunmap
On stock 2.6.37-rc4, running:

  # mount lilith:/export /mnt/lilith
  # find  /mnt/lilith/ -type f -print0 | xargs -0 file

crashes the machine fairly quickly under Xen.  Often it results in oops
messages, but the couple of times I tried just now, it just hung quietly
and made Xen print some rude messages:

    (XEN) mm.c:2389:d80 Bad type (saw 7400000000000001 != exp
    3000000000000000) for mfn 1d7058 (pfn 18fa7)
    (XEN) mm.c:964:d80 Attempt to create linear p.t. with write perms
    (XEN) mm.c:2389:d80 Bad type (saw 7400000000000010 != exp
    1000000000000000) for mfn 1d2e04 (pfn 1d1fb)
    (XEN) mm.c:2965:d80 Error while pinning mfn 1d2e04

Which means the domain tried to map a pagetable page RW, which would
allow it to map arbitrary memory, so Xen stopped it.  This is because
vm_unmap_ram() left some pages mapped in the vmalloc area after NFS had
finished with them, and those pages got recycled as pagetable pages
while still having these RW aliases.

Removing those mappings immediately removes the Xen-visible aliases, and
so it has no problem with those pages being reused as pagetable pages.
Deferring the TLB flush doesn't upset Xen because it can flush the TLB
itself as needed to maintain its invariants.

When unmapping a region in the vmalloc space, clear the ptes
immediately.  There's no point in deferring this because there's no
amortization benefit.

The TLBs are left dirty, and they are flushed lazily to amortize the
cost of the IPIs.

This specific motivation for this patch is an oops-causing regression
since 2.6.36 when using NFS under Xen, triggered by the NFS client's use
of vm_map_ram() introduced in 56e4ebf877 ("NFS: readdir with vmapped
pages") .  XFS also uses vm_map_ram() and could cause similar problems.

Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Bryan Schumaker <bjschuma@netapp.com>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Cc: Alex Elder <aelder@sgi.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-12-02 14:51:15 -08:00
Dave Young e1ca7788de mm: add vzalloc() and vzalloc_node() helpers
Add vzalloc() and vzalloc_node() to encapsulate the
vmalloc-then-memset-zero operation.

Use __GFP_ZERO to zero fill the allocated memory.

Signed-off-by: Dave Young <hidave.darkstar@gmail.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Acked-by: Greg Ungerer <gerg@snapgear.com>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:10 -07:00
Tejun Heo 4f8b02b4e5 vmalloc: pcpu_get/free_vm_areas() aren't needed on UP
These functions are used only by percpu memory allocator on SMP.
Don't build them on UP.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Nick Piggin <npiggin@kernel.dk>
Reviewed-by: Chrsitoph Lameter <cl@linux.com>
2010-09-08 11:10:47 +02:00
Linus Torvalds 26f0cf9181 Merge branch 'stable/xen-swiotlb-0.8.6' of git://git.kernel.org/pub/scm/linux/kernel/git/konrad/xen
* 'stable/xen-swiotlb-0.8.6' of git://git.kernel.org/pub/scm/linux/kernel/git/konrad/xen:
  x86: Detect whether we should use Xen SWIOTLB.
  pci-swiotlb-xen: Add glue code to setup dma_ops utilizing xen_swiotlb_* functions.
  swiotlb-xen: SWIOTLB library for Xen PV guest with PCI passthrough.
  xen/mmu: inhibit vmap aliases rather than trying to clear them out
  vmap: add flag to allow lazy unmap to be disabled at runtime
  xen: Add xen_create_contiguous_region
  xen: Rename the balloon lock
  xen: Allow unprivileged Xen domains to create iomap pages
  xen: use _PAGE_IOMAP in ioremap to do machine mappings

Fix up trivial conflicts (adding both xen swiotlb and xen pci platform
driver setup close to each other) in drivers/xen/{Kconfig,Makefile} and
include/xen/xen-ops.h
2010-08-12 09:09:41 -07:00
Jeremy Fitzhardinge a0d40c8025 vmap: add flag to allow lazy unmap to be disabled at runtime
Add a flag to force lazy_max_pages() to zero to prevent any outstanding
mapped pages.  We'll need this for Xen.

Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Nick Piggin <npiggin@suse.de>
2010-07-27 11:49:09 -04:00
Kenji Kaneshige ffa71f33a8 x86, ioremap: Fix incorrect physical address handling in PAE mode
Current x86 ioremap() doesn't handle physical address higher than
32-bit properly in X86_32 PAE mode. When physical address higher than
32-bit is passed to ioremap(), higher 32-bits in physical address is
cleared wrongly. Due to this bug, ioremap() can map wrong address to
linear address space.

In my case, 64-bit MMIO region was assigned to a PCI device (ioat
device) on my system. Because of the ioremap()'s bug, wrong physical
address (instead of MMIO region) was mapped to linear address space.
Because of this, loading ioatdma driver caused unexpected behavior
(kernel panic, kernel hangup, ...).

Signed-off-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
LKML-Reference: <4C1AE680.7090408@jp.fujitsu.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2010-07-09 11:42:03 -07:00
Tejun Heo ca23e405e0 vmalloc: implement pcpu_get_vm_areas()
To directly use spread NUMA memories for percpu units, percpu
allocator will be updated to allow sparsely mapping units in a chunk.
As the distances between units can be very large, this makes
allocating single vmap area for each chunk undesirable.  This patch
implements pcpu_get_vm_areas() and pcpu_free_vm_areas() which
allocates and frees sparse congruent vmap areas.

pcpu_get_vm_areas() take @offsets and @sizes array which define
distances and sizes of vmap areas.  It scans down from the top of
vmalloc area looking for the top-most address which can accomodate all
the areas.  The top-down scan is to avoid interacting with regular
vmallocs which can push up these congruent areas up little by little
ending up wasting address space and page table.

To speed up top-down scan, the highest possible address hint is
maintained.  Although the scan is linear from the hint, given the
usual large holes between memory addresses between NUMA nodes, the
scanning is highly likely to finish after finding the first hole for
the last unit which is scanned first.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Nick Piggin <npiggin@suse.de>
2009-08-14 15:00:52 +09:00
Ingo Molnar 0edcf8d692 Merge branch 'tj-percpu' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/misc into core/percpu
Conflicts:
	arch/x86/include/asm/pgtable.h
2009-02-24 21:52:45 +01:00
Tejun Heo c0c0a29379 vmalloc: add @align to vm_area_register_early()
Impact: allow larger alignment for early vmalloc area allocation

Some early vmalloc users might want larger alignment, for example, for
custom large page mapping.  Add @align to vm_area_register_early().
While at it, drop docbook comment on non-existent @size.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
2009-02-24 11:57:21 +09:00
Tejun Heo 8fc4898500 vmalloc: add un/map_kernel_range_noflush()
Impact: two more public map/unmap functions

Implement map_kernel_range_noflush() and unmap_kernel_range_noflush().
These functions respectively map and unmap address range in kernel VM
area but doesn't do any vcache or tlb flushing.  These will be used by
new percpu allocator.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
2009-02-20 16:29:08 +09:00
Tejun Heo f0aa661790 vmalloc: implement vm_area_register_early()
Impact: allow multiple early vm areas

There are places where kernel VM area needs to be allocated before
vmalloc is initialized.  This is done by allocating static vm_struct,
initializing several fields and linking it to vmlist and later vmalloc
initialization picking up these from vmlist.  This is currently done
manually and if there's more than one such areas, there's no defined
way to arbitrate who gets which address.

This patch implements vm_area_register_early(), which takes vm_area
struct with flags and size initialized, assigns address to it and puts
it on the vmlist.  This way, multiple early vm areas can determine
which addresses they should use.  The only current user - alpha mm
init - is converted to use it.

Signed-off-by: Tejun Heo <tj@kernel.org>
2009-02-20 16:29:08 +09:00
Benjamin Herrenschmidt c296861291 vmalloc: add __get_vm_area_caller()
We have get_vm_area_caller() and __get_vm_area() but not
__get_vm_area_caller()

On powerpc, I use __get_vm_area() to separate the ranges of addresses
given to vmalloc vs.  ioremap (various good reasons for that) so in order
to be able to implement the new caller tracking in /proc/vmallocinfo, I
need a "_caller" variant of it.

(akpm: needed for ongoing powerpc development, so merge it early)

[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-02-18 15:37:53 -08:00
KOSAKI Motohiro 69beeb1d34 mm: make vread() and vwrite() declaration
Sparse output following warnings.

mm/vmalloc.c:1436:6: warning: symbol 'vread' was not declared. Should it be static?
mm/vmalloc.c:1474:6: warning: symbol 'vwrite' was not declared. Should it be static?

However, it is used by /dev/kmem. fixed here.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 15:59:05 -08:00
Alexey Dobriyan 5f6a6a9c4e proc: move /proc/vmallocinfo to mm/vmalloc.c
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Christoph Lameter <cl@linux-foundation.org>
2008-10-23 15:48:28 +04:00
Nick Piggin db64fe0225 mm: rewrite vmap layer
Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and
provide a fast, scalable percpu frontend for small vmaps (requires a
slightly different API, though).

The biggest problem with vmap is actually vunmap.  Presently this requires
a global kernel TLB flush, which on most architectures is a broadcast IPI
to all CPUs to flush the cache.  This is all done under a global lock.  As
the number of CPUs increases, so will the number of vunmaps a scaled
workload will want to perform, and so will the cost of a global TLB flush.
 This gives terrible quadratic scalability characteristics.

Another problem is that the entire vmap subsystem works under a single
lock.  It is a rwlock, but it is actually taken for write in all the fast
paths, and the read locking would likely never be run concurrently anyway,
so it's just pointless.

This is a rewrite of vmap subsystem to solve those problems.  The existing
vmalloc API is implemented on top of the rewritten subsystem.

The TLB flushing problem is solved by using lazy TLB unmapping.  vmap
addresses do not have to be flushed immediately when they are vunmapped,
because the kernel will not reuse them again (would be a use-after-free)
until they are reallocated.  So the addresses aren't allocated again until
a subsequent TLB flush.  A single TLB flush then can flush multiple
vunmaps from each CPU.

XEN and PAT and such do not like deferred TLB flushing because they can't
always handle multiple aliasing virtual addresses to a physical address.
They now call vm_unmap_aliases() in order to flush any deferred mappings.
That call is very expensive (well, actually not a lot more expensive than
a single vunmap under the old scheme), however it should be OK if not
called too often.

The virtual memory extent information is stored in an rbtree rather than a
linked list to improve the algorithmic scalability.

There is a per-CPU allocator for small vmaps, which amortizes or avoids
global locking.

To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces
must be used in place of vmap and vunmap.  Vmalloc does not use these
interfaces at the moment, so it will not be quite so scalable (although it
will use lazy TLB flushing).

As a quick test of performance, I ran a test that loops in the kernel,
linearly mapping then touching then unmapping 4 pages.  Different numbers
of tests were run in parallel on an 4 core, 2 socket opteron.  Results are
in nanoseconds per map+touch+unmap.

threads           vanilla         vmap rewrite
1                 14700           2900
2                 33600           3000
4                 49500           2800
8                 70631           2900

So with a 8 cores, the rewritten version is already 25x faster.

In a slightly more realistic test (although with an older and less
scalable version of the patch), I ripped the not-very-good vunmap batching
code out of XFS, and implemented the large buffer mapping with vm_map_ram
and vm_unmap_ram...  along with a couple of other tricks, I was able to
speed up a large directory workload by 20x on a 64 CPU system.  I believe
vmap/vunmap is actually sped up a lot more than 20x on such a system, but
I'm running into other locks now.  vmap is pretty well blown off the
profiles.

Before:
1352059 total                                      0.1401
798784 _write_lock                              8320.6667 <- vmlist_lock
529313 default_idle                             1181.5022
 15242 smp_call_function                         15.8771  <- vmap tlb flushing
  2472 __get_vm_area_node                         1.9312  <- vmap
  1762 remove_vm_area                             4.5885  <- vunmap
   316 map_vm_area                                0.2297  <- vmap
   312 kfree                                      0.1950
   300 _spin_lock                                 3.1250
   252 sn_send_IPI_phys                           0.4375  <- tlb flushing
   238 vmap                                       0.8264  <- vmap
   216 find_lock_page                             0.5192
   196 find_next_bit                              0.3603
   136 sn2_send_IPI                               0.2024
   130 pio_phys_write_mmr                         2.0312
   118 unmap_kernel_range                         0.1229

After:
 78406 total                                      0.0081
 40053 default_idle                              89.4040
 33576 ia64_spinlock_contention                 349.7500
  1650 _spin_lock                                17.1875
   319 __reg_op                                   0.5538
   281 _atomic_dec_and_lock                       1.0977
   153 mutex_unlock                               1.5938
   123 iget_locked                                0.1671
   117 xfs_dir_lookup                             0.1662
   117 dput                                       0.1406
   114 xfs_iget_core                              0.0268
    92 xfs_da_hashname                            0.1917
    75 d_alloc                                    0.0670
    68 vmap_page_range                            0.0462 <- vmap
    58 kmem_cache_alloc                           0.0604
    57 memset                                     0.0540
    52 rb_next                                    0.1625
    50 __copy_user                                0.0208
    49 bitmap_find_free_region                    0.2188 <- vmap
    46 ia64_sn_udelay                             0.1106
    45 find_inode_fast                            0.1406
    42 memcmp                                     0.2188
    42 finish_task_switch                         0.1094
    42 __d_lookup                                 0.0410
    40 radix_tree_lookup_slot                     0.1250
    37 _spin_unlock_irqrestore                    0.3854
    36 xfs_bmapi                                  0.0050
    36 kmem_cache_free                            0.0256
    35 xfs_vn_getattr                             0.0322
    34 radix_tree_lookup                          0.1062
    33 __link_path_walk                           0.0035
    31 xfs_da_do_buf                              0.0091
    30 _xfs_buf_find                              0.0204
    28 find_get_page                              0.0875
    27 xfs_iread                                  0.0241
    27 __strncpy_from_user                        0.2812
    26 _xfs_buf_initialize                        0.0406
    24 _xfs_buf_lookup_pages                      0.0179
    24 vunmap_page_range                          0.0250 <- vunmap
    23 find_lock_page                             0.0799
    22 vm_map_ram                                 0.0087 <- vmap
    20 kfree                                      0.0125
    19 put_page                                   0.0330
    18 __kmalloc                                  0.0176
    17 xfs_da_node_lookup_int                     0.0086
    17 _read_lock                                 0.0885
    17 page_waitqueue                             0.0664

vmap has gone from being the top 5 on the profiles and flushing the crap
out of all TLBs, to using less than 1% of kernel time.

[akpm@linux-foundation.org: cleanups, section fix]
[akpm@linux-foundation.org: fix build on alpha]
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Krzysztof Helt <krzysztof.h1@poczta.fm>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20 08:52:32 -07:00
Hugh Dickins 605d9288b3 mm: VM_flags comment fixes
Try to comment away a little of the confusion between mm's vm_area_struct
vm_flags and vmalloc's vm_struct flags: based on an idea by Ulrich Drepper.

Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-08-16 16:45:56 -07:00
Christoph Lameter 2301696932 vmallocinfo: add caller information
Add caller information so that /proc/vmallocinfo shows where the allocation
request for a slice of vmalloc memory originated.

Results in output like this:

0xffffc20000000000-0xffffc20000801000 8392704 alloc_large_system_hash+0x127/0x246 pages=2048 vmalloc vpages
0xffffc20000801000-0xffffc20000806000   20480 alloc_large_system_hash+0x127/0x246 pages=4 vmalloc
0xffffc20000806000-0xffffc20000c07000 4198400 alloc_large_system_hash+0x127/0x246 pages=1024 vmalloc vpages
0xffffc20000c07000-0xffffc20000c0a000   12288 alloc_large_system_hash+0x127/0x246 pages=2 vmalloc
0xffffc20000c0a000-0xffffc20000c0c000    8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap
0xffffc20000c0c000-0xffffc20000c0f000   12288 acpi_os_map_memory+0x13/0x1c phys=cff64000 ioremap
0xffffc20000c10000-0xffffc20000c15000   20480 acpi_os_map_memory+0x13/0x1c phys=cff65000 ioremap
0xffffc20000c16000-0xffffc20000c18000    8192 acpi_os_map_memory+0x13/0x1c phys=cff69000 ioremap
0xffffc20000c18000-0xffffc20000c1a000    8192 acpi_os_map_memory+0x13/0x1c phys=fed1f000 ioremap
0xffffc20000c1a000-0xffffc20000c1c000    8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap
0xffffc20000c1c000-0xffffc20000c1e000    8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap
0xffffc20000c1e000-0xffffc20000c20000    8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap
0xffffc20000c20000-0xffffc20000c22000    8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap
0xffffc20000c22000-0xffffc20000c24000    8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap
0xffffc20000c24000-0xffffc20000c26000    8192 acpi_os_map_memory+0x13/0x1c phys=e0081000 ioremap
0xffffc20000c26000-0xffffc20000c28000    8192 acpi_os_map_memory+0x13/0x1c phys=e0080000 ioremap
0xffffc20000c28000-0xffffc20000c2d000   20480 alloc_large_system_hash+0x127/0x246 pages=4 vmalloc
0xffffc20000c2d000-0xffffc20000c31000   16384 tcp_init+0xd5/0x31c pages=3 vmalloc
0xffffc20000c31000-0xffffc20000c34000   12288 alloc_large_system_hash+0x127/0x246 pages=2 vmalloc
0xffffc20000c34000-0xffffc20000c36000    8192 init_vdso_vars+0xde/0x1f1
0xffffc20000c36000-0xffffc20000c38000    8192 pci_iomap+0x8a/0xb4 phys=d8e00000 ioremap
0xffffc20000c38000-0xffffc20000c3a000    8192 usb_hcd_pci_probe+0x139/0x295 [usbcore] phys=d8e00000 ioremap
0xffffc20000c3a000-0xffffc20000c3e000   16384 sys_swapon+0x509/0xa15 pages=3 vmalloc
0xffffc20000c40000-0xffffc20000c61000  135168 e1000_probe+0x1c4/0xa32 phys=d8a20000 ioremap
0xffffc20000c61000-0xffffc20000c6a000   36864 _xfs_buf_map_pages+0x8e/0xc0 vmap
0xffffc20000c6a000-0xffffc20000c73000   36864 _xfs_buf_map_pages+0x8e/0xc0 vmap
0xffffc20000c73000-0xffffc20000c7c000   36864 _xfs_buf_map_pages+0x8e/0xc0 vmap
0xffffc20000c7c000-0xffffc20000c7f000   12288 e1000e_setup_tx_resources+0x29/0xbe pages=2 vmalloc
0xffffc20000c80000-0xffffc20001481000 8392704 pci_mmcfg_arch_init+0x90/0x118 phys=e0000000 ioremap
0xffffc20001481000-0xffffc20001682000 2101248 alloc_large_system_hash+0x127/0x246 pages=512 vmalloc
0xffffc20001682000-0xffffc20001e83000 8392704 alloc_large_system_hash+0x127/0x246 pages=2048 vmalloc vpages
0xffffc20001e83000-0xffffc20002204000 3674112 alloc_large_system_hash+0x127/0x246 pages=896 vmalloc vpages
0xffffc20002204000-0xffffc2000220d000   36864 _xfs_buf_map_pages+0x8e/0xc0 vmap
0xffffc2000220d000-0xffffc20002216000   36864 _xfs_buf_map_pages+0x8e/0xc0 vmap
0xffffc20002216000-0xffffc2000221f000   36864 _xfs_buf_map_pages+0x8e/0xc0 vmap
0xffffc2000221f000-0xffffc20002228000   36864 _xfs_buf_map_pages+0x8e/0xc0 vmap
0xffffc20002228000-0xffffc20002231000   36864 _xfs_buf_map_pages+0x8e/0xc0 vmap
0xffffc20002231000-0xffffc20002234000   12288 e1000e_setup_rx_resources+0x35/0x122 pages=2 vmalloc
0xffffc20002240000-0xffffc20002261000  135168 e1000_probe+0x1c4/0xa32 phys=d8a60000 ioremap
0xffffc20002261000-0xffffc2000270c000 4894720 sys_swapon+0x509/0xa15 pages=1194 vmalloc vpages
0xffffffffa0000000-0xffffffffa0022000  139264 module_alloc+0x4f/0x55 pages=33 vmalloc
0xffffffffa0022000-0xffffffffa0029000   28672 module_alloc+0x4f/0x55 pages=6 vmalloc
0xffffffffa002b000-0xffffffffa0034000   36864 module_alloc+0x4f/0x55 pages=8 vmalloc
0xffffffffa0034000-0xffffffffa003d000   36864 module_alloc+0x4f/0x55 pages=8 vmalloc
0xffffffffa003d000-0xffffffffa0049000   49152 module_alloc+0x4f/0x55 pages=11 vmalloc
0xffffffffa0049000-0xffffffffa0050000   28672 module_alloc+0x4f/0x55 pages=6 vmalloc

[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 08:58:21 -07:00
Christoph Lameter a10aa57987 vmalloc: show vmalloced areas via /proc/vmallocinfo
Implement a new proc file that allows the display of the currently allocated
vmalloc memory.

It allows to see the users of vmalloc.  That is important if vmalloc space is
scarce (i386 for example).

And it's going to be important for the compound page fallback to vmalloc.
Many of the current users can be switched to use compound pages with fallback.
 This means that the number of users of vmalloc is reduced and page tables no
longer necessary to access the memory.  /proc/vmallocinfo allows to review how
that reduction occurs.

If memory becomes fragmented and larger order allocations are no longer
possible then /proc/vmallocinfo allows to see which compound page allocations
fell back to virtual compound pages.  That is important for new users of
virtual compound pages.  Such as order 1 stack allocation etc that may
fallback to virtual compound pages in the future.

/proc/vmallocinfo permissions are made readable-only-by-root to avoid possible
information leakage.

[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: CONFIG_MMU=n build fix]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Arjan van de Ven <arjan@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 08:58:21 -07:00
Christoph Lameter b3bdda02aa vmalloc: add const to void* parameters
Make vmalloc functions work the same way as kfree() and friends that
take a const void * argument.

[akpm@linux-foundation.org: fix consts, coding-style]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 09:44:14 -08:00
Jeremy Fitzhardinge 9585116ba0 i386: fix iounmap's use of vm_struct's size field
get_vm_area always returns an area with an adjacent guard page.  That guard
page is included in vm_struct.size.  iounmap uses vm_struct.size to
determine how much address space needs to have change_page_attr applied to
it, which will BUG if applied to the guard page.

This patch adds a helper function - get_vm_area_size() in linux/vmalloc.h -
to return the actual size of a vm area, and uses it to make iounmap do the
right thing.  There are probably other places which should be using
get_vm_area_size().

Thanks to Dave Young <hidave.darkstar@gmail.com> for debugging the
problem.

[ Andi, it wasn't clear to me whether x86_64 needs the same fix. ]

Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Cc: Dave Young <hidave.darkstar@gmail.com>
Cc: Chuck Ebbert <cebbert@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-21 18:37:14 -07:00
Jeremy Fitzhardinge 5f4352fbff Allocate and free vmalloc areas
Allocate/release a chunk of vmalloc address space:
 alloc_vm_area reserves a chunk of address space, and makes sure all
 the pagetables are constructed for that address range - but no pages.

 free_vm_area releases the address space range.

Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Ian Pratt <ian.pratt@xensource.com>
Signed-off-by: Christian Limpach <Christian.Limpach@cl.cam.ac.uk>
Signed-off-by: Chris Wright <chrisw@sous-sol.org>
Cc: "Jan Beulich" <JBeulich@novell.com>
Cc: "Andi Kleen" <ak@muc.de>
2007-07-18 08:47:41 -07:00
Benjamin Herrenschmidt c19c03fc74 [POWERPC] unmap_vm_area becomes unmap_kernel_range for the public
This makes unmap_vm_area static and a wrapper around a new
exported unmap_kernel_range that takes an explicit range instead
of a vm_area struct.

This makes it more versatile for code that wants to play with kernel
page tables outside of the standard vmalloc area.

(One example is some rework of the PowerPC PCI IO space mapping
code that depends on that patch and removes some code duplication
and horrible abuse of forged struct vm_struct).

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2007-06-14 22:29:56 +10:00