Commit Graph

2083 Commits

Author SHA1 Message Date
Josh Snyder c96f5471ce delayacct: Account blkio completion on the correct task
Before commit:

  e33a9bba85 ("sched/core: move IO scheduling accounting from io_schedule_timeout() into scheduler")

delayacct_blkio_end() was called after context-switching into the task which
completed I/O.

This resulted in double counting: the task would account a delay both waiting
for I/O and for time spent in the runqueue.

With e33a9bba85, delayacct_blkio_end() is called by try_to_wake_up().
In ttwu, we have not yet context-switched. This is more correct, in that
the delay accounting ends when the I/O is complete.

But delayacct_blkio_end() relies on 'get_current()', and we have not yet
context-switched into the task whose I/O completed. This results in the
wrong task having its delay accounting statistics updated.

Instead of doing that, pass the task_struct being woken to delayacct_blkio_end(),
so that it can update the statistics of the correct task.

Signed-off-by: Josh Snyder <joshs@netflix.com>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Balbir Singh <bsingharora@gmail.com>
Cc: <stable@vger.kernel.org>
Cc: Brendan Gregg <bgregg@netflix.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-block@vger.kernel.org
Fixes: e33a9bba85 ("sched/core: move IO scheduling accounting from io_schedule_timeout() into scheduler")
Link: http://lkml.kernel.org/r/1513613712-571-1-git-send-email-joshs@netflix.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-16 03:29:36 +01:00
Linus Torvalds 67549d46d4 Merge branch 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler fixes from Ingo Molnar:
 "A Kconfig fix, a build fix and a membarrier bug fix"

* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  membarrier: Disable preemption when calling smp_call_function_many()
  sched/isolation: Make CONFIG_CPU_ISOLATION=y depend on SMP or COMPILE_TEST
  ia64, sched/cputime: Fix build error if CONFIG_VIRT_CPU_ACCOUNTING_NATIVE=y
2018-01-12 10:23:59 -08:00
Mathieu Desnoyers 541676078b membarrier: Disable preemption when calling smp_call_function_many()
smp_call_function_many() requires disabling preemption around the call.

Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: <stable@vger.kernel.org> # v4.14+
Cc: Andrea Parri <parri.andrea@gmail.com>
Cc: Andrew Hunter <ahh@google.com>
Cc: Avi Kivity <avi@scylladb.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Dave Watson <davejwatson@fb.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Maged Michael <maged.michael@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20171215192310.25293-1-mathieu.desnoyers@efficios.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-10 08:50:31 +01:00
Ingo Molnar 527187d285 locking/lockdep: Remove cross-release leftovers
There's two cross-release leftover facilities:

 - the crossrelease_hist_*() irq-tracing callbacks (NOPs currently)
 - the complete_release_commit() callback (NOP as well)

Remove them.

Cc: David Sterba <dsterba@suse.com>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-08 17:30:45 +01:00
Joel Fernandes 466a2b42d6 cpufreq: schedutil: Use idle_calls counter of the remote CPU
Since the recent remote cpufreq callback work, its possible that a cpufreq
update is triggered from a remote CPU. For single policies however, the current
code uses the local CPU when trying to determine if the remote sg_cpu entered
idle or is busy. This is incorrect. To remedy this, compare with the nohz tick
idle_calls counter of the remote CPU.

Fixes: 674e75411f (sched: cpufreq: Allow remote cpufreq callbacks)
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Joel Fernandes <joelaf@google.com>
Cc: 4.14+ <stable@vger.kernel.org> # 4.14+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-12-28 12:26:54 +01:00
Steven Rostedt f73c52a5bc sched/rt: Do not pull from current CPU if only one CPU to pull
Daniel Wagner reported a crash on the BeagleBone Black SoC.

This is a single CPU architecture, and does not have a functional
arch_send_call_function_single_ipi() implementation which can crash
the kernel if that is called.

As it only has one CPU, it shouldn't be called, but if the kernel is
compiled for SMP, the push/pull RT scheduling logic now calls it for
irq_work if the one CPU is overloaded, it can use that function to call
itself and crash the kernel.

Ideally, we should disable the SCHED_FEAT(RT_PUSH_IPI) if the system
only has a single CPU. But SCHED_FEAT is a constant if sched debugging
is turned off. Another fix can also be used, and this should also help
with normal SMP machines. That is, do not initiate the pull code if
there's only one RT overloaded CPU, and that CPU happens to be the
current CPU that is scheduling in a lower priority task.

Even on a system with many CPUs, if there's many RT tasks waiting to
run on a single CPU, and that CPU schedules in another RT task of lower
priority, it will initiate the PULL logic in case there's a higher
priority RT task on another CPU that is waiting to run. But if there is
no other CPU with waiting RT tasks, it will initiate the RT pull logic
on itself (as it still has RT tasks waiting to run). This is a wasted
effort.

Not only does this help with SMP code where the current CPU is the only
one with RT overloaded tasks, it should also solve the issue that
Daniel encountered, because it will prevent the PULL logic from
executing, as there's only one CPU on the system, and the check added
here will cause it to exit the RT pull code.

Reported-by: Daniel Wagner <wagi@monom.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-rt-users <linux-rt-users@vger.kernel.org>
Cc: stable@vger.kernel.org
Fixes: 4bdced5c9 ("sched/rt: Simplify the IPI based RT balancing logic")
Link: http://lkml.kernel.org/r/20171202130454.4cbbfe8d@vmware.local.home
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-12-15 16:28:02 +01:00
Randy Dunlap 2064a5ab04 sched/core: Fix kernel-doc warnings after code movement
Fix the following kernel-doc warnings after code restructuring:

  ../kernel/sched/core.c:5113: warning: No description found for parameter 't'
  ../kernel/sched/core.c:5113: warning: Excess function parameter 'interval' description in 'sched_rr_get_interval'

	get rid of set_fs()")

Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: abca5fc535 ("sched_rr_get_interval(): move compat to native,
Link: http://lkml.kernel.org/r/995c6ded-b32e-bbe4-d9f5-4d42d121aff1@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-12-11 16:10:42 +01:00
Vincent Guittot a4c3c04974 sched/fair: Update and fix the runnable propagation rule
Unlike running, the runnable part can't be directly propagated through
the hierarchy when we migrate a task. The main reason is that runnable
time can be shared with other sched_entities that stay on the rq and
this runnable time will also remain on prev cfs_rq and must not be
removed.

Instead, we can estimate what should be the new runnable of the prev
cfs_rq and check that this estimation stay in a possible range. The
prop_runnable_sum is a good estimation when adding runnable_sum but
fails most often when we remove it. Instead, we could use the formula
below instead:

  gcfs_rq's runnable_sum = gcfs_rq->avg.load_sum / gcfs_rq->load.weight

which assumes that tasks are equally runnable which is not true but
easy to compute.

Beside these estimates, we have several simple rules that help us to filter
out wrong ones:

 - ge->avg.runnable_sum <= than LOAD_AVG_MAX
 - ge->avg.runnable_sum >= ge->avg.running_sum (ge->avg.util_sum << LOAD_AVG_MAX)
 - ge->avg.runnable_sum can't increase when we detach a task

The effect of these fixes is better cgroups balancing.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Chris Mason <clm@fb.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yuyang Du <yuyang.du@intel.com>
Link: http://lkml.kernel.org/r/1510842112-21028-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-12-06 19:30:50 +01:00
Omar Sandoval c6b9d9a330 sched/wait: Fix add_wait_queue() behavioral change
The following cleanup commit:

  50816c4899 ("sched/wait: Standardize internal naming of wait-queue entries")

... unintentionally changed the behavior of add_wait_queue() from
inserting the wait entry at the head of the wait queue to the tail
of the wait queue.

Beyond a negative performance impact this change in behavior
theoretically also breaks wait queues which mix exclusive and
non-exclusive waiters, as non-exclusive waiters will not be
woken up if they are queued behind enough exclusive waiters.

Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Jens Axboe <axboe@kernel.dk>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kernel-team@fb.com
Fixes: ("sched/wait: Standardize internal naming of wait-queue entries")
Link: http://lkml.kernel.org/r/a16c8ccffd39bd08fdaa45a5192294c784b803a7.1512544324.git.osandov@fb.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-12-06 19:30:34 +01:00
Linus Torvalds 93f30c73ec Merge branch 'misc.compat' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull compat and uaccess updates from Al Viro:

 - {get,put}_compat_sigset() series

 - assorted compat ioctl stuff

 - more set_fs() elimination

 - a few more timespec64 conversions

 - several removals of pointless access_ok() in places where it was
   followed only by non-__ variants of primitives

* 'misc.compat' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (24 commits)
  coredump: call do_unlinkat directly instead of sys_unlink
  fs: expose do_unlinkat for built-in callers
  ext4: take handling of EXT4_IOC_GROUP_ADD into a helper, get rid of set_fs()
  ipmi: get rid of pointless access_ok()
  pi433: sanitize ioctl
  cxlflash: get rid of pointless access_ok()
  mtdchar: get rid of pointless access_ok()
  r128: switch compat ioctls to drm_ioctl_kernel()
  selection: get rid of field-by-field copyin
  VT_RESIZEX: get rid of field-by-field copyin
  i2c compat ioctls: move to ->compat_ioctl()
  sched_rr_get_interval(): move compat to native, get rid of set_fs()
  mips: switch to {get,put}_compat_sigset()
  sparc: switch to {get,put}_compat_sigset()
  s390: switch to {get,put}_compat_sigset()
  ppc: switch to {get,put}_compat_sigset()
  parisc: switch to {get,put}_compat_sigset()
  get_compat_sigset()
  get rid of {get,put}_compat_itimerspec()
  io_getevents: Use timespec64 to represent timeouts
  ...
2017-11-17 11:54:55 -08:00
Linus Torvalds 487e2c9f44 AFS development
-----BEGIN PGP SIGNATURE-----
 
 iQIVAwUAWgm9V/Sw1s6N8H32AQK5mQ//QGUDZLXsUPCtq0XJq0V+r4MUjNp9tCZR
 htiuNrEkHSyPpYgCcQ2Aqdl9kndwVXcE7lWT99mp/a0zwNAsp9GOGVhCXUd5R86G
 XlrBuUYVvBJk18tDsUNWdjRQ0gMHgQSlEnEbsaGiU1bVrpXatI9hL8qoeO78Iy7+
 eaJUQLCuCVJq7qMQGhC0hg338vmHVeYhnViXIxq+HFjsMmR9IVanuK+sQr6NSJxS
 F6RkPxBUPWkRVMHmxTLWj/XSHZwtwu+Mnc/UFYsAPLKEbY0cIohsI8EgfE8U7geU
 yRVnu3MIOXUXUrZizj9SwVYWdJfneRlINqMbHIO8QXMKR38tnQ0C2/7bgBsXiNPv
 YdiAyeqL4nM+JthV/rgA3hWgupwBlSb4ubclTphDNxMs5MBIUIK3XUt9GOXDDUZz
 2FT/FdrphM2UORaI2AEOi4Q0/nHdin+3rld8fjV0Ree/TPNXwcrOmvy8yGnxFCEp
 5b7YLwKrffZGnnS965dhZlnFR6hjndmzFgHdyRrJwc80hXi1Q/+W4F19MoYkkoVK
 G/gLvD3FbmygmFnjCik9TjUrro6vQxo56H/TuWgHTvYriNGH+D/D7EGUwg4GiXZZ
 +7vrNw660uXmZiu9i0YacCRyD8lvm7QpmWLb+uHwzfsBE1+C8UetyQ+egSWVdWJO
 KwPspygWXD4=
 =3vy0
 -----END PGP SIGNATURE-----

Merge tag 'afs-next-20171113' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs

Pull AFS updates from David Howells:
 "kAFS filesystem driver overhaul.

  The major points of the overhaul are:

   (1) Preliminary groundwork is laid for supporting network-namespacing
       of kAFS. The remainder of the namespacing work requires some way
       to pass namespace information to submounts triggered by an
       automount. This requires something like the mount overhaul that's
       in progress.

   (2) sockaddr_rxrpc is used in preference to in_addr for holding
       addresses internally and add support for talking to the YFS VL
       server. With this, kAFS can do everything over IPv6 as well as
       IPv4 if it's talking to servers that support it.

   (3) Callback handling is overhauled to be generally passive rather
       than active. 'Callbacks' are promises by the server to tell us
       about data and metadata changes. Callbacks are now checked when
       we next touch an inode rather than actively going and looking for
       it where possible.

   (4) File access permit caching is overhauled to store the caching
       information per-inode rather than per-directory, shared over
       subordinate files. Whilst older AFS servers only allow ACLs on
       directories (shared to the files in that directory), newer AFS
       servers break that restriction.

       To improve memory usage and to make it easier to do mass-key
       removal, permit combinations are cached and shared.

   (5) Cell database management is overhauled to allow lighter locks to
       be used and to make cell records autonomous state machines that
       look after getting their own DNS records and cleaning themselves
       up, in particular preventing races in acquiring and relinquishing
       the fscache token for the cell.

   (6) Volume caching is overhauled. The afs_vlocation record is got rid
       of to simplify things and the superblock is now keyed on the cell
       and the numeric volume ID only. The volume record is tied to a
       superblock and normal superblock management is used to mediate
       the lifetime of the volume fscache token.

   (7) File server record caching is overhauled to make server records
       independent of cells and volumes. A server can be in multiple
       cells (in such a case, the administrator must make sure that the
       VL services for all cells correctly reflect the volumes shared
       between those cells).

       Server records are now indexed using the UUID of the server
       rather than the address since a server can have multiple
       addresses.

   (8) File server rotation is overhauled to handle VMOVED, VBUSY (and
       similar), VOFFLINE and VNOVOL indications and to handle rotation
       both of servers and addresses of those servers. The rotation will
       also wait and retry if the server says it is busy.

   (9) Data writeback is overhauled. Each inode no longer stores a list
       of modified sections tagged with the key that authorised it in
       favour of noting the modified region of a page in page->private
       and storing a list of keys that made modifications in the inode.

       This simplifies things and allows other keys to be used to
       actually write to the server if a key that made a modification
       becomes useless.

  (10) Writable mmap() is implemented. This allows a kernel to be build
       entirely on AFS.

  Note that Pre AFS-3.4 servers are no longer supported, though this can
  be added back if necessary (AFS-3.4 was released in 1998)"

* tag 'afs-next-20171113' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs: (35 commits)
  afs: Protect call->state changes against signals
  afs: Trace page dirty/clean
  afs: Implement shared-writeable mmap
  afs: Get rid of the afs_writeback record
  afs: Introduce a file-private data record
  afs: Use a dynamic port if 7001 is in use
  afs: Fix directory read/modify race
  afs: Trace the sending of pages
  afs: Trace the initiation and completion of client calls
  afs: Fix documentation on # vs % prefix in mount source specification
  afs: Fix total-length calculation for multiple-page send
  afs: Only progress call state at end of Tx phase from rxrpc callback
  afs: Make use of the YFS service upgrade to fully support IPv6
  afs: Overhaul volume and server record caching and fileserver rotation
  afs: Move server rotation code into its own file
  afs: Add an address list concept
  afs: Overhaul cell database management
  afs: Overhaul permit caching
  afs: Overhaul the callback handling
  afs: Rename struct afs_call server member to cm_server
  ...
2017-11-16 11:41:22 -08:00
Linus Torvalds 22714a2ba4 Merge branch 'for-4.15' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup updates from Tejun Heo:
 "Cgroup2 cpu controller support is finally merged.

   - Basic cpu statistics support to allow monitoring by default without
     the CPU controller enabled.

   - cgroup2 cpu controller support.

   - /sys/kernel/cgroup files to help dealing with new / optional
     features"

* 'for-4.15' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
  cgroup: export list of cgroups v2 features using sysfs
  cgroup: export list of delegatable control files using sysfs
  cgroup: mark @cgrp __maybe_unused in cpu_stat_show()
  MAINTAINERS: relocate cpuset.c
  cgroup, sched: Move basic cpu stats from cgroup.stat to cpu.stat
  sched: Implement interface for cgroup unified hierarchy
  sched: Misc preps for cgroup unified hierarchy interface
  sched/cputime: Add dummy cputime_adjust() implementation for CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
  cgroup: statically initialize init_css_set->dfl_cgrp
  cgroup: Implement cgroup2 basic CPU usage accounting
  cpuacct: Introduce cgroup_account_cputime[_field]()
  sched/cputime: Expose cputime_adjust()
2017-11-15 14:29:44 -08:00
Linus Torvalds bd2cd7d5a8 Power management updates for v4.15-rc1
- Relocate the OPP (Operating Performance Points) framework to its
    own directory under drivers/ and add support for power domain
    performance states to it (Viresh Kumar).
 
  - Modify the PM core, the PCI bus type and the ACPI PM domain to
    support power management driver flags allowing device drivers to
    specify their capabilities and preferences regarding the handling
    of devices with enabled runtime PM during system suspend/resume
    and clean up that code somewhat (Rafael Wysocki, Ulf Hansson).
 
  - Add frequency-invariant accounting support to the task scheduler
    on ARM and ARM64 (Dietmar Eggemann).
 
  - Fix PM QoS device resume latency framework to prevent "no
    restriction" requests from overriding requests with specific
    requirements and drop the confusing PM_QOS_FLAG_REMOTE_WAKEUP
    device PM QoS flag (Rafael Wysocki).
 
  - Drop legacy class suspend/resume operations from the PM core
    and drop legacy bus type suspend and resume callbacks from
    ARM/locomo (Rafael Wysocki).
 
  - Add min/max frequency support to devfreq and clean it up
    somewhat (Chanwoo Choi).
 
  - Rework wakeup support in the generic power domains (genpd)
    framework and update some of its users accordingly (Geert
    Uytterhoeven).
 
  - Convert timers in the PM core to use timer_setup() (Kees Cook).
 
  - Add support for exposing the SLP_S0 (Low Power S0 Idle)
    residency counter based on the LPIT ACPI table on Intel
    platforms (Srinivas Pandruvada).
 
  - Add per-CPU PM QoS resume latency support to the ladder cpuidle
    governor (Ramesh Thomas).
 
  - Fix a deadlock between the wakeup notify handler and the
    notifier removal in the ACPI core (Ville Syrjälä).
 
  - Fix a cpufreq schedutil governor issue causing it to use
    stale cached frequency values sometimes (Viresh Kumar).
 
  - Fix an issue in the system suspend core support code causing
    wakeup events detection to fail in some cases (Rajat Jain).
 
  - Fix the generic power domains (genpd) framework to prevent
    the PM core from using the direct-complete optimization with
    it as that is guaranteed to fail (Ulf Hansson).
 
  - Fix a minor issue in the cpuidle core and clean it up a bit
    (Gaurav Jindal, Nicholas Piggin).
 
  - Fix and clean up the intel_idle and ARM cpuidle drivers (Jason
    Baron, Len Brown, Leo Yan).
 
  - Fix a couple of minor issues in the OPP framework and clean it
    up (Arvind Yadav, Fabio Estevam, Sudeep Holla, Tobias Jordan).
 
  - Fix and clean up some cpufreq drivers and fix a minor issue in
    the cpufreq statistics code (Arvind Yadav, Bhumika Goyal, Fabio
    Estevam, Gautham Shenoy, Gustavo Silva, Marek Szyprowski, Masahiro
    Yamada, Robert Jarzmik, Zumeng Chen).
 
  - Fix minor issues in the system suspend and hibernation core, in
    power management documentation and in the AVS (Adaptive Voltage
    Scaling) framework (Helge Deller, Himanshu Jha, Joe Perches,
    Rafael Wysocki).
 
  - Fix some issues in the cpupower utility and document that Shuah
    Khan is going to maintain it going forward (Prarit Bhargava,
    Shuah Khan).
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2
 
 iQIcBAABCAAGBQJaCg2eAAoJEILEb/54YlRxGhAP/26D5TvfQ65wtf2W0Gas/tsP
 +24SzCLQO2GWalhbOXZbXhnBn/eCovKB6T8VB0V7Bff0VcUOK9szmBu9hOBJfXGN
 ec2oYKtWPwqzkgPfbqjZhQTp5EXg/dmWYOhAMA7HLMv7oVZqoRZ/MNOJPooXAmQj
 NEVWj3Eap0anic0ZgGMN4FaIMF6CHP2rAheqWQVXihhXpjIOWrJCjEoPZfbH1bFC
 +zd9Batd3rq+eZ5dYxg+znpYcZi69kmPw+KASYsaWTJzNjYbR+VLOxqzx7Icdgbz
 4glwWNe7lZGCAj+BIKGaHN5CR/fAXqkPvJ8csn6qISyUJ1Gph6otRfvuUaK58F4T
 1Rmcj+mGXgJBcjaQGmVQIITKD6drBW/l50MJlze5JUM4A7VM2Di/cctgoWmOJsnO
 2f6D6PYGuW0Fe8uUVGki/ddApXvoTGbEx+ncQ5+At+mLMKJwYfND9h2stOkCcrTy
 k4Pr+XpVU9hXwYVX3a1Au41bFQiXYwguxD1TH1LaY3liAWXvo0qNc/Ib6mW8e7pL
 wqPoe2/yxgVw5rsQPcKxVxAFFgjAAIdU3Xw44ETTPN315CLOoiuZgWkeTrnYCdix
 DaBWu1VN9tU5U6FWBlWXDb06i5qvSo3aYzLnSBC6fm7qX2SuDxGiQTcyOQ7H1NiQ
 d1wzhgObW98N7rZRaByu
 =QTnx
 -----END PGP SIGNATURE-----

Merge tag 'pm-4.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm

Pull power management updates from Rafael Wysocki:
 "There are no real big ticket items here this time.

  The most noticeable change is probably the relocation of the OPP
  (Operating Performance Points) framework to its own directory under
  drivers/ as it has grown big enough for that. Also Viresh is now going
  to maintain it and send pull requests for it to me, so you will see
  this change in the git history going forward (but still not right
  now).

  Another noticeable set of changes is the modifications of the PM core,
  the PCI subsystem and the ACPI PM domain to allow of more integration
  between system-wide suspend/resume and runtime PM. For now it's just a
  way to avoid resuming devices from runtime suspend unnecessarily
  during system suspend (if the driver sets a flag to indicate its
  readiness for that) and in the works is an analogous mechanism to
  allow devices to stay suspended after system resume.

  In addition to that, we have some changes related to supporting
  frequency-invariant CPU utilization metrics in the scheduler and in
  the schedutil cpufreq governor on ARM and changes to add support for
  device performance states to the generic power domains (genpd)
  framework.

  The rest is mostly fixes and cleanups of various sorts.

  Specifics:

   - Relocate the OPP (Operating Performance Points) framework to its
     own directory under drivers/ and add support for power domain
     performance states to it (Viresh Kumar).

   - Modify the PM core, the PCI bus type and the ACPI PM domain to
     support power management driver flags allowing device drivers to
     specify their capabilities and preferences regarding the handling
     of devices with enabled runtime PM during system suspend/resume and
     clean up that code somewhat (Rafael Wysocki, Ulf Hansson).

   - Add frequency-invariant accounting support to the task scheduler on
     ARM and ARM64 (Dietmar Eggemann).

   - Fix PM QoS device resume latency framework to prevent "no
     restriction" requests from overriding requests with specific
     requirements and drop the confusing PM_QOS_FLAG_REMOTE_WAKEUP
     device PM QoS flag (Rafael Wysocki).

   - Drop legacy class suspend/resume operations from the PM core and
     drop legacy bus type suspend and resume callbacks from ARM/locomo
     (Rafael Wysocki).

   - Add min/max frequency support to devfreq and clean it up somewhat
     (Chanwoo Choi).

   - Rework wakeup support in the generic power domains (genpd)
     framework and update some of its users accordingly (Geert
     Uytterhoeven).

   - Convert timers in the PM core to use timer_setup() (Kees Cook).

   - Add support for exposing the SLP_S0 (Low Power S0 Idle) residency
     counter based on the LPIT ACPI table on Intel platforms (Srinivas
     Pandruvada).

   - Add per-CPU PM QoS resume latency support to the ladder cpuidle
     governor (Ramesh Thomas).

   - Fix a deadlock between the wakeup notify handler and the notifier
     removal in the ACPI core (Ville Syrjälä).

   - Fix a cpufreq schedutil governor issue causing it to use stale
     cached frequency values sometimes (Viresh Kumar).

   - Fix an issue in the system suspend core support code causing wakeup
     events detection to fail in some cases (Rajat Jain).

   - Fix the generic power domains (genpd) framework to prevent the PM
     core from using the direct-complete optimization with it as that is
     guaranteed to fail (Ulf Hansson).

   - Fix a minor issue in the cpuidle core and clean it up a bit (Gaurav
     Jindal, Nicholas Piggin).

   - Fix and clean up the intel_idle and ARM cpuidle drivers (Jason
     Baron, Len Brown, Leo Yan).

   - Fix a couple of minor issues in the OPP framework and clean it up
     (Arvind Yadav, Fabio Estevam, Sudeep Holla, Tobias Jordan).

   - Fix and clean up some cpufreq drivers and fix a minor issue in the
     cpufreq statistics code (Arvind Yadav, Bhumika Goyal, Fabio
     Estevam, Gautham Shenoy, Gustavo Silva, Marek Szyprowski, Masahiro
     Yamada, Robert Jarzmik, Zumeng Chen).

   - Fix minor issues in the system suspend and hibernation core, in
     power management documentation and in the AVS (Adaptive Voltage
     Scaling) framework (Helge Deller, Himanshu Jha, Joe Perches, Rafael
     Wysocki).

   - Fix some issues in the cpupower utility and document that Shuah
     Khan is going to maintain it going forward (Prarit Bhargava, Shuah
     Khan)"

* tag 'pm-4.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (88 commits)
  tools/power/cpupower: add libcpupower.so.0.0.1 to .gitignore
  tools/power/cpupower: Add 64 bit library detection
  intel_idle: Graceful probe failure when MWAIT is disabled
  cpufreq: schedutil: Reset cached_raw_freq when not in sync with next_freq
  freezer: Fix typo in freezable_schedule_timeout() comment
  PM / s2idle: Clear the events_check_enabled flag
  cpufreq: stats: Handle the case when trans_table goes beyond PAGE_SIZE
  cpufreq: arm_big_little: make cpufreq_arm_bL_ops structures const
  cpufreq: arm_big_little: make function arguments and structure pointer const
  cpuidle: Avoid assignment in if () argument
  cpuidle: Clean up cpuidle_enable_device() error handling a bit
  ACPI / PM: Fix acpi_pm_notifier_lock vs flush_workqueue() deadlock
  PM / Domains: Fix genpd to deal with drivers returning 1 from ->prepare()
  cpuidle: ladder: Add per CPU PM QoS resume latency support
  PM / QoS: Fix device resume latency framework
  PM / domains: Rework governor code to be more consistent
  PM / Domains: Remove gpd_dev_ops.active_wakeup() callback
  soc: rockchip: power-domain: Use GENPD_FLAG_ACTIVE_WAKEUP
  soc: mediatek: Use GENPD_FLAG_ACTIVE_WAKEUP
  ARM: shmobile: pm-rmobile: Use GENPD_FLAG_ACTIVE_WAKEUP
  ...
2017-11-13 19:43:50 -08:00
Linus Torvalds 3e2014637c Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
 "The main updates in this cycle were:

   - Group balancing enhancements and cleanups (Brendan Jackman)

   - Move CPU isolation related functionality into its separate
     kernel/sched/isolation.c file, with related 'housekeeping_*()'
     namespace and nomenclature et al. (Frederic Weisbecker)

   - Improve the interactive/cpu-intense fairness calculation (Josef
     Bacik)

   - Improve the PELT code and related cleanups (Peter Zijlstra)

   - Improve the logic of pick_next_task_fair() (Uladzislau Rezki)

   - Improve the RT IPI based balancing logic (Steven Rostedt)

   - Various micro-optimizations:

   - better !CONFIG_SCHED_DEBUG optimizations (Patrick Bellasi)

   - better idle loop (Cheng Jian)

   - ... plus misc fixes, cleanups and updates"

* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (54 commits)
  sched/core: Optimize sched_feat() for !CONFIG_SCHED_DEBUG builds
  sched/sysctl: Fix attributes of some extern declarations
  sched/isolation: Document isolcpus= boot parameter flags, mark it deprecated
  sched/isolation: Add basic isolcpus flags
  sched/isolation: Move isolcpus= handling to the housekeeping code
  sched/isolation: Handle the nohz_full= parameter
  sched/isolation: Introduce housekeeping flags
  sched/isolation: Split out new CONFIG_CPU_ISOLATION=y config from CONFIG_NO_HZ_FULL
  sched/isolation: Rename is_housekeeping_cpu() to housekeeping_cpu()
  sched/isolation: Use its own static key
  sched/isolation: Make the housekeeping cpumask private
  sched/isolation: Provide a dynamic off-case to housekeeping_any_cpu()
  sched/isolation, watchdog: Use housekeeping_cpumask() instead of ad-hoc version
  sched/isolation: Move housekeeping related code to its own file
  sched/idle: Micro-optimize the idle loop
  sched/isolcpus: Fix "isolcpus=" boot parameter handling when !CONFIG_CPUMASK_OFFSTACK
  x86/tsc: Append the 'tsc=' description for the 'tsc=unstable' boot parameter
  sched/rt: Simplify the IPI based RT balancing logic
  block/ioprio: Use a helper to check for RT prio
  sched/rt: Add a helper to test for a RT task
  ...
2017-11-13 13:37:52 -08:00
Linus Torvalds 8e9a2dba86 Merge branch 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull core locking updates from Ingo Molnar:
 "The main changes in this cycle are:

   - Another attempt at enabling cross-release lockdep dependency
     tracking (automatically part of CONFIG_PROVE_LOCKING=y), this time
     with better performance and fewer false positives. (Byungchul Park)

   - Introduce lockdep_assert_irqs_enabled()/disabled() and convert
     open-coded equivalents to lockdep variants. (Frederic Weisbecker)

   - Add down_read_killable() and use it in the VFS's iterate_dir()
     method. (Kirill Tkhai)

   - Convert remaining uses of ACCESS_ONCE() to
     READ_ONCE()/WRITE_ONCE(). Most of the conversion was Coccinelle
     driven. (Mark Rutland, Paul E. McKenney)

   - Get rid of lockless_dereference(), by strengthening Alpha atomics,
     strengthening READ_ONCE() with smp_read_barrier_depends() and thus
     being able to convert users of lockless_dereference() to
     READ_ONCE(). (Will Deacon)

   - Various micro-optimizations:

        - better PV qspinlocks (Waiman Long),
        - better x86 barriers (Michael S. Tsirkin)
        - better x86 refcounts (Kees Cook)

   - ... plus other fixes and enhancements. (Borislav Petkov, Juergen
     Gross, Miguel Bernal Marin)"

* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (70 commits)
  locking/x86: Use LOCK ADD for smp_mb() instead of MFENCE
  rcu: Use lockdep to assert IRQs are disabled/enabled
  netpoll: Use lockdep to assert IRQs are disabled/enabled
  timers/posix-cpu-timers: Use lockdep to assert IRQs are disabled/enabled
  sched/clock, sched/cputime: Use lockdep to assert IRQs are disabled/enabled
  irq_work: Use lockdep to assert IRQs are disabled/enabled
  irq/timings: Use lockdep to assert IRQs are disabled/enabled
  perf/core: Use lockdep to assert IRQs are disabled/enabled
  x86: Use lockdep to assert IRQs are disabled/enabled
  smp/core: Use lockdep to assert IRQs are disabled/enabled
  timers/hrtimer: Use lockdep to assert IRQs are disabled/enabled
  timers/nohz: Use lockdep to assert IRQs are disabled/enabled
  workqueue: Use lockdep to assert IRQs are disabled/enabled
  irq/softirqs: Use lockdep to assert IRQs are disabled/enabled
  locking/lockdep: Add IRQs disabled/enabled assertion APIs: lockdep_assert_irqs_enabled()/disabled()
  locking/pvqspinlock: Implement hybrid PV queued/unfair locks
  locking/rwlocks: Fix comments
  x86/paravirt: Set up the virt_spin_lock_key after static keys get initialized
  block, locking/lockdep: Assign a lock_class per gendisk used for wait_for_completion()
  workqueue: Remove now redundant lock acquisitions wrt. workqueue flushes
  ...
2017-11-13 12:38:26 -08:00
Linus Torvalds 6098850e7e Merge branch 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull RCU updates from Ingo Molnar:
 "The main changes in this cycle are:

   - Documentation updates

   - RCU CPU stall-warning updates

   - Torture-test updates

   - Miscellaneous fixes

  Size wise the biggest updates are to documentation. Excluding
  documentation most of the code increase comes from a single commit
  which expands debugging"

* 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
  srcu: Add parameters to SRCU docbook comments
  doc: Rewrite confusing statement about memory barriers
  memory-barriers.txt: Fix typo in pairing example
  rcu/segcblist: Include rcupdate.h
  rcu: Add extended-quiescent-state testing advice
  rcu: Suppress lockdep false-positive ->boost_mtx complaints
  rcu: Do not include rtmutex_common.h unconditionally
  torture: Provide TMPDIR environment variable to specify tmpdir
  rcutorture: Dump writer stack if stalled
  rcutorture: Add interrupt-disable capability to stall-warning tests
  rcu: Suppress RCU CPU stall warnings while dumping trace
  rcu: Turn off tracing before dumping trace
  rcu: Make RCU CPU stall warnings check for irq-disabled CPUs
  sched,rcu: Make cond_resched() provide RCU quiescent state
  sched: Make resched_cpu() unconditional
  irq_work: Map irq_work_on_queue() to irq_work_on() in !SMP
  rcu: Create call_rcu_tasks() kthread at boot time
  rcu: Fix up pending cbs check in rcu_prepare_for_idle
  memory-barriers: Rework multicopy-atomicity section
  memory-barriers: Replace uses of "transitive"
  ...
2017-11-13 12:18:10 -08:00
David Howells 5e4def2038 Pass mode to wait_on_atomic_t() action funcs and provide default actions
Make wait_on_atomic_t() pass the TASK_* mode onto its action function as an
extra argument and make it 'unsigned int throughout.

Also, consolidate a bunch of identical action functions into a default
function that can do the appropriate thing for the mode.

Also, change the argument name in the bit_wait*() function declarations to
reflect the fact that it's the mode and not the bit number.

[Peter Z gives this a grudging ACK, but thinks that the whole atomic_t wait
should be done differently, though he's not immediately sure as to how]

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
cc: Ingo Molnar <mingo@kernel.org>
2017-11-13 15:38:16 +00:00
Rafael J. Wysocki 28da43956b Merge branches 'pm-cpufreq-sched' and 'pm-opp'
* pm-cpufreq-sched:
  cpufreq: schedutil: Reset cached_raw_freq when not in sync with next_freq

* pm-opp:
  PM / OPP: Add dev_pm_opp_{un}register_get_pstate_helper()
  PM / OPP: Support updating performance state of device's power domain
  PM / OPP: add missing of_node_put() for of_get_cpu_node()
  PM / OPP: Rename dev_pm_opp_register_put_opp_helper()
  PM / OPP: Add missing of_node_put(np)
  PM / OPP: Move error message to debug level
  PM / OPP: Use snprintf() to avoid kasprintf() and kfree()
  PM / OPP: Move the OPP directory out of power/
2017-11-13 01:40:52 +01:00
Patrick Bellasi 765cc3a4b2 sched/core: Optimize sched_feat() for !CONFIG_SCHED_DEBUG builds
When the kernel is compiled with !CONFIG_SCHED_DEBUG support, we expect that
all SCHED_FEAT are turned into compile time constants being propagated
to support compiler optimizations.

Specifically, we expect that code blocks like this:

   if (sched_feat(FEATURE_NAME) [&& <other_conditions>]) {
	/* FEATURE CODE */
   }

are turned into dead-code in case FEATURE_NAME defaults to FALSE, and thus
being removed by the compiler from the finale image.

For this mechanism to properly work it's required for the compiler to
have full access, from each translation unit, to whatever is the value
defined by the sched_feat macro. This macro is defined as:

   #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))

and thus, the compiler can optimize that code only if the value of
sysctl_sched_features is visible within each translation unit.

Since:

   029632fbb ("sched: Make separate sched*.c translation units")

the scheduler code has been split into separate translation units
however the definition of sysctl_sched_features is part of
kernel/sched/core.c while, for all the other scheduler modules, it is
visible only via kernel/sched/sched.h as an:

   extern const_debug unsigned int sysctl_sched_features

Unfortunately, an extern reference does not allow the compiler to apply
constants propagation. Thus, on !CONFIG_SCHED_DEBUG kernel we still end up
with code to load a memory reference and (eventually) doing an unconditional
jump of a chunk of code.

This mechanism is unavoidable when sched_features can be turned on and off at
run-time. However, this is not the case for "production" kernels compiled with
!CONFIG_SCHED_DEBUG. In this case, sysctl_sched_features is just a constant value
which cannot be changed at run-time and thus memory loads and jumps can be
avoided altogether.

This patch fixes the case of !CONFIG_SCHED_DEBUG kernel by declaring a local version
of the sysctl_sched_features constant for each translation unit. This will
ultimately allow the compiler to perform constants propagation and dead-code
pruning.

Tests have been done, with !CONFIG_SCHED_DEBUG on a v4.14-rc8 with and without
the patch, by running 30 iterations of:

   perf bench sched messaging --pipe --thread --group 4 --loop 50000

on a 40 cores Intel(R) Xeon(R) CPU E5-2690 v2 @ 3.00GHz using the
powersave governor to rule out variations due to frequency scaling.

Statistics on the reported completion time:

                   count     mean       std     min       99%     max
  v4.14-rc8         30.0  15.7831  0.176032  15.442  16.01226  16.014
  v4.14-rc8+patch   30.0  15.5033  0.189681  15.232  15.93938  15.962

... show a 1.8% speedup on average completion time and 0.5% speedup in the
99 percentile.

Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Chris Redpath <chris.redpath@arm.com>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Reviewed-by: Brendan Jackman <brendan.jackman@arm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Link: http://lkml.kernel.org/r/20171108184101.16006-1-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-11-09 07:35:08 +01:00
Rafael J. Wysocki e029b9bf12 Merge branch 'pm-cpufreq-sched'
* pm-cpufreq-sched:
  cpufreq: schedutil: Examine the correct CPU when we update util
2017-11-09 00:07:56 +01:00
Viresh Kumar 07458f6a51 cpufreq: schedutil: Reset cached_raw_freq when not in sync with next_freq
'cached_raw_freq' is used to get the next frequency quickly but should
always be in sync with sg_policy->next_freq. There is a case where it is
not and in such cases it should be reset to avoid switching to incorrect
frequencies.

Consider this case for example:

 - policy->cur is 1.2 GHz (Max)
 - New request comes for 780 MHz and we store that in cached_raw_freq.
 - Based on 780 MHz, we calculate the effective frequency as 800 MHz.
 - We then see the CPU wasn't idle recently and choose to keep the next
   freq as 1.2 GHz.
 - Now we have cached_raw_freq is 780 MHz and sg_policy->next_freq is
   1.2 GHz.
 - Now if the utilization doesn't change in then next request, then the
   next target frequency will still be 780 MHz and it will match with
   cached_raw_freq. But we will choose 1.2 GHz instead of 800 MHz here.

Fixes: b7eaf1aab9 (cpufreq: schedutil: Avoid reducing frequency of busy CPUs prematurely)
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: 4.12+ <stable@vger.kernel.org> # 4.12+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-11-08 23:59:33 +01:00
Frederic Weisbecker 2c11dba00a sched/clock, sched/cputime: Use lockdep to assert IRQs are disabled/enabled
Use lockdep to check that IRQs are enabled or disabled as expected. This
way the sanity check only shows overhead when concurrency correctness
debug code is enabled.

Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: David S . Miller <davem@davemloft.net>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/1509980490-4285-12-git-send-email-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-11-08 11:13:53 +01:00
Ingo Molnar 8a103df440 Merge branch 'linus' into sched/core, to pick up fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-11-08 10:17:15 +01:00
Chris Redpath d62d813c0d cpufreq: schedutil: Examine the correct CPU when we update util
After commit 674e75411f (sched: cpufreq: Allow remote cpufreq
callbacks) we stopped to always read the utilization for the CPU we
are running the governor on, and instead we read it for the CPU
which we've been told has updated utilization.  This is stored in
sugov_cpu->cpu.

The value is set in sugov_register() but we clear it in sugov_start()
which leads to always looking at the utilization of CPU0 instead of
the correct one.

Fix this by consolidating the initialization code into sugov_start().

Fixes: 674e75411f (sched: cpufreq: Allow remote cpufreq callbacks)
Signed-off-by: Chris Redpath <chris.redpath@arm.com>
Reviewed-by: Patrick Bellasi <patrick.bellasi@arm.com>
Reviewed-by: Brendan Jackman <brendan.jackman@arm.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-11-04 17:44:28 +01:00
Greg Kroah-Hartman b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Frederic Weisbecker 150dfee95f sched/isolation: Add basic isolcpus flags
Add flags to control NOHZ and domain isolation from "isolcpus=", in
order to centralize the isolation features to a common interface. Domain
isolation remains the default so not to break the existing isolcpus
boot paramater behaviour.

Further flags in the future may include 0hz (1hz tick offload) and timers,
workqueue, RCU, kthread, watchdog, likely all merged together in a
common flag ("async"?). In any case, this will have to be modifiable by
cpusets.

Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Wanpeng Li <kernellwp@gmail.com>
Link: http://lkml.kernel.org/r/1509072159-31808-12-git-send-email-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-27 09:55:31 +02:00
Frederic Weisbecker edb9382175 sched/isolation: Move isolcpus= handling to the housekeeping code
We want to centralize the isolation features, to be done by the housekeeping
subsystem and scheduler domain isolation is a significant part of it.

No intended behaviour change, we just reuse the housekeeping cpumask
and core code.

Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Wanpeng Li <kernellwp@gmail.com>
Link: http://lkml.kernel.org/r/1509072159-31808-11-git-send-email-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-27 09:55:30 +02:00
Frederic Weisbecker 6f1982fedd sched/isolation: Handle the nohz_full= parameter
We want to centralize the isolation management, done by the housekeeping
subsystem. Therefore we need to handle the nohz_full= parameter from
there.

Since nohz_full= so far has involved unbound timers, watchdog, RCU
and tilegx NAPI isolation, we keep that default behaviour.

nohz_full= will be deprecated in the future. We want to control
the isolation features from the isolcpus= parameter.

Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Wanpeng Li <kernellwp@gmail.com>
Link: http://lkml.kernel.org/r/1509072159-31808-10-git-send-email-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-27 09:55:30 +02:00
Frederic Weisbecker de201559df sched/isolation: Introduce housekeeping flags
Before we implement isolcpus under housekeeping, we need the isolation
features to be more finegrained. For example some people want NOHZ_FULL
without the full scheduler isolation, others want full scheduler
isolation without NOHZ_FULL.

So let's cut all these isolation features piecewise, at the risk of
overcutting it right now. We can still merge some flags later if they
always make sense together.

Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Wanpeng Li <kernellwp@gmail.com>
Link: http://lkml.kernel.org/r/1509072159-31808-9-git-send-email-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-27 09:55:29 +02:00
Frederic Weisbecker 5c4991e24c sched/isolation: Split out new CONFIG_CPU_ISOLATION=y config from CONFIG_NO_HZ_FULL
Split the housekeeping config from CONFIG_NO_HZ_FULL. This way we finally
separate the isolation code from NOHZ.

Although a dependency to CONFIG_NO_HZ_FULL remains for now, while the
housekeeping code still deals with NOHZ internals.

Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Wanpeng Li <kernellwp@gmail.com>
Link: http://lkml.kernel.org/r/1509072159-31808-8-git-send-email-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-27 09:55:28 +02:00
Frederic Weisbecker 204c083a00 sched/isolation: Rename is_housekeeping_cpu() to housekeeping_cpu()
Fit it into the housekeeping_*() namespace.

Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Wanpeng Li <kernellwp@gmail.com>
Link: http://lkml.kernel.org/r/1509072159-31808-7-git-send-email-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-27 09:55:28 +02:00
Frederic Weisbecker e179f5a04b sched/isolation: Use its own static key
Housekeeping code still depends on the nohz_full static key. Since we want
to decouple housekeeping from NOHZ, let's create a housekeeping specific
static key.

It's mostly relevant for calls to is_housekeeping_cpu() from the scheduler.

Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Wanpeng Li <kernellwp@gmail.com>
Link: http://lkml.kernel.org/r/1509072159-31808-6-git-send-email-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-27 09:55:27 +02:00
Frederic Weisbecker 7e56a1cf4b sched/isolation: Make the housekeeping cpumask private
Nobody needs to access this detail. housekeeping_cpumask() already
takes care of it.

Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Wanpeng Li <kernellwp@gmail.com>
Link: http://lkml.kernel.org/r/1509072159-31808-5-git-send-email-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-27 09:55:26 +02:00
Frederic Weisbecker 7863406143 sched/isolation: Move housekeeping related code to its own file
The housekeeping code is currently tied to the NOHZ code. As we are
planning to make housekeeping independent from it, start with moving
the relevant code to its own file.

Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Wanpeng Li <kernellwp@gmail.com>
Link: http://lkml.kernel.org/r/1509072159-31808-2-git-send-email-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-27 09:55:24 +02:00
Tejun Heo d41bf8c9de cgroup, sched: Move basic cpu stats from cgroup.stat to cpu.stat
The basic cpu stat is currently shown with "cpu." prefix in
cgroup.stat, and the same information is duplicated in cpu.stat when
cpu controller is enabled.  This is ugly and not very scalable as we
want to expand the coverage of stat information which is always
available.

This patch makes cgroup core always create "cpu.stat" file and show
the basic cpu stat there and calls the cpu controller to show the
extra stats when enabled.  This ensures that the same information
isn't presented in multiple places and makes future expansion of basic
stats easier.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
2017-10-26 10:56:33 -07:00
Cheng Jian 54b933c6c9 sched/idle: Micro-optimize the idle loop
Move the loop-invariant calculation of 'cpu' in do_idle() out of the loop body,
because the current CPU is always constant.

This improves the generated code both on x86-64 and ARM64:

x86-64:

Before patch (execution in loop):
	864:       0f ae e8                lfence
	867:       65 8b 05 c2 38 f1 7e    mov %gs:0x7ef138c2(%rip),%eax
	86e:       89 c0                   mov %eax,%eax
	870:       48 0f a3 05 68 19 08    bt  %rax,0x1081968(%rip)
	877:	   01

After patch (execution in loop):
	872:       0f ae e8                lfence
	875:       4c 0f a3 25 63 19 08    bt  %r12,0x1081963(%rip)
	87c:       01

ARM64:

Before patch (execution in loop):
	c58:       d5033d9f        dsb     ld
	c5c:       d538d080        mrs     x0, tpidr_el1
	c60:       b8606a61        ldr     w1, [x19,x0]
	c64:       1100fc20        add     w0, w1, #0x3f
	c68:       7100003f        cmp     w1, #0x0
	c6c:       1a81b000        csel    w0, w0, w1, lt
	c70:       13067c00        asr     w0, w0, #6
	c74:       93407c00        sxtw    x0, w0
	c78:       f8607a80        ldr     x0, [x20,x0,lsl #3]
	c7c:       9ac12401        lsr     x1, x0, x1
	c80:       36000581        tbz     w1, #0, d30 <do_idle+0x128>

After patch (execution in loop):
	c84:       d5033d9f        dsb     ld
	c88:       f9400260        ldr     x0, [x19]
	c8c:       ea14001f        tst     x0, x20
	c90:       54000580        b.eq    d40 <do_idle+0x138>

Signed-off-by: Cheng Jian <cj.chengjian@huawei.com>
[ Rewrote the title and the changelog. ]
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: huawei.libin@huawei.com
Cc: xiexiuqi@huawei.com
Link: http://lkml.kernel.org/r/1508930907-107755-1-git-send-email-cj.chengjian@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-26 08:31:29 +02:00
Rakib Mullick e22cdc3fc5 sched/isolcpus: Fix "isolcpus=" boot parameter handling when !CONFIG_CPUMASK_OFFSTACK
cpulist_parse() uses nr_cpumask_bits as a limit to parse the
passed buffer from kernel commandline. What nr_cpumask_bits
represents varies depending upon the CONFIG_CPUMASK_OFFSTACK option:

 - If CONFIG_CPUMASK_OFFSTACK=n, then nr_cpumask_bits is the same as
   NR_CPUS, which might not represent the # of CPUs that really exist
   (default 64). So, there's a chance of a gap between nr_cpu_ids
   and NR_CPUS, which ultimately lead towards invalid cpulist_parse()
   operation. For example, if isolcpus=9 is passed on an 8 cpu
   system (CONFIG_CPUMASK_OFFSTACK=n) it doesn't show the error
   that it's supposed to.

This patch fixes this bug by finding the last CPU of the passed
isolcpus= list and checking it against nr_cpu_ids.

It also fixes the error message where the nr_cpu_ids should be
nr_cpu_ids-1, since CPU numbering starts from 0.

Signed-off-by: Rakib Mullick <rakib.mullick@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: adobriyan@gmail.com
Cc: akpm@linux-foundation.org
Cc: longman@redhat.com
Cc: mka@chromium.org
Cc: tj@kernel.org
Link: http://lkml.kernel.org/r/20171023130154.9050-1-rakib.mullick@gmail.com
[ Enhanced the changelog and the kernel message. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>

 include/linux/cpumask.h |   16 ++++++++++++++++
 kernel/sched/topology.c |    4 ++--
 2 files changed, 18 insertions(+), 2 deletions(-)
2017-10-24 11:47:25 +02:00
Ingo Molnar 72bc286b81 Merge branch 'for-mingo' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu into core/rcu
Pull RCU updates from Paul E. McKenney:

 - Documentation updates
 - Miscellaneous fixes
 - RCU CPU stall-warning updates
 - Torture-test updates

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-24 10:49:44 +02:00
Paul E. McKenney ad4e25a3a1 Merge branches 'doc.2017.10.20a', 'fixes.2017.10.19a', 'stall.2017.10.09a' and 'torture.2017.10.09a' into HEAD
doc.2017.10.20a: Documentation updates.
fixes.2017.10.19a: Miscellaneous fixes.
stall.2017.10.09a: RCU CPU stall-warning updates.
torture.2017.10.09a: Torture-test updates.
2017-10-20 11:11:15 -07:00
Mathieu Desnoyers a961e40917 membarrier: Provide register expedited private command
This introduces a "register private expedited" membarrier command which
allows eventual removal of important memory barrier constraints on the
scheduler fast-paths. It changes how the "private expedited" membarrier
command (new to 4.14) is used from user-space.

This new command allows processes to register their intent to use the
private expedited command.  This affects how the expedited private
command introduced in 4.14-rc is meant to be used, and should be merged
before 4.14 final.

Processes are now required to register before using
MEMBARRIER_CMD_PRIVATE_EXPEDITED, otherwise that command returns EPERM.

This fixes a problem that arose when designing requested extensions to
sys_membarrier() to allow JITs to efficiently flush old code from
instruction caches.  Several potential algorithms are much less painful
if the user register intent to use this functionality early on, for
example, before the process spawns the second thread.  Registering at
this time removes the need to interrupt each and every thread in that
process at the first expedited sys_membarrier() system call.

Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-10-19 22:13:40 -04:00
Steven Rostedt (Red Hat) 4bdced5c9a sched/rt: Simplify the IPI based RT balancing logic
When a CPU lowers its priority (schedules out a high priority task for a
lower priority one), a check is made to see if any other CPU has overloaded
RT tasks (more than one). It checks the rto_mask to determine this and if so
it will request to pull one of those tasks to itself if the non running RT
task is of higher priority than the new priority of the next task to run on
the current CPU.

When we deal with large number of CPUs, the original pull logic suffered
from large lock contention on a single CPU run queue, which caused a huge
latency across all CPUs. This was caused by only having one CPU having
overloaded RT tasks and a bunch of other CPUs lowering their priority. To
solve this issue, commit:

  b6366f048e ("sched/rt: Use IPI to trigger RT task push migration instead of pulling")

changed the way to request a pull. Instead of grabbing the lock of the
overloaded CPU's runqueue, it simply sent an IPI to that CPU to do the work.

Although the IPI logic worked very well in removing the large latency build
up, it still could suffer from a large number of IPIs being sent to a single
CPU. On a 80 CPU box, I measured over 200us of processing IPIs. Worse yet,
when I tested this on a 120 CPU box, with a stress test that had lots of
RT tasks scheduling on all CPUs, it actually triggered the hard lockup
detector! One CPU had so many IPIs sent to it, and due to the restart
mechanism that is triggered when the source run queue has a priority status
change, the CPU spent minutes! processing the IPIs.

Thinking about this further, I realized there's no reason for each run queue
to send its own IPI. As all CPUs with overloaded tasks must be scanned
regardless if there's one or many CPUs lowering their priority, because
there's no current way to find the CPU with the highest priority task that
can schedule to one of these CPUs, there really only needs to be one IPI
being sent around at a time.

This greatly simplifies the code!

The new approach is to have each root domain have its own irq work, as the
rto_mask is per root domain. The root domain has the following fields
attached to it:

  rto_push_work	 - the irq work to process each CPU set in rto_mask
  rto_lock	 - the lock to protect some of the other rto fields
  rto_loop_start - an atomic that keeps contention down on rto_lock
		    the first CPU scheduling in a lower priority task
		    is the one to kick off the process.
  rto_loop_next	 - an atomic that gets incremented for each CPU that
		    schedules in a lower priority task.
  rto_loop	 - a variable protected by rto_lock that is used to
		    compare against rto_loop_next
  rto_cpu	 - The cpu to send the next IPI to, also protected by
		    the rto_lock.

When a CPU schedules in a lower priority task and wants to make sure
overloaded CPUs know about it. It increments the rto_loop_next. Then it
atomically sets rto_loop_start with a cmpxchg. If the old value is not "0",
then it is done, as another CPU is kicking off the IPI loop. If the old
value is "0", then it will take the rto_lock to synchronize with a possible
IPI being sent around to the overloaded CPUs.

If rto_cpu is greater than or equal to nr_cpu_ids, then there's either no
IPI being sent around, or one is about to finish. Then rto_cpu is set to the
first CPU in rto_mask and an IPI is sent to that CPU. If there's no CPUs set
in rto_mask, then there's nothing to be done.

When the CPU receives the IPI, it will first try to push any RT tasks that is
queued on the CPU but can't run because a higher priority RT task is
currently running on that CPU.

Then it takes the rto_lock and looks for the next CPU in the rto_mask. If it
finds one, it simply sends an IPI to that CPU and the process continues.

If there's no more CPUs in the rto_mask, then rto_loop is compared with
rto_loop_next. If they match, everything is done and the process is over. If
they do not match, then a CPU scheduled in a lower priority task as the IPI
was being passed around, and the process needs to start again. The first CPU
in rto_mask is sent the IPI.

This change removes this duplication of work in the IPI logic, and greatly
lowers the latency caused by the IPIs. This removed the lockup happening on
the 120 CPU machine. It also simplifies the code tremendously. What else
could anyone ask for?

Thanks to Peter Zijlstra for simplifying the rto_loop_start atomic logic and
supplying me with the rto_start_trylock() and rto_start_unlock() helper
functions.

Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Clark Williams <williams@redhat.com>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott Wood <swood@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170424114732.1aac6dc4@gandalf.local.home
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-10 11:45:40 +02:00
Brendan Jackman 93f50f9024 sched/fair: Fix usage of find_idlest_group() when the local group is idlest
find_idlest_group() returns NULL when the local group is idlest. The
caller then continues the find_idlest_group() search at a lower level
of the current CPU's sched_domain hierarchy. find_idlest_group_cpu() is
not consulted and, crucially, @new_cpu is not updated. This means the
search is pointless and we return @prev_cpu from select_task_rq_fair().

This is fixed by initialising @new_cpu to @cpu instead of @prev_cpu.

Signed-off-by: Brendan Jackman <brendan.jackman@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20171005114516.18617-6-brendan.jackman@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-10 11:45:36 +02:00
Brendan Jackman 6fee85ccbc sched/fair: Fix usage of find_idlest_group() when no groups are allowed
When 'p' is not allowed on any of the CPUs in the sched_domain, we
currently return NULL from find_idlest_group(), and pointlessly
continue the search on lower sched_domain levels (where 'p' is also not
allowed) before returning prev_cpu regardless (as we have not updated
new_cpu).

Add an explicit check for this case, and add a comment to
find_idlest_group(). Now when find_idlest_group() returns NULL, it always
means that the local group is allowed and idlest.

Signed-off-by: Brendan Jackman <brendan.jackman@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20171005114516.18617-5-brendan.jackman@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-10 11:45:35 +02:00
Brendan Jackman 0d10ab952e sched/fair: Fix find_idlest_group() when local group is not allowed
When the local group is not allowed we do not modify this_*_load from
their initial value of 0. That means that the load checks at the end
of find_idlest_group cause us to incorrectly return NULL. Fixing the
initial values to ULONG_MAX means we will instead return the idlest
remote group in that case.

Signed-off-by: Brendan Jackman <brendan.jackman@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20171005114516.18617-4-brendan.jackman@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-10 11:45:34 +02:00
Brendan Jackman e90381eaec sched/fair: Remove unnecessary comparison with -1
Since commit:

  83a0a96a5f ("sched/fair: Leverage the idle state info when choosing the "idlest" cpu")

find_idlest_group_cpu() (formerly find_idlest_cpu) no longer returns -1,
so we can simplify the checking of the return value in find_idlest_cpu().

Signed-off-by: Brendan Jackman <brendan.jackman@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20171005114516.18617-3-brendan.jackman@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-10 11:45:34 +02:00
Brendan Jackman 18bd1b4bd5 sched/fair: Move select_task_rq_fair() slow-path into its own function
In preparation for changes that would otherwise require adding a new
level of indentation to the while(sd) loop, create a new function
find_idlest_cpu() which contains this loop, and rename the existing
find_idlest_cpu() to find_idlest_group_cpu().

Code inside the while(sd) loop is unchanged. @new_cpu is added as a
variable in the new function, with the same initial value as the
@new_cpu in select_task_rq_fair().

Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Brendan Jackman <brendan.jackman@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20171005114516.18617-2-brendan.jackman@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-10 11:45:33 +02:00
Brendan Jackman 583ffd99d7 sched/fair: Force balancing on NOHZ balance if local group has capacity
The "goto force_balance" here is intended to mitigate the fact that
avg_load calculations can result in bad placement decisions when
priority is asymmetrical.

The original commit that adds it:

  fab476228b ("sched: Force balancing on newidle balance if local group has capacity")

explains:

    Under certain situations, such as a niced down task (i.e. nice =
    -15) in the presence of nr_cpus NICE0 tasks, the niced task lands
    on a sched group and kicks away other tasks because of its large
    weight. This leads to sub-optimal utilization of the
    machine. Even though the sched group has capacity, it does not
    pull tasks because sds.this_load >> sds.max_load, and f_b_g()
    returns NULL.

A similar but inverted issue also affects ARM big.LITTLE (asymmetrical CPU
capacity) systems - consider 8 always-running, same-priority tasks on a
system with 4 "big" and 4 "little" CPUs. Suppose that 5 of them end up on
the "big" CPUs (which will be represented by one sched_group in the DIE
sched_domain) and 3 on the "little" (the other sched_group in DIE), leaving
one CPU unused. Because the "big" group has a higher group_capacity its
avg_load may not present an imbalance that would cause migrating a
task to the idle "little".

The force_balance case here solves the problem but currently only for
CPU_NEWLY_IDLE balances, which in theory might never happen on the
unused CPU. Including CPU_IDLE in the force_balance case means
there's an upper bound on the time before we can attempt to solve the
underutilization: after DIE's sd->balance_interval has passed the
next nohz balance kick will help us out.

Signed-off-by: Brendan Jackman <brendan.jackman@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170807163900.25180-1-brendan.jackman@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-10 11:45:32 +02:00
Brendan Jackman ea16f0ea6c sched/fair: Sync task util before slow-path wakeup
We use task_util() in find_idlest_group() via capacity_spare_wake().
This task_util() updated in wake_cap(). However wake_cap() is not the
only reason for ending up in find_idlest_group() - we could have been sent
there by wake_wide(). So explicitly sync the task util with prev_cpu
when we are about to head to find_idlest_group().

We could simply do this at the beginning of
select_task_rq_fair() (i.e. irrespective of whether we're heading to
select_idle_sibling() or find_idlest_group() & co), but I didn't want to
slow down the select_idle_sibling() path more than necessary.

Don't do this during fork balancing, we won't need the task_util and
we'd just clobber the last_update_time, which is supposed to be 0.

Signed-off-by: Brendan Jackman <brendan.jackman@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andres Oportus <andresoportus@google.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Link: http://lkml.kernel.org/r/20170808095519.10077-1-brendan.jackman@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-10 11:45:31 +02:00
Uladzislau Rezki 93824900a2 sched/fair: Search a task from the tail of the queue
As a first step this patch makes cfs_tasks list as MRU one.
It means, that when a next task is picked to run on physical
CPU it is moved to the front of the list.

Therefore, the cfs_tasks list is more or less sorted (except
woken tasks) starting from recently given CPU time tasks toward
tasks with max wait time in a run-queue, i.e. MRU list.

Second, as part of the load balance operation, this approach
starts detach_tasks()/detach_one_task() from the tail of the
queue instead of the head, giving some advantages:

 - tends to pick a task with highest wait time;

 - tasks located in the tail are less likely cache-hot,
   therefore the can_migrate_task() decision is higher.

hackbench illustrates slightly better performance. For example
doing 1000 samples and 40 groups on i5-3320M CPU, it shows below
figures:

 default: 0.657 avg
 patched: 0.646 avg

Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Kirill Tkhai <tkhai@yandex.ru>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Nicolas Pitre <nicolas.pitre@linaro.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Link: http://lkml.kernel.org/r/20170913102430.8985-2-urezki@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-10 11:45:30 +02:00
Suravee Suthikulpanit 051f3ca02e sched/topology: Introduce NUMA identity node sched domain
On AMD Family17h-based (EPYC) system, a logical NUMA node can contain
upto 8 cores (16 threads) with the following topology.

             ----------------------------
         C0  | T0 T1 |    ||    | T0 T1 | C4
             --------|    ||    |--------
         C1  | T0 T1 | L3 || L3 | T0 T1 | C5
             --------|    ||    |--------
         C2  | T0 T1 | #0 || #1 | T0 T1 | C6
             --------|    ||    |--------
         C3  | T0 T1 |    ||    | T0 T1 | C7
             ----------------------------

Here, there are 2 last-level (L3) caches per logical NUMA node.
A socket can contain upto 4 NUMA nodes, and a system can support
upto 2 sockets. With full system configuration, current scheduler
creates 4 sched domains:

  domain0 SMT       (span a core)
  domain1 MC        (span a last-level-cache)
  domain2 NUMA      (span a socket: 4 nodes)
  domain3 NUMA      (span a system: 8 nodes)

Note that there is no domain to represent cpus spaning a logical
NUMA node.  With this hierarchy of sched domains, the scheduler does
not balance properly in the following cases:

Case1:

 When running 8 tasks, a properly balanced system should
 schedule a task per logical NUMA node. This is not the case for
 the current scheduler.

Case2:

 In some cases, threads are scheduled on the same cpu, while other
 cpus are idle. This results in run-to-run inconsistency. For example:

  taskset -c 0-7 sysbench --num-threads=8 --test=cpu \
                          --cpu-max-prime=100000 run

Total execution time ranges from 25.1s to 33.5s depending on threads
placement, where 25.1s is when all 8 threads are balanced properly
on 8 cpus.

Introducing NUMA identity node sched domain, which is based on how
SRAT/SLIT table define a logical NUMA node. This results in the following
hierarchy of sched domains on the same system described above.

  domain0 SMT       (span a core)
  domain1 MC        (span a last-level-cache)
  domain2 NODE      (span a logical NUMA node)
  domain3 NUMA      (span a socket: 4 nodes)
  domain4 NUMA      (span a system: 8 nodes)

This fixes the improper load balancing cases mentioned above.

Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bp@suse.de
Link: http://lkml.kernel.org/r/1504768805-46716-1-git-send-email-suravee.suthikulpanit@amd.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-10 11:45:28 +02:00