[ Upstream commit e4f78057291608f6968a6789c5ebb3bde7d95504 ]
The bypass lock contention mitigation assumes there can be at most
2 contenders on the bypass lock, following this scheme:
1) One kthread takes the bypass lock
2) Another one spins on it and increment the contended counter
3) A third one (a bypass enqueuer) sees the contended counter on and
busy loops waiting on it to decrement.
However this assumption is wrong. There can be only one CPU to find the
lock contended because call_rcu() (the bypass enqueuer) is the only
bypass lock acquire site that may not already hold the NOCB lock
beforehand, all the other sites must first contend on the NOCB lock.
Therefore step 2) is impossible.
The other problem is that the mitigation assumes that contenders all
belong to the same rdp CPU, which is also impossible for a raw spinlock.
In theory the warning could trigger if the enqueuer holds the bypass
lock and another CPU flushes the bypass queue concurrently but this is
prevented from all flush users:
1) NOCB kthreads only flush if they successfully _tried_ to lock the
bypass lock. So no contention management here.
2) Flush on callbacks migration happen remotely when the CPU is offline.
No concurrency against bypass enqueue.
3) Flush on deoffloading happen either locally with IRQs disabled or
remotely when the CPU is not yet online. No concurrency against
bypass enqueue.
4) Flush on barrier entrain happen either locally with IRQs disabled or
remotely when the CPU is offline. No concurrency against
bypass enqueue.
For those reasons, the bypass lock contention mitigation isn't needed
and is even wrong. Remove it but keep the warning reporting a contended
bypass lock on a remote CPU, to keep unexpected contention awareness.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 0ae9942f03d0d034fdb0a4f44fc99f62a3107987 ]
When using rcutorture as a module, there are a number of conditions that
can abort the modprobe operation, for example, when attempting to run
both RCU CPU stall warning tests and forward-progress tests. This can
cause rcu_torture_cleanup() to be invoked on the unwind path out of
rcu_rcu_torture_init(), which will mean that rcu_gp_slow_unregister()
is invoked without a matching rcu_gp_slow_register(). This will cause
a splat because rcu_gp_slow_unregister() is passed rcu_fwd_cb_nodelay,
which does not match a NULL pointer.
This commit therefore forgives a mismatch involving a NULL pointer, thus
avoiding this false-positive splat.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 2cbc482d325ee58001472c4359b311958c4efdd1 ]
When a structure containing an RCU callback rhp is (incorrectly) freed
and reallocated after rhp is passed to call_rcu(), it is not unusual for
rhp->func to be set to NULL. This defeats the debugging prints used by
__call_rcu_common() in kernels built with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y,
which expect to identify the offending code using the identity of this
function.
And in kernels build without CONFIG_DEBUG_OBJECTS_RCU_HEAD=y, things
are even worse, as can be seen from this splat:
Unable to handle kernel NULL pointer dereference at virtual address 0
... ...
PC is at 0x0
LR is at rcu_do_batch+0x1c0/0x3b8
... ...
(rcu_do_batch) from (rcu_core+0x1d4/0x284)
(rcu_core) from (__do_softirq+0x24c/0x344)
(__do_softirq) from (__irq_exit_rcu+0x64/0x108)
(__irq_exit_rcu) from (irq_exit+0x8/0x10)
(irq_exit) from (__handle_domain_irq+0x74/0x9c)
(__handle_domain_irq) from (gic_handle_irq+0x8c/0x98)
(gic_handle_irq) from (__irq_svc+0x5c/0x94)
(__irq_svc) from (arch_cpu_idle+0x20/0x3c)
(arch_cpu_idle) from (default_idle_call+0x4c/0x78)
(default_idle_call) from (do_idle+0xf8/0x150)
(do_idle) from (cpu_startup_entry+0x18/0x20)
(cpu_startup_entry) from (0xc01530)
This commit therefore adds calls to mem_dump_obj(rhp) to output some
information, for example:
slab kmalloc-256 start ffff410c45019900 pointer offset 0 size 256
This provides the rough size of the memory block and the offset of the
rcu_head structure, which as least provides at least a few clues to help
locate the problem. If the problem is reproducible, additional slab
debugging can be enabled, for example, CONFIG_DEBUG_SLAB=y, which can
provide significantly more information.
Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 55d4669ef1b76823083caecfab12a8bd2ccdcf64 ]
When rcu_barrier() calls rcu_rdp_cpu_online() and observes a CPU off
rnp->qsmaskinitnext, it means that all accesses from the offline CPU
preceding the CPUHP_TEARDOWN_CPU are visible to RCU barrier, including
callbacks expiration and counter updates.
However interrupts can still fire after stop_machine() re-enables
interrupts and before rcutree_report_cpu_dead(). The related accesses
happening between CPUHP_TEARDOWN_CPU and rnp->qsmaskinitnext clearing
are _NOT_ guaranteed to be seen by rcu_barrier() without proper
ordering, especially when callbacks are invoked there to the end, making
rcutree_migrate_callback() bypass barrier_lock.
The following theoretical race example can make rcu_barrier() hang:
CPU 0 CPU 1
----- -----
//cpu_down()
smpboot_park_threads()
//ksoftirqd is parked now
<IRQ>
rcu_sched_clock_irq()
invoke_rcu_core()
do_softirq()
rcu_core()
rcu_do_batch()
// callback storm
// rcu_do_batch() returns
// before completing all
// of them
// do_softirq also returns early because of
// timeout. It defers to ksoftirqd but
// it's parked
</IRQ>
stop_machine()
take_cpu_down()
rcu_barrier()
spin_lock(barrier_lock)
// observes rcu_segcblist_n_cbs(&rdp->cblist) != 0
<IRQ>
do_softirq()
rcu_core()
rcu_do_batch()
//completes all pending callbacks
//smp_mb() implied _after_ callback number dec
</IRQ>
rcutree_report_cpu_dead()
rnp->qsmaskinitnext &= ~rdp->grpmask;
rcutree_migrate_callback()
// no callback, early return without locking
// barrier_lock
//observes !rcu_rdp_cpu_online(rdp)
rcu_barrier_entrain()
rcu_segcblist_entrain()
// Observe rcu_segcblist_n_cbs(rsclp) == 0
// because no barrier between reading
// rnp->qsmaskinitnext and rsclp->len
rcu_segcblist_add_len()
smp_mb__before_atomic()
// will now observe the 0 count and empty
// list, but too late, we enqueue regardless
WRITE_ONCE(rsclp->len, rsclp->len + v);
// ignored barrier callback
// rcu barrier stall...
This could be solved with a read memory barrier, enforcing the message
passing between rnp->qsmaskinitnext and rsclp->len, matching the full
memory barrier after rsclp->len addition in rcu_segcblist_add_len()
performed at the end of rcu_do_batch().
However the rcu_barrier() is complicated enough and probably doesn't
need too many more subtleties. CPU down is a slowpath and the
barrier_lock seldom contended. Solve the issue with unconditionally
locking the barrier_lock on rcutree_migrate_callbacks(). This makes sure
that either rcu_barrier() sees the empty queue or its entrained
callback will be migrated.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 6040072f4774a575fa67b912efe7722874be337b ]
On powerpc systems, spinlock acquisition does not order prior stores
against later loads. This means that this statement:
rfcp->rfc_next = NULL;
Can be reordered to follow this statement:
WRITE_ONCE(*rfcpp, rfcp);
Which is then a data race with rcu_torture_fwd_prog_cr(), specifically,
this statement:
rfcpn = READ_ONCE(rfcp->rfc_next)
KCSAN located this data race, which represents a real failure on powerpc.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Acked-by: Marco Elver <elver@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: <kasan-dev@googlegroups.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 399ced9594dfab51b782798efe60a2376cd5b724 ]
When RCU-TASKS-TRACE pre-gp takes a snapshot of the current task running
on all online CPUs, no explicit ordering synchronizes properly with a
context switch. This lack of ordering can permit the new task to miss
pre-grace-period update-side accesses. The following diagram, courtesy
of Paul, shows the possible bad scenario:
CPU 0 CPU 1
----- -----
// Pre-GP update side access
WRITE_ONCE(*X, 1);
smp_mb();
r0 = rq->curr;
RCU_INIT_POINTER(rq->curr, TASK_B)
spin_unlock(rq)
rcu_read_lock_trace()
r1 = X;
/* ignore TASK_B */
Either r0==TASK_B or r1==1 is needed but neither is guaranteed.
One possible solution to solve this is to wait for an RCU grace period
at the beginning of the RCU-tasks-trace grace period before taking the
current tasks snaphot. However this would introduce large additional
latencies to RCU-tasks-trace grace periods.
Another solution is to lock the target runqueue while taking the current
task snapshot. This ensures that the update side sees the latest context
switch and subsequent context switches will see the pre-grace-period
update side accesses.
This commit therefore adds runqueue locking to cpu_curr_snapshot().
Fixes: e386b67257 ("rcu-tasks: Eliminate RCU Tasks Trace IPIs to online CPUs")
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 8b9b443fa860276822b25057cb3ff3b28734dec0 ]
The "pipe_count > RCU_TORTURE_PIPE_LEN" check has a comment saying "Should
not happen, but...". This is only true when testing an RCU whose grace
periods are always long enough. This commit therefore fixes this comment.
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Closes: https://lore.kernel.org/lkml/CAHk-=wi7rJ-eGq+xaxVfzFEgbL9tdf6Kc8Z89rCpfcQOKm74Tw@mail.gmail.com/
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 3758f7d9917bd7ef0482c4184c0ad673b4c4e069 ]
The rcuc-starvation output from print_cpu_stall_info() might overflow the
buffer if there is a huge difference in jiffies difference. The situation
might seem improbable, but computers sometimes get very confused about
time, which can result in full-sized integers, and, in this case,
buffer overflow.
Also, the unsigned jiffies difference is printed using %ld, which is
normally for signed integers. This is intentional for debugging purposes,
but it is not obvious from the code.
This commit therefore changes sprintf() to snprintf() and adds a
clarifying comment about intention of %ld format.
Found by Linux Verification Center (linuxtesting.org) with SVACE.
Fixes: 245a629825 ("rcu: Dump rcuc kthread status for CPUs not reporting quiescent state")
Signed-off-by: Nikita Kiryushin <kiryushin@ancud.ru>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit cc5645fddb0ce28492b15520306d092730dffa48 ]
There is a possibility of buffer overflow in
show_rcu_tasks_trace_gp_kthread() if counters, passed
to sprintf() are huge. Counter numbers, needed for this
are unrealistically high, but buffer overflow is still
possible.
Use snprintf() with buffer size instead of sprintf().
Found by Linux Verification Center (linuxtesting.org) with SVACE.
Fixes: edf3775f0a ("rcu-tasks: Add count for idle tasks on offline CPUs")
Signed-off-by: Nikita Kiryushin <kiryushin@ancud.ru>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit e7539ffc9a770f36bacedcf0fbfb4bf2f244f4a5 ]
Just like is done for the kworker performing nodes initialization,
gracefully handle the possible allocation failure of the RCU expedited
grace period main kworker.
While at it perform a rename of the related checking functions to better
reflect the expedited specifics.
Reviewed-by: Kalesh Singh <kaleshsingh@google.com>
Fixes: 9621fbee44 ("rcu: Move expedited grace period (GP) work to RT kthread_worker")
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit a636c5e6f8fc34be520277e69c7c6ee1d4fc1d17 ]
Under CONFIG_RCU_EXP_KTHREAD=y, the nodes initialization for expedited
grace periods is queued to a kworker. However if the allocation of that
kworker failed, the nodes initialization is performed synchronously by
the caller instead.
Now the check for kworker initialization failure relies on the kworker
pointer to be NULL while its value might actually encapsulate an
allocation failure error.
Make sure to handle this case.
Reviewed-by: Kalesh Singh <kaleshsingh@google.com>
Fixes: 9621fbee44 ("rcu: Move expedited grace period (GP) work to RT kthread_worker")
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit e787644caf7628ad3269c1fbd321c3255cf51710 ]
When the CPU goes idle for the last time during the CPU down hotplug
process, RCU reports a final quiescent state for the current CPU. If
this quiescent state propagates up to the top, some tasks may then be
woken up to complete the grace period: the main grace period kthread
and/or the expedited main workqueue (or kworker).
If those kthreads have a SCHED_FIFO policy, the wake up can indirectly
arm the RT bandwith timer to the local offline CPU. Since this happens
after hrtimers have been migrated at CPUHP_AP_HRTIMERS_DYING stage, the
timer gets ignored. Therefore if the RCU kthreads are waiting for RT
bandwidth to be available, they may never be actually scheduled.
This triggers TREE03 rcutorture hangs:
rcu: INFO: rcu_preempt self-detected stall on CPU
rcu: 4-...!: (1 GPs behind) idle=9874/1/0x4000000000000000 softirq=0/0 fqs=20 rcuc=21071 jiffies(starved)
rcu: (t=21035 jiffies g=938281 q=40787 ncpus=6)
rcu: rcu_preempt kthread starved for 20964 jiffies! g938281 f0x0 RCU_GP_WAIT_FQS(5) ->state=0x0 ->cpu=0
rcu: Unless rcu_preempt kthread gets sufficient CPU time, OOM is now expected behavior.
rcu: RCU grace-period kthread stack dump:
task:rcu_preempt state:R running task stack:14896 pid:14 tgid:14 ppid:2 flags:0x00004000
Call Trace:
<TASK>
__schedule+0x2eb/0xa80
schedule+0x1f/0x90
schedule_timeout+0x163/0x270
? __pfx_process_timeout+0x10/0x10
rcu_gp_fqs_loop+0x37c/0x5b0
? __pfx_rcu_gp_kthread+0x10/0x10
rcu_gp_kthread+0x17c/0x200
kthread+0xde/0x110
? __pfx_kthread+0x10/0x10
ret_from_fork+0x2b/0x40
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1b/0x30
</TASK>
The situation can't be solved with just unpinning the timer. The hrtimer
infrastructure and the nohz heuristics involved in finding the best
remote target for an unpinned timer would then also need to handle
enqueues from an offline CPU in the most horrendous way.
So fix this on the RCU side instead and defer the wake up to an online
CPU if it's too late for the local one.
Reported-by: Paul E. McKenney <paulmck@kernel.org>
Fixes: 5c0930ccaad5 ("hrtimers: Push pending hrtimers away from outgoing CPU earlier")
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Neeraj Upadhyay (AMD) <neeraj.iitr10@gmail.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit a80712b9cc7e57830260ec5e1feb9cdb59e1da2f ]
The commit:
cff9b2332a ("kernel/sched: Modify initial boot task idle setup")
has changed the semantics of what is to be considered an idle task in
such a way that the idle task of an offline CPU may not carry the
PF_IDLE flag anymore.
However RCU-tasks-trace tests the opposite assertion, still assuming
that idle tasks carry the PF_IDLE flag during their whole lifecycle.
Remove this assumption to avoid spurious warnings but keep the initial
test verifying that the idle task is the current task on any offline
CPU.
Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Fixes: cff9b2332a ("kernel/sched: Modify initial boot task idle setup")
Suggested-by: Joel Fernandes <joel@joelfernandes.org>
Suggested-by: "Paul E. McKenney" <paulmck@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 9715ed501b585d47444865071674c961c0cc0020 ]
The commit:
cff9b2332a ("kernel/sched: Modify initial boot task idle setup")
has changed the semantics of what is to be considered an idle task in
such a way that CPU boot code preceding the actual idle loop is excluded
from it.
This has however introduced new potential RCU-tasks stalls when either:
1) Grace period is started before init/0 had a chance to set PF_IDLE,
keeping it stuck in the holdout list until idle ever schedules.
2) Grace period is started when some possible CPUs have never been
online, keeping their idle tasks stuck in the holdout list until the
CPU ever boots up.
3) Similar to 1) but with secondary CPUs: Grace period is started
concurrently with secondary CPU booting, putting its idle task in
the holdout list because PF_IDLE isn't yet observed on it. It stays
then stuck in the holdout list until that CPU ever schedules. The
effect is mitigated here by the hotplug AP thread that must run to
bring the CPU up.
Fix this with handling the new semantics of PF_IDLE, keeping in mind
that it may or may not be set on an idle task. Take advantage of that to
strengthen the coverage of an RCU-tasks quiescent state within an idle
task, excluding the CPU boot code from it. Only the code running within
the idle loop is now a quiescent state, along with offline CPUs.
Fixes: cff9b2332a ("kernel/sched: Modify initial boot task idle setup")
Suggested-by: Joel Fernandes <joel@joelfernandes.org>
Suggested-by: "Paul E. McKenney" <paulmck@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 2be4686d866ad5896f2bb94d82fe892197aea9c7 ]
Export the RCU point of view as to when a CPU is considered offline
(ie: when does RCU consider that a CPU is sufficiently down in the
hotplug process to not feature any possible read side).
This will be used by RCU-tasks whose vision of an offline CPU should
reasonably match the one of RCU core.
Fixes: cff9b2332a ("kernel/sched: Modify initial boot task idle setup")
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 85d68222ddc5f4522e456d97d201166acb50f716 ]
Commit 851a723e45 ("sched: Always clear user_cpus_ptr in
do_set_cpus_allowed()") added a kfree() call to free any user
provided affinity mask, if present. It was changed later to use
kfree_rcu() in commit 9a5418bc48 ("sched/core: Use kfree_rcu()
in do_set_cpus_allowed()") to avoid a circular locking dependency
problem.
It turns out that even kfree_rcu() isn't safe for avoiding
circular locking problem. As reported by kernel test robot,
the following circular locking dependency now exists:
&rdp->nocb_lock --> rcu_node_0 --> &rq->__lock
Solve this by breaking the rcu_node_0 --> &rq->__lock chain by moving
the resched_cpu() out from under rcu_node lock.
[peterz: heavily borrowed from Waiman's Changelog]
[paulmck: applied Z qiang feedback]
Fixes: 851a723e45 ("sched: Always clear user_cpus_ptr in do_set_cpus_allowed()")
Reported-by: kernel test robot <oliver.sang@intel.com>
Acked-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/oe-lkp/202310302207.a25f1a30-oliver.sang@intel.com
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 5f98fd034ca6fd1ab8c91a3488968a0e9caaabf6 upstream.
Since the actual slab freeing is deferred when calling kvfree_rcu(), so
is the kmemleak_free() callback informing kmemleak of the object
deletion. From the perspective of the kvfree_rcu() caller, the object is
freed and it may remove any references to it. Since kmemleak does not
scan RCU internal data storing the pointer, it will report such objects
as leaks during the grace period.
Tell kmemleak to ignore such objects on the kvfree_call_rcu() path. Note
that the tiny RCU implementation does not have such issue since the
objects can be tracked from the rcu_ctrlblk structure.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: Christoph Paasch <cpaasch@apple.com>
Closes: https://lore.kernel.org/all/F903A825-F05F-4B77-A2B5-7356282FBA2C@apple.com/
Cc: <stable@vger.kernel.org>
Tested-by: Christoph Paasch <cpaasch@apple.com>
Reviewed-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b96e7a5fa0ba9cda32888e04f8f4bac42d49a7f8 upstream.
There are instances where rcu_cpu_stall_reset() is called when jiffies
did not get a chance to update for a long time. Before jiffies is
updated, the CPU stall detector can go off triggering false-positives
where a just-started grace period appears to be ages old. In the past,
we disabled stall detection in rcu_cpu_stall_reset() however this got
changed [1]. This is resulting in false-positives in KGDB usecase [2].
Fix this by deferring the update of jiffies to the third run of the FQS
loop. This is more robust, as, even if rcu_cpu_stall_reset() is called
just before jiffies is read, we would end up pushing out the jiffies
read by 3 more FQS loops. Meanwhile the CPU stall detection will be
delayed and we will not get any false positives.
[1] https://lore.kernel.org/all/20210521155624.174524-2-senozhatsky@chromium.org/
[2] https://lore.kernel.org/all/20230814020045.51950-2-chenhuacai@loongson.cn/
Tested with rcutorture.cpu_stall option as well to verify stall behavior
with/without patch.
Tested-by: Huacai Chen <chenhuacai@loongson.cn>
Reported-by: Binbin Zhou <zhoubinbin@loongson.cn>
Closes: https://lore.kernel.org/all/20230814020045.51950-2-chenhuacai@loongson.cn/
Suggested-by: Paul McKenney <paulmck@kernel.org>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Fixes: a80be428fb ("rcu: Do not disable GP stall detection in rcu_cpu_stall_reset()")
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 8a77f38bcd28d3c22ab7dd8eff3f299d43c00411 ]
Acceleration in SRCU happens on enqueue time for each new callback. This
operation is expected not to fail and therefore any similar attempt
from other places shouldn't find any remaining callbacks to accelerate.
Moreover accelerations performed beyond enqueue time are error prone
because rcu_seq_snap() then may return the snapshot for a new grace
period that is not going to be started.
Remove these dangerous and needless accelerations and introduce instead
assertions reporting leaking unaccelerated callbacks beyond enqueue
time.
Co-developed-by: Yong He <alexyonghe@tencent.com>
Signed-off-by: Yong He <alexyonghe@tencent.com>
Co-developed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Co-developed-by: Neeraj upadhyay <Neeraj.Upadhyay@amd.com>
Signed-off-by: Neeraj upadhyay <Neeraj.Upadhyay@amd.com>
Reviewed-by: Like Xu <likexu@tencent.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit d8d5b7bf6f2105883bbd91bbd4d5b67e4e3dff71 ]
The value of a bitwise expression 1 << (cpu - sdp->mynode->grplo)
is subject to overflow due to a failure to cast operands to a larger
data type before performing the bitwise operation.
The maximum result of this subtraction is defined by the RCU_FANOUT_LEAF
Kconfig option, which on 64-bit systems defaults to 16 (resulting in a
maximum shift of 15), but which can be set up as high as 64 (resulting
in a maximum shift of 63). A value of 31 can result in sign extension,
resulting in 0xffffffff80000000 instead of the desired 0x80000000.
A value of 32 or greater triggers undefined behavior per the C standard.
This bug has not been known to cause issues because almost all kernels
take the default CONFIG_RCU_FANOUT_LEAF=16. Furthermore, as long as a
given compiler gives a deterministic non-zero result for 1<<N for N>=32,
the code correctly invokes all SRCU callbacks, albeit wasting CPU time
along the way.
This commit therefore substitutes the correct 1UL for the buggy 1.
Found by Linux Verification Center (linuxtesting.org) with SVACE.
Signed-off-by: Denis Arefev <arefev@swemel.ru>
Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Cc: David Laight <David.Laight@aculab.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 4a8e65b0c348e42107c64381e692e282900be361 ]
SRCU callbacks acceleration might fail if the preceding callbacks
advance also fails. This can happen when the following steps are met:
1) The RCU_WAIT_TAIL segment has callbacks (say for gp_num 8) and the
RCU_NEXT_READY_TAIL also has callbacks (say for gp_num 12).
2) The grace period for RCU_WAIT_TAIL is observed as started but not yet
completed so rcu_seq_current() returns 4 + SRCU_STATE_SCAN1 = 5.
3) This value is passed to rcu_segcblist_advance() which can't move
any segment forward and fails.
4) srcu_gp_start_if_needed() still proceeds with callback acceleration.
But then the call to rcu_seq_snap() observes the grace period for the
RCU_WAIT_TAIL segment (gp_num 8) as completed and the subsequent one
for the RCU_NEXT_READY_TAIL segment as started
(ie: 8 + SRCU_STATE_SCAN1 = 9) so it returns a snapshot of the
next grace period, which is 16.
5) The value of 16 is passed to rcu_segcblist_accelerate() but the
freshly enqueued callback in RCU_NEXT_TAIL can't move to
RCU_NEXT_READY_TAIL which already has callbacks for a previous grace
period (gp_num = 12). So acceleration fails.
6) Note in all these steps, srcu_invoke_callbacks() hadn't had a chance
to run srcu_invoke_callbacks().
Then some very bad outcome may happen if the following happens:
7) Some other CPU races and starts the grace period number 16 before the
CPU handling previous steps had a chance. Therefore srcu_gp_start()
isn't called on the latter sdp to fix the acceleration leak from
previous steps with a new pair of call to advance/accelerate.
8) The grace period 16 completes and srcu_invoke_callbacks() is finally
called. All the callbacks from previous grace periods (8 and 12) are
correctly advanced and executed but callbacks in RCU_NEXT_READY_TAIL
still remain. Then rcu_segcblist_accelerate() is called with a
snaphot of 20.
9) Since nothing started the grace period number 20, callbacks stay
unhandled.
This has been reported in real load:
[3144162.608392] INFO: task kworker/136:12:252684 blocked for more
than 122 seconds.
[3144162.615986] Tainted: G O K 5.4.203-1-tlinux4-0011.1 #1
[3144162.623053] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs"
disables this message.
[3144162.631162] kworker/136:12 D 0 252684 2 0x90004000
[3144162.631189] Workqueue: kvm-irqfd-cleanup irqfd_shutdown [kvm]
[3144162.631192] Call Trace:
[3144162.631202] __schedule+0x2ee/0x660
[3144162.631206] schedule+0x33/0xa0
[3144162.631209] schedule_timeout+0x1c4/0x340
[3144162.631214] ? update_load_avg+0x82/0x660
[3144162.631217] ? raw_spin_rq_lock_nested+0x1f/0x30
[3144162.631218] wait_for_completion+0x119/0x180
[3144162.631220] ? wake_up_q+0x80/0x80
[3144162.631224] __synchronize_srcu.part.19+0x81/0xb0
[3144162.631226] ? __bpf_trace_rcu_utilization+0x10/0x10
[3144162.631227] synchronize_srcu+0x5f/0xc0
[3144162.631236] irqfd_shutdown+0x3c/0xb0 [kvm]
[3144162.631239] ? __schedule+0x2f6/0x660
[3144162.631243] process_one_work+0x19a/0x3a0
[3144162.631244] worker_thread+0x37/0x3a0
[3144162.631247] kthread+0x117/0x140
[3144162.631247] ? process_one_work+0x3a0/0x3a0
[3144162.631248] ? __kthread_cancel_work+0x40/0x40
[3144162.631250] ret_from_fork+0x1f/0x30
Fix this with taking the snapshot for acceleration _before_ the read
of the current grace period number.
The only side effect of this solution is that callbacks advancing happen
then _after_ the full barrier in rcu_seq_snap(). This is not a problem
because that barrier only cares about:
1) Ordering accesses of the update side before call_srcu() so they don't
bleed.
2) See all the accesses prior to the grace period of the current gp_num
The only things callbacks advancing need to be ordered against are
carried by snp locking.
Reported-by: Yong He <alexyonghe@tencent.com>
Co-developed-by:: Yong He <alexyonghe@tencent.com>
Signed-off-by: Yong He <alexyonghe@tencent.com>
Co-developed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Co-developed-by: Neeraj upadhyay <Neeraj.Upadhyay@amd.com>
Signed-off-by: Neeraj upadhyay <Neeraj.Upadhyay@amd.com>
Link: http://lore.kernel.org/CANZk6aR+CqZaqmMWrC2eRRPY12qAZnDZLwLnHZbNi=xXMB401g@mail.gmail.com
Fixes: da915ad5cf ("srcu: Parallelize callback handling")
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
Here is the big set of tty and serial driver changes for 6.6-rc1.
Lots of cleanups in here this cycle, and some driver updates. Short
summary is:
- Jiri's continued work to make the tty code and apis be a bit more
sane with regards to modern kernel coding style and types
- cpm_uart driver updates
- n_gsm updates and fixes
- meson driver updates
- sc16is7xx driver updates
- 8250 driver updates for different hardware types
- qcom-geni driver fixes
- tegra serial driver change
- stm32 driver updates
- synclink_gt driver cleanups
- tty structure size reduction
All of these have been in linux-next this week with no reported issues.
The last bit of cleanups from Jiri and the tty structure size reduction
came in last week, a bit late but as they were just style changes and
size reductions, I figured they should get into this merge cycle so that
others can work on top of them with no merge conflicts.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCZPH+jA8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+ykKyACgldt6QeenTN+6dXIHS/eQHtTKZwMAn3arSeXI
QrUUnLFjOWyoX87tbMBQ
=LVw0
-----END PGP SIGNATURE-----
Merge tag 'tty-6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty
Pull tty/serial driver updates from Greg KH:
"Here is the big set of tty and serial driver changes for 6.6-rc1.
Lots of cleanups in here this cycle, and some driver updates. Short
summary is:
- Jiri's continued work to make the tty code and apis be a bit more
sane with regards to modern kernel coding style and types
- cpm_uart driver updates
- n_gsm updates and fixes
- meson driver updates
- sc16is7xx driver updates
- 8250 driver updates for different hardware types
- qcom-geni driver fixes
- tegra serial driver change
- stm32 driver updates
- synclink_gt driver cleanups
- tty structure size reduction
All of these have been in linux-next this week with no reported
issues. The last bit of cleanups from Jiri and the tty structure size
reduction came in last week, a bit late but as they were just style
changes and size reductions, I figured they should get into this merge
cycle so that others can work on top of them with no merge conflicts"
* tag 'tty-6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty: (199 commits)
tty: shrink the size of struct tty_struct by 40 bytes
tty: n_tty: deduplicate copy code in n_tty_receive_buf_real_raw()
tty: n_tty: extract ECHO_OP processing to a separate function
tty: n_tty: unify counts to size_t
tty: n_tty: use u8 for chars and flags
tty: n_tty: simplify chars_in_buffer()
tty: n_tty: remove unsigned char casts from character constants
tty: n_tty: move newline handling to a separate function
tty: n_tty: move canon handling to a separate function
tty: n_tty: use MASK() for masking out size bits
tty: n_tty: make n_tty_data::num_overrun unsigned
tty: n_tty: use time_is_before_jiffies() in n_tty_receive_overrun()
tty: n_tty: use 'num' for writes' counts
tty: n_tty: use output character directly
tty: n_tty: make flow of n_tty_receive_buf_common() a bool
Revert "tty: serial: meson: Add a earlycon for the T7 SoC"
Documentation: devices.txt: Fix minors for ttyCPM*
Documentation: devices.txt: Remove ttySIOC*
Documentation: devices.txt: Remove ttyIOC*
serial: 8250_bcm7271: improve bcm7271 8250 port
...
Core
----
- Increase size limits for to-be-sent skb frag allocations. This
allows tun, tap devices and packet sockets to better cope with large
writes operations.
- Store netdevs in an xarray, to simplify iterating over netdevs.
- Refactor nexthop selection for multipath routes.
- Improve sched class lifetime handling.
- Add backup nexthop ID support for bridge.
- Implement drop reasons support in openvswitch.
- Several data races annotations and fixes.
- Constify the sk parameter of routing functions.
- Prepend kernel version to netconsole message.
Protocols
---------
- Implement support for TCP probing the peer being under memory
pressure.
- Remove hard coded limitation on IPv6 specific info placement
inside the socket struct.
- Get rid of sysctl_tcp_adv_win_scale and use an auto-estimated
per socket scaling factor.
- Scaling-up the IPv6 expired route GC via a separated list of
expiring routes.
- In-kernel support for the TLS alert protocol.
- Better support for UDP reuseport with connected sockets.
- Add NEXT-C-SID support for SRv6 End.X behavior, reducing the SR
header size.
- Get rid of additional ancillary per MPTCP connection struct socket.
- Implement support for BPF-based MPTCP packet schedulers.
- Format MPTCP subtests selftests results in TAP.
- Several new SMC 2.1 features including unique experimental options,
max connections per lgr negotiation, max links per lgr negotiation.
BPF
---
- Multi-buffer support in AF_XDP.
- Add multi uprobe BPF links for attaching multiple uprobes
and usdt probes, which is significantly faster and saves extra fds.
- Implement an fd-based tc BPF attach API (TCX) and BPF link support on
top of it.
- Add SO_REUSEPORT support for TC bpf_sk_assign.
- Support new instructions from cpu v4 to simplify the generated code and
feature completeness, for x86, arm64, riscv64.
- Support defragmenting IPv(4|6) packets in BPF.
- Teach verifier actual bounds of bpf_get_smp_processor_id()
and fix perf+libbpf issue related to custom section handling.
- Introduce bpf map element count and enable it for all program types.
- Add a BPF hook in sys_socket() to change the protocol ID
from IPPROTO_TCP to IPPROTO_MPTCP to cover migration for legacy.
- Introduce bpf_me_mcache_free_rcu() and fix OOM under stress.
- Add uprobe support for the bpf_get_func_ip helper.
- Check skb ownership against full socket.
- Support for up to 12 arguments in BPF trampoline.
- Extend link_info for kprobe_multi and perf_event links.
Netfilter
---------
- Speed-up process exit by aborting ruleset validation if a
fatal signal is pending.
- Allow NLA_POLICY_MASK to be used with BE16/BE32 types.
Driver API
----------
- Page pool optimizations, to improve data locality and cache usage.
- Introduce ndo_hwtstamp_get() and ndo_hwtstamp_set() to avoid the need
for raw ioctl() handling in drivers.
- Simplify genetlink dump operations (doit/dumpit) providing them
the common information already populated in struct genl_info.
- Extend and use the yaml devlink specs to [re]generate the split ops.
- Introduce devlink selective dumps, to allow SF filtering SF based on
handle and other attributes.
- Add yaml netlink spec for netlink-raw families, allow route, link and
address related queries via the ynl tool.
- Remove phylink legacy mode support.
- Support offload LED blinking to phy.
- Add devlink port function attributes for IPsec.
New hardware / drivers
----------------------
- Ethernet:
- Broadcom ASP 2.0 (72165) ethernet controller
- MediaTek MT7988 SoC
- Texas Instruments AM654 SoC
- Texas Instruments IEP driver
- Atheros qca8081 phy
- Marvell 88Q2110 phy
- NXP TJA1120 phy
- WiFi:
- MediaTek mt7981 support
- Can:
- Kvaser SmartFusion2 PCI Express devices
- Allwinner T113 controllers
- Texas Instruments tcan4552/4553 chips
- Bluetooth:
- Intel Gale Peak
- Qualcomm WCN3988 and WCN7850
- NXP AW693 and IW624
- Mediatek MT2925
Drivers
-------
- Ethernet NICs:
- nVidia/Mellanox:
- mlx5:
- support UDP encapsulation in packet offload mode
- IPsec packet offload support in eswitch mode
- improve aRFS observability by adding new set of counters
- extends MACsec offload support to cover RoCE traffic
- dynamic completion EQs
- mlx4:
- convert to use auxiliary bus instead of custom interface logic
- Intel
- ice:
- implement switchdev bridge offload, even for LAG interfaces
- implement SRIOV support for LAG interfaces
- igc:
- add support for multiple in-flight TX timestamps
- Broadcom:
- bnxt:
- use the unified RX page pool buffers for XDP and non-XDP
- use the NAPI skb allocation cache
- OcteonTX2:
- support Round Robin scheduling HTB offload
- TC flower offload support for SPI field
- Freescale:
- add XDP_TX feature support
- AMD:
- ionic: add support for PCI FLR event
- sfc:
- basic conntrack offload
- introduce eth, ipv4 and ipv6 pedit offloads
- ST Microelectronics:
- stmmac: maximze PTP timestamping resolution
- Virtual NICs:
- Microsoft vNIC:
- batch ringing RX queue doorbell on receiving packets
- add page pool for RX buffers
- Virtio vNIC:
- add per queue interrupt coalescing support
- Google vNIC:
- add queue-page-list mode support
- Ethernet high-speed switches:
- nVidia/Mellanox (mlxsw):
- add port range matching tc-flower offload
- permit enslavement to netdevices with uppers
- Ethernet embedded switches:
- Marvell (mv88e6xxx):
- convert to phylink_pcs
- Renesas:
- r8A779fx: add speed change support
- rzn1: enables vlan support
- Ethernet PHYs:
- convert mv88e6xxx to phylink_pcs
- WiFi:
- Qualcomm Wi-Fi 7 (ath12k):
- extremely High Throughput (EHT) PHY support
- RealTek (rtl8xxxu):
- enable AP mode for: RTL8192FU, RTL8710BU (RTL8188GU),
RTL8192EU and RTL8723BU
- RealTek (rtw89):
- Introduce Time Averaged SAR (TAS) support
- Connector:
- support for event filtering
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
-----BEGIN PGP SIGNATURE-----
iQJGBAABCAAwFiEEg1AjqC77wbdLX2LbKSR5jcyPE6QFAmTt1ZoSHHBhYmVuaUBy
ZWRoYXQuY29tAAoJECkkeY3MjxOkgFUP/REFaYWdWUvAzmWeezyx9dqgZMfSOjWq
9QvySiA94OAOcjIYkb7wfzQ5BBAZqaBQ/f8XqWwS1EDDDEBs8sP1cxmABKwW7Hsr
qFRu2sOqLzKBk223d0jIgEocfQaFpGbF71gXoTlDivBjBi5UxWm9bF0XnbYWcKgO
/QEvzNosi9uNdi85Fzmv62J6YzAdidEpwGsM7X2CfejwNRmStxAEg/NwvRR0Hyiq
OJCo97omEgTRaUle8nc64PDx33u4h5kQ1BkaeHEv0rbE3hftFC2YPKn/InmqSFGz
6ew2xnrGPR37LCuAiCcIIv6yR7K0eu0iYJ7jXwZxBDqxGavEPuwWGBoCP6qFiitH
ZLWhIrAUrdmSbySkTOCONhJ475qFAuQoYHYpZnX/bJZUHlSsb/9lwDJYJQGpVfd1
/daqJVSb7lhaifmNO1iNd/ibCIXq9zapwtkRwA897M8GkZBTsnVvazFld1Em+Se3
Bx6DSDUVBqVQ9fpZG2IAGD6odDwOzC1lF2IoceFvK9Ff6oE0psI+A0qNLMkHxZbW
Qlo7LsNe53hpoCC+yHTfXX7e/X8eNt0EnCGOQJDusZ0Nr3K7H4LKFA0i8UBUK05n
4lKnnaSQW7GQgdofLWt103OMDR9GoDxpFsm7b1X9+AEk6Fz6tq50wWYeMZETUKYP
DCW8VGFOZjZM
=9CsR
-----END PGP SIGNATURE-----
Merge tag 'net-next-6.6' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next
Pull networking updates from Paolo Abeni:
"Core:
- Increase size limits for to-be-sent skb frag allocations. This
allows tun, tap devices and packet sockets to better cope with
large writes operations
- Store netdevs in an xarray, to simplify iterating over netdevs
- Refactor nexthop selection for multipath routes
- Improve sched class lifetime handling
- Add backup nexthop ID support for bridge
- Implement drop reasons support in openvswitch
- Several data races annotations and fixes
- Constify the sk parameter of routing functions
- Prepend kernel version to netconsole message
Protocols:
- Implement support for TCP probing the peer being under memory
pressure
- Remove hard coded limitation on IPv6 specific info placement inside
the socket struct
- Get rid of sysctl_tcp_adv_win_scale and use an auto-estimated per
socket scaling factor
- Scaling-up the IPv6 expired route GC via a separated list of
expiring routes
- In-kernel support for the TLS alert protocol
- Better support for UDP reuseport with connected sockets
- Add NEXT-C-SID support for SRv6 End.X behavior, reducing the SR
header size
- Get rid of additional ancillary per MPTCP connection struct socket
- Implement support for BPF-based MPTCP packet schedulers
- Format MPTCP subtests selftests results in TAP
- Several new SMC 2.1 features including unique experimental options,
max connections per lgr negotiation, max links per lgr negotiation
BPF:
- Multi-buffer support in AF_XDP
- Add multi uprobe BPF links for attaching multiple uprobes and usdt
probes, which is significantly faster and saves extra fds
- Implement an fd-based tc BPF attach API (TCX) and BPF link support
on top of it
- Add SO_REUSEPORT support for TC bpf_sk_assign
- Support new instructions from cpu v4 to simplify the generated code
and feature completeness, for x86, arm64, riscv64
- Support defragmenting IPv(4|6) packets in BPF
- Teach verifier actual bounds of bpf_get_smp_processor_id() and fix
perf+libbpf issue related to custom section handling
- Introduce bpf map element count and enable it for all program types
- Add a BPF hook in sys_socket() to change the protocol ID from
IPPROTO_TCP to IPPROTO_MPTCP to cover migration for legacy
- Introduce bpf_me_mcache_free_rcu() and fix OOM under stress
- Add uprobe support for the bpf_get_func_ip helper
- Check skb ownership against full socket
- Support for up to 12 arguments in BPF trampoline
- Extend link_info for kprobe_multi and perf_event links
Netfilter:
- Speed-up process exit by aborting ruleset validation if a fatal
signal is pending
- Allow NLA_POLICY_MASK to be used with BE16/BE32 types
Driver API:
- Page pool optimizations, to improve data locality and cache usage
- Introduce ndo_hwtstamp_get() and ndo_hwtstamp_set() to avoid the
need for raw ioctl() handling in drivers
- Simplify genetlink dump operations (doit/dumpit) providing them the
common information already populated in struct genl_info
- Extend and use the yaml devlink specs to [re]generate the split ops
- Introduce devlink selective dumps, to allow SF filtering SF based
on handle and other attributes
- Add yaml netlink spec for netlink-raw families, allow route, link
and address related queries via the ynl tool
- Remove phylink legacy mode support
- Support offload LED blinking to phy
- Add devlink port function attributes for IPsec
New hardware / drivers:
- Ethernet:
- Broadcom ASP 2.0 (72165) ethernet controller
- MediaTek MT7988 SoC
- Texas Instruments AM654 SoC
- Texas Instruments IEP driver
- Atheros qca8081 phy
- Marvell 88Q2110 phy
- NXP TJA1120 phy
- WiFi:
- MediaTek mt7981 support
- Can:
- Kvaser SmartFusion2 PCI Express devices
- Allwinner T113 controllers
- Texas Instruments tcan4552/4553 chips
- Bluetooth:
- Intel Gale Peak
- Qualcomm WCN3988 and WCN7850
- NXP AW693 and IW624
- Mediatek MT2925
Drivers:
- Ethernet NICs:
- nVidia/Mellanox:
- mlx5:
- support UDP encapsulation in packet offload mode
- IPsec packet offload support in eswitch mode
- improve aRFS observability by adding new set of counters
- extends MACsec offload support to cover RoCE traffic
- dynamic completion EQs
- mlx4:
- convert to use auxiliary bus instead of custom interface
logic
- Intel
- ice:
- implement switchdev bridge offload, even for LAG
interfaces
- implement SRIOV support for LAG interfaces
- igc:
- add support for multiple in-flight TX timestamps
- Broadcom:
- bnxt:
- use the unified RX page pool buffers for XDP and non-XDP
- use the NAPI skb allocation cache
- OcteonTX2:
- support Round Robin scheduling HTB offload
- TC flower offload support for SPI field
- Freescale:
- add XDP_TX feature support
- AMD:
- ionic: add support for PCI FLR event
- sfc:
- basic conntrack offload
- introduce eth, ipv4 and ipv6 pedit offloads
- ST Microelectronics:
- stmmac: maximze PTP timestamping resolution
- Virtual NICs:
- Microsoft vNIC:
- batch ringing RX queue doorbell on receiving packets
- add page pool for RX buffers
- Virtio vNIC:
- add per queue interrupt coalescing support
- Google vNIC:
- add queue-page-list mode support
- Ethernet high-speed switches:
- nVidia/Mellanox (mlxsw):
- add port range matching tc-flower offload
- permit enslavement to netdevices with uppers
- Ethernet embedded switches:
- Marvell (mv88e6xxx):
- convert to phylink_pcs
- Renesas:
- r8A779fx: add speed change support
- rzn1: enables vlan support
- Ethernet PHYs:
- convert mv88e6xxx to phylink_pcs
- WiFi:
- Qualcomm Wi-Fi 7 (ath12k):
- extremely High Throughput (EHT) PHY support
- RealTek (rtl8xxxu):
- enable AP mode for: RTL8192FU, RTL8710BU (RTL8188GU),
RTL8192EU and RTL8723BU
- RealTek (rtw89):
- Introduce Time Averaged SAR (TAS) support
- Connector:
- support for event filtering"
* tag 'net-next-6.6' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1806 commits)
net: ethernet: mtk_wed: minor change in wed_{tx,rx}info_show
net: ethernet: mtk_wed: add some more info in wed_txinfo_show handler
net: stmmac: clarify difference between "interface" and "phy_interface"
r8152: add vendor/device ID pair for D-Link DUB-E250
devlink: move devlink_notify_register/unregister() to dev.c
devlink: move small_ops definition into netlink.c
devlink: move tracepoint definitions into core.c
devlink: push linecard related code into separate file
devlink: push rate related code into separate file
devlink: push trap related code into separate file
devlink: use tracepoint_enabled() helper
devlink: push region related code into separate file
devlink: push param related code into separate file
devlink: push resource related code into separate file
devlink: push dpipe related code into separate file
devlink: move and rename devlink_dpipe_send_and_alloc_skb() helper
devlink: push shared buffer related code into separate file
devlink: push port related code into separate file
devlink: push object register/unregister notifications into separate helpers
inet: fix IP_TRANSPARENT error handling
...
The rcu_nocb_poll kernel boot parameter is defined via early_param(),
whose parsing functions are invoked from parse_early_param() which
is in turn invoked by setup_arch(), which is very early indeed. It
is invoked so early that the console output timestamps read 0.000000,
in other words, before time begins.
This use of early_param() means that the rcu_nocb_poll kernel boot
parameter cannot usefully be embedded into the kernel image. Yes, you
can embed it, but setup_boot_config() is invoked from start_kernel()
too late for it to be parsed.
But it makes no sense to parse this parameter so early. After all,
it cannot do anything until the rcuog kthreads are created, which is
long after rcu_init() time, let alone setup_boot_config() time.
This commit therefore switches the rcu_nocb_poll kernel boot parameter
from early_param() to __setup(), which allows boot-config parsing of
this parameter, in turn allowing it to be embedded into the kernel image.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
The rcu_request_urgent_qs_task() function does a cross-CPU store
to ->rcu_urgent_qs, so this commit therefore marks the load in
__rcu_irq_enter_check_tick() with READ_ONCE().
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Now that torture_random() uses swahw32(), its callers no longer see
not-so-random low-order bits, as these are now swapped up into the upper
16 bits of the torture_random() function's return value. This commit
therefore removes the right-shifting of torture_random() return values.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
In kernels built with CONFIG_PROVE_RCU=y (for example, lockdep kernels),
the following sequence of events can occur:
o rcu_init_tasks_generic() is invoked just before init is spawned.
It invokes rcu_spawn_tasks_kthread() and friends.
o rcu_spawn_tasks_kthread() invokes rcu_spawn_tasks_kthread_generic(),
which uses kthread_run() to create the needed kthread.
o Control returns to rcu_init_tasks_generic(), which, because this
is a CONFIG_PROVE_RCU=y kernel, invokes the version of the
rcu_tasks_initiate_self_tests() function that actually does
something, including invoking synchronize_rcu_tasks(), which
in turn invokes synchronize_rcu_tasks_generic().
o synchronize_rcu_tasks_generic() sees that the ->kthread_ptr is
still NULL, because the newly spawned kthread has not yet
started.
o The new kthread starts, preempting synchronize_rcu_tasks_generic()
just after its check. This kthread invokes rcu_tasks_one_gp(),
which acquires ->tasks_gp_mutex, and, seeing no work, blocks
in rcuwait_wait_event(). Note that this step requires either
a preemptible kernel or a fault-injection-style sleep at the
beginning of mutex_lock().
o synchronize_rcu_tasks_generic() resumes and invokes rcu_tasks_one_gp().
o rcu_tasks_one_gp() attempts to acquire ->tasks_gp_mutex, which
is still held by the newly spawned kthread's rcu_tasks_one_gp()
function. Deadlock.
Because the only reason for ->tasks_gp_mutex is to handle pre-kthread
synchronous grace periods, this commit avoids this deadlock by having
rcu_tasks_one_gp() momentarily release ->tasks_gp_mutex while invoking
rcuwait_wait_event(). This allows the call to rcu_tasks_one_gp() from
synchronize_rcu_tasks_generic() proceed.
Note that it is not necessary to release the mutex anywhere else in
rcu_tasks_one_gp() because rcuwait_wait_event() is the only function
that can block indefinitely.
Reported-by: Guenter Roeck <linux@roeck-us.net>
Reported-by: Roy Hopkins <rhopkins@suse.de>
Reported-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Tested-by: Roy Hopkins <rhopkins@suse.de>
Currently, cblist_init_generic() holds a raw spinlock when invoking
INIT_WORK(). This fails in kernels built with CONFIG_DEBUG_OBJECTS=y
due to memory allocation being forbidden while holding a raw spinlock.
But the only reason for holding the raw spinlock is to synchronize
with early boot calls to call_rcu_tasks(), call_rcu_tasks_rude, and,
last but not least, call_rcu_tasks_trace(). These calls also invoke
cblist_init_generic() in order to support early boot queueing of
callbacks.
Except that there are no early boot calls to either of these three
functions, and the BPF guys confirm that they have no plans to add any
such calls.
This commit therefore removes the synchronization and adds a
WARN_ON_ONCE() to catch the case of now-prohibited early boot RCU Tasks
callback queueing.
If early boot queueing is needed, an "initialized" flag may be added to
the rcu_tasks structure. Then queueing a callback before this flag is set
would initialize the callback list (if needed) and queue the callback.
The decision as to where to queue the callback given the possibility of
non-zero boot CPUs is left as an exercise for the reader.
Reported-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The passed parameter to sysrq handlers is a key (a character). So change
the type from 'int' to 'u8'. Let it specifically be 'u8' for two
reasons:
* unsigned: unsigned values come from the upper layers (devices) and the
tty layer assumes unsigned on most places, and
* 8-bit: as that what's supposed to be one day in all the layers built
on the top of tty. (Currently, we use mostly 'unsigned char' and
somewhere still only 'char'. (But that also translates to the former
thanks to -funsigned-char.))
Signed-off-by: Jiri Slaby (SUSE) <jirislaby@kernel.org>
Cc: Richard Henderson <richard.henderson@linaro.org>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: WANG Xuerui <kernel@xen0n.name>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Cc: Maxime Ripard <mripard@kernel.org>
Cc: Thomas Zimmermann <tzimmermann@suse.de>
Cc: David Airlie <airlied@gmail.com>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Jason Wessel <jason.wessel@windriver.com>
Cc: Daniel Thompson <daniel.thompson@linaro.org>
Cc: Douglas Anderson <dianders@chromium.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Len Brown <len.brown@intel.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Zqiang <qiang.zhang1211@gmail.com>
Acked-by: Thomas Zimmermann <tzimmermann@suse.de> # DRM
Acked-by: WANG Xuerui <git@xen0n.name> # loongarch
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Acked-by: Daniel Thompson <daniel.thompson@linaro.org>
Link: https://lore.kernel.org/r/20230712081811.29004-3-jirislaby@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Make it clear that this function always returns either true or false
without other planned failure modes.
Reported-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
The rtort_pipe_count WARN() indicates that grace periods were unable
to invoke all callbacks during a stutter_wait() interval. But it is
sometimes helpful to have a bit more information as to why. This commit
therefore invokes show_rcu_gp_kthreads() immediately before that WARN()
in order to dump out some relevant information.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Both the CONFIG_TASKS_RCU and CONFIG_TASKS_RUDE_RCU options
are broken when RCU_TINY is enabled as well, as some functions
are missing a declaration.
In file included from kernel/rcu/update.c:649:
kernel/rcu/tasks.h:1271:21: error: no previous prototype for 'get_rcu_tasks_rude_gp_kthread' [-Werror=missing-prototypes]
1271 | struct task_struct *get_rcu_tasks_rude_gp_kthread(void)
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~
kernel/rcu/rcuscale.c:330:27: error: 'get_rcu_tasks_rude_gp_kthread' undeclared here (not in a function); did you mean 'get_rcu_tasks_trace_gp_kthread'?
330 | .rso_gp_kthread = get_rcu_tasks_rude_gp_kthread,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~
| get_rcu_tasks_trace_gp_kthread
In file included from /home/arnd/arm-soc/kernel/rcu/update.c:649:
kernel/rcu/tasks.h:1113:21: error: no previous prototype for 'get_rcu_tasks_gp_kthread' [-Werror=missing-prototypes]
1113 | struct task_struct *get_rcu_tasks_gp_kthread(void)
| ^~~~~~~~~~~~~~~~~~~~~~~~
Also, building with CONFIG_TASKS_RUDE_RCU but not CONFIG_TASKS_RCU is
broken because of some missing stub functions:
kernel/rcu/rcuscale.c:322:27: error: 'tasks_scale_read_lock' undeclared here (not in a function); did you mean 'srcu_scale_read_lock'?
322 | .readlock = tasks_scale_read_lock,
| ^~~~~~~~~~~~~~~~~~~~~
| srcu_scale_read_lock
kernel/rcu/rcuscale.c:323:27: error: 'tasks_scale_read_unlock' undeclared here (not in a function); did you mean 'srcu_scale_read_unlock'?
323 | .readunlock = tasks_scale_read_unlock,
| ^~~~~~~~~~~~~~~~~~~~~~~
| srcu_scale_read_unlock
Move the declarations outside of the RCU_TINY #ifdef and duplicate the
shared stub functions to address all of the above.
Fixes: 88d7ff818f0ce ("rcuscale: Add RCU Tasks Rude testing")
Fixes: 755f1c5eb416b ("rcuscale: Measure RCU Tasks Trace grace-period kthread CPU time")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit causes RCU Tasks Trace to output the CPU time consumed by
its grace-period kthread. The CPU time is whatever is in the designated
task's current->stime field, and thus is controlled by whatever CPU-time
accounting scheme is in effect.
This output appears in microseconds as follows on the console:
rcu_scale: Grace-period kthread CPU time: 42367.037
[ paulmck: Apply Willy Tarreau feedback. ]
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit adds the ability to output the CPU time consumed by the
grace-period kthread for the RCU variant under test. The CPU time is
whatever is in the designated task's current->stime field, and thus is
controlled by whatever CPU-time accounting scheme is in effect.
This output appears in microseconds as follows on the console:
rcu_scale: Grace-period kthread CPU time: 42367.037
[ paulmck: Apply feedback from Stephen Rothwell and kernel test robot. ]
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Tested-by: Yujie Liu <yujie.liu@intel.com>
By default, rcuscale collects only 100 points of data per writer, but
arranging for all kthreads to be actively collecting (if not recording)
data during the time that any kthread might be recording. This works
well, but does not allow much time to bring external performance tools
to bear. This commit therefore adds a minruntime module parameter
that specifies a minimum data-collection interval in seconds.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Some workloads do isolated RCU work, and this can affect operation
latencies. This commit therefore adds a writer_holdoff_jiffies module
parameter that causes writers to block for the specified number of
jiffies between each pair of consecutive write-side operations.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit adds a "jiffies" test to refscale, allowing use of jiffies
to be compared to ktime_get_real_fast_ns(). On my x86 laptop, jiffies
is more than 20x faster. (Though for many uses, the tens-of-nanoseconds
overhead of ktime_get_real_fast_ns() will be just fine.)
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Running the refscale test occasionally crashes the kernel with the
following error:
[ 8569.952896] BUG: unable to handle page fault for address: ffffffffffffffe8
[ 8569.952900] #PF: supervisor read access in kernel mode
[ 8569.952902] #PF: error_code(0x0000) - not-present page
[ 8569.952904] PGD c4b048067 P4D c4b049067 PUD c4b04b067 PMD 0
[ 8569.952910] Oops: 0000 [#1] PREEMPT_RT SMP NOPTI
[ 8569.952916] Hardware name: Dell Inc. PowerEdge R750/0WMWCR, BIOS 1.2.4 05/28/2021
[ 8569.952917] RIP: 0010:prepare_to_wait_event+0x101/0x190
:
[ 8569.952940] Call Trace:
[ 8569.952941] <TASK>
[ 8569.952944] ref_scale_reader+0x380/0x4a0 [refscale]
[ 8569.952959] kthread+0x10e/0x130
[ 8569.952966] ret_from_fork+0x1f/0x30
[ 8569.952973] </TASK>
The likely cause is that init_waitqueue_head() is called after the call to
the torture_create_kthread() function that creates the ref_scale_reader
kthread. Although this init_waitqueue_head() call will very likely
complete before this kthread is created and starts running, it is
possible that the calling kthread will be delayed between the calls to
torture_create_kthread() and init_waitqueue_head(). In this case, the
new kthread will use the waitqueue head before it is properly initialized,
which is not good for the kernel's health and well-being.
The above crash happened here:
static inline void __add_wait_queue(...)
{
:
if (!(wq->flags & WQ_FLAG_PRIORITY)) <=== Crash here
The offset of flags from list_head entry in wait_queue_entry is
-0x18. If reader_tasks[i].wq.head.next is NULL as allocated reader_task
structure is zero initialized, the instruction will try to access address
0xffffffffffffffe8, which is exactly the fault address listed above.
This commit therefore invokes init_waitqueue_head() before creating
the kthread.
Fixes: 653ed64b01 ("refperf: Add a test to measure performance of read-side synchronization")
Signed-off-by: Waiman Long <longman@redhat.com>
Reviewed-by: Qiuxu Zhuo <qiuxu.zhuo@intel.com>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Acked-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The various RCU Tasks flavors now do lazy grace periods when there are
only asynchronous grace period requests. By default, the system will let
250 milliseconds elapse after the first call_rcu_tasks*() callbacki is
queued before starting a grace period. In contrast, synchronous grace
period requests such as synchronize_rcu_tasks*() will start a grace
period immediately.
However, invoking one of the call_rcu_tasks*() functions in a too-tight
loop can result in a callback flood, which in turn can exhaust memory
if grace periods are delayed for too long.
This commit therefore sets a limit so that the grace-period kthread
will be awakened when any CPU's callback list expands to contain
rcupdate.rcu_task_lazy_lim callbacks elements (defaulting to 32, set to -1
to disable), the grace-period kthread will be awakened, thus cancelling
any ongoing laziness and getting out in front of the potential callback
flood.
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Martin KaFai Lau <kafai@fb.com>
Cc: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit adds kernel boot parameters for callback laziness, allowing
the RCU Tasks flavors to be individually adjusted.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>