Commit Graph

16 Commits

Author SHA1 Message Date
Dmitry Vyukov 5c9a8750a6 kernel: add kcov code coverage
kcov provides code coverage collection for coverage-guided fuzzing
(randomized testing).  Coverage-guided fuzzing is a testing technique
that uses coverage feedback to determine new interesting inputs to a
system.  A notable user-space example is AFL
(http://lcamtuf.coredump.cx/afl/).  However, this technique is not
widely used for kernel testing due to missing compiler and kernel
support.

kcov does not aim to collect as much coverage as possible.  It aims to
collect more or less stable coverage that is function of syscall inputs.
To achieve this goal it does not collect coverage in soft/hard
interrupts and instrumentation of some inherently non-deterministic or
non-interesting parts of kernel is disbled (e.g.  scheduler, locking).

Currently there is a single coverage collection mode (tracing), but the
API anticipates additional collection modes.  Initially I also
implemented a second mode which exposes coverage in a fixed-size hash
table of counters (what Quentin used in his original patch).  I've
dropped the second mode for simplicity.

This patch adds the necessary support on kernel side.  The complimentary
compiler support was added in gcc revision 231296.

We've used this support to build syzkaller system call fuzzer, which has
found 90 kernel bugs in just 2 months:

  https://github.com/google/syzkaller/wiki/Found-Bugs

We've also found 30+ bugs in our internal systems with syzkaller.
Another (yet unexplored) direction where kcov coverage would greatly
help is more traditional "blob mutation".  For example, mounting a
random blob as a filesystem, or receiving a random blob over wire.

Why not gcov.  Typical fuzzing loop looks as follows: (1) reset
coverage, (2) execute a bit of code, (3) collect coverage, repeat.  A
typical coverage can be just a dozen of basic blocks (e.g.  an invalid
input).  In such context gcov becomes prohibitively expensive as
reset/collect coverage steps depend on total number of basic
blocks/edges in program (in case of kernel it is about 2M).  Cost of
kcov depends only on number of executed basic blocks/edges.  On top of
that, kernel requires per-thread coverage because there are always
background threads and unrelated processes that also produce coverage.
With inlined gcov instrumentation per-thread coverage is not possible.

kcov exposes kernel PCs and control flow to user-space which is
insecure.  But debugfs should not be mapped as user accessible.

Based on a patch by Quentin Casasnovas.

[akpm@linux-foundation.org: make task_struct.kcov_mode have type `enum kcov_mode']
[akpm@linux-foundation.org: unbreak allmodconfig]
[akpm@linux-foundation.org: follow x86 Makefile layout standards]
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: syzkaller <syzkaller@googlegroups.com>
Cc: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Tavis Ormandy <taviso@google.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Kostya Serebryany <kcc@google.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Kees Cook <keescook@google.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: David Drysdale <drysdale@google.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-22 15:36:02 -07:00
Linus Torvalds 277edbabf6 Power management and ACPI material for v4.6-rc1, part 1
- Redesign of cpufreq governors and the intel_pstate driver to
    make them use callbacks invoked by the scheduler to trigger CPU
    frequency evaluation instead of using per-CPU deferrable timers
    for that purpose (Rafael Wysocki).
 
  - Reorganization and cleanup of cpufreq governor code to make it
    more straightforward and fix some concurrency problems in it
    (Rafael Wysocki, Viresh Kumar).
 
  - Cleanup and improvements of locking in the cpufreq core (Viresh
    Kumar).
 
  - Assorted cleanups in the cpufreq core (Rafael Wysocki, Viresh
    Kumar, Eric Biggers).
 
  - intel_pstate driver updates including fixes, optimizations and a
    modification to make it enable enable hardware-coordinated P-state
    selection (HWP) by default if supported by the processor (Philippe
    Longepe, Srinivas Pandruvada, Rafael Wysocki, Viresh Kumar, Felipe
    Franciosi).
 
  - Operating Performance Points (OPP) framework updates to improve
    its handling of voltage regulators and device clocks and updates
    of the cpufreq-dt driver on top of that (Viresh Kumar, Jon Hunter).
 
  - Updates of the powernv cpufreq driver to fix initialization
    and cleanup problems in it and correct its worker thread handling
    with respect to CPU offline, new powernv_throttle tracepoint
    (Shilpasri Bhat).
 
  - ACPI cpufreq driver optimization and cleanup (Rafael Wysocki).
 
  - ACPICA updates including one fix for a regression introduced
    by previos changes in the ACPICA code (Bob Moore, Lv Zheng,
    David Box, Colin Ian King).
 
  - Support for installing ACPI tables from initrd (Lv Zheng).
 
  - Optimizations of the ACPI CPPC code (Prashanth Prakash, Ashwin
    Chaugule).
 
  - Support for _HID(ACPI0010) devices (ACPI processor containers)
    and ACPI processor driver cleanups (Sudeep Holla).
 
  - Support for ACPI-based enumeration of the AMBA bus (Graeme Gregory,
    Aleksey Makarov).
 
  - Modification of the ACPI PCI IRQ management code to make it treat
    255 in the Interrupt Line register as "not connected" on x86 (as
    per the specification) and avoid attempts to use that value as
    a valid interrupt vector (Chen Fan).
 
  - ACPI APEI fixes related to resource leaks (Josh Hunt).
 
  - Removal of modularity from a few ACPI drivers (BGRT, GHES,
    intel_pmic_crc) that cannot be built as modules in practice (Paul
    Gortmaker).
 
  - PNP framework update to make it treat ACPI_RESOURCE_TYPE_SERIAL_BUS
    as a valid resource type (Harb Abdulhamid).
 
  - New device ID (future AMD I2C controller) in the ACPI driver for
    AMD SoCs (APD) and in the designware I2C driver (Xiangliang Yu).
 
  - Assorted ACPI cleanups (Colin Ian King, Kaiyen Chang, Oleg Drokin).
 
  - cpuidle menu governor optimization to avoid a square root
    computation in it (Rasmus Villemoes).
 
  - Fix for potential use-after-free in the generic device properties
    framework (Heikki Krogerus).
 
  - Updates of the generic power domains (genpd) framework including
    support for multiple power states of a domain, fixes and debugfs
    output improvements (Axel Haslam, Jon Hunter, Laurent Pinchart,
    Geert Uytterhoeven).
 
  - Intel RAPL power capping driver updates to reduce IPI overhead in
    it (Jacob Pan).
 
  - System suspend/hibernation code cleanups (Eric Biggers, Saurabh
    Sengar).
 
  - Year 2038 fix for the process freezer (Abhilash Jindal).
 
  - turbostat utility updates including new features (decoding of more
    registers and CPUID fields, sub-second intervals support, GFX MHz
    and RC6 printout, --out command line option), fixes (syscall jitter
    detection and workaround, reductioin of the number of syscalls made,
    fixes related to Xeon x200 processors, compiler warning fixes) and
    cleanups (Len Brown, Hubert Chrzaniuk, Chen Yu).
 
 /
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQIcBAABCAAGBQJW50NXAAoJEILEb/54YlRxvr8QAIktC9+ft0y5AmU46hDcBWcK
 QutyWJL9X9BS6DWBJZA2qclDYFmhMfi5Fza1se0gQ9TnLB/KrBwHWLsiYoTsb1k+
 nPKf214aPk+qAhkVuyB4leNWML9Qz9n9jwku/EYxWWpgtbSRf3+0ioIKZeWWc/8V
 JvuaOu4O+g/tkmL7QTrnGWBwhIIssAAV85QPsHkx+g68MrCj4UMMzm7z9G21SPXX
 bmP8yIHsczX/XnRsY0W2NSno7Vdk6ImHpDJ26IAZg28WRNPWICHgGYHvB0TTWMvb
 tts+yqfF7/7QLRjT/M8k9CzDBDE/DnVqoZ0fNJ+aYr7hNKF32mtAN+jH9ZB9dl/P
 fEFapJkPxnWyzAoVoB9Dz0rkcZkYMlbxlLWzUGpaPq0JflUUTzLk0ApSjmMn4HRO
 UddwCDdyHTaYThp3gn6GbOb0pIP0SdOVbI1M2QV2x/4PLcT2Ft8Np1+1RFWOeinZ
 Bdl9AE890big0808mqbBzw/buETwr9FjHtCdDPXpP0vJpkBLu3nIYRNb0LCt39es
 mWMp6dFhGgvGj3D3ahTuV3GI8hdpDkh9SObexa11RCjkTKrXcwEmFxHxLeFXwKYq
 alG278bo6cSChRMziS1lis+W/3tsJRN4TXUSv1PPzJHrFgptQVFRStU9ngBKP+pN
 WB+itPc4Fw0YHOrAFsrx
 =cfty
 -----END PGP SIGNATURE-----

Merge tag 'pm+acpi-4.6-rc1-1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm

Pull power management and ACPI updates from Rafael Wysocki:
 "This time the majority of changes go into cpufreq and they are
  significant.

  First off, the way CPU frequency updates are triggered is different
  now.  Instead of having to set up and manage a deferrable timer for
  each CPU in the system to evaluate and possibly change its frequency
  periodically, cpufreq governors set up callbacks to be invoked by the
  scheduler on a regular basis (basically on utilization updates).  The
  "old" governors, "ondemand" and "conservative", still do all of their
  work in process context (although that is triggered by the scheduler
  now), but intel_pstate does it all in the callback invoked by the
  scheduler with no need for any additional asynchronous processing.

  Of course, this eliminates the overhead related to the management of
  all those timers, but also it allows the cpufreq governor code to be
  simplified quite a bit.  On top of that, the common code and data
  structures used by the "ondemand" and "conservative" governors are
  cleaned up and made more straightforward and some long-standing and
  quite annoying problems are addressed.  In particular, the handling of
  governor sysfs attributes is modified and the related locking becomes
  more fine grained which allows some concurrency problems to be avoided
  (particularly deadlocks with the core cpufreq code).

  In principle, the new mechanism for triggering frequency updates
  allows utilization information to be passed from the scheduler to
  cpufreq.  Although the current code doesn't make use of it, in the
  works is a new cpufreq governor that will make decisions based on the
  scheduler's utilization data.  That should allow the scheduler and
  cpufreq to work more closely together in the long run.

  In addition to the core and governor changes, cpufreq drivers are
  updated too.  Fixes and optimizations go into intel_pstate, the
  cpufreq-dt driver is updated on top of some modification in the
  Operating Performance Points (OPP) framework and there are fixes and
  other updates in the powernv cpufreq driver.

  Apart from the cpufreq updates there is some new ACPICA material,
  including a fix for a problem introduced by previous ACPICA updates,
  and some less significant changes in the ACPI code, like CPPC code
  optimizations, ACPI processor driver cleanups and support for loading
  ACPI tables from initrd.

  Also updated are the generic power domains framework, the Intel RAPL
  power capping driver and the turbostat utility and we have a bunch of
  traditional assorted fixes and cleanups.

  Specifics:

   - Redesign of cpufreq governors and the intel_pstate driver to make
     them use callbacks invoked by the scheduler to trigger CPU
     frequency evaluation instead of using per-CPU deferrable timers for
     that purpose (Rafael Wysocki).

   - Reorganization and cleanup of cpufreq governor code to make it more
     straightforward and fix some concurrency problems in it (Rafael
     Wysocki, Viresh Kumar).

   - Cleanup and improvements of locking in the cpufreq core (Viresh
     Kumar).

   - Assorted cleanups in the cpufreq core (Rafael Wysocki, Viresh
     Kumar, Eric Biggers).

   - intel_pstate driver updates including fixes, optimizations and a
     modification to make it enable enable hardware-coordinated P-state
     selection (HWP) by default if supported by the processor (Philippe
     Longepe, Srinivas Pandruvada, Rafael Wysocki, Viresh Kumar, Felipe
     Franciosi).

   - Operating Performance Points (OPP) framework updates to improve its
     handling of voltage regulators and device clocks and updates of the
     cpufreq-dt driver on top of that (Viresh Kumar, Jon Hunter).

   - Updates of the powernv cpufreq driver to fix initialization and
     cleanup problems in it and correct its worker thread handling with
     respect to CPU offline, new powernv_throttle tracepoint (Shilpasri
     Bhat).

   - ACPI cpufreq driver optimization and cleanup (Rafael Wysocki).

   - ACPICA updates including one fix for a regression introduced by
     previos changes in the ACPICA code (Bob Moore, Lv Zheng, David Box,
     Colin Ian King).

   - Support for installing ACPI tables from initrd (Lv Zheng).

   - Optimizations of the ACPI CPPC code (Prashanth Prakash, Ashwin
     Chaugule).

   - Support for _HID(ACPI0010) devices (ACPI processor containers) and
     ACPI processor driver cleanups (Sudeep Holla).

   - Support for ACPI-based enumeration of the AMBA bus (Graeme Gregory,
     Aleksey Makarov).

   - Modification of the ACPI PCI IRQ management code to make it treat
     255 in the Interrupt Line register as "not connected" on x86 (as
     per the specification) and avoid attempts to use that value as a
     valid interrupt vector (Chen Fan).

   - ACPI APEI fixes related to resource leaks (Josh Hunt).

   - Removal of modularity from a few ACPI drivers (BGRT, GHES,
     intel_pmic_crc) that cannot be built as modules in practice (Paul
     Gortmaker).

   - PNP framework update to make it treat ACPI_RESOURCE_TYPE_SERIAL_BUS
     as a valid resource type (Harb Abdulhamid).

   - New device ID (future AMD I2C controller) in the ACPI driver for
     AMD SoCs (APD) and in the designware I2C driver (Xiangliang Yu).

   - Assorted ACPI cleanups (Colin Ian King, Kaiyen Chang, Oleg Drokin).

   - cpuidle menu governor optimization to avoid a square root
     computation in it (Rasmus Villemoes).

   - Fix for potential use-after-free in the generic device properties
     framework (Heikki Krogerus).

   - Updates of the generic power domains (genpd) framework including
     support for multiple power states of a domain, fixes and debugfs
     output improvements (Axel Haslam, Jon Hunter, Laurent Pinchart,
     Geert Uytterhoeven).

   - Intel RAPL power capping driver updates to reduce IPI overhead in
     it (Jacob Pan).

   - System suspend/hibernation code cleanups (Eric Biggers, Saurabh
     Sengar).

   - Year 2038 fix for the process freezer (Abhilash Jindal).

   - turbostat utility updates including new features (decoding of more
     registers and CPUID fields, sub-second intervals support, GFX MHz
     and RC6 printout, --out command line option), fixes (syscall jitter
     detection and workaround, reductioin of the number of syscalls
     made, fixes related to Xeon x200 processors, compiler warning
     fixes) and cleanups (Len Brown, Hubert Chrzaniuk, Chen Yu)"

* tag 'pm+acpi-4.6-rc1-1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (182 commits)
  tools/power turbostat: bugfix: TDP MSRs print bits fixing
  tools/power turbostat: correct output for MSR_NHM_SNB_PKG_CST_CFG_CTL dump
  tools/power turbostat: call __cpuid() instead of __get_cpuid()
  tools/power turbostat: indicate SMX and SGX support
  tools/power turbostat: detect and work around syscall jitter
  tools/power turbostat: show GFX%rc6
  tools/power turbostat: show GFXMHz
  tools/power turbostat: show IRQs per CPU
  tools/power turbostat: make fewer systems calls
  tools/power turbostat: fix compiler warnings
  tools/power turbostat: add --out option for saving output in a file
  tools/power turbostat: re-name "%Busy" field to "Busy%"
  tools/power turbostat: Intel Xeon x200: fix turbo-ratio decoding
  tools/power turbostat: Intel Xeon x200: fix erroneous bclk value
  tools/power turbostat: allow sub-sec intervals
  ACPI / APEI: ERST: Fixed leaked resources in erst_init
  ACPI / APEI: Fix leaked resources
  intel_pstate: Do not skip samples partially
  intel_pstate: Remove freq calculation from intel_pstate_calc_busy()
  intel_pstate: Move intel_pstate_calc_busy() into get_target_pstate_use_performance()
  ...
2016-03-16 14:10:53 -07:00
Rafael J. Wysocki adaf9fcd13 cpufreq: Move scheduler-related code to the sched directory
Create cpufreq.c under kernel/sched/ and move the cpufreq code
related to the scheduler to that file and to sched.h.

Redefine cpufreq_update_util() as a static inline function to avoid
function calls at its call sites in the scheduler code (as suggested
by Peter Zijlstra).

Also move the definition of struct update_util_data and declaration
of cpufreq_set_update_util_data() from include/linux/cpufreq.h to
include/linux/sched.h.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
2016-03-10 20:44:47 +01:00
Peter Zijlstra (Intel) 13b35686e8 wait.[ch]: Introduce the simple waitqueue (swait) implementation
The existing wait queue support has support for custom wake up call
backs, wake flags, wake key (passed to call back) and exclusive
flags that allow wakers to be tagged as exclusive, for limiting
the number of wakers.

In a lot of cases, none of these features are used, and hence we
can benefit from a slimmed down version that lowers memory overhead
and reduces runtime overhead.

The concept originated from -rt, where waitqueues are a constant
source of trouble, as we can't convert the head lock to a raw
spinlock due to fancy and long lasting callbacks.

With the removal of custom callbacks, we can use a raw lock for
queue list manipulations, hence allowing the simple wait support
to be used in -rt.

[Patch is from PeterZ which is based on Thomas version. Commit message is
 written by Paul G.
 Daniel:  - Fixed some compile issues
 	  - Added non-lazy implementation of swake_up_locked as suggested
	     by Boqun Feng.]

Originally-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: linux-rt-users@vger.kernel.org
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1455871601-27484-2-git-send-email-wagi@monom.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-02-25 11:27:16 +01:00
Peter Zijlstra 3289bdb429 sched: Move the loadavg code to a more obvious location
I could not find the loadavg code.. turns out it was hidden in a file
called proc.c. It further got mingled up with the cruft per rq load
indexes (which we really want to get rid of).

Move the per rq load indexes into the fair.c load-balance code (that's
the only thing that uses them) and rename proc.c to loadavg.c so we
can find it again.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
[ Did minor cleanups to the code. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-08 12:04:12 +02:00
Heiko Carstens c0a80c0c27 ftrace: allow architectures to specify ftrace compile options
If the kernel is compiled with function tracer support the -pg compile option
is passed to gcc to generate extra code into the prologue of each function.

This patch replaces the "open-coded" -pg compile flag with a CC_FLAGS_FTRACE
makefile variable which architectures can override if a different option
should be used for code generation.

Acked-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2015-01-29 09:19:19 +01:00
Nicolas Pitre cf37b6b484 sched/idle: Move cpu/idle.c to sched/idle.c
Integration of cpuidle with the scheduler requires that the idle loop be
closely integrated with the scheduler proper. Moving cpu/idle.c into the
sched directory will allow for a smoother integration, and eliminate a
subdirectory which contained only one source file.

Signed-off-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/alpine.LFD.2.11.1401301102210.1652@knanqh.ubzr
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-11 09:58:30 +01:00
Juri Lelli 6bfd6d72f5 sched/deadline: speed up SCHED_DEADLINE pushes with a push-heap
Data from tests confirmed that the original active load balancing
logic didn't scale neither in the number of CPU nor in the number of
tasks (as sched_rt does).

Here we provide a global data structure to keep track of deadlines
of the running tasks in the system. The structure is composed by
a bitmask showing the free CPUs and a max-heap, needed when the system
is heavily loaded.

The implementation and concurrent access scheme are kept simple by
design. However, our measurements show that we can compete with sched_rt
on large multi-CPUs machines [1].

Only the push path is addressed, the extension to use this structure
also for pull decisions is straightforward. However, we are currently
evaluating different (in order to decrease/avoid contention) data
structures to solve possibly both problems. We are also going to re-run
tests considering recent changes inside cpupri [2].

 [1] http://retis.sssup.it/~jlelli/papers/Ospert11Lelli.pdf
 [2] http://www.spinics.net/lists/linux-rt-users/msg06778.html

Signed-off-by: Juri Lelli <juri.lelli@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1383831828-15501-14-git-send-email-juri.lelli@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-01-13 13:46:46 +01:00
Dario Faggioli aab03e05e8 sched/deadline: Add SCHED_DEADLINE structures & implementation
Introduces the data structures, constants and symbols needed for
SCHED_DEADLINE implementation.

Core data structure of SCHED_DEADLINE are defined, along with their
initializers. Hooks for checking if a task belong to the new policy
are also added where they are needed.

Adds a scheduling class, in sched/dl.c and a new policy called
SCHED_DEADLINE. It is an implementation of the Earliest Deadline
First (EDF) scheduling algorithm, augmented with a mechanism (called
Constant Bandwidth Server, CBS) that makes it possible to isolate
the behaviour of tasks between each other.

The typical -deadline task will be made up of a computation phase
(instance) which is activated on a periodic or sporadic fashion. The
expected (maximum) duration of such computation is called the task's
runtime; the time interval by which each instance need to be completed
is called the task's relative deadline. The task's absolute deadline
is dynamically calculated as the time instant a task (better, an
instance) activates plus the relative deadline.

The EDF algorithms selects the task with the smallest absolute
deadline as the one to be executed first, while the CBS ensures each
task to run for at most its runtime every (relative) deadline
length time interval, avoiding any interference between different
tasks (bandwidth isolation).
Thanks to this feature, also tasks that do not strictly comply with
the computational model sketched above can effectively use the new
policy.

To summarize, this patch:
 - introduces the data structures, constants and symbols needed;
 - implements the core logic of the scheduling algorithm in the new
   scheduling class file;
 - provides all the glue code between the new scheduling class and
   the core scheduler and refines the interactions between sched/dl
   and the other existing scheduling classes.

Signed-off-by: Dario Faggioli <raistlin@linux.it>
Signed-off-by: Michael Trimarchi <michael@amarulasolutions.com>
Signed-off-by: Fabio Checconi <fchecconi@gmail.com>
Signed-off-by: Juri Lelli <juri.lelli@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1383831828-15501-4-git-send-email-juri.lelli@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-01-13 13:41:06 +01:00
Peter Zijlstra b8a216269e sched: Move completion code from core.c to completion.c
Completions already have their own header file: linux/completion.h
Move the implementation out of kernel/sched/core.c and into its own
file: kernel/sched/completion.c.

Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/n/tip-x2y49rmxu5dljt66ai2lcfuw@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-11-06 07:49:19 +01:00
Peter Zijlstra 7a6354e241 sched: Move wait.c into kernel/sched/
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/n/tip-5q5yqvdaen0rmapwloeaotx3@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-11-06 07:49:16 +01:00
Paul Gortmaker 45ceebf776 sched: Factor out load calculation code from sched/core.c --> sched/proc.c
This large chunk of load calculation code can be easily divorced
from the main core.c scheduler file, with only a couple
prototypes and externs added to a kernel/sched header.

Some recent commits expanded the code and the documentation of
it, making it large enough to warrant separation.  For example,
see:

  556061b, "sched/nohz: Fix rq->cpu_load[] calculations"
  5aaa0b7, "sched/nohz: Fix rq->cpu_load calculations some more"
  5167e8d, "sched/nohz: Rewrite and fix load-avg computation -- again"

More importantly, it helps reduce the size of the main
sched/core.c by yet another significant amount (~600 lines).

Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/1366398650-31599-2-git-send-email-paul.gortmaker@windriver.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-05-07 13:14:50 +02:00
Li Zefan 2e76c24d72 sched: Split cpuacct code out of core.c
Signed-off-by: Li Zefan <lizefan@huawei.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/5155366F.5060404@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-04-10 13:54:15 +02:00
Frederic Weisbecker 73fbec6044 sched: Move cputime code to its own file
Extract cputime code from the giant sched/core.c and
put it in its own file. This make it easier to deal with
this particular area and de-bloat a bit more core.c

Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
2012-08-20 13:05:17 +02:00
Thomas Gleixner a4a2eb490e init_task: Create generic init_task instance
All archs define init_task in the same way (except ia64, but there is
no particular reason why ia64 cannot use the common version). Create a
generic instance so all archs can be converted over.

The config switch is temporary and will be removed when all archs are
converted over.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Chen Liqin <liqin.chen@sunplusct.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: David Howells <dhowells@redhat.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: Haavard Skinnemoen <hskinnemoen@gmail.com>
Cc: Hirokazu Takata <takata@linux-m32r.org>
Cc: James E.J. Bottomley <jejb@parisc-linux.org>
Cc: Jesper Nilsson <jesper.nilsson@axis.com>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Mike Frysinger <vapier@gentoo.org>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/20120503085034.092585287@linutronix.de
2012-05-05 13:00:21 +02:00
Peter Zijlstra 391e43da79 sched: Move all scheduler bits into kernel/sched/
There's too many sched*.[ch] files in kernel/, give them their own
directory.

(No code changed, other than Makefile glue added.)

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-11-17 12:20:22 +01:00