Currently root wb_writeback structure is added to bdi->wb_list in
bdi_init() and never removed. That is different from all other
wb_writeback structures which get added to the list when created and
removed from it before wb_shutdown().
So move list addition of root bdi_writeback to bdi_register() and list
removal of all wb_writeback structures to wb_shutdown(). That way a
wb_writeback structure is on bdi->wb_list if and only if it can handle
writeback and it will make it easier for us to handle shutdown of all
wb_writeback structures in bdi_unregister().
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
Make wb->bdi a proper refcounted reference to bdi for all bdi_writeback
structures except for the one embedded inside struct backing_dev_info.
That will allow us to simplify bdi unregistration.
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
congested->bdi pointer is used only to be able to remove congested
structure from bdi->cgwb_congested_tree on structure release. Moreover
the pointer can become NULL when we unregister the bdi. Rename the field
to __bdi and add a comment to make it more explicit this is internal
stuff of memcg writeback code and people should not use the field as
such use will be likely race prone.
We do not bother with converting congested->bdi to a proper refcounted
reference. It will be slightly ugly to special-case bdi->wb.congested to
avoid effectively a cyclic reference of bdi to itself and the reference
gets cleared from bdi_unregister() making it impossible to reference
a freed bdi.
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
bdi_writeback_congested structures get created for each blkcg and bdi
regardless whether bdi is registered or not. When they are created in
unregistered bdi and the request queue (and thus bdi) is then destroyed
while blkg still holds reference to bdi_writeback_congested structure,
this structure will be referencing freed bdi and last wb_congested_put()
will try to remove the structure from already freed bdi.
With commit 165a5e22fa "block: Move bdi_unregister() to
del_gendisk()", SCSI started to destroy bdis without calling
bdi_unregister() first (previously it was calling bdi_unregister() even
for unregistered bdis) and thus the code detaching
bdi_writeback_congested in cgwb_bdi_destroy() was not triggered and we
started hitting this use-after-free bug. It is enough to boot a KVM
instance with virtio-scsi device to trigger this behavior.
Fix the problem by detaching bdi_writeback_congested structures in
bdi_exit() instead of bdi_unregister(). This is also more logical as
they can get attached to bdi regardless whether it ever got registered
or not.
Fixes: 165a5e22fa
Signed-off-by: Jan Kara <jack@suse.cz>
Tested-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
SCSI can call device_add_disk() several times for one request queue when
a device in unbound and bound, creating new gendisk each time. This will
lead to bdi being repeatedly registered and unregistered. This was not a
big problem until commit 165a5e22fa "block: Move bdi_unregister() to
del_gendisk()" since bdi was only registered repeatedly (bdi_register()
handles repeated calls fine, only we ended up leaking reference to
gendisk due to overwriting bdi->owner) but unregistered only in
blk_cleanup_queue() which didn't get called repeatedly. After
165a5e22fa we were doing correct bdi_register() - bdi_unregister()
cycles however bdi_unregister() is not prepared for it. So make sure
bdi_unregister() cleans up bdi in such a way that it is prepared for
a possible following bdi_register() call.
An easy way to provoke this behavior is to enable
CONFIG_DEBUG_TEST_DRIVER_REMOVE and use scsi_debug driver to create a
scsi disk which immediately hangs without this fix.
Fixes: 165a5e22fa
Signed-off-by: Jan Kara <jack@suse.cz>
Tested-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
To make the code clearer, use rb_entry() instead of container_of() to
deal with rbtree.
Link: http://lkml.kernel.org/r/671275de093d93ddc7c6f77ddc0d357149691a39.1484306840.git.geliangtang@gmail.com
Signed-off-by: Geliang Tang <geliangtang@gmail.com>
Cc: Jens Axboe <axboe@fb.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When !CONFIG_CGROUP_WRITEBACK, bdi has single bdi_writeback_congested
at bdi->wb_congested. cgwb_bdi_init() allocates it with kzalloc() and
doesn't do further initialization. This usually works fine as the
reference count gets bumped to 1 by wb_init() and the put from
wb_exit() releases it.
However, when wb_init() fails, it puts the wb base ref automatically
freeing the wb and the explicit kfree() in cgwb_bdi_init() error path
ends up trying to free the same pointer the second time causing a
double-free.
Fix it by explicitly initilizing the refcnt to 1 and putting the base
ref from cgwb_bdi_destroy().
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Fixes: a13f35e871 ("writeback: don't embed root bdi_writeback_congested in bdi_writeback")
Cc: stable@vger.kernel.org # v4.2+
Signed-off-by: Jens Axboe <axboe@fb.com>
Instead of storing backing_dev_info inside struct request_queue,
allocate it dynamically, reference count it, and free it when the last
reference is dropped. Currently only request_queue holds the reference
but in the following patch we add other users referencing
backing_dev_info.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
Note in the bdi_writeback structure whenever a task ends up sleeping
waiting for progress. We can use that information in the lower layers
to increase the priority of writes.
Signed-off-by: Jens Axboe <axboe@fb.com>
Reviewed-by: Jan Kara <jack@suse.cz>
The name for a bdi of a gendisk is derived from the gendisk's devt.
However, since the gendisk is destroyed before the bdi it leaves a
window where a new gendisk could dynamically reuse the same devt while a
bdi with the same name is still live. Arrange for the bdi to hold a
reference against its "owner" disk device while it is registered.
Otherwise we can hit sysfs duplicate name collisions like the following:
WARNING: CPU: 10 PID: 2078 at fs/sysfs/dir.c:31 sysfs_warn_dup+0x64/0x80
sysfs: cannot create duplicate filename '/devices/virtual/bdi/259:1'
Hardware name: HP ProLiant DL580 Gen8, BIOS P79 05/06/2015
0000000000000286 0000000002c04ad5 ffff88006f24f970 ffffffff8134caec
ffff88006f24f9c0 0000000000000000 ffff88006f24f9b0 ffffffff8108c351
0000001f0000000c ffff88105d236000 ffff88105d1031e0 ffff8800357427f8
Call Trace:
[<ffffffff8134caec>] dump_stack+0x63/0x87
[<ffffffff8108c351>] __warn+0xd1/0xf0
[<ffffffff8108c3cf>] warn_slowpath_fmt+0x5f/0x80
[<ffffffff812a0d34>] sysfs_warn_dup+0x64/0x80
[<ffffffff812a0e1e>] sysfs_create_dir_ns+0x7e/0x90
[<ffffffff8134faaa>] kobject_add_internal+0xaa/0x320
[<ffffffff81358d4e>] ? vsnprintf+0x34e/0x4d0
[<ffffffff8134ff55>] kobject_add+0x75/0xd0
[<ffffffff816e66b2>] ? mutex_lock+0x12/0x2f
[<ffffffff8148b0a5>] device_add+0x125/0x610
[<ffffffff8148b788>] device_create_groups_vargs+0xd8/0x100
[<ffffffff8148b7cc>] device_create_vargs+0x1c/0x20
[<ffffffff811b775c>] bdi_register+0x8c/0x180
[<ffffffff811b7877>] bdi_register_dev+0x27/0x30
[<ffffffff813317f5>] add_disk+0x175/0x4a0
Cc: <stable@vger.kernel.org>
Reported-by: Yi Zhang <yizhan@redhat.com>
Tested-by: Yi Zhang <yizhan@redhat.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Fixed up missing 0 return in bdi_register_owner().
Signed-off-by: Jens Axboe <axboe@fb.com>
This moves the LRU lists from the zone to the node and related data such
as counters, tracing, congestion tracking and writeback tracking.
Unfortunately, due to reclaim and compaction retry logic, it is
necessary to account for the number of LRU pages on both zone and node
logic. Most reclaim logic is based on the node counters but the retry
logic uses the zone counters which do not distinguish inactive and
active sizes. It would be possible to leave the LRU counters on a
per-zone basis but it's a heavier calculation across multiple cache
lines that is much more frequent than the retry checks.
Other than the LRU counters, this is mostly a mechanical patch but note
that it introduces a number of anomalies. For example, the scans are
per-zone but using per-node counters. We also mark a node as congested
when a zone is congested. This causes weird problems that are fixed
later but is easier to review.
In the event that there is excessive overhead on 32-bit systems due to
the nodes being on LRU then there are two potential solutions
1. Long-term isolation of highmem pages when reclaim is lowmem
When pages are skipped, they are immediately added back onto the LRU
list. If lowmem reclaim persisted for long periods of time, the same
highmem pages get continually scanned. The idea would be that lowmem
keeps those pages on a separate list until a reclaim for highmem pages
arrives that splices the highmem pages back onto the LRU. It potentially
could be implemented similar to the UNEVICTABLE list.
That would reduce the skip rate with the potential corner case is that
highmem pages have to be scanned and reclaimed to free lowmem slab pages.
2. Linear scan lowmem pages if the initial LRU shrink fails
This will break LRU ordering but may be preferable and faster during
memory pressure than skipping LRU pages.
Link: http://lkml.kernel.org/r/1467970510-21195-4-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
wait_iff_congested has been used to throttle allocator before it retried
another round of direct reclaim to allow the writeback to make some
progress and prevent reclaim from looping over dirty/writeback pages
without making any progress.
We used to do congestion_wait before commit 0e093d9976 ("writeback: do
not sleep on the congestion queue if there are no congested BDIs or if
significant congestion is not being encountered in the current zone")
but that led to undesirable stalls and sleeping for the full timeout
even when the BDI wasn't congested. Hence wait_iff_congested was used
instead.
But it seems that even wait_iff_congested doesn't work as expected. We
might have a small file LRU list with all pages dirty/writeback and yet
the bdi is not congested so this is just a cond_resched in the end and
can end up triggering pre mature OOM.
This patch replaces the unconditional wait_iff_congested by
congestion_wait which is executed only if we _know_ that the last round
of direct reclaim didn't make any progress and dirty+writeback pages are
more than a half of the reclaimable pages on the zone which might be
usable for our target allocation. This shouldn't reintroduce stalls
fixed by 0e093d9976 because congestion_wait is called only when we are
getting hopeless when sleeping is a better choice than OOM with many
pages under IO.
We have to preserve logic introduced by commit 373ccbe592 ("mm,
vmstat: allow WQ concurrency to discover memory reclaim doesn't make any
progress") into the __alloc_pages_slowpath now that wait_iff_congested
is not used anymore. As the only remaining user of wait_iff_congested
is shrink_inactive_list we can remove the WQ specific short sleep from
wait_iff_congested because the sleep is needed to be done only once in
the allocation retry cycle.
[mhocko@suse.com: high_zoneidx->ac_classzone_idx to evaluate memory reserves properly]
Link: http://lkml.kernel.org/r/1463051677-29418-2-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The right variable definition should be wb_congested_state that
include WB_async_congested and WB_sync_congested. So fix it.
Signed-off-by: Kaixu Xia <xiakaixu@huawei.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <axboe@fb.com>
Most of the mm subsystem uses pr_<level> so make it consistent.
Miscellanea:
- Realign arguments
- Add missing newline to format
- kmemleak-test.c has a "kmemleak: " prefix added to the
"Kmemleak testing" logging message via pr_fmt
Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: Tejun Heo <tj@kernel.org> [percpu]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We need to use post-decrement to get percpu_counter_destroy() called on
&wb->stat[0]. Moreover, the pre-decremebt would cause infinite
out-of-bounds accesses if the setup code failed at i==0.
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Jan Stancek has reported that system occasionally hanging after "oom01"
testcase from LTP triggers OOM. Guessing from a result that there is a
kworker thread doing memory allocation and the values between "Node 0
Normal free:" and "Node 0 Normal:" differs when hanging, vmstat is not
up-to-date for some reason.
According to commit 373ccbe592 ("mm, vmstat: allow WQ concurrency to
discover memory reclaim doesn't make any progress"), it meant to force
the kworker thread to take a short sleep, but it by error used
schedule_timeout(1). We missed that schedule_timeout() in state
TASK_RUNNING doesn't do anything.
Fix it by using schedule_timeout_uninterruptible(1) which forces the
kworker thread to take a short sleep in order to make sure that vmstat
is up-to-date.
Fixes: 373ccbe592 ("mm, vmstat: allow WQ concurrency to discover memory reclaim doesn't make any progress")
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Reported-by: Jan Stancek <jstancek@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Cristopher Lameter <clameter@sgi.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Arkadiusz Miskiewicz <arekm@maven.pl>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A later patch will need this symbol in files other than memcontrol.c, so
export it now and replace mem_cgroup_root_css at the same time.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: David S. Miller <davem@davemloft.net>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Tetsuo Handa has reported that the system might basically livelock in
OOM condition without triggering the OOM killer.
The issue is caused by internal dependency of the direct reclaim on
vmstat counter updates (via zone_reclaimable) which are performed from
the workqueue context. If all the current workers get assigned to an
allocation request, though, they will be looping inside the allocator
trying to reclaim memory but zone_reclaimable can see stalled numbers so
it will consider a zone reclaimable even though it has been scanned way
too much. WQ concurrency logic will not consider this situation as a
congested workqueue because it relies that worker would have to sleep in
such a situation. This also means that it doesn't try to spawn new
workers or invoke the rescuer thread if the one is assigned to the
queue.
In order to fix this issue we need to do two things. First we have to
let wq concurrency code know that we are in trouble so we have to do a
short sleep. In order to prevent from issues handled by 0e093d9976
("writeback: do not sleep on the congestion queue if there are no
congested BDIs or if significant congestion is not being encountered in
the current zone") we limit the sleep only to worker threads which are
the ones of the interest anyway.
The second thing to do is to create a dedicated workqueue for vmstat and
mark it WQ_MEM_RECLAIM to note it participates in the reclaim and to
have a spare worker thread for it.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Tejun Heo <tj@kernel.org>
Cc: Cristopher Lameter <clameter@sgi.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Arkadiusz Miskiewicz <arekm@maven.pl>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__GFP_WAIT has been used to identify atomic context in callers that hold
spinlocks or are in interrupts. They are expected to be high priority and
have access one of two watermarks lower than "min" which can be referred
to as the "atomic reserve". __GFP_HIGH users get access to the first
lower watermark and can be called the "high priority reserve".
Over time, callers had a requirement to not block when fallback options
were available. Some have abused __GFP_WAIT leading to a situation where
an optimisitic allocation with a fallback option can access atomic
reserves.
This patch uses __GFP_ATOMIC to identify callers that are truely atomic,
cannot sleep and have no alternative. High priority users continue to use
__GFP_HIGH. __GFP_DIRECT_RECLAIM identifies callers that can sleep and
are willing to enter direct reclaim. __GFP_KSWAPD_RECLAIM to identify
callers that want to wake kswapd for background reclaim. __GFP_WAIT is
redefined as a caller that is willing to enter direct reclaim and wake
kswapd for background reclaim.
This patch then converts a number of sites
o __GFP_ATOMIC is used by callers that are high priority and have memory
pools for those requests. GFP_ATOMIC uses this flag.
o Callers that have a limited mempool to guarantee forward progress clear
__GFP_DIRECT_RECLAIM but keep __GFP_KSWAPD_RECLAIM. bio allocations fall
into this category where kswapd will still be woken but atomic reserves
are not used as there is a one-entry mempool to guarantee progress.
o Callers that are checking if they are non-blocking should use the
helper gfpflags_allow_blocking() where possible. This is because
checking for __GFP_WAIT as was done historically now can trigger false
positives. Some exceptions like dm-crypt.c exist where the code intent
is clearer if __GFP_DIRECT_RECLAIM is used instead of the helper due to
flag manipulations.
o Callers that built their own GFP flags instead of starting with GFP_KERNEL
and friends now also need to specify __GFP_KSWAPD_RECLAIM.
The first key hazard to watch out for is callers that removed __GFP_WAIT
and was depending on access to atomic reserves for inconspicuous reasons.
In some cases it may be appropriate for them to use __GFP_HIGH.
The second key hazard is callers that assembled their own combination of
GFP flags instead of starting with something like GFP_KERNEL. They may
now wish to specify __GFP_KSWAPD_RECLAIM. It's almost certainly harmless
if it's missed in most cases as other activity will wake kswapd.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vitaly Wool <vitalywool@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
a20135ffbc ("writeback: don't drain bdi_writeback_congested on bdi
destruction") added rbtree_postorder_for_each_entry_safe() which is
used to remove all entries; however, according to Cody, the iterator
isn't safe against operations which may rebalance the tree. Fix it by
switching to repeatedly removing rb_first() until empty.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Cody P Schafer <dev@codyps.com>
Fixes: a20135ffbc ("writeback: don't drain bdi_writeback_congested on bdi destruction")
Link: http://lkml.kernel.org/g/1443997973-1700-1-git-send-email-dev@codyps.com
Signed-off-by: Jens Axboe <axboe@fb.com>
bdi's are initialized in two steps, bdi_init() and bdi_register(), but
destroyed in a single step by bdi_destroy() which, for a bdi embedded
in a request_queue, is called during blk_cleanup_queue() which makes
the queue invisible and starts the draining of remaining usages.
A request_queue's user can access the congestion state of the embedded
bdi as long as it holds a reference to the queue. As such, it may
access the congested state of a queue which finished
blk_cleanup_queue() but hasn't reached blk_release_queue() yet.
Because the congested state was embedded in backing_dev_info which in
turn is embedded in request_queue, accessing the congested state after
bdi_destroy() was called was fine. The bdi was destroyed but the
memory region for the congested state remained accessible till the
queue got released.
a13f35e871 ("writeback: don't embed root bdi_writeback_congested in
bdi_writeback") changed the situation. Now, the root congested state
which is expected to be pinned while request_queue remains accessible
is separately reference counted and the base ref is put during
bdi_destroy(). This means that the root congested state may go away
prematurely while the queue is between bdi_dstroy() and
blk_cleanup_queue(), which was detected by Andrey's KASAN tests.
The root cause of this problem is that bdi doesn't distinguish the two
steps of destruction, unregistration and release, and now the root
congested state actually requires a separate release step. To fix the
issue, this patch separates out bdi_unregister() and bdi_exit() from
bdi_destroy(). bdi_unregister() is called from blk_cleanup_queue()
and bdi_exit() from blk_release_queue(). bdi_destroy() is now just a
simple wrapper calling the two steps back-to-back.
While at it, the prototype of bdi_destroy() is moved right below
bdi_setup_and_register() so that the counterpart operations are
located together.
Signed-off-by: Tejun Heo <tj@kernel.org>
Fixes: a13f35e871 ("writeback: don't embed root bdi_writeback_congested in bdi_writeback")
Cc: stable@vger.kernel.org # v4.2+
Reported-and-tested-by: Andrey Konovalov <andreyknvl@google.com>
Link: http://lkml.kernel.org/g/CAAeHK+zUJ74Zn17=rOyxacHU18SgCfC6bsYW=6kCY5GXJBwGfQ@mail.gmail.com
Reviewed-by: Jan Kara <jack@suse.com>
Reviewed-by: Jeff Moyer <jmoyer@redhat.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
bdi_for_each_wb() is used in several places to wake up or issue
writeback work items to all wb's (bdi_writeback's) on a given bdi.
The iteration is performed by walking bdi->cgwb_tree; however, the
tree only indexes wb's which are currently active.
For example, when a memcg gets associated with a different blkcg, the
old wb is removed from the tree so that the new one can be indexed.
The old wb starts dying from then on but will linger till all its
inodes are drained. As these dying wb's may still host dirty inodes,
writeback operations which affect all wb's must include them.
bdi_for_each_wb() skipping dying wb's led to sync(2) missing and
failing to sync the inodes belonging to those wb's.
This patch adds a RCU protected @bdi->wb_list which lists all wb's
beloinging to that bdi. wb's are added on creation and removed on
release rather than on the start of destruction. bdi_for_each_wb()
usages are replaced with list_for_each[_continue]_rcu() iterations
over @bdi->wb_list and bdi_for_each_wb() and its helpers are removed.
v2: Updated as per Jan. last_wb ref leak in bdi_split_work_to_wbs()
fixed and unnecessary list head severing in cgwb_bdi_destroy()
removed.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-and-tested-by: Artem Bityutskiy <dedekind1@gmail.com>
Fixes: ebe41ab0c7 ("writeback: implement bdi_for_each_wb()")
Link: http://lkml.kernel.org/g/1443012552.19983.209.camel@gmail.com
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
Pull blk-cg updates from Jens Axboe:
"A bit later in the cycle, but this has been in the block tree for a a
while. This is basically four patchsets from Tejun, that improve our
buffered cgroup writeback. It was dependent on the other cgroup
changes, but they went in earlier in this cycle.
Series 1 is set of 5 patches that has cgroup writeback updates:
- bdi_writeback iteration fix which could lead to some wb's being
skipped or repeated during e.g. sync under memory pressure.
- Simplification of wb work wait mechanism.
- Writeback tracepoints updated to report cgroup.
Series 2 is is a set of updates for the CFQ cgroup writeback handling:
cfq has always charged all async IOs to the root cgroup. It didn't
have much choice as writeback didn't know about cgroups and there
was no way to tell who to blame for a given writeback IO.
writeback finally grew support for cgroups and now tags each
writeback IO with the appropriate cgroup to charge it against.
This patchset updates cfq so that it follows the blkcg each bio is
tagged with. Async cfq_queues are now shared across cfq_group,
which is per-cgroup, instead of per-request_queue cfq_data. This
makes all IOs follow the weight based IO resource distribution
implemented by cfq.
- Switched from GFP_ATOMIC to GFP_NOWAIT as suggested by Jeff.
- Other misc review points addressed, acks added and rebased.
Series 3 is the blkcg policy cleanup patches:
This patchset contains assorted cleanups for blkcg_policy methods
and blk[c]g_policy_data handling.
- alloc/free added for blkg_policy_data. exit dropped.
- alloc/free added for blkcg_policy_data.
- blk-throttle's async percpu allocation is replaced with direct
allocation.
- all methods now take blk[c]g_policy_data instead of blkcg_gq or
blkcg.
And finally, series 4 is a set of patches cleaning up the blkcg stats
handling:
blkcg's stats have always been somwhat of a mess. This patchset
tries to improve the situation a bit.
- The following patches added to consolidate blkcg entry point and
blkg creation. This is in itself is an improvement and helps
colllecting common stats on bio issue.
- per-blkg stats now accounted on bio issue rather than request
completion so that bio based and request based drivers can behave
the same way. The issue was spotted by Vivek.
- cfq-iosched implements custom recursive stats and blk-throttle
implements custom per-cpu stats. This patchset make blkcg core
support both by default.
- cfq-iosched and blk-throttle keep track of the same stats
multiple times. Unify them"
* 'for-4.3/blkcg' of git://git.kernel.dk/linux-block: (45 commits)
blkcg: use CGROUP_WEIGHT_* scale for io.weight on the unified hierarchy
blkcg: s/CFQ_WEIGHT_*/CFQ_WEIGHT_LEGACY_*/
blkcg: implement interface for the unified hierarchy
blkcg: misc preparations for unified hierarchy interface
blkcg: separate out tg_conf_updated() from tg_set_conf()
blkcg: move body parsing from blkg_conf_prep() to its callers
blkcg: mark existing cftypes as legacy
blkcg: rename subsystem name from blkio to io
blkcg: refine error codes returned during blkcg configuration
blkcg: remove unnecessary NULL checks from __cfqg_set_weight_device()
blkcg: reduce stack usage of blkg_rwstat_recursive_sum()
blkcg: remove cfqg_stats->sectors
blkcg: move io_service_bytes and io_serviced stats into blkcg_gq
blkcg: make blkg_[rw]stat_recursive_sum() to be able to index into blkcg_gq
blkcg: make blkcg_[rw]stat per-cpu
blkcg: add blkg_[rw]stat->aux_cnt and replace cfq_group->dead_stats with it
blkcg: consolidate blkg creation in blkcg_bio_issue_check()
blk-throttle: improve queue bypass handling
blkcg: move root blkg lookup optimization from throtl_lookup_tg() to __blkg_lookup()
blkcg: inline [__]blkg_lookup()
...
blkio interface has become messy over time and is currently the
largest. In addition to the inconsistent naming scheme, it has
multiple stat files which report more or less the same thing, a number
of debug stat files which expose internal details which shouldn't have
been part of the public interface in the first place, recursive and
non-recursive stats and leaf and non-leaf knobs.
Both recursive vs. non-recursive and leaf vs. non-leaf distinctions
don't make any sense on the unified hierarchy as only leaf cgroups can
contain processes. cgroups is going through a major interface
revision with the unified hierarchy involving significant fundamental
usage changes and given that a significant portion of the interface
doesn't make sense anymore, it's a good time to reorganize the
interface.
As the first step, this patch renames the external visible subsystem
name from "blkio" to "io". This is more concise, matches the other
two major subsystem names, "cpu" and "memory", and better suited as
blkcg will be involved in anything writeback related too whether an
actual block device is involved or not.
As the subsystem legacy_name is set to "blkio", the only userland
visible change outside the unified hierarchy is that blkcg is reported
as "io" instead of "blkio" in the subsystem initialized message during
boot. On the unified hierarchy, blkcg now appears as "io".
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: cgroups@vger.kernel.org
Signed-off-by: Jens Axboe <axboe@fb.com>
There's a small consistency problem between the inode and writeback
naming. Writeback calls the "for IO" inode queues b_io and
b_more_io, but the inode calls these the "writeback list" or
i_wb_list. This makes it hard to an new "under writeback" list to
the inode, or call it an "under IO" list on the bdi because either
way we'll have writeback on IO and IO on writeback and it'll just be
confusing. I'm getting confused just writing this!
So, rename the inode "for IO" list variable to i_io_list so we can
add a new "writeback list" in a subsequent patch.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Tested-by: Dave Chinner <dchinner@redhat.com>
52ebea749a ("writeback: make backing_dev_info host cgroup-specific
bdi_writebacks") made bdi (backing_dev_info) host per-cgroup wb's
(bdi_writeback's). As the congested state needs to be per-wb and
referenced from blkcg side and multiple wbs, the patch made all
non-root cong's (bdi_writeback_congested's) reference counted and
indexed on bdi.
When a bdi is destroyed, cgwb_bdi_destroy() tries to drain all
non-root cong's; however, this can hang indefinitely because wb's can
also be referenced from blkcg_gq's which are destroyed after bdi
destruction is complete.
This patch fixes the bug by updating bdi destruction to not wait for
cong's to drain. A cong is unlinked from bdi->cgwb_congested_tree on
bdi destuction regardless of its reference count as the bdi may go
away any point after destruction. wb_congested_put() checks whether
the cong is already unlinked on release.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Jon Christopherson <jon@jons.org>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=100681
Fixes: 52ebea749a ("writeback: make backing_dev_info host cgroup-specific bdi_writebacks")
Tested-by: Jon Christopherson <jon@jons.org>
Signed-off-by: Jens Axboe <axboe@fb.com>
52ebea749a ("writeback: make backing_dev_info host cgroup-specific
bdi_writebacks") made bdi (backing_dev_info) host per-cgroup wb's
(bdi_writeback's). As the congested state needs to be per-wb and
referenced from blkcg side and multiple wbs, the patch made all
non-root cong's (bdi_writeback_congested's) reference counted and
indexed on bdi.
When a bdi is destroyed, cgwb_bdi_destroy() tries to drain all
non-root cong's; however, this can hang indefinitely because wb's can
also be referenced from blkcg_gq's which are destroyed after bdi
destruction is complete.
To fix the bug, bdi destruction will be updated to not wait for cong's
to drain, which naturally means that cong's may outlive the associated
bdi. This is fine for non-root cong's but is problematic for the root
cong's which are embedded in their bdi's as they may end up getting
dereferenced after the containing bdi's are freed.
This patch makes root cong's behave the same as non-root cong's. They
are no longer embedded in their bdi's but allocated separately during
bdi initialization, indexed and reference counted the same way.
* As cong handling is the same for all wb's, wb->congested
initialization is moved into wb_init().
* When !CONFIG_CGROUP_WRITEBACK, there was no indexing or refcnting.
bdi->wb_congested is now a pointer pointing to the root cong
allocated during bdi init and minimal refcnting operations are
implemented.
* The above makes root wb init paths diverge depending on
CONFIG_CGROUP_WRITEBACK. root wb init is moved to cgwb_bdi_init().
This patch in itself shouldn't cause any consequential behavior
differences but prepares for the actual fix.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Jon Christopherson <jon@jons.org>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=100681
Tested-by: Jon Christopherson <jon@jons.org>
Added <linux/slab.h> include to backing-dev.h for kfree() definition.
Signed-off-by: Jens Axboe <axboe@fb.com>
Pull cgroup writeback support from Jens Axboe:
"This is the big pull request for adding cgroup writeback support.
This code has been in development for a long time, and it has been
simmering in for-next for a good chunk of this cycle too. This is one
of those problems that has been talked about for at least half a
decade, finally there's a solution and code to go with it.
Also see last weeks writeup on LWN:
http://lwn.net/Articles/648292/"
* 'for-4.2/writeback' of git://git.kernel.dk/linux-block: (85 commits)
writeback, blkio: add documentation for cgroup writeback support
vfs, writeback: replace FS_CGROUP_WRITEBACK with SB_I_CGROUPWB
writeback: do foreign inode detection iff cgroup writeback is enabled
v9fs: fix error handling in v9fs_session_init()
bdi: fix wrong error return value in cgwb_create()
buffer: remove unusued 'ret' variable
writeback: disassociate inodes from dying bdi_writebacks
writeback: implement foreign cgroup inode bdi_writeback switching
writeback: add lockdep annotation to inode_to_wb()
writeback: use unlocked_inode_to_wb transaction in inode_congested()
writeback: implement unlocked_inode_to_wb transaction and use it for stat updates
writeback: implement [locked_]inode_to_wb_and_lock_list()
writeback: implement foreign cgroup inode detection
writeback: make writeback_control track the inode being written back
writeback: relocate wb[_try]_get(), wb_put(), inode_{attach|detach}_wb()
mm: vmscan: disable memcg direct reclaim stalling if cgroup writeback support is in use
writeback: implement memcg writeback domain based throttling
writeback: reset wb_domain->dirty_limit[_tstmp] when memcg domain size changes
writeback: implement memcg wb_domain
writeback: update wb_over_bg_thresh() to use wb_domain aware operations
...
On wb_congested_get_create() failure, cgwb_create() forgot to set @ret
to -ENOMEM ending up returning 0. Fix it so that it returns -ENOMEM.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
Currently, majority of cgroup writeback support including all the
above functions are implemented in include/linux/backing-dev.h and
mm/backing-dev.c; however, the portion closely related to writeback
logic implemented in include/linux/writeback.h and mm/page-writeback.c
will expand to support foreign writeback detection and correction.
This patch moves wb[_try]_get() and wb_put() to
include/linux/backing-dev-defs.h so that they can be used from
writeback.h and inode_{attach|detach}_wb() to writeback.h and
page-writeback.c.
This is pure reorganization and doesn't introduce any functional
changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jan Kara <jack@suse.cz>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
Dirtyable memory is distributed to a wb (bdi_writeback) according to
the relative bandwidth the wb is writing out in the whole system.
This distribution is global - each wb is measured against all other
wb's and gets the proportinately sized portion of the memory in the
whole system.
For cgroup writeback, the amount of dirtyable memory is scoped by
memcg and thus each wb would need to be measured and controlled in its
memcg. IOW, a wb will belong to two writeback domains - the global
and memcg domains.
The previous patches laid the groundwork to support the two wb_domains
and this patch implements memcg wb_domain. memcg->cgwb_domain is
initialized on css online and destroyed on css release,
wb->memcg_completions is added, and __wb_writeout_inc() is updated to
increment completions against both global and memcg wb_domains.
The following patches will update balance_dirty_pages() and its
subroutines to actually consider memcg wb_domain for throttling.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jan Kara <jack@suse.cz>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
The function name wb_dirty_limit(), its argument @dirty and the local
variable @wb_dirty are mortally confusing given that the function
calculates per-wb threshold value not dirty pages, especially given
that @dirty and @wb_dirty are used elsewhere for dirty pages.
Let's rename the function to wb_calc_thresh() and wb_dirty to
wb_thresh.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jan Kara <jack@suse.cz>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
If the completion of a wb_writeback_work can be waited upon by setting
its ->done to a struct completion and waiting on it; however, for
cgroup writeback support, it's necessary to issue multiple work items
to multiple bdi_writebacks and wait for the completion of all.
This patch implements wb_completion which can wait for multiple work
items and replaces the struct completion with it. It can be defined
using DEFINE_WB_COMPLETION_ONSTACK(), used for multiple work items and
waited for by wb_wait_for_completion().
Nobody currently issues multiple work items and this patch doesn't
introduce any behavior changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
bdi_has_dirty_io() used to only reflect whether the root wb
(bdi_writeback) has dirty inodes. For cgroup writeback support, it
needs to take all active wb's into account. If any wb on the bdi has
dirty inodes, bdi_has_dirty_io() should return true.
To achieve that, as inode_wb_list_{move|del}_locked() now keep track
of the dirty state transition of each wb, the number of dirty wbs can
be counted in the bdi; however, bdi is already aggregating
wb->avg_write_bandwidth which can easily be guaranteed to be > 0 when
there are any dirty inodes by ensuring wb->avg_write_bandwidth can't
dip below 1. bdi_has_dirty_io() can simply test whether
bdi->tot_write_bandwidth is zero or not.
While this bumps the value of wb->avg_write_bandwidth to one when it
used to be zero, this shouldn't cause any meaningful behavior
difference.
bdi_has_dirty_io() is made an inline function which tests whether
->tot_write_bandwidth is non-zero. Also, WARN_ON_ONCE()'s on its
value are added to inode_wb_list_{move|del}_locked().
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
Currently, wb_has_dirty_io() determines whether a wb (bdi_writeback)
has any dirty inode by testing all three IO lists on each invocation
without actively keeping track. For cgroup writeback support, a
single bdi will host multiple wb's each of which will host dirty
inodes separately and we'll need to make bdi_has_dirty_io(), which
currently only represents the root wb, aggregate has_dirty_io from all
member wb's, which requires tracking transitions in has_dirty_io state
on each wb.
This patch introduces inode_wb_list_{move|del}_locked() to consolidate
IO list operations leaving queue_io() the only other function which
directly manipulates IO lists (via move_expired_inodes()). All three
functions are updated to call wb_io_lists_[de]populated() which keep
track of whether the wb has dirty inodes or not and record it using
the new WB_has_dirty_io flag. inode_wb_list_moved_locked()'s return
value indicates whether the wb had no dirty inodes before.
mark_inode_dirty() is restructured so that the return value of
inode_wb_list_move_locked() can be used for deciding whether to wake
up the wb.
While at it, change {bdi|wb}_has_dirty_io()'s return values to bool.
These functions were returning 0 and 1 before. Also, add a comment
explaining the synchronization of wb_state flags.
v2: Updated to accommodate b_dirty_time.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
Currently, all congestion functions take bdi (backing_dev_info) and
always operate on the root wb (bdi->wb) and the congestion state from
the block layer is propagated only for the root blkcg. This patch
introduces {set|clear}_wb_congested() and wb_congested() which take a
bdi_writeback_congested and bdi_writeback respectively. The bdi
counteparts are now wrappers invoking the wb based functions on
@bdi->wb.
While converting clear_bdi_congested() to clear_wb_congested(), the
local variable declaration order between @wqh and @bit is swapped for
cosmetic reason.
This patch just adds the new wb based functions. The following
patches will apply them.
v2: Updated for bdi_writeback_congested.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Jens Axboe <axboe@fb.com>
For the planned cgroup writeback support, on each bdi
(backing_dev_info), each memcg will be served by a separate wb
(bdi_writeback). This patch updates bdi so that a bdi can host
multiple wbs (bdi_writebacks).
On the default hierarchy, blkcg implicitly enables memcg. This allows
using memcg's page ownership for attributing writeback IOs, and every
memcg - blkcg combination can be served by its own wb by assigning a
dedicated wb to each memcg. This means that there may be multiple
wb's of a bdi mapped to the same blkcg. As congested state is per
blkcg - bdi combination, those wb's should share the same congested
state. This is achieved by tracking congested state via
bdi_writeback_congested structs which are keyed by blkcg.
bdi->wb remains unchanged and will keep serving the root cgroup.
cgwb's (cgroup wb's) for non-root cgroups are created on-demand or
looked up while dirtying an inode according to the memcg of the page
being dirtied or current task. Each cgwb is indexed on bdi->cgwb_tree
by its memcg id. Once an inode is associated with its wb, it can be
retrieved using inode_to_wb().
Currently, none of the filesystems has FS_CGROUP_WRITEBACK and all
pages will keep being associated with bdi->wb.
v3: inode_attach_wb() in account_page_dirtied() moved inside
mapping_cap_account_dirty() block where it's known to be !NULL.
Also, an unnecessary NULL check before kfree() removed. Both
detected by the kbuild bot.
v2: Updated so that wb association is per inode and wb is per memcg
rather than blkcg.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: kbuild test robot <fengguang.wu@intel.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
Currently, a wb's (bdi_writeback) congestion state is carried in its
->state field; however, cgroup writeback support will require multiple
wb's sharing the same congestion state. This patch separates out
congestion state into its own struct - struct bdi_writeback_congested.
A new field wb field, wb_congested, points to its associated congested
struct. The default wb, bdi->wb, always points to bdi->wb_congested.
While this patch adds a layer of indirection, it doesn't introduce any
behavior changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <axboe@fb.com>
wb_init() currently always uses GFP_KERNEL but the planned cgroup
writeback support needs using other allocation masks. Add @gfp to
wb_init().
This patch doesn't introduce any behavior changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Jens Axboe <axboe@fb.com>
Now that bdi definitions are moved to backing-dev-defs.h,
backing-dev.h can include blkdev.h and inline inode_to_bdi() without
worrying about introducing circular include dependency. The function
gets called from hot paths and fairly trivial.
This patch makes inode_to_bdi() and sb_is_blkdev_sb() that the
function calls inline. blockdev_superblock and noop_backing_dev_info
are EXPORT_GPL'd to allow the inline functions to be used from
modules.
While at it, make sb_is_blkdev_sb() return bool instead of int.
v2: Fixed typo in description as suggested by Jan.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Jens Axboe <axboe@kernel.dk>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Jens Axboe <axboe@fb.com>
Move wb_shutdown(), bdi_register(), bdi_register_dev(),
bdi_prune_sb(), bdi_remove_from_list() and bdi_unregister() so that
init / exit functions are grouped together. This will make updating
init / exit paths for cgroup writeback support easier.
This is pure source file reorganization.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
Currently, a bdi (backing_dev_info) embeds single wb (bdi_writeback)
and the role of the separation is unclear. For cgroup support for
writeback IOs, a bdi will be updated to host multiple wb's where each
wb serves writeback IOs of a different cgroup on the bdi. To achieve
that, a wb should carry all states necessary for servicing writeback
IOs for a cgroup independently.
This patch moves bdi->wb_lock and ->worklist into wb.
* The lock protects bdi->worklist and bdi->wb.dwork scheduling. While
moving, rename it to wb->work_lock as wb->wb_lock is confusing.
Also, move wb->dwork downwards so that it's colocated with the new
->work_lock and ->work_list fields.
* bdi_writeback_workfn() -> wb_workfn()
bdi_wakeup_thread_delayed(bdi) -> wb_wakeup_delayed(wb)
bdi_wakeup_thread(bdi) -> wb_wakeup(wb)
bdi_queue_work(bdi, ...) -> wb_queue_work(wb, ...)
__bdi_start_writeback(bdi, ...) -> __wb_start_writeback(wb, ...)
get_next_work_item(bdi) -> get_next_work_item(wb)
* bdi_wb_shutdown() is renamed to wb_shutdown() and now takes @wb.
The function contained parts which belong to the containing bdi
rather than the wb itself - testing cap_writeback_dirty and
bdi_remove_from_list() invocation. Those are moved to
bdi_unregister().
* bdi_wb_{init|exit}() are renamed to wb_{init|exit}().
Initializations of the moved bdi->wb_lock and ->work_list are
relocated from bdi_init() to wb_init().
* As there's still only one bdi_writeback per backing_dev_info, all
uses of bdi->state are mechanically replaced with bdi->wb.state
introducing no behavior changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
Currently, a bdi (backing_dev_info) embeds single wb (bdi_writeback)
and the role of the separation is unclear. For cgroup support for
writeback IOs, a bdi will be updated to host multiple wb's where each
wb serves writeback IOs of a different cgroup on the bdi. To achieve
that, a wb should carry all states necessary for servicing writeback
IOs for a cgroup independently.
This patch moves bandwidth related fields from backing_dev_info into
bdi_writeback.
* The moved fields are: bw_time_stamp, dirtied_stamp, written_stamp,
write_bandwidth, avg_write_bandwidth, dirty_ratelimit,
balanced_dirty_ratelimit, completions and dirty_exceeded.
* writeback_chunk_size() and over_bground_thresh() now take @wb
instead of @bdi.
* bdi_writeout_fraction(bdi, ...) -> wb_writeout_fraction(wb, ...)
bdi_dirty_limit(bdi, ...) -> wb_dirty_limit(wb, ...)
bdi_position_ration(bdi, ...) -> wb_position_ratio(wb, ...)
bdi_update_writebandwidth(bdi, ...) -> wb_update_write_bandwidth(wb, ...)
[__]bdi_update_bandwidth(bdi, ...) -> [__]wb_update_bandwidth(wb, ...)
bdi_{max|min}_pause(bdi, ...) -> wb_{max|min}_pause(wb, ...)
bdi_dirty_limits(bdi, ...) -> wb_dirty_limits(wb, ...)
* Init/exits of the relocated fields are moved to bdi_wb_init/exit()
respectively. Note that explicit zeroing is dropped in the process
as wb's are cleared in entirety anyway.
* As there's still only one bdi_writeback per backing_dev_info, all
uses of bdi->stat[] are mechanically replaced with bdi->wb.stat[]
introducing no behavior changes.
v2: Typo in description fixed as suggested by Jan.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
Currently, a bdi (backing_dev_info) embeds single wb (bdi_writeback)
and the role of the separation is unclear. For cgroup support for
writeback IOs, a bdi will be updated to host multiple wb's where each
wb serves writeback IOs of a different cgroup on the bdi. To achieve
that, a wb should carry all states necessary for servicing writeback
IOs for a cgroup independently.
This patch moves bdi->bdi_stat[] into wb.
* enum bdi_stat_item is renamed to wb_stat_item and the prefix of all
enums is changed from BDI_ to WB_.
* BDI_STAT_BATCH() -> WB_STAT_BATCH()
* [__]{add|inc|dec|sum}_wb_stat(bdi, ...) -> [__]{add|inc}_wb_stat(wb, ...)
* bdi_stat[_error]() -> wb_stat[_error]()
* bdi_writeout_inc() -> wb_writeout_inc()
* stat init is moved to bdi_wb_init() and bdi_wb_exit() is added and
frees stat.
* As there's still only one bdi_writeback per backing_dev_info, all
uses of bdi->stat[] are mechanically replaced with bdi->wb.stat[]
introducing no behavior changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Miklos Szeredi <miklos@szeredi.hu>
Cc: Trond Myklebust <trond.myklebust@primarydata.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
Currently, a bdi (backing_dev_info) embeds single wb (bdi_writeback)
and the role of the separation is unclear. For cgroup support for
writeback IOs, a bdi will be updated to host multiple wb's where each
wb serves writeback IOs of a different cgroup on the bdi. To achieve
that, a wb should carry all states necessary for servicing writeback
IOs for a cgroup independently.
This patch moves bdi->state into wb.
* enum bdi_state is renamed to wb_state and the prefix of all enums is
changed from BDI_ to WB_.
* Explicit zeroing of bdi->state is removed without adding zeoring of
wb->state as the whole data structure is zeroed on init anyway.
* As there's still only one bdi_writeback per backing_dev_info, all
uses of bdi->state are mechanically replaced with bdi->wb.state
introducing no behavior changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: drbd-dev@lists.linbit.com
Cc: Neil Brown <neilb@suse.de>
Cc: Alasdair Kergon <agk@redhat.com>
Cc: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
bdi_unregister() now contains very little functionality.
It contains a "WARN_ON" if bdi->dev is NULL. This warning is of no
real consequence as bdi->dev isn't needed by anything else in the function,
and it triggers if
blk_cleanup_queue() -> bdi_destroy()
is called before bdi_unregister, which happens since
Commit: 6cd18e711d ("block: destroy bdi before blockdev is unregistered.")
So this isn't wanted.
It also calls bdi_set_min_ratio(). This needs to be called after
writes through the bdi have all been flushed, and before the bdi is destroyed.
Calling it early is better than calling it late as it frees up a global
resource.
Calling it immediately after bdi_wb_shutdown() in bdi_destroy()
perfectly fits these requirements.
So bdi_unregister() can be discarded with the important content moved to
bdi_destroy(), as can the
writeback_bdi_unregister
event which is already not used.
Reported-by: Mike Snitzer <snitzer@redhat.com>
Cc: stable@vger.kernel.org (v4.0)
Fixes: c4db59d31e ("fs: don't reassign dirty inodes to default_backing_dev_info")
Fixes: 6cd18e711d ("block: destroy bdi before blockdev is unregistered.")
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Dan Williams <dan.j.williams@intel.com>
Tested-by: Nicholas Moulin <nicholas.w.moulin@linux.intel.com>
Signed-off-by: NeilBrown <neilb@suse.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
Pull lazytime mount option support from Al Viro:
"Lazytime stuff from tytso"
* 'lazytime' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
ext4: add optimization for the lazytime mount option
vfs: add find_inode_nowait() function
vfs: add support for a lazytime mount option
Add a new mount option which enables a new "lazytime" mode. This mode
causes atime, mtime, and ctime updates to only be made to the
in-memory version of the inode. The on-disk times will only get
updated when (a) if the inode needs to be updated for some non-time
related change, (b) if userspace calls fsync(), syncfs() or sync(), or
(c) just before an undeleted inode is evicted from memory.
This is OK according to POSIX because there are no guarantees after a
crash unless userspace explicitly requests via a fsync(2) call.
For workloads which feature a large number of random write to a
preallocated file, the lazytime mount option significantly reduces
writes to the inode table. The repeated 4k writes to a single block
will result in undesirable stress on flash devices and SMR disk
drives. Even on conventional HDD's, the repeated writes to the inode
table block will trigger Adjacent Track Interference (ATI) remediation
latencies, which very negatively impact long tail latencies --- which
is a very big deal for web serving tiers (for example).
Google-Bug-Id: 18297052
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Now that default_backing_dev_info is not used for writeback purposes we can
git rid of it easily:
- instead of using it's name for tracing unregistered bdi we just use
"unknown"
- btrfs and ceph can just assign the default read ahead window themselves
like several other filesystems already do.
- we can assign noop_backing_dev_info as the default one in alloc_super.
All filesystems already either assigned their own or
noop_backing_dev_info.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
If we have dirty inodes we need to call the filesystem for it, even if the
device has been removed and the filesystem will error out early. The
current code does that by reassining all dirty inodes to the default
backing_dev_info when a bdi is unlinked, but that's pretty pointless given
that the bdi must always outlive the super block.
Instead of stopping writeback at unregister time and moving inodes to the
default bdi just keep the current bdi alive until it is destroyed. The
containing objects of the bdi ensure this doesn't happen until all
writeback has finished by erroring out.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Killed the redundant WARN_ON(), as noticed by Jan.
Signed-off-by: Jens Axboe <axboe@fb.com>
Now that we never use the backing_dev_info pointer in struct address_space
we can simply remove it and save 4 to 8 bytes in every inode.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Reviewed-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
Since "BDI: Provide backing device capability information [try #3]" the
backing_dev_info structure also provides flags for the kind of mmap
operation available in a nommu environment, which is entirely unrelated
to it's original purpose.
Introduce a new nommu-only file operation to provide this information to
the nommu mmap code instead. Splitting this from the backing_dev_info
structure allows to remove lots of backing_dev_info instance that aren't
otherwise needed, and entirely gets rid of the concept of providing a
backing_dev_info for a character device. It also removes the need for
the mtd_inodefs filesystem.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Tejun Heo <tj@kernel.org>
Acked-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
Pull core block layer changes from Jens Axboe:
"This is the core block IO pull request for 3.18. Apart from the new
and improved flush machinery for blk-mq, this is all mostly bug fixes
and cleanups.
- blk-mq timeout updates and fixes from Christoph.
- Removal of REQ_END, also from Christoph. We pass it through the
->queue_rq() hook for blk-mq instead, freeing up one of the request
bits. The space was overly tight on 32-bit, so Martin also killed
REQ_KERNEL since it's no longer used.
- blk integrity updates and fixes from Martin and Gu Zheng.
- Update to the flush machinery for blk-mq from Ming Lei. Now we
have a per hardware context flush request, which both cleans up the
code should scale better for flush intensive workloads on blk-mq.
- Improve the error printing, from Rob Elliott.
- Backing device improvements and cleanups from Tejun.
- Fixup of a misplaced rq_complete() tracepoint from Hannes.
- Make blk_get_request() return error pointers, fixing up issues
where we NULL deref when a device goes bad or missing. From Joe
Lawrence.
- Prep work for drastically reducing the memory consumption of dm
devices from Junichi Nomura. This allows creating clone bio sets
without preallocating a lot of memory.
- Fix a blk-mq hang on certain combinations of queue depths and
hardware queues from me.
- Limit memory consumption for blk-mq devices for crash dump
scenarios and drivers that use crazy high depths (certain SCSI
shared tag setups). We now just use a single queue and limited
depth for that"
* 'for-3.18/core' of git://git.kernel.dk/linux-block: (58 commits)
block: Remove REQ_KERNEL
blk-mq: allocate cpumask on the home node
bio-integrity: remove the needless fail handle of bip_slab creating
block: include func name in __get_request prints
block: make blk_update_request print prefix match ratelimited prefix
blk-merge: don't compute bi_phys_segments from bi_vcnt for cloned bio
block: fix alignment_offset math that assumes io_min is a power-of-2
blk-mq: Make bt_clear_tag() easier to read
blk-mq: fix potential hang if rolling wakeup depth is too high
block: add bioset_create_nobvec()
block: use bio_clone_fast() in blk_rq_prep_clone()
block: misplaced rq_complete tracepoint
sd: Honor block layer integrity handling flags
block: Replace strnicmp with strncasecmp
block: Add T10 Protection Information functions
block: Don't merge requests if integrity flags differ
block: Integrity checksum flag
block: Relocate bio integrity flags
block: Add a disk flag to block integrity profile
block: Add prefix to block integrity profile flags
...
Pull percpu updates from Tejun Heo:
"A lot of activities on percpu front. Notable changes are...
- percpu allocator now can take @gfp. If @gfp doesn't contain
GFP_KERNEL, it tries to allocate from what's already available to
the allocator and a work item tries to keep the reserve around
certain level so that these atomic allocations usually succeed.
This will replace the ad-hoc percpu memory pool used by
blk-throttle and also be used by the planned blkcg support for
writeback IOs.
Please note that I noticed a bug in how @gfp is interpreted while
preparing this pull request and applied the fix 6ae833c7fe
("percpu: fix how @gfp is interpreted by the percpu allocator")
just now.
- percpu_ref now uses longs for percpu and global counters instead of
ints. It leads to more sparse packing of the percpu counters on
64bit machines but the overhead should be negligible and this
allows using percpu_ref for refcnting pages and in-memory objects
directly.
- The switching between percpu and single counter modes of a
percpu_ref is made independent of putting the base ref and a
percpu_ref can now optionally be initialized in single or killed
mode. This allows avoiding percpu shutdown latency for cases where
the refcounted objects may be synchronously created and destroyed
in rapid succession with only a fraction of them reaching fully
operational status (SCSI probing does this when combined with
blk-mq support). It's also planned to be used to implement forced
single mode to detect underflow more timely for debugging.
There's a separate branch percpu/for-3.18-consistent-ops which cleans
up the duplicate percpu accessors. That branch causes a number of
conflicts with s390 and other trees. I'll send a separate pull
request w/ resolutions once other branches are merged"
* 'for-3.18' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu: (33 commits)
percpu: fix how @gfp is interpreted by the percpu allocator
blk-mq, percpu_ref: start q->mq_usage_counter in atomic mode
percpu_ref: make INIT_ATOMIC and switch_to_atomic() sticky
percpu_ref: add PERCPU_REF_INIT_* flags
percpu_ref: decouple switching to percpu mode and reinit
percpu_ref: decouple switching to atomic mode and killing
percpu_ref: add PCPU_REF_DEAD
percpu_ref: rename things to prepare for decoupling percpu/atomic mode switch
percpu_ref: replace pcpu_ prefix with percpu_
percpu_ref: minor code and comment updates
percpu_ref: relocate percpu_ref_reinit()
Revert "blk-mq, percpu_ref: implement a kludge for SCSI blk-mq stall during probe"
Revert "percpu: free percpu allocation info for uniprocessor system"
percpu-refcount: make percpu_ref based on longs instead of ints
percpu-refcount: improve WARN messages
percpu: fix locking regression in the failure path of pcpu_alloc()
percpu-refcount: add @gfp to percpu_ref_init()
proportions: add @gfp to init functions
percpu_counter: add @gfp to percpu_counter_init()
percpu_counter: make percpu_counters_lock irq-safe
...
Page reclaim tests zone_is_reclaim_dirty(), but the site that actually
sets this state does zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY), sending the
reader through layers indirection just to track down a simple bit.
Remove all zone flag wrappers and just use bitops against zone->flags
directly. It's just as readable and the lines are barely any longer.
Also rename ZONE_TAIL_LRU_DIRTY to ZONE_DIRTY to match ZONE_WRITEBACK, and
remove the zone_flags_t typedef.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A block_device may be attached to different gendisks and thus
different bdis over time. bdev_inode_switch_bdi() is used to switch
the associated bdi. The function assumes that the inode could be
dirty and transfers it between bdis if so. This is a bit nasty in
that it reaches into bdi internals.
This patch reimplements the function so that it writes out the inode
if dirty. This is a lot simpler and can be implemented without
exposing bdi internals.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Jens Axboe <axboe@fb.com>
bdi_destroy() has code to transfer the remaining dirty inodes to the
default_backing_dev_info; however, given the shutdown sequence, it
isn't clear how such condition would happen. Also, it isn't a full
solution as the transferred inodes stlil point to the bdi which is
being destroyed. Operations on those inodes can end up accessing
already released fields such as the percpu stat fields.
Digging through the history, it seems that the code was added as a
quick workaround for a bug report without fully root-causing the
issue. We probably want to remove the code in time but for now let's
add a comment noting that it is a quick workaround.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <axboe@fb.com>
Canceling of bdi->wb.dwork is currently a bit mushy.
bdi_wb_shutdown() performs cancel_delayed_work_sync() at the end after
shutting down and flushing the delayed_work and bdi_destroy() tries
yet again after bdi_unregister().
bdi->wb.dwork is queued only after checking BDI_registered while
holding bdi->wb_lock and bdi_wb_shutdown() clears the flag while
holding the same lock and then flushes the delayed_work. There's no
way the delayed_work can be queued again after that.
Replace the two unnecessary cancel_delayed_work_sync() invocations
with WARNs on pending. This simplifies and clarifies the code a bit
and will help future changes in further isolating bdi_writeback
handling.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <axboe@fb.com>
The only places where NULL test on bdi->dev is used are
bdi_[un]register(). The functions can't be called in parallel anyway
and there's no point in protecting bdi->dev clearing with a lock.
Remove bdi->wb_lock grabbing around bdi->dev clearing and move it
after device_unregister() call so that bdi->dev doesn't have to be
cached in a local variable.
This patch shouldn't introduce any behavior difference.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <axboe@fb.com>
Percpu allocator now supports allocation mask. Add @gfp to
[flex_]proportions init functions so that !GFP_KERNEL allocation masks
can be used with them too.
This patch doesn't make any functional difference.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Peter Zijlstra <peterz@infradead.org>
Percpu allocator now supports allocation mask. Add @gfp to
percpu_counter_init() so that !GFP_KERNEL allocation masks can be used
with percpu_counters too.
We could have left percpu_counter_init() alone and added
percpu_counter_init_gfp(); however, the number of users isn't that
high and introducing _gfp variants to all percpu data structures would
be quite ugly, so let's just do the conversion. This is the one with
the most users. Other percpu data structures are a lot easier to
convert.
This patch doesn't make any functional difference.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Jan Kara <jack@suse.cz>
Acked-by: "David S. Miller" <davem@davemloft.net>
Cc: x86@kernel.org
Cc: Jens Axboe <axboe@kernel.dk>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
After commit 839a8e8660 ("writeback: replace custom worker pool
implementation with unbound workqueue") when device is removed while we
are writing to it we crash in bdi_writeback_workfn() ->
set_worker_desc() because bdi->dev is NULL.
This can happen because even though bdi_unregister() cancels all pending
flushing work, nothing really prevents new ones from being queued from
balance_dirty_pages() or other places.
Fix the problem by clearing BDI_registered bit in bdi_unregister() and
checking it before scheduling of any flushing work.
Fixes: 839a8e8660
Reviewed-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jan Kara <jack@suse.cz>
Cc: Derek Basehore <dbasehore@chromium.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
bdi_wakeup_thread_delayed() used the mod_delayed_work() function to
schedule work to writeback dirty inodes. The problem with this is that
it can delay work that is scheduled for immediate execution, such as the
work from sync_inodes_sb(). This can happen since mod_delayed_work()
can now steal work from a work_queue. This fixes the problem by using
queue_delayed_work() instead. This is a regression caused by commit
839a8e8660 ("writeback: replace custom worker pool implementation with
unbound workqueue").
The reason that this causes a problem is that laptop-mode will change
the delay, dirty_writeback_centisecs, to 60000 (10 minutes) by default.
In the case that bdi_wakeup_thread_delayed() races with
sync_inodes_sb(), sync will be stopped for 10 minutes and trigger a hung
task. Even if dirty_writeback_centisecs is not long enough to cause a
hung task, we still don't want to delay sync for that long.
We fix the problem by using queue_delayed_work() when we want to
schedule writeback sometime in future. This function doesn't change the
timer if it is already armed.
For the same reason, we also change bdi_writeback_workfn() to
immediately queue the work again in the case that the work_list is not
empty. The same problem can happen if the sync work is run on the
rescue worker.
[jack@suse.cz: update changelog, add comment, use bdi_wakeup_thread_delayed()]
Signed-off-by: Derek Basehore <dbasehore@chromium.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Alexander Viro <viro@zento.linux.org.uk>
Reviewed-by: Tejun Heo <tj@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Darrick J. Wong" <darrick.wong@oracle.com>
Cc: Derek Basehore <dbasehore@chromium.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Benson Leung <bleung@chromium.org>
Cc: Sonny Rao <sonnyrao@chromium.org>
Cc: Luigi Semenzato <semenzato@chromium.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Dave Chinner <david@fromorbit.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
'*lenp' may be less than "sizeof(kbuf)" so we must check this before the
next copy_to_user().
pdflush_proc_obsolete() is called by sysctl which 'procname' is
"nr_pdflush_threads", if the user passes buffer length less than
"sizeof(kbuf)", it will cause issue.
Signed-off-by: Chen Gang <gang.chen@asianux.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Jeff Moyer <jmoyer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The dev_attrs field of struct class is going away soon, dev_groups
should be used instead. This converts the backing device class code to
use the correct field.
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
A number of parts of the kernel created their own version of this, might
as well have the sysfs core provide it instead.
Reviewed-by: Guenter Roeck <linux@roeck-us.net>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Calling dev_set_name with a single paramter causes it to be handled as a
format string. Many callers are passing potentially dynamic string
content, so use "%s" in those cases to avoid any potential accidents,
including wrappers like device_create*() and bdi_register().
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are cases where userland wants to tweak the priority and
affinity of writeback flushers. Expose bdi_wq to userland by setting
WQ_SYSFS. It appears under /sys/bus/workqueue/devices/writeback/ and
allows adjusting maximum concurrency level, cpumask and nice level.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Kay Sievers <kay.sievers@vrfy.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Writeback implements its own worker pool - each bdi can be associated
with a worker thread which is created and destroyed dynamically. The
worker thread for the default bdi is always present and serves as the
"forker" thread which forks off worker threads for other bdis.
there's no reason for writeback to implement its own worker pool when
using unbound workqueue instead is much simpler and more efficient.
This patch replaces custom worker pool implementation in writeback
with an unbound workqueue.
The conversion isn't too complicated but the followings are worth
mentioning.
* bdi_writeback->last_active, task and wakeup_timer are removed.
delayed_work ->dwork is added instead. Explicit timer handling is
no longer necessary. Everything works by either queueing / modding
/ flushing / canceling the delayed_work item.
* bdi_writeback_thread() becomes bdi_writeback_workfn() which runs off
bdi_writeback->dwork. On each execution, it processes
bdi->work_list and reschedules itself if there are more things to
do.
The function also handles low-mem condition, which used to be
handled by the forker thread. If the function is running off a
rescuer thread, it only writes out limited number of pages so that
the rescuer can serve other bdis too. This preserves the flusher
creation failure behavior of the forker thread.
* INIT_LIST_HEAD(&bdi->bdi_list) is used to tell
bdi_writeback_workfn() about on-going bdi unregistration so that it
always drains work_list even if it's running off the rescuer. Note
that the original code was broken in this regard. Under memory
pressure, a bdi could finish unregistration with non-empty
work_list.
* The default bdi is no longer special. It now is treated the same as
any other bdi and bdi_cap_flush_forker() is removed.
* BDI_pending is no longer used. Removed.
* Some tracepoints become non-applicable. The following TPs are
removed - writeback_nothread, writeback_wake_thread,
writeback_wake_forker_thread, writeback_thread_start,
writeback_thread_stop.
Everything, including devices coming and going away and rescuer
operation under simulated memory pressure, seems to work fine in my
test setup.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
There's no user left. Remove it.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Fengguang Wu <fengguang.wu@intel.com>
This patchset ("stable page writes, part 2") makes some key
modifications to the original 'stable page writes' patchset. First, it
provides creators (devices and filesystems) of a backing_dev_info a flag
that declares whether or not it is necessary to ensure that page
contents cannot change during writeout. It is no longer assumed that
this is true of all devices (which was never true anyway). Second, the
flag is used to relaxed the wait_on_page_writeback calls so that wait
only occurs if the device needs it. Third, it fixes up the remaining
disk-backed filesystems to use this improved conditional-wait logic to
provide stable page writes on those filesystems.
It is hoped that (for people not using checksumming devices, anyway)
this patchset will give back unnecessary performance decreases since the
original stable page write patchset went into 3.0. Sorry about not
fixing it sooner.
Complaints were registered by several people about the long write
latencies introduced by the original stable page write patchset.
Generally speaking, the kernel ought to allocate as little extra memory
as possible to facilitate writeout, but for people who simply cannot
wait, a second page stability strategy is (re)introduced: snapshotting
page contents. The waiting behavior is still the default strategy; to
enable page snapshotting, a superblock flag (MS_SNAP_STABLE) must be
set. This flag is used to bandaid^Henable stable page writeback on
ext3[1], and is not used anywhere else.
Given that there are already a few storage devices and network FSes that
have rolled their own page stability wait/page snapshot code, it would
be nice to move towards consolidating all of these. It seems possible
that iscsi and raid5 may wish to use the new stable page write support
to enable zero-copy writeout.
Thank you to Jan Kara for helping fix a couple more filesystems.
Per Andrew Morton's request, here are the result of using dbench to measure
latencies on ext2:
3.8.0-rc3:
Operation Count AvgLat MaxLat
----------------------------------------
WriteX 109347 0.028 59.817
ReadX 347180 0.004 3.391
Flush 15514 29.828 287.283
Throughput 57.429 MB/sec 4 clients 4 procs max_latency=287.290 ms
3.8.0-rc3 + patches:
WriteX 105556 0.029 4.273
ReadX 335004 0.005 4.112
Flush 14982 30.540 298.634
Throughput 55.4496 MB/sec 4 clients 4 procs max_latency=298.650 ms
As you can see, for ext2 the maximum write latency decreases from ~60ms
on a laptop hard disk to ~4ms. I'm not sure why the flush latencies
increase, though I suspect that being able to dirty pages faster gives
the flusher more work to do.
On ext4, the average write latency decreases as well as all the maximum
latencies:
3.8.0-rc3:
WriteX 85624 0.152 33.078
ReadX 272090 0.010 61.210
Flush 12129 36.219 168.260
Throughput 44.8618 MB/sec 4 clients 4 procs max_latency=168.276 ms
3.8.0-rc3 + patches:
WriteX 86082 0.141 30.928
ReadX 273358 0.010 36.124
Flush 12214 34.800 165.689
Throughput 44.9941 MB/sec 4 clients 4 procs max_latency=165.722 ms
XFS seems to exhibit similar latency improvements as ext2:
3.8.0-rc3:
WriteX 125739 0.028 104.343
ReadX 399070 0.005 4.115
Flush 17851 25.004 131.390
Throughput 66.0024 MB/sec 4 clients 4 procs max_latency=131.406 ms
3.8.0-rc3 + patches:
WriteX 123529 0.028 6.299
ReadX 392434 0.005 4.287
Flush 17549 25.120 188.687
Throughput 64.9113 MB/sec 4 clients 4 procs max_latency=188.704 ms
...and btrfs, just to round things out, also shows some latency
decreases:
3.8.0-rc3:
WriteX 67122 0.083 82.355
ReadX 212719 0.005 2.828
Flush 9547 47.561 147.418
Throughput 35.3391 MB/sec 4 clients 4 procs max_latency=147.433 ms
3.8.0-rc3 + patches:
WriteX 64898 0.101 71.631
ReadX 206673 0.005 7.123
Flush 9190 47.963 219.034
Throughput 34.0795 MB/sec 4 clients 4 procs max_latency=219.044 ms
Before this patchset, all filesystems would block, regardless of whether
or not it was necessary. ext3 would wait, but still generate occasional
checksum errors. The network filesystems were left to do their own
thing, so they'd wait too.
After this patchset, all the disk filesystems except ext3 and btrfs will
wait only if the hardware requires it. ext3 (if necessary) snapshots
pages instead of blocking, and btrfs provides its own bdi so the mm will
never wait. Network filesystems haven't been touched, so either they
provide their own wait code, or they don't block at all. The blocking
behavior is back to what it was before 3.0 if you don't have a disk
requiring stable page writes.
This patchset has been tested on 3.8.0-rc3 on x64 with ext3, ext4, and
xfs. I've spot-checked 3.8.0-rc4 and seem to be getting the same
results as -rc3.
[1] The alternative fixes to ext3 include fixing the locking order and
page bit handling like we did for ext4 (but then why not just use
ext4?), or setting PG_writeback so early that ext3 becomes extremely
slow. I tried that, but the number of write()s I could initiate dropped
by nearly an order of magnitude. That was a bit much even for the
author of the stable page series! :)
This patch:
Creates a per-backing-device flag that tracks whether or not pages must
be held immutable during writeout. Eventually it will be used to waive
wait_for_page_writeback() if nothing requires stable pages.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Artem Bityutskiy <dedekind1@gmail.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Eric Van Hensbergen <ericvh@gmail.com>
Cc: Ron Minnich <rminnich@sandia.gov>
Cc: Latchesar Ionkov <lucho@ionkov.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit 8fa72d234d.
People disagree about how this should be done, so let's revert this for
now so that nobody starts using the new tuning interface. Tejun is
thinking about a more generic interface for thread pool affinity.
Requested-by: Tejun Heo <tj@kernel.org>
Acked-by: Jeff Moyer <jmoyer@redhat.com>
Acked-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In realtime environments, it may be desirable to keep the per-bdi
flusher threads from running on certain cpus. This patch adds a
cpu_list file to /sys/class/bdi/* to enable this. The default is to tie
the flusher threads to the same numa node as the backing device (though
I could be convinced to make it a mask of all cpus to avoid a change in
behaviour).
Thanks to Jeremy Eder for the original idea.
Signed-off-by: Jeff Moyer <jmoyer@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Finally we can kill the 'sync_supers' kernel thread along with the
'->write_super()' superblock operation because all the users are gone.
Now every file-system is supposed to self-manage own superblock and
its dirty state.
The nice thing about killing this thread is that it improves power management.
Indeed, 'sync_supers' is a source of monotonic system wake-ups - it woke up
every 5 seconds no matter what - even if there were no dirty superblocks and
even if there were no file-systems using this service (e.g., btrfs and
journalled ext4 do not need it). So it was wasting power most of the time. And
because the thread was in the core of the kernel, all systems had to have it.
So I am quite happy to make it go away.
Interestingly, this thread is a left-over from the pdflush kernel thread which
was a self-forking kernel thread responsible for all the write-back in old
Linux kernels. It was turned into per-block device BDI threads, and
'sync_supers' was a left-over. Thus, R.I.P, pdflush as well.
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Since per-BDI flusher threads were introduced in 2.6, the pdflush
mechanism is not used any more. But the old interface exported through
/proc/sys/vm/nr_pdflush_threads still exists and is obviously useless.
For back-compatibility, printk warning information and return 2 to notify
the users that the interface is removed.
Signed-off-by: Wanpeng Li <liwp@linux.vnet.ibm.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Convert calculations of proportion of writeback each bdi does to new flexible
proportion code. That allows us to use aging period of fixed wallclock time
which gives better proportion estimates given the hugely varying throughput of
different devices.
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Fengguang Wu <fengguang.wu@intel.com>
While 7a401a972d ("backing-dev: ensure wakeup_timer is deleted")
addressed the problem of the bdi being freed with a queued wakeup
timer, there are other races that could happen if the wakeup timer
expires after/during bdi_unregister(), before bdi_destroy() is called.
wakeup_timer_fn() could attempt to wakeup a task which has already has
been freed, or could access a NULL bdi->dev via the wake_forker_thread
tracepoint.
Cc: <stable@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Reported-by: Chanho Min <chanho.min@lge.com>
Reviewed-by: Namjae Jeon <linkinjeon@gmail.com>
Signed-off-by: Rabin Vincent <rabin@rab.in>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Writeback and thinkpad_acpi have been using thaw_process() to prevent
deadlock between the freezer and kthread_stop(); unfortunately, this
is inherently racy - nothing prevents freezing from happening between
thaw_process() and kthread_stop().
This patch implements kthread_freezable_should_stop() which enters
refrigerator if necessary but is guaranteed to return if
kthread_stop() is invoked. Both thaw_process() users are converted to
use the new function.
Note that this deadlock condition exists for many of freezable
kthreads. They need to be converted to use the new should_stop or
freezable workqueue.
Tested with synthetic test case.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Henrique de Moraes Holschuh <ibm-acpi@hmh.eng.br>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Oleg Nesterov <oleg@redhat.com>
bdi_prune_sb() in bdi_unregister() attempts to removes the bdi links
from all super_blocks and then del_timer_sync() the writeback timer.
However, this can race with __mark_inode_dirty(), leading to
bdi_wakeup_thread_delayed() rearming the writeback timer on the bdi
we're unregistering, after we've called del_timer_sync().
This can end up with the bdi being freed with an active timer inside it,
as in the case of the following dump after the removal of an SD card.
Fix this by redoing the del_timer_sync() in bdi_destory().
------------[ cut here ]------------
WARNING: at /home/rabin/kernel/arm/lib/debugobjects.c:262 debug_print_object+0x9c/0xc8()
ODEBUG: free active (active state 0) object type: timer_list hint: wakeup_timer_fn+0x0/0x180
Modules linked in:
Backtrace:
[<c00109dc>] (dump_backtrace+0x0/0x110) from [<c0236e4c>] (dump_stack+0x18/0x1c)
r6:c02bc638 r5:00000106 r4:c79f5d18 r3:00000000
[<c0236e34>] (dump_stack+0x0/0x1c) from [<c0025e6c>] (warn_slowpath_common+0x54/0x6c)
[<c0025e18>] (warn_slowpath_common+0x0/0x6c) from [<c0025f28>] (warn_slowpath_fmt+0x38/0x40)
r8:20000013 r7:c780c6f0 r6:c031613c r5:c780c6f0 r4:c02b1b29
r3:00000009
[<c0025ef0>] (warn_slowpath_fmt+0x0/0x40) from [<c015eb4c>] (debug_print_object+0x9c/0xc8)
r3:c02b1b29 r2:c02bc662
[<c015eab0>] (debug_print_object+0x0/0xc8) from [<c015f574>] (debug_check_no_obj_freed+0xac/0x1dc)
r6:c7964000 r5:00000001 r4:c7964000
[<c015f4c8>] (debug_check_no_obj_freed+0x0/0x1dc) from [<c00a9e38>] (kmem_cache_free+0x88/0x1f8)
[<c00a9db0>] (kmem_cache_free+0x0/0x1f8) from [<c014286c>] (blk_release_queue+0x70/0x78)
[<c01427fc>] (blk_release_queue+0x0/0x78) from [<c015290c>] (kobject_release+0x70/0x84)
r5:c79641f0 r4:c796420c
[<c015289c>] (kobject_release+0x0/0x84) from [<c0153ce4>] (kref_put+0x68/0x80)
r7:00000083 r6:c74083d0 r5:c015289c r4:c796420c
[<c0153c7c>] (kref_put+0x0/0x80) from [<c01527d0>] (kobject_put+0x48/0x5c)
r5:c79643b4 r4:c79641f0
[<c0152788>] (kobject_put+0x0/0x5c) from [<c013ddd8>] (blk_cleanup_queue+0x68/0x74)
r4:c7964000
[<c013dd70>] (blk_cleanup_queue+0x0/0x74) from [<c01a6370>] (mmc_blk_put+0x78/0xe8)
r5:00000000 r4:c794c400
[<c01a62f8>] (mmc_blk_put+0x0/0xe8) from [<c01a64b4>] (mmc_blk_release+0x24/0x38)
r5:c794c400 r4:c0322824
[<c01a6490>] (mmc_blk_release+0x0/0x38) from [<c00de11c>] (__blkdev_put+0xe8/0x170)
r5:c78d5e00 r4:c74083c0
[<c00de034>] (__blkdev_put+0x0/0x170) from [<c00de2c0>] (blkdev_put+0x11c/0x12c)
r8:c79f5f70 r7:00000001 r6:c74083d0 r5:00000083 r4:c74083c0
r3:00000000
[<c00de1a4>] (blkdev_put+0x0/0x12c) from [<c00b0724>] (kill_block_super+0x60/0x6c)
r7:c7942300 r6:c79f4000 r5:00000083 r4:c74083c0
[<c00b06c4>] (kill_block_super+0x0/0x6c) from [<c00b0a94>] (deactivate_locked_super+0x44/0x70)
r6:c79f4000 r5:c031af64 r4:c794dc00 r3:c00b06c4
[<c00b0a50>] (deactivate_locked_super+0x0/0x70) from [<c00b1358>] (deactivate_super+0x6c/0x70)
r5:c794dc00 r4:c794dc00
[<c00b12ec>] (deactivate_super+0x0/0x70) from [<c00c88b0>] (mntput_no_expire+0x188/0x194)
r5:c794dc00 r4:c7942300
[<c00c8728>] (mntput_no_expire+0x0/0x194) from [<c00c95e0>] (sys_umount+0x2e4/0x310)
r6:c7942300 r5:00000000 r4:00000000 r3:00000000
[<c00c92fc>] (sys_umount+0x0/0x310) from [<c000d940>] (ret_fast_syscall+0x0/0x30)
---[ end trace e5c83c92ada51c76 ]---
Cc: stable@kernel.org
Signed-off-by: Rabin Vincent <rabin.vincent@stericsson.com>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
* 'writeback-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/wfg/linux:
writeback: Add a 'reason' to wb_writeback_work
writeback: send work item to queue_io, move_expired_inodes
writeback: trace event balance_dirty_pages
writeback: trace event bdi_dirty_ratelimit
writeback: fix ppc compile warnings on do_div(long long, unsigned long)
writeback: per-bdi background threshold
writeback: dirty position control - bdi reserve area
writeback: control dirty pause time
writeback: limit max dirty pause time
writeback: IO-less balance_dirty_pages()
writeback: per task dirty rate limit
writeback: stabilize bdi->dirty_ratelimit
writeback: dirty rate control
writeback: add bg_threshold parameter to __bdi_update_bandwidth()
writeback: dirty position control
writeback: account per-bdi accumulated dirtied pages
This creates a new 'reason' field in a wb_writeback_work
structure, which unambiguously identifies who initiates
writeback activity. A 'wb_reason' enumeration has been
added to writeback.h, to enumerate the possible reasons.
The 'writeback_work_class' and tracepoint event class and
'writeback_queue_io' tracepoints are updated to include the
symbolic 'reason' in all trace events.
And the 'writeback_inodes_sbXXX' family of routines has had
a wb_stats parameter added to them, so callers can specify
why writeback is being started.
Acked-by: Jan Kara <jack@suse.cz>
Signed-off-by: Curt Wohlgemuth <curtw@google.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
There are some imperfections in balanced_dirty_ratelimit.
1) large fluctuations
The dirty_rate used for computing balanced_dirty_ratelimit is merely
averaged in the past 200ms (very small comparing to the 3s estimation
period for write_bw), which makes rather dispersed distribution of
balanced_dirty_ratelimit.
It's pretty hard to average out the singular points by increasing the
estimation period. Considering that the averaging technique will
introduce very undesirable time lags, I give it up totally. (btw, the 3s
write_bw averaging time lag is much more acceptable because its impact
is one-way and therefore won't lead to oscillations.)
The more practical way is filtering -- most singular
balanced_dirty_ratelimit points can be filtered out by remembering some
prev_balanced_rate and prev_prev_balanced_rate. However the more
reliable way is to guard balanced_dirty_ratelimit with task_ratelimit.
2) due to truncates and fs redirties, the (write_bw <=> dirty_rate)
match could become unbalanced, which may lead to large systematical
errors in balanced_dirty_ratelimit. The truncates, due to its possibly
bumpy nature, can hardly be compensated smoothly. So let's face it. When
some over-estimated balanced_dirty_ratelimit brings dirty_ratelimit
high, dirty pages will go higher than the setpoint. task_ratelimit will
in turn become lower than dirty_ratelimit. So if we consider both
balanced_dirty_ratelimit and task_ratelimit and update dirty_ratelimit
only when they are on the same side of dirty_ratelimit, the systematical
errors in balanced_dirty_ratelimit won't be able to bring
dirty_ratelimit far away.
The balanced_dirty_ratelimit estimation may also be inaccurate near
@limit or @freerun, however is less an issue.
3) since we ultimately want to
- keep the fluctuations of task ratelimit as small as possible
- keep the dirty pages around the setpoint as long time as possible
the update policy used for (2) also serves the above goals nicely:
if for some reason the dirty pages are high (task_ratelimit < dirty_ratelimit),
and dirty_ratelimit is low (dirty_ratelimit < balanced_dirty_ratelimit),
there is no point to bring up dirty_ratelimit in a hurry only to hurt
both the above two goals.
So, we make use of task_ratelimit to limit the update of dirty_ratelimit
in two ways:
1) avoid changing dirty rate when it's against the position control target
(the adjusted rate will slow down the progress of dirty pages going
back to setpoint).
2) limit the step size. task_ratelimit is changing values step by step,
leaving a consistent trace comparing to the randomly jumping
balanced_dirty_ratelimit. task_ratelimit also has the nice smaller
errors in stable state and typically larger errors when there are big
errors in rate. So it's a pretty good limiting factor for the step
size of dirty_ratelimit.
Note that bdi->dirty_ratelimit is always tracking balanced_dirty_ratelimit.
task_ratelimit is merely used as a limiting factor.
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
It's all about bdi->dirty_ratelimit, which aims to be (write_bw / N)
when there are N dd tasks.
On write() syscall, use bdi->dirty_ratelimit
============================================
balance_dirty_pages(pages_dirtied)
{
task_ratelimit = bdi->dirty_ratelimit * bdi_position_ratio();
pause = pages_dirtied / task_ratelimit;
sleep(pause);
}
On every 200ms, update bdi->dirty_ratelimit
===========================================
bdi_update_dirty_ratelimit()
{
task_ratelimit = bdi->dirty_ratelimit * bdi_position_ratio();
balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate;
bdi->dirty_ratelimit = balanced_dirty_ratelimit
}
Estimation of balanced bdi->dirty_ratelimit
===========================================
balanced task_ratelimit
-----------------------
balance_dirty_pages() needs to throttle tasks dirtying pages such that
the total amount of dirty pages stays below the specified dirty limit in
order to avoid memory deadlocks. Furthermore we desire fairness in that
tasks get throttled proportionally to the amount of pages they dirty.
IOW we want to throttle tasks such that we match the dirty rate to the
writeout bandwidth, this yields a stable amount of dirty pages:
dirty_rate == write_bw (1)
The fairness requirement gives us:
task_ratelimit = balanced_dirty_ratelimit
== write_bw / N (2)
where N is the number of dd tasks. We don't know N beforehand, but
still can estimate balanced_dirty_ratelimit within 200ms.
Start by throttling each dd task at rate
task_ratelimit = task_ratelimit_0 (3)
(any non-zero initial value is OK)
After 200ms, we measured
dirty_rate = # of pages dirtied by all dd's / 200ms
write_bw = # of pages written to the disk / 200ms
For the aggressive dd dirtiers, the equality holds
dirty_rate == N * task_rate
== N * task_ratelimit_0 (4)
Or
task_ratelimit_0 == dirty_rate / N (5)
Now we conclude that the balanced task ratelimit can be estimated by
write_bw
balanced_dirty_ratelimit = task_ratelimit_0 * ---------- (6)
dirty_rate
Because with (4) and (5) we can get the desired equality (1):
write_bw
balanced_dirty_ratelimit == (dirty_rate / N) * ----------
dirty_rate
== write_bw / N
Then using the balanced task ratelimit we can compute task pause times like:
task_pause = task->nr_dirtied / task_ratelimit
task_ratelimit with position control
------------------------------------
However, while the above gives us means of matching the dirty rate to
the writeout bandwidth, it at best provides us with a stable dirty page
count (assuming a static system). In order to control the dirty page
count such that it is high enough to provide performance, but does not
exceed the specified limit we need another control.
The dirty position control works by extending (2) to
task_ratelimit = balanced_dirty_ratelimit * pos_ratio (7)
where pos_ratio is a negative feedback function that subjects to
1) f(setpoint) = 1.0
2) df/dx < 0
That is, if the dirty pages are ABOVE the setpoint, we throttle each
task a bit more HEAVY than balanced_dirty_ratelimit, so that the dirty
pages are created less fast than they are cleaned, thus DROP to the
setpoints (and the reverse).
Based on (7) and the assumption that both dirty_ratelimit and pos_ratio
remains CONSTANT for the past 200ms, we get
task_ratelimit_0 = balanced_dirty_ratelimit * pos_ratio (8)
Putting (8) into (6), we get the formula used in
bdi_update_dirty_ratelimit():
write_bw
balanced_dirty_ratelimit *= pos_ratio * ---------- (9)
dirty_rate
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Introduce the BDI_DIRTIED counter. It will be used for estimating the
bdi's dirty bandwidth.
CC: Jan Kara <jack@suse.cz>
CC: Michael Rubin <mrubin@google.com>
CC: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
bdi_forker_thread() clears BDI_pending bit at the end of the main loop.
However clearing of this bit must not be done in some cases which is
handled by calling 'continue' from switch statement. That's kind of
unusual construct and without a good reason so change the function into
more intuitive code flow.
CC: Wu Fengguang <fengguang.wu@intel.com>
CC: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
* Merge akpm patch series: (122 commits)
drivers/connector/cn_proc.c: remove unused local
Documentation/SubmitChecklist: add RCU debug config options
reiserfs: use hweight_long()
reiserfs: use proper little-endian bitops
pnpacpi: register disabled resources
drivers/rtc/rtc-tegra.c: properly initialize spinlock
drivers/rtc/rtc-twl.c: check return value of twl_rtc_write_u8() in twl_rtc_set_time()
drivers/rtc: add support for Qualcomm PMIC8xxx RTC
drivers/rtc/rtc-s3c.c: support clock gating
drivers/rtc/rtc-mpc5121.c: add support for RTC on MPC5200
init: skip calibration delay if previously done
misc/eeprom: add eeprom access driver for digsy_mtc board
misc/eeprom: add driver for microwire 93xx46 EEPROMs
checkpatch.pl: update $logFunctions
checkpatch: make utf-8 test --strict
checkpatch.pl: add ability to ignore various messages
checkpatch: add a "prefer __aligned" check
checkpatch: validate signature styles and To: and Cc: lines
checkpatch: add __rcu as a sparse modifier
checkpatch: suggest using min_t or max_t
...
Did this as a merge because of (trivial) conflicts in
- Documentation/feature-removal-schedule.txt
- arch/xtensa/include/asm/uaccess.h
that were just easier to fix up in the merge than in the patch series.
Vito said:
: The system has many usb disks coming and going day to day, with their
: respective bdi's having min_ratio set to 1 when inserted. It works for
: some time until eventually min_ratio can no longer be set, even when the
: active set of bdi's seen in /sys/class/bdi/*/min_ratio doesn't add up to
: anywhere near 100.
:
: This then leads to an unrelated starvation problem caused by write-heavy
: fuse mounts being used atop the usb disks, a problem the min_ratio setting
: at the underlying devices bdi effectively prevents.
Fix this leakage by resetting the bdi min_ratio when unregistering the
BDI.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Reported-by: Vito Caputo <lkml@pengaru.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Miklos Szeredi <miklos@szeredi.hu>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
backing-dev: use synchronize_rcu_expedited instead of synchronize_rcu
synchronize_rcu sleeps several timer ticks. synchronize_rcu_expedited is
much faster.
With 100Hz timer frequency, when we remove 10000 block devices with
"dmsetup remove_all" command, it takes 27 minutes. With this patch,
removing 10000 block devices takes only 15 seconds.
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
Add a "BdiWriteBandwidth" entry and indent others in /debug/bdi/*/stats.
btw, increase digital field width to 10, for keeping the possibly
huge BdiWritten number aligned at least for desktop systems.
Impact: this could break user space tools if they are dumb enough to
depend on the number of white spaces.
CC: Theodore Ts'o <tytso@mit.edu>
CC: Jan Kara <jack@suse.cz>
CC: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
The estimation value will start from 100MB/s and adapt to the real
bandwidth in seconds.
It tries to update the bandwidth only when disk is fully utilized.
Any inactive period of more than one second will be skipped.
The estimated bandwidth will be reflecting how fast the device can
writeout when _fully utilized_, and won't drop to 0 when it goes idle.
The value will remain constant at disk idle time. At busy write time, if
not considering fluctuations, it will also remain high unless be knocked
down by possible concurrent reads that compete for the disk time and
bandwidth with async writes.
The estimation is not done purely in the flusher because there is no
guarantee for write_cache_pages() to return timely to update bandwidth.
The bdi->avg_write_bandwidth smoothing is very effective for filtering
out sudden spikes, however may be a little biased in long term.
The overheads are low because the bdi bandwidth update only occurs at
200ms intervals.
The 200ms update interval is suitable, because it's not possible to get
the real bandwidth for the instance at all, due to large fluctuations.
The NFS commits can be as large as seconds worth of data. One XFS
completion may be as large as half second worth of data if we are going
to increase the write chunk to half second worth of data. In ext4,
fluctuations with time period of around 5 seconds is observed. And there
is another pattern of irregular periods of up to 20 seconds on SSD tests.
That's why we are not only doing the estimation at 200ms intervals, but
also averaging them over a period of 3 seconds and then go further to do
another level of smoothing in avg_write_bandwidth.
CC: Li Shaohua <shaohua.li@intel.com>
CC: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Introduce the BDI_WRITTEN counter. It will be used for estimating the
bdi's write bandwidth.
Peter Zijlstra <a.p.zijlstra@chello.nl>:
Move BDI_WRITTEN accounting into __bdi_writeout_inc().
This will cover and fix fuse, which only calls bdi_writeout_inc().
CC: Michael Rubin <mrubin@google.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Pass struct wb_writeback_work all the way down to writeback_sb_inodes(),
and initialize the struct writeback_control there.
struct writeback_control is basically designed to control writeback of a
single file, but we keep abuse it for writing multiple files in
writeback_sb_inodes() and its callers.
It immediately clean things up, e.g. suddenly wbc.nr_to_write vs
work->nr_pages starts to make sense, and instead of saving and restoring
pages_skipped in writeback_sb_inodes it can always start with a clean
zero value.
It also makes a neat IO pattern change: large dirty files are now
written in the full 4MB writeback chunk size, rather than whatever
remained quota in wbc->nr_to_write.
Acked-by: Jan Kara <jack@suse.cz>
Proposed-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Split the global inode_wb_list_lock into a per-bdi_writeback list_lock,
as it's currently the most contended lock in the system for metadata
heavy workloads. It won't help for single-filesystem workloads for
which we'll need the I/O-less balance_dirty_pages, but at least we
can dedicate a cpu to spinning on each bdi now for larger systems.
Based on earlier patches from Nick Piggin and Dave Chinner.
It reduces lock contentions to 1/4 in this test case:
10 HDD JBOD, 100 dd on each disk, XFS, 6GB ram
lock_stat version 0.3
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
class name con-bounces contentions waittime-min waittime-max waittime-total acq-bounces acquisitions holdtime-min holdtime-max holdtime-total
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
vanilla 2.6.39-rc3:
inode_wb_list_lock: 42590 44433 0.12 147.74 144127.35 252274 886792 0.08 121.34 917211.23
------------------
inode_wb_list_lock 2 [<ffffffff81165da5>] bdev_inode_switch_bdi+0x29/0x85
inode_wb_list_lock 34 [<ffffffff8115bd0b>] inode_wb_list_del+0x22/0x49
inode_wb_list_lock 12893 [<ffffffff8115bb53>] __mark_inode_dirty+0x170/0x1d0
inode_wb_list_lock 10702 [<ffffffff8115afef>] writeback_single_inode+0x16d/0x20a
------------------
inode_wb_list_lock 2 [<ffffffff81165da5>] bdev_inode_switch_bdi+0x29/0x85
inode_wb_list_lock 19 [<ffffffff8115bd0b>] inode_wb_list_del+0x22/0x49
inode_wb_list_lock 5550 [<ffffffff8115bb53>] __mark_inode_dirty+0x170/0x1d0
inode_wb_list_lock 8511 [<ffffffff8115b4ad>] writeback_sb_inodes+0x10f/0x157
2.6.39-rc3 + patch:
&(&wb->list_lock)->rlock: 11383 11657 0.14 151.69 40429.51 90825 527918 0.11 145.90 556843.37
------------------------
&(&wb->list_lock)->rlock 10 [<ffffffff8115b189>] inode_wb_list_del+0x5f/0x86
&(&wb->list_lock)->rlock 1493 [<ffffffff8115b1ed>] writeback_inodes_wb+0x3d/0x150
&(&wb->list_lock)->rlock 3652 [<ffffffff8115a8e9>] writeback_sb_inodes+0x123/0x16f
&(&wb->list_lock)->rlock 1412 [<ffffffff8115a38e>] writeback_single_inode+0x17f/0x223
------------------------
&(&wb->list_lock)->rlock 3 [<ffffffff8110b5af>] bdi_lock_two+0x46/0x4b
&(&wb->list_lock)->rlock 6 [<ffffffff8115b189>] inode_wb_list_del+0x5f/0x86
&(&wb->list_lock)->rlock 2061 [<ffffffff8115af97>] __mark_inode_dirty+0x173/0x1cf
&(&wb->list_lock)->rlock 2629 [<ffffffff8115a8e9>] writeback_sb_inodes+0x123/0x16f
hughd@google.com: fix recursive lock when bdi_lock_two() is called with new the same as old
akpm@linux-foundation.org: cleanup bdev_inode_switch_bdi() comment
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>