Commit Graph

233 Commits

Author SHA1 Message Date
Dov Murik 1227418989 efi: Save location of EFI confidential computing area
Confidential computing (coco) hardware such as AMD SEV (Secure Encrypted
Virtualization) allows a guest owner to inject secrets into the VMs
memory without the host/hypervisor being able to read them.

Firmware support for secret injection is available in OVMF, which
reserves a memory area for secret injection and includes a pointer to it
the in EFI config table entry LINUX_EFI_COCO_SECRET_TABLE_GUID.

If EFI exposes such a table entry, uefi_init() will keep a pointer to
the EFI config table entry in efi.coco_secret, so it can be used later
by the kernel (specifically drivers/virt/coco/efi_secret).  It will also
appear in the kernel log as "CocoSecret=ADDRESS"; for example:

    [    0.000000] efi: EFI v2.70 by EDK II
    [    0.000000] efi: CocoSecret=0x7f22e680 SMBIOS=0x7f541000 ACPI=0x7f77e000 ACPI 2.0=0x7f77e014 MEMATTR=0x7ea0c018

The new functionality can be enabled with CONFIG_EFI_COCO_SECRET=y.

Signed-off-by: Dov Murik <dovmurik@linux.ibm.com>
Reviewed-by: Gerd Hoffmann <kraxel@redhat.com>
Link: https://lore.kernel.org/r/20220412212127.154182-2-dovmurik@linux.ibm.com
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2022-04-13 19:11:18 +02:00
Paul Menzel bb11580f61 x86/efi: Log 32/64-bit mismatch with kernel as an error
Log the message

    No EFI runtime due to 32/64-bit mismatch with kernel

as an error condition, as several things like efivarfs won’t work
without the EFI runtime.

Signed-off-by: Paul Menzel <pmenzel@molgen.mpg.de>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2021-05-22 14:09:07 +02:00
Ingo Molnar 4d0a4388cc Merge branch 'efi/urgent' into efi/core, to pick up fixes
These fixes missed the v5.9 merge window, pick them up for early v5.10 merge.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2020-10-12 13:38:31 +02:00
Lenny Szubowicz 58c909022a efi: Support for MOK variable config table
Because of system-specific EFI firmware limitations, EFI volatile
variables may not be capable of holding the required contents of
the Machine Owner Key (MOK) certificate store when the certificate
list grows above some size. Therefore, an EFI boot loader may pass
the MOK certs via a EFI configuration table created specifically for
this purpose to avoid this firmware limitation.

An EFI configuration table is a much more primitive mechanism
compared to EFI variables and is well suited for one-way passage
of static information from a pre-OS environment to the kernel.

This patch adds initial kernel support to recognize, parse,
and validate the EFI MOK configuration table, where named
entries contain the same data that would otherwise be provided
in similarly named EFI variables.

Additionally, this patch creates a sysfs binary file for each
EFI MOK configuration table entry found. These files are read-only
to root and are provided for use by user space utilities such as
mokutil.

A subsequent patch will load MOK certs into the trusted platform
key ring using this infrastructure.

Signed-off-by: Lenny Szubowicz <lszubowi@redhat.com>
Link: https://lore.kernel.org/r/20200905013107.10457-2-lszubowi@redhat.com
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-09-16 18:53:42 +03:00
Ard Biesheuvel 39ada88f9c efi/x86: Move 32-bit code into efi_32.c
Now that the old memmap code has been removed, some code that was left
behind in arch/x86/platform/efi/efi.c is only used for 32-bit builds,
which means it can live in efi_32.c as well. So move it over.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-08-20 11:18:36 +02:00
steve.wahl@hpe.com 6aa3baabe1 x86/platform/uv: Remove uv bios and efi code related to EFI_UV1_MEMMAP
With UV1 removed, EFI_UV1_MEMMAP is not longer used.  Remove the code used
by it and the related code in EFI.

Signed-off-by: Steve Wahl <steve.wahl@hpe.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lkml.kernel.org/r/20200713212955.902592618@hpe.com
2020-07-17 16:47:48 +02:00
steve.wahl@hpe.com 66d67fecd8 x86/efi: Remove references to no-longer-used efi_have_uv1_memmap()
In removing UV1 support, efi_have_uv1_memmap is no longer used.

Signed-off-by: Steve Wahl <steve.wahl@hpe.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lkml.kernel.org/r/20200713212955.786177105@hpe.com
2020-07-17 16:47:47 +02:00
Ard Biesheuvel 4e9a0f73f0 efi: Clean up config table description arrays
Increase legibility by adding whitespace to the efi_config_table_type_t
arrays that describe which EFI config tables we look for when going over
the firmware provided list. While at it, replace the 'name' char pointer
with a char array, which is more space efficient on relocatable 64-bit
kernels, as it avoids a 8 byte pointer and the associated relocation
data (24 bytes when using RELA format)

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-04-24 14:52:16 +02:00
Ingo Molnar 3be5f0d286 Merge tag 'efi-next' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi into efi/core
More EFI updates for v5.7

 - Incorporate a stable branch with the EFI pieces of Hans's work on
   loading device firmware from EFI boot service memory regions

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2020-03-08 09:23:36 +01:00
Hans de Goede f0df68d5ba efi: Add embedded peripheral firmware support
Just like with PCI options ROMs, which we save in the setup_efi_pci*
functions from arch/x86/boot/compressed/eboot.c, the EFI code / ROM itself
sometimes may contain data which is useful/necessary for peripheral drivers
to have access to.

Specifically the EFI code may contain an embedded copy of firmware which
needs to be (re)loaded into the peripheral. Normally such firmware would be
part of linux-firmware, but in some cases this is not feasible, for 2
reasons:

1) The firmware is customized for a specific use-case of the chipset / use
with a specific hardware model, so we cannot have a single firmware file
for the chipset. E.g. touchscreen controller firmwares are compiled
specifically for the hardware model they are used with, as they are
calibrated for a specific model digitizer.

2) Despite repeated attempts we have failed to get permission to
redistribute the firmware. This is especially a problem with customized
firmwares, these get created by the chip vendor for a specific ODM and the
copyright may partially belong with the ODM, so the chip vendor cannot
give a blanket permission to distribute these.

This commit adds support for finding peripheral firmware embedded in the
EFI code and makes the found firmware available through the new
efi_get_embedded_fw() function.

Support for loading these firmwares through the standard firmware loading
mechanism is added in a follow-up commit in this patch-series.

Note we check the EFI_BOOT_SERVICES_CODE for embedded firmware near the end
of start_kernel(), just before calling rest_init(), this is on purpose
because the typical EFI_BOOT_SERVICES_CODE memory-segment is too large for
early_memremap(), so the check must be done after mm_init(). This relies
on EFI_BOOT_SERVICES_CODE not being free-ed until efi_free_boot_services()
is called, which means that this will only work on x86 for now.

Reported-by: Dave Olsthoorn <dave@bewaar.me>
Suggested-by: Peter Jones <pjones@redhat.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Link: https://lore.kernel.org/r/20200115163554.101315-3-hdegoede@redhat.com
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-03-03 10:28:00 +01:00
Hans de Goede 0e72a6a3cf efi: Export boot-services code and data as debugfs-blobs
Sometimes it is useful to be able to dump the efi boot-services code and
data. This commit adds these as debugfs-blobs to /sys/kernel/debug/efi,
but only if efi=debug is passed on the kernel-commandline as this requires
not freeing those memory-regions, which costs 20+ MB of RAM.

Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Link: https://lore.kernel.org/r/20200115163554.101315-2-hdegoede@redhat.com
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-03-03 10:27:30 +01:00
Tom Lendacky badc61982a efi/x86: Add RNG seed EFI table to unencrypted mapping check
When booting with SME active, EFI tables must be mapped unencrypted since
they were built by UEFI in unencrypted memory. Update the list of tables
to be checked during early_memremap() processing to account for the EFI
RNG seed table.

Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: linux-efi@vger.kernel.org
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: David Hildenbrand <david@redhat.com>
Cc: Heinrich Schuchardt <xypron.glpk@gmx.de>
Link: https://lore.kernel.org/r/b64385fc13e5d7ad4b459216524f138e7879234f.1582662842.git.thomas.lendacky@amd.com
Link: https://lore.kernel.org/r/20200228121408.9075-3-ardb@kernel.org
2020-02-29 10:16:56 +01:00
Tom Lendacky f10e80a19b efi/x86: Add TPM related EFI tables to unencrypted mapping checks
When booting with SME active, EFI tables must be mapped unencrypted since
they were built by UEFI in unencrypted memory. Update the list of tables
to be checked during early_memremap() processing to account for the EFI
TPM tables.

This fixes a bug where an EFI TPM log table has been created by UEFI, but
it lives in memory that has been marked as usable rather than reserved.

Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: linux-efi@vger.kernel.org
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: David Hildenbrand <david@redhat.com>
Cc: Heinrich Schuchardt <xypron.glpk@gmx.de>
Cc: <stable@vger.kernel.org> # v5.4+
Link: https://lore.kernel.org/r/4144cd813f113c20cdfa511cf59500a64e6015be.1582662842.git.thomas.lendacky@amd.com
Link: https://lore.kernel.org/r/20200228121408.9075-2-ardb@kernel.org
2020-02-29 10:16:56 +01:00
Ard Biesheuvel fd26830423 efi/x86: Drop 'systab' member from struct efi
The systab member in struct efi has outlived its usefulness, now that
we have better ways to access the only piece of information we are
interested in after init, which is the EFI runtime services table
address. So instead of instantiating a doctored copy at early boot
with lots of mangled values, and switching the pointer when switching
into virtual mode, let's grab the values we need directly, and get
rid of the systab pointer entirely.

Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-02-23 21:59:42 +01:00
Ard Biesheuvel 59f2a619a2 efi: Add 'runtime' pointer to struct efi
Instead of going through the EFI system table each time, just copy the
runtime services table pointer into struct efi directly. This is the
last use of the system table pointer in struct efi, allowing us to
drop it in a future patch, along with a fair amount of quirky handling
of the translated address.

Note that usually, the runtime services pointer changes value during
the call to SetVirtualAddressMap(), so grab the updated value as soon
as that call returns. (Mixed mode uses a 1:1 mapping, and kexec boot
enters with the updated address in the system table, so in those cases,
we don't need to do anything here)

Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-02-23 21:59:42 +01:00
Ard Biesheuvel 09308012d8 efi/x86: Merge assignments of efi.runtime_version
efi.runtime_version is always set to the same value on both
existing code paths, so just set it earlier from a shared one.

Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-02-23 21:59:42 +01:00
Ard Biesheuvel 9cd437ac0e efi/x86: Make fw_vendor, config_table and runtime sysfs nodes x86 specific
There is some code that exposes physical addresses of certain parts of
the EFI firmware implementation via sysfs nodes. These nodes are only
used on x86, and are of dubious value to begin with, so let's move
their handling into the x86 arch code.

Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-02-23 21:59:42 +01:00
Ard Biesheuvel 0a67361dcd efi/x86: Remove runtime table address from kexec EFI setup data
Since commit 33b85447fa ("efi/x86: Drop two near identical versions
of efi_runtime_init()"), we no longer map the EFI runtime services table
before calling SetVirtualAddressMap(), which means we don't need the 1:1
mapped physical address of this table, and so there is no point in passing
the address via EFI setup data on kexec boot.

Note that the kexec tools will still look for this address in sysfs, so
we still need to provide it.

Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-02-23 21:59:42 +01:00
Ard Biesheuvel 06c0bd9343 efi: Clean up config_parse_tables()
config_parse_tables() is a jumble of pointer arithmetic, due to the
fact that on x86, we may be dealing with firmware whose native word
size differs from the kernel's.

This is not a concern on other architectures, and doesn't quite
justify the state of the code, so let's clean it up by adding a
non-x86 code path, constifying statically allocated tables and
replacing preprocessor conditionals with IS_ENABLED() checks.

Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-02-23 21:59:42 +01:00
Ard Biesheuvel 3a0701dc7f efi: Make efi_config_init() x86 only
The efi_config_init() routine is no longer shared with ia64 so let's
move it into the x86 arch code before making further x86 specific
changes to it.

Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-02-23 21:59:42 +01:00
Ard Biesheuvel 14fb420909 efi: Merge EFI system table revision and vendor checks
We have three different versions of the code that checks the EFI system
table revision and copies the firmware vendor string, and they are
mostly equivalent, with the exception of the use of early_memremap_ro
vs. __va() and the lowest major revision to warn about. Let's move this
into common code and factor out the commonalities.

Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-02-23 21:59:42 +01:00
Ard Biesheuvel a17e809ea5 efi: Move mem_attr_table out of struct efi
The memory attributes table is only used at init time by the core EFI
code, so there is no need to carry its address in struct efi that is
shared with the world. So move it out, and make it __ro_after_init as
well, considering that the value is set during early boot.

Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-02-23 21:59:42 +01:00
Ard Biesheuvel fd506e0cf9 efi: Move UGA and PROP table handling to x86 code
The UGA table is x86 specific (its handling was introduced when the
EFI support code was modified to accommodate IA32), so there is no
need to handle it in generic code.

The EFI properties table is not strictly x86 specific, but it was
deprecated almost immediately after having been introduced, due to
implementation difficulties. Only x86 takes it into account today,
and this is not going to change, so make this table x86 only as well.

Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-02-23 21:59:42 +01:00
Ard Biesheuvel 120540f230 efi/ia64: Move HCDP and MPS table handling into IA64 arch code
The HCDP and MPS tables are Itanium specific EFI config tables, so
move their handling to ia64 arch code.

Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-02-23 21:59:42 +01:00
Ard Biesheuvel 50d53c58dd efi: Drop handling of 'boot_info' configuration table
Some plumbing exists to handle a UEFI configuration table of type
BOOT_INFO but since we never match it to a GUID anywhere, we never
actually register such a table, or access it, for that matter. So
simply drop all mentions of it.

Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-02-23 21:59:42 +01:00
Ard Biesheuvel a570b0624b efi/x86: Replace #ifdefs with IS_ENABLED() checks
When possible, IS_ENABLED() conditionals are preferred over #ifdefs,
given that the latter hide the code from the compiler entirely, which
reduces build test coverage when the option is not enabled.

So replace an instance in the x86 efi startup code.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-02-23 21:59:42 +01:00
Ard Biesheuvel 14b60cc8e0 efi/x86: Reindent struct initializer for legibility
Reindent the efi_memory_map_data initializer so that all the = signs
are aligned vertically, making the resulting code much easier to read.

Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-02-23 21:59:42 +01:00
Ard Biesheuvel 59365cadfb efi/x86: Fix boot regression on systems with invalid memmap entries
In efi_clean_memmap(), we do a pass over the EFI memory map to remove
bogus entries that may be returned on certain systems.

This recent commit:

  1db91035d0 ("efi: Add tracking for dynamically allocated memmaps")

refactored this code to pass the input to efi_memmap_install() via a
temporary struct on the stack, which is populated using an initializer
which inadvertently defines the value of its size field in terms of its
desc_size field, which value cannot be relied upon yet in the initializer
itself.

Fix this by using efi.memmap.desc_size instead, which is where we get
the value for desc_size from in the first place.

Reported-by: Jörg Otte <jrg.otte@gmail.com>
Tested-by: Jörg Otte <jrg.otte@gmail.com>
Tested-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: linux-efi@vger.kernel.org
Cc: jrg.otte@gmail.com
Cc: torvalds@linux-foundation.org
Cc: mingo@kernel.org
Link: https://lore.kernel.org/r/20200201233304.18322-1-ardb@kernel.org
2020-02-02 10:25:43 +01:00
Dan Williams 1db91035d0 efi: Add tracking for dynamically allocated memmaps
In preparation for fixing efi_memmap_alloc() leaks, add support for
recording whether the memmap was dynamically allocated from slab,
memblock, or is the original physical memmap provided by the platform.

Given this tracking is established in efi_memmap_alloc() and needs to be
carried to efi_memmap_install(), use 'struct efi_memory_map_data' to
convey the flags.

Some small cleanups result from this reorganization, specifically the
removal of local variables for 'phys' and 'size' that are already
tracked in @data.

Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200113172245.27925-12-ardb@kernel.org
2020-01-20 08:14:29 +01:00
Ard Biesheuvel 1f299fad1e efi/x86: Limit EFI old memory map to SGI UV machines
We carry a quirk in the x86 EFI code to switch back to an older
method of mapping the EFI runtime services memory regions, because
it was deemed risky at the time to implement a new method without
providing a fallback to the old method in case problems arose.

Such problems did arise, but they appear to be limited to SGI UV1
machines, and so these are the only ones for which the fallback gets
enabled automatically (via a DMI quirk). The fallback can be enabled
manually as well, by passing efi=old_map, but there is very little
evidence that suggests that this is something that is being relied
upon in the field.

Given that UV1 support is not enabled by default by the distros
(Ubuntu, Fedora), there is no point in carrying this fallback code
all the time if there are no other users. So let's move it into the
UV support code, and document that efi=old_map now requires this
support code to be enabled.

Note that efi=old_map has been used in the past on other SGI UV
machines to work around kernel regressions in production, so we
keep the option to enable it by hand, but only if the kernel was
built with UV support.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200113172245.27925-8-ardb@kernel.org
2020-01-20 08:13:01 +01:00
Ard Biesheuvel 4684abe375 efi/x86: Remove unreachable code in kexec_enter_virtual_mode()
Remove some code that is guaranteed to be unreachable, given
that we have already bailed by this time if EFI_OLD_MEMMAP is
set.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Arvind Sankar <nivedita@alum.mit.edu>
Cc: Matthew Garrett <mjg59@google.com>
Cc: linux-efi@vger.kernel.org
Link: https://lkml.kernel.org/r/20200103113953.9571-15-ardb@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2020-01-10 18:55:03 +01:00
Ard Biesheuvel e2d68a955e efi/x86: Don't panic or BUG() on non-critical error conditions
The logic in __efi_enter_virtual_mode() does a number of steps in
sequence, all of which may fail in one way or the other. In most
cases, we simply print an error and disable EFI runtime services
support, but in some cases, we BUG() or panic() and bring down the
system when encountering conditions that we could easily handle in
the same way.

While at it, replace a pointless page-to-virt-phys conversion with
one that goes straight from struct page to physical.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Arvind Sankar <nivedita@alum.mit.edu>
Cc: Matthew Garrett <mjg59@google.com>
Cc: linux-efi@vger.kernel.org
Link: https://lkml.kernel.org/r/20200103113953.9571-14-ardb@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2020-01-10 18:55:03 +01:00
Ard Biesheuvel 5b279a262f efi/x86: Clean up efi_systab_init() routine for legibility
Clean up the efi_systab_init() routine which maps the EFI system
table and copies the relevant pieces of data out of it.

The current routine is very difficult to read, so let's clean that
up. Also, switch to a R/O mapping of the system table since that is
all we need.

Finally, use a plain u64 variable to record the physical address of
the system table instead of pointlessly stashing it in a struct efi
that is never used for anything else.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Arvind Sankar <nivedita@alum.mit.edu>
Cc: Matthew Garrett <mjg59@google.com>
Cc: linux-efi@vger.kernel.org
Link: https://lkml.kernel.org/r/20200103113953.9571-13-ardb@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2020-01-10 18:55:03 +01:00
Ard Biesheuvel 33b85447fa efi/x86: Drop two near identical versions of efi_runtime_init()
The routines efi_runtime_init32() and efi_runtime_init64() are
almost indistinguishable, and the only relevant difference is
the offset in the runtime struct from where to obtain the physical
address of the SetVirtualAddressMap() routine.

However, this address is only used once, when installing the virtual
address map that the OS will use to invoke EFI runtime services, and
at the time of the call, we will necessarily be running with a 1:1
mapping, and so there is no need to do the map/unmap dance here to
retrieve the address. In fact, in the preceding changes to these users,
we stopped using the address recorded here entirely.

So let's just get rid of all this code since it no longer serves a
purpose. While at it, tweak the logic so that we handle unsupported
and disable EFI runtime services in the same way, and unmap the EFI
memory map in both cases.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Arvind Sankar <nivedita@alum.mit.edu>
Cc: Matthew Garrett <mjg59@google.com>
Cc: linux-efi@vger.kernel.org
Link: https://lkml.kernel.org/r/20200103113953.9571-12-ardb@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2020-01-10 18:55:03 +01:00
Ard Biesheuvel ea5e1919b4 efi/x86: Simplify mixed mode call wrapper
Calling 32-bit EFI runtime services from a 64-bit OS involves
switching back to the flat mapping with a stack carved out of
memory that is 32-bit addressable.

There is no need to actually execute the 64-bit part of this
routine from the flat mapping as well, as long as the entry
and return address fit in 32 bits. There is also no need to
preserve part of the calling context in global variables: we
can simply push the old stack pointer value to the new stack,
and keep the return address from the code32 section in EBX.

While at it, move the conditional check whether to invoke
the mixed mode version of SetVirtualAddressMap() into the
64-bit implementation of the wrapper routine.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Arvind Sankar <nivedita@alum.mit.edu>
Cc: Matthew Garrett <mjg59@google.com>
Cc: linux-efi@vger.kernel.org
Link: https://lkml.kernel.org/r/20200103113953.9571-11-ardb@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2020-01-10 18:55:03 +01:00
Ard Biesheuvel 6982947045 efi/x86: Split SetVirtualAddresMap() wrappers into 32 and 64 bit versions
Split the phys_efi_set_virtual_address_map() routine into 32 and 64 bit
versions, so we can simplify them individually in subsequent patches.

There is very little overlap between the logic anyway, and this has
already been factored out in prolog/epilog routines which are completely
different between 32 bit and 64 bit. So let's take it one step further,
and get rid of the overlap completely.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Arvind Sankar <nivedita@alum.mit.edu>
Cc: Matthew Garrett <mjg59@google.com>
Cc: linux-efi@vger.kernel.org
Link: https://lkml.kernel.org/r/20200103113953.9571-8-ardb@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2020-01-10 18:55:02 +01:00
Ard Biesheuvel ffc2760bcf efi/x86: Map the entire EFI vendor string before copying it
Fix a couple of issues with the way we map and copy the vendor string:
- we map only 2 bytes, which usually works since you get at least a
  page, but if the vendor string happens to cross a page boundary,
  a crash will result
- only call early_memunmap() if early_memremap() succeeded, or we will
  call it with a NULL address which it doesn't like,
- while at it, switch to early_memremap_ro(), and array indexing rather
  than pointer dereferencing to read the CHAR16 characters.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Arvind Sankar <nivedita@alum.mit.edu>
Cc: Matthew Garrett <mjg59@google.com>
Cc: linux-efi@vger.kernel.org
Fixes: 5b83683f32 ("x86: EFI runtime service support")
Link: https://lkml.kernel.org/r/20200103113953.9571-5-ardb@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2020-01-10 18:55:01 +01:00
Ard Biesheuvel 960a8d0183 efi/libstub: Use stricter typing for firmware function pointers
We will soon remove another level of pointer casting, so let's make
sure all type handling involving firmware calls at boot time is correct.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Arvind Sankar <nivedita@alum.mit.edu>
Cc: Borislav Petkov <bp@alien8.de>
Cc: James Morse <james.morse@arm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: https://lkml.kernel.org/r/20191224151025.32482-12-ardb@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-12-25 10:49:18 +01:00
Ard Biesheuvel a8147dba75 efi/x86: Rename efi_is_native() to efi_is_mixed()
The ARM architecture does not permit combining 32-bit and 64-bit code
at the same privilege level, and so EFI mixed mode is strictly a x86
concept.

In preparation of turning the 32/64 bit distinction in shared stub
code to a native vs mixed one, refactor x86's current use of the
helper function efi_is_native() into efi_is_mixed().

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Arvind Sankar <nivedita@alum.mit.edu>
Cc: Borislav Petkov <bp@alien8.de>
Cc: James Morse <james.morse@arm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: https://lkml.kernel.org/r/20191224151025.32482-7-ardb@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-12-25 10:49:16 +01:00
Dan Williams 199c847176 x86/efi: Add efi_fake_mem support for EFI_MEMORY_SP
Given that EFI_MEMORY_SP is platform BIOS policy decision for marking
memory ranges as "reserved for a specific purpose" there will inevitably
be scenarios where the BIOS omits the attribute in situations where it
is desired. Unlike other attributes if the OS wants to reserve this
memory from the kernel the reservation needs to happen early in init. So
early, in fact, that it needs to happen before e820__memblock_setup()
which is a pre-requisite for efi_fake_memmap() that wants to allocate
memory for the updated table.

Introduce an x86 specific efi_fake_memmap_early() that can search for
attempts to set EFI_MEMORY_SP via efi_fake_mem and update the e820 table
accordingly.

The KASLR code that scans the command line looking for user-directed
memory reservations also needs to be updated to consider
"efi_fake_mem=nn@ss:0x40000" requests.

Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2019-11-07 15:44:23 +01:00
Dan Williams 262b45ae3a x86/efi: EFI soft reservation to E820 enumeration
UEFI 2.8 defines an EFI_MEMORY_SP attribute bit to augment the
interpretation of the EFI Memory Types as "reserved for a specific
purpose".

The proposed Linux behavior for specific purpose memory is that it is
reserved for direct-access (device-dax) by default and not available for
any kernel usage, not even as an OOM fallback.  Later, through udev
scripts or another init mechanism, these device-dax claimed ranges can
be reconfigured and hot-added to the available System-RAM with a unique
node identifier. This device-dax management scheme implements "soft" in
the "soft reserved" designation by allowing some or all of the
reservation to be recovered as typical memory. This policy can be
disabled at compile-time with CONFIG_EFI_SOFT_RESERVE=n, or runtime with
efi=nosoftreserve.

This patch introduces 2 new concepts at once given the entanglement
between early boot enumeration relative to memory that can optionally be
reserved from the kernel page allocator by default. The new concepts
are:

- E820_TYPE_SOFT_RESERVED: Upon detecting the EFI_MEMORY_SP
  attribute on EFI_CONVENTIONAL memory, update the E820 map with this
  new type. Only perform this classification if the
  CONFIG_EFI_SOFT_RESERVE=y policy is enabled, otherwise treat it as
  typical ram.

- IORES_DESC_SOFT_RESERVED: Add a new I/O resource descriptor for
  a device driver to search iomem resources for application specific
  memory. Teach the iomem code to identify such ranges as "Soft Reserved".

Note that the comment for do_add_efi_memmap() needed refreshing since it
seemed to imply that the efi map might overflow the e820 table, but that
is not an issue as of commit 7b6e4ba3cb "x86/boot/e820: Clean up the
E820_X_MAX definition" that removed the 128 entry limit for
e820__range_add().

A follow-on change integrates parsing of the ACPI HMAT to identify the
node and sub-range boundaries of EFI_MEMORY_SP designated memory. For
now, just identify and reserve memory of this type.

Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reported-by: kbuild test robot <lkp@intel.com>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2019-11-07 15:44:14 +01:00
Dan Williams 6950e31b35 x86/efi: Push EFI_MEMMAP check into leaf routines
In preparation for adding another EFI_MEMMAP dependent call that needs
to occur before e820__memblock_setup() fixup the existing efi calls to
check for EFI_MEMMAP internally. This ends up being cleaner than the
alternative of checking EFI_MEMMAP multiple times in setup_arch().

Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2019-11-07 15:44:04 +01:00
Dave Young 2ecb7402cf efi/x86: Do not clean dummy variable in kexec path
kexec reboot fails randomly in UEFI based KVM guest.  The firmware
just resets while calling efi_delete_dummy_variable();  Unfortunately
I don't know how to debug the firmware, it is also possible a potential
problem on real hardware as well although nobody reproduced it.

The intention of the efi_delete_dummy_variable is to trigger garbage collection
when entering virtual mode.  But SetVirtualAddressMap can only run once
for each physical reboot, thus kexec_enter_virtual_mode() is not necessarily
a good place to clean a dummy object.

Drop the efi_delete_dummy_variable so that kexec reboot can work.

Signed-off-by: Dave Young <dyoung@redhat.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Matthew Garrett <mjg59@google.com>
Cc: Ben Dooks <ben.dooks@codethink.co.uk>
Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Cc: Jerry Snitselaar <jsnitsel@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Lukas Wunner <lukas@wunner.de>
Cc: Lyude Paul <lyude@redhat.com>
Cc: Octavian Purdila <octavian.purdila@intel.com>
Cc: Peter Jones <pjones@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott Talbert <swt@techie.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Cc: linux-integrity@vger.kernel.org
Link: https://lkml.kernel.org/r/20191002165904.8819-8-ard.biesheuvel@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-10-07 15:24:36 +02:00
Narendra K 1c5fecb612 efi: Export Runtime Configuration Interface table to sysfs
System firmware advertises the address of the 'Runtime
Configuration Interface table version 2 (RCI2)' via
an EFI Configuration Table entry. This code retrieves the RCI2
table from the address and exports it to sysfs as a binary
attribute 'rci2' under /sys/firmware/efi/tables directory.
The approach adopted is similar to the attribute 'DMI' under
/sys/firmware/dmi/tables.

RCI2 table contains BIOS HII in XML format and is used to populate
BIOS setup page in Dell EMC OpenManage Server Administrator tool.
The BIOS setup page contains BIOS tokens which can be configured.

Signed-off-by: Narendra K <Narendra.K@dell.com>
Reviewed-by: Mario Limonciello <mario.limonciello@dell.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
2019-08-08 11:10:25 +03:00
Ard Biesheuvel 5828efb95b efi: ia64: move SAL systab handling out of generic EFI code
The SAL systab is an Itanium specific EFI configuration table, so
move its handling into arch/ia64 where it belongs.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
2019-08-08 11:01:48 +03:00
Ard Biesheuvel ec7e1605d7 efi/x86: move UV_SYSTAB handling into arch/x86
The SGI UV UEFI machines are tightly coupled to the x86 architecture
so there is no need to keep any awareness of its existence in the
generic EFI layer, especially since we already have the infrastructure
to handle arch-specific configuration tables, and were even already
using it to some extent.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
2019-08-08 11:01:48 +03:00
Ard Biesheuvel e55f31a599 efi: x86: move efi_is_table_address() into arch/x86
The function efi_is_table_address() and the associated array of table
pointers is specific to x86. Since we will be adding some more x86
specific tables, let's move this code out of the generic code first.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
2019-08-08 11:01:48 +03:00
Gen Zhang 4e78921ba4 efi/x86/Add missing error handling to old_memmap 1:1 mapping code
The old_memmap flow in efi_call_phys_prolog() performs numerous memory
allocations, and either does not check for failure at all, or it does
but fails to propagate it back to the caller, which may end up calling
into the firmware with an incomplete 1:1 mapping.

So let's fix this by returning NULL from efi_call_phys_prolog() on
memory allocation failures only, and by handling this condition in the
caller. Also, clean up any half baked sets of page tables that we may
have created before returning with a NULL return value.

Note that any failure at this level will trigger a panic() two levels
up, so none of this makes a huge difference, but it is a nice cleanup
nonetheless.

[ardb: update commit log, add efi_call_phys_epilog() call on error path]

Signed-off-by: Gen Zhang <blackgod016574@gmail.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rob Bradford <robert.bradford@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/20190525112559.7917-2-ard.biesheuvel@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-25 13:48:17 +02:00
Sai Praneeth Prakhya 47c33a095e x86/efi: Move efi_<reserve/free>_boot_services() to arch/x86
efi_<reserve/free>_boot_services() are x86 specific quirks and as such
should be in asm/efi.h, so move them from linux/efi.h. Also, call
efi_free_boot_services() from __efi_enter_virtual_mode() as it is x86
specific call and ideally shouldn't be part of init/main.c

Signed-off-by: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arend van Spriel <arend.vanspriel@broadcom.com>
Cc: Bhupesh Sharma <bhsharma@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Eric Snowberg <eric.snowberg@oracle.com>
Cc: Hans de Goede <hdegoede@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jon Hunter <jonathanh@nvidia.com>
Cc: Julien Thierry <julien.thierry@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Nathan Chancellor <natechancellor@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sedat Dilek <sedat.dilek@gmail.com>
Cc: YiFei Zhu <zhuyifei1999@gmail.com>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/20181129171230.18699-7-ard.biesheuvel@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-11-30 09:10:31 +01:00
Mike Rapoport 57c8a661d9 mm: remove include/linux/bootmem.h
Move remaining definitions and declarations from include/linux/bootmem.h
into include/linux/memblock.h and remove the redundant header.

The includes were replaced with the semantic patch below and then
semi-automated removal of duplicated '#include <linux/memblock.h>

@@
@@
- #include <linux/bootmem.h>
+ #include <linux/memblock.h>

[sfr@canb.auug.org.au: dma-direct: fix up for the removal of linux/bootmem.h]
  Link: http://lkml.kernel.org/r/20181002185342.133d1680@canb.auug.org.au
[sfr@canb.auug.org.au: powerpc: fix up for removal of linux/bootmem.h]
  Link: http://lkml.kernel.org/r/20181005161406.73ef8727@canb.auug.org.au
[sfr@canb.auug.org.au: x86/kaslr, ACPI/NUMA: fix for linux/bootmem.h removal]
  Link: http://lkml.kernel.org/r/20181008190341.5e396491@canb.auug.org.au
Link: http://lkml.kernel.org/r/1536927045-23536-30-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Serge Semin <fancer.lancer@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 08:54:16 -07:00