In https://lore.kernel.org/all/87y22uujkm.ffs@tglx/ Thomas
said:
Its's simply wishful thinking that stuff gets fixed because of a
WARN_ONCE(). This has never worked. The only thing which works is to
make stuff fail hard or slow it down in a way which makes it annoying
enough to users to complain.
He was talking about WBINVD. But it made me think about how we use the
split lock detection feature in Linux.
Existing code has three options for applications:
1) Don't enable split lock detection (allow arbitrary split locks)
2) Warn once when a process uses split lock, but let the process
keep running with split lock detection disabled
3) Kill process that use split locks
Option 2 falls into the "wishful thinking" territory that Thomas warns does
nothing. But option 3 might not be viable in a situation with legacy
applications that need to run.
Hence make option 2 much stricter to "slow it down in a way which makes
it annoying".
Primary reason for this change is to provide better quality of service to
the rest of the applications running on the system. Internal testing shows
that even with many processes splitting locks, performance for the rest of
the system is much more responsive.
The new "warn" mode operates like this. When an application tries to
execute a bus lock the #AC handler.
1) Delays (interruptibly) 10 ms before moving to next step.
2) Blocks (interruptibly) until it can get the semaphore
If interrupted, just return. Assume the signal will either
kill the task, or direct execution away from the instruction
that is trying to get the bus lock.
3) Disables split lock detection for the current core
4) Schedules a work queue to re-enable split lock detect in 2 jiffies
5) Returns
The work queue that re-enables split lock detection also releases the
semaphore.
There is a corner case where a CPU may be taken offline while split lock
detection is disabled. A CPU hotplug handler handles this case.
Old behaviour was to only print the split lock warning on the first
occurrence of a split lock from a task. Preserve that by adding a flag to
the task structure that suppresses subsequent split lock messages from that
task.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20220310204854.31752-2-tony.luck@intel.com
Once tag-based KASAN modes start tagging vmalloc() allocations, kernel
stacks start getting tagged if CONFIG_VMAP_STACK is enabled.
Reset the tag of kernel stack pointers after allocation in
arch_alloc_vmap_stack().
For SW_TAGS KASAN, when CONFIG_KASAN_STACK is enabled, the instrumentation
can't handle the SP register being tagged.
For HW_TAGS KASAN, there's no instrumentation-related issues. However,
the impact of having a tagged SP register needs to be properly evaluated,
so keep it non-tagged for now.
Note, that the memory for the stack allocation still gets tagged to catch
vmalloc-into-stack out-of-bounds accesses.
[andreyknvl@google.com: fix case when a stack is retrieved from cached_stacks]
Link: https://lkml.kernel.org/r/f50c5f96ef896d7936192c888b0c0a7674e33184.1644943792.git.andreyknvl@google.com
[dan.carpenter@oracle.com: remove unnecessary check in alloc_thread_stack_node()]
Link: https://lkml.kernel.org/r/20220301080706.GB17208@kili
Link: https://lkml.kernel.org/r/698c5ab21743c796d46c15d075b9481825973e34.1643047180.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Marco Elver <elver@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Once tag-based KASAN modes start tagging vmalloc() allocations, kernel
stacks start getting tagged if CONFIG_VMAP_STACK is enabled.
Reset the tag of kernel stack pointers after allocation in
alloc_thread_stack_node().
For SW_TAGS KASAN, when CONFIG_KASAN_STACK is enabled, the instrumentation
can't handle the SP register being tagged.
For HW_TAGS KASAN, there's no instrumentation-related issues. However,
the impact of having a tagged SP register needs to be properly evaluated,
so keep it non-tagged for now.
Note, that the memory for the stack allocation still gets tagged to catch
vmalloc-into-stack out-of-bounds accesses.
Link: https://lkml.kernel.org/r/c6c96f012371ecd80e1936509ebcd3b07a5956f7.1643047180.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Alexander Potapenko <glider@google.com>
Acked-by: Marco Elver <elver@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Core
----
- Introduce XDP multi-buffer support, allowing the use of XDP with
jumbo frame MTUs and combination with Rx coalescing offloads (LRO).
- Speed up netns dismantling (5x) and lower the memory cost a little.
Remove unnecessary per-netns sockets. Scope some lists to a netns.
Cut down RCU syncing. Use batch methods. Allow netdev registration
to complete out of order.
- Support distinguishing timestamp types (ingress vs egress) and
maintaining them across packet scrubbing points (e.g. redirect).
- Continue the work of annotating packet drop reasons throughout
the stack.
- Switch netdev error counters from an atomic to dynamically
allocated per-CPU counters.
- Rework a few preempt_disable(), local_irq_save() and busy waiting
sections problematic on PREEMPT_RT.
- Extend the ref_tracker to allow catching use-after-free bugs.
BPF
---
- Introduce "packing allocator" for BPF JIT images. JITed code is
marked read only, and used to be allocated at page granularity.
Custom allocator allows for more efficient memory use, lower
iTLB pressure and prevents identity mapping huge pages from
getting split.
- Make use of BTF type annotations (e.g. __user, __percpu) to enforce
the correct probe read access method, add appropriate helpers.
- Convert the BPF preload to use light skeleton and drop
the user-mode-driver dependency.
- Allow XDP BPF_PROG_RUN test infra to send real packets, enabling
its use as a packet generator.
- Allow local storage memory to be allocated with GFP_KERNEL if called
from a hook allowed to sleep.
- Introduce fprobe (multi kprobe) to speed up mass attachment (arch
bits to come later).
- Add unstable conntrack lookup helpers for BPF by using the BPF
kfunc infra.
- Allow cgroup BPF progs to return custom errors to user space.
- Add support for AF_UNIX iterator batching.
- Allow iterator programs to use sleepable helpers.
- Support JIT of add, and, or, xor and xchg atomic ops on arm64.
- Add BTFGen support to bpftool which allows to use CO-RE in kernels
without BTF info.
- Large number of libbpf API improvements, cleanups and deprecations.
Protocols
---------
- Micro-optimize UDPv6 Tx, gaining up to 5% in test on dummy netdev.
- Adjust TSO packet sizes based on min_rtt, allowing very low latency
links (data centers) to always send full-sized TSO super-frames.
- Make IPv6 flow label changes (AKA hash rethink) more configurable,
via sysctl and setsockopt. Distinguish between server and client
behavior.
- VxLAN support to "collect metadata" devices to terminate only
configured VNIs. This is similar to VLAN filtering in the bridge.
- Support inserting IPv6 IOAM information to a fraction of frames.
- Add protocol attribute to IP addresses to allow identifying where
given address comes from (kernel-generated, DHCP etc.)
- Support setting socket and IPv6 options via cmsg on ping6 sockets.
- Reject mis-use of ECN bits in IP headers as part of DSCP/TOS.
Define dscp_t and stop taking ECN bits into account in fib-rules.
- Add support for locked bridge ports (for 802.1X).
- tun: support NAPI for packets received from batched XDP buffs,
doubling the performance in some scenarios.
- IPv6 extension header handling in Open vSwitch.
- Support IPv6 control message load balancing in bonding, prevent
neighbor solicitation and advertisement from using the wrong port.
Support NS/NA monitor selection similar to existing ARP monitor.
- SMC
- improve performance with TCP_CORK and sendfile()
- support auto-corking
- support TCP_NODELAY
- MCTP (Management Component Transport Protocol)
- add user space tag control interface
- I2C binding driver (as specified by DMTF DSP0237)
- Multi-BSSID beacon handling in AP mode for WiFi.
- Bluetooth:
- handle MSFT Monitor Device Event
- add MGMT Adv Monitor Device Found/Lost events
- Multi-Path TCP:
- add support for the SO_SNDTIMEO socket option
- lots of selftest cleanups and improvements
- Increase the max PDU size in CAN ISOTP to 64 kB.
Driver API
----------
- Add HW counters for SW netdevs, a mechanism for devices which
offload packet forwarding to report packet statistics back to
software interfaces such as tunnels.
- Select the default NIC queue count as a fraction of number of
physical CPU cores, instead of hard-coding to 8.
- Expose devlink instance locks to drivers. Allow device layer of
drivers to use that lock directly instead of creating their own
which always runs into ordering issues in devlink callbacks.
- Add header/data split indication to guide user space enabling
of TCP zero-copy Rx.
- Allow configuring completion queue event size.
- Refactor page_pool to enable fragmenting after allocation.
- Add allocation and page reuse statistics to page_pool.
- Improve Multiple Spanning Trees support in the bridge to allow
reuse of topologies across VLANs, saving HW resources in switches.
- DSA (Distributed Switch Architecture):
- replay and offload of host VLAN entries
- offload of static and local FDB entries on LAG interfaces
- FDB isolation and unicast filtering
New hardware / drivers
----------------------
- Ethernet:
- LAN937x T1 PHYs
- Davicom DM9051 SPI NIC driver
- Realtek RTL8367S, RTL8367RB-VB switch and MDIO
- Microchip ksz8563 switches
- Netronome NFP3800 SmartNICs
- Fungible SmartNICs
- MediaTek MT8195 switches
- WiFi:
- mt76: MediaTek mt7916
- mt76: MediaTek mt7921u USB adapters
- brcmfmac: Broadcom BCM43454/6
- Mobile:
- iosm: Intel M.2 7360 WWAN card
Drivers
-------
- Convert many drivers to the new phylink API built for split PCS
designs but also simplifying other cases.
- Intel Ethernet NICs:
- add TTY for GNSS module for E810T device
- improve AF_XDP performance
- GTP-C and GTP-U filter offload
- QinQ VLAN support
- Mellanox Ethernet NICs (mlx5):
- support xdp->data_meta
- multi-buffer XDP
- offload tc push_eth and pop_eth actions
- Netronome Ethernet NICs (nfp):
- flow-independent tc action hardware offload (police / meter)
- AF_XDP
- Other Ethernet NICs:
- at803x: fiber and SFP support
- xgmac: mdio: preamble suppression and custom MDC frequencies
- r8169: enable ASPM L1.2 if system vendor flags it as safe
- macb/gem: ZynqMP SGMII
- hns3: add TX push mode
- dpaa2-eth: software TSO
- lan743x: multi-queue, mdio, SGMII, PTP
- axienet: NAPI and GRO support
- Mellanox Ethernet switches (mlxsw):
- source and dest IP address rewrites
- RJ45 ports
- Marvell Ethernet switches (prestera):
- basic routing offload
- multi-chain TC ACL offload
- NXP embedded Ethernet switches (ocelot & felix):
- PTP over UDP with the ocelot-8021q DSA tagging protocol
- basic QoS classification on Felix DSA switch using dcbnl
- port mirroring for ocelot switches
- Microchip high-speed industrial Ethernet (sparx5):
- offloading of bridge port flooding flags
- PTP Hardware Clock
- Other embedded switches:
- lan966x: PTP Hardward Clock
- qca8k: mdio read/write operations via crafted Ethernet packets
- Qualcomm 802.11ax WiFi (ath11k):
- add LDPC FEC type and 802.11ax High Efficiency data in radiotap
- enable RX PPDU stats in monitor co-exist mode
- Intel WiFi (iwlwifi):
- UHB TAS enablement via BIOS
- band disablement via BIOS
- channel switch offload
- 32 Rx AMPDU sessions in newer devices
- MediaTek WiFi (mt76):
- background radar detection
- thermal management improvements on mt7915
- SAR support for more mt76 platforms
- MBSSID and 6 GHz band on mt7915
- RealTek WiFi:
- rtw89: AP mode
- rtw89: 160 MHz channels and 6 GHz band
- rtw89: hardware scan
- Bluetooth:
- mt7921s: wake on Bluetooth, SCO over I2S, wide-band-speed (WBS)
- Microchip CAN (mcp251xfd):
- multiple RX-FIFOs and runtime configurable RX/TX rings
- internal PLL, runtime PM handling simplification
- improve chip detection and error handling after wakeup
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEE6jPA+I1ugmIBA4hXMUZtbf5SIrsFAmI7YBcACgkQMUZtbf5S
IrveSBAAmSNJlUK6vPsnNzs7IhsZnfI/AUjm2TCLZnlhKttbpI4A/4Pohk33V7RS
FGX7f8kjEfhUwrIiLDgeCnztNHRECrCmk6aZc/jLEvecmTauJ+f6kjShkDY/wix+
AkPHmrZnQeLPAEVuljDdV+sL6ik08+zQL7PazIYHsaSKKC0MGQptRwcri8PLRAKE
KPBAhVhleq2rAZ/ntprSN52F4Af6rpFTrPIWuN8Bqdbc9dy5094LT0mpOOWYvgr3
/DLvvAPuLemwyIQkjWknVKBRUAQcmNPC+BY3J8K3LRaiNhekGqOFan46BfqP+k2J
6DWu0Qrp2yWt4BMOeEToZR5rA6v5suUAMIBu8PRZIDkINXQMlIxHfGjZyNm0rVfw
7edNri966yus9OdzwPa32MIG3oC6PnVAwYCJAjjBMNS8sSIkp7wgHLkgWN4UFe2H
K/e6z8TLF4UQ+zFM0aGI5WZ+9QqWkTWEDF3R3OhdFpGrznna0gxmkOeV2YvtsgxY
cbS0vV9Zj73o+bYzgBKJsw/dAjyLdXoHUGvus26VLQ78S/VGunVKtItwoxBAYmZo
krW964qcC89YofzSi8RSKLHuEWtNWZbVm8YXr75u6jpr5GhMBu0CYefLs+BuZcxy
dw8c69cGneVbGZmY2J3rBhDkchbuICl8vdUPatGrOJAoaFdYKuw=
=ELpe
-----END PGP SIGNATURE-----
Merge tag 'net-next-5.18' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next
Pull networking updates from Jakub Kicinski:
"The sprinkling of SPI drivers is because we added a new one and Mark
sent us a SPI driver interface conversion pull request.
Core
----
- Introduce XDP multi-buffer support, allowing the use of XDP with
jumbo frame MTUs and combination with Rx coalescing offloads (LRO).
- Speed up netns dismantling (5x) and lower the memory cost a little.
Remove unnecessary per-netns sockets. Scope some lists to a netns.
Cut down RCU syncing. Use batch methods. Allow netdev registration
to complete out of order.
- Support distinguishing timestamp types (ingress vs egress) and
maintaining them across packet scrubbing points (e.g. redirect).
- Continue the work of annotating packet drop reasons throughout the
stack.
- Switch netdev error counters from an atomic to dynamically
allocated per-CPU counters.
- Rework a few preempt_disable(), local_irq_save() and busy waiting
sections problematic on PREEMPT_RT.
- Extend the ref_tracker to allow catching use-after-free bugs.
BPF
---
- Introduce "packing allocator" for BPF JIT images. JITed code is
marked read only, and used to be allocated at page granularity.
Custom allocator allows for more efficient memory use, lower iTLB
pressure and prevents identity mapping huge pages from getting
split.
- Make use of BTF type annotations (e.g. __user, __percpu) to enforce
the correct probe read access method, add appropriate helpers.
- Convert the BPF preload to use light skeleton and drop the
user-mode-driver dependency.
- Allow XDP BPF_PROG_RUN test infra to send real packets, enabling
its use as a packet generator.
- Allow local storage memory to be allocated with GFP_KERNEL if
called from a hook allowed to sleep.
- Introduce fprobe (multi kprobe) to speed up mass attachment (arch
bits to come later).
- Add unstable conntrack lookup helpers for BPF by using the BPF
kfunc infra.
- Allow cgroup BPF progs to return custom errors to user space.
- Add support for AF_UNIX iterator batching.
- Allow iterator programs to use sleepable helpers.
- Support JIT of add, and, or, xor and xchg atomic ops on arm64.
- Add BTFGen support to bpftool which allows to use CO-RE in kernels
without BTF info.
- Large number of libbpf API improvements, cleanups and deprecations.
Protocols
---------
- Micro-optimize UDPv6 Tx, gaining up to 5% in test on dummy netdev.
- Adjust TSO packet sizes based on min_rtt, allowing very low latency
links (data centers) to always send full-sized TSO super-frames.
- Make IPv6 flow label changes (AKA hash rethink) more configurable,
via sysctl and setsockopt. Distinguish between server and client
behavior.
- VxLAN support to "collect metadata" devices to terminate only
configured VNIs. This is similar to VLAN filtering in the bridge.
- Support inserting IPv6 IOAM information to a fraction of frames.
- Add protocol attribute to IP addresses to allow identifying where
given address comes from (kernel-generated, DHCP etc.)
- Support setting socket and IPv6 options via cmsg on ping6 sockets.
- Reject mis-use of ECN bits in IP headers as part of DSCP/TOS.
Define dscp_t and stop taking ECN bits into account in fib-rules.
- Add support for locked bridge ports (for 802.1X).
- tun: support NAPI for packets received from batched XDP buffs,
doubling the performance in some scenarios.
- IPv6 extension header handling in Open vSwitch.
- Support IPv6 control message load balancing in bonding, prevent
neighbor solicitation and advertisement from using the wrong port.
Support NS/NA monitor selection similar to existing ARP monitor.
- SMC
- improve performance with TCP_CORK and sendfile()
- support auto-corking
- support TCP_NODELAY
- MCTP (Management Component Transport Protocol)
- add user space tag control interface
- I2C binding driver (as specified by DMTF DSP0237)
- Multi-BSSID beacon handling in AP mode for WiFi.
- Bluetooth:
- handle MSFT Monitor Device Event
- add MGMT Adv Monitor Device Found/Lost events
- Multi-Path TCP:
- add support for the SO_SNDTIMEO socket option
- lots of selftest cleanups and improvements
- Increase the max PDU size in CAN ISOTP to 64 kB.
Driver API
----------
- Add HW counters for SW netdevs, a mechanism for devices which
offload packet forwarding to report packet statistics back to
software interfaces such as tunnels.
- Select the default NIC queue count as a fraction of number of
physical CPU cores, instead of hard-coding to 8.
- Expose devlink instance locks to drivers. Allow device layer of
drivers to use that lock directly instead of creating their own
which always runs into ordering issues in devlink callbacks.
- Add header/data split indication to guide user space enabling of
TCP zero-copy Rx.
- Allow configuring completion queue event size.
- Refactor page_pool to enable fragmenting after allocation.
- Add allocation and page reuse statistics to page_pool.
- Improve Multiple Spanning Trees support in the bridge to allow
reuse of topologies across VLANs, saving HW resources in switches.
- DSA (Distributed Switch Architecture):
- replay and offload of host VLAN entries
- offload of static and local FDB entries on LAG interfaces
- FDB isolation and unicast filtering
New hardware / drivers
----------------------
- Ethernet:
- LAN937x T1 PHYs
- Davicom DM9051 SPI NIC driver
- Realtek RTL8367S, RTL8367RB-VB switch and MDIO
- Microchip ksz8563 switches
- Netronome NFP3800 SmartNICs
- Fungible SmartNICs
- MediaTek MT8195 switches
- WiFi:
- mt76: MediaTek mt7916
- mt76: MediaTek mt7921u USB adapters
- brcmfmac: Broadcom BCM43454/6
- Mobile:
- iosm: Intel M.2 7360 WWAN card
Drivers
-------
- Convert many drivers to the new phylink API built for split PCS
designs but also simplifying other cases.
- Intel Ethernet NICs:
- add TTY for GNSS module for E810T device
- improve AF_XDP performance
- GTP-C and GTP-U filter offload
- QinQ VLAN support
- Mellanox Ethernet NICs (mlx5):
- support xdp->data_meta
- multi-buffer XDP
- offload tc push_eth and pop_eth actions
- Netronome Ethernet NICs (nfp):
- flow-independent tc action hardware offload (police / meter)
- AF_XDP
- Other Ethernet NICs:
- at803x: fiber and SFP support
- xgmac: mdio: preamble suppression and custom MDC frequencies
- r8169: enable ASPM L1.2 if system vendor flags it as safe
- macb/gem: ZynqMP SGMII
- hns3: add TX push mode
- dpaa2-eth: software TSO
- lan743x: multi-queue, mdio, SGMII, PTP
- axienet: NAPI and GRO support
- Mellanox Ethernet switches (mlxsw):
- source and dest IP address rewrites
- RJ45 ports
- Marvell Ethernet switches (prestera):
- basic routing offload
- multi-chain TC ACL offload
- NXP embedded Ethernet switches (ocelot & felix):
- PTP over UDP with the ocelot-8021q DSA tagging protocol
- basic QoS classification on Felix DSA switch using dcbnl
- port mirroring for ocelot switches
- Microchip high-speed industrial Ethernet (sparx5):
- offloading of bridge port flooding flags
- PTP Hardware Clock
- Other embedded switches:
- lan966x: PTP Hardward Clock
- qca8k: mdio read/write operations via crafted Ethernet packets
- Qualcomm 802.11ax WiFi (ath11k):
- add LDPC FEC type and 802.11ax High Efficiency data in radiotap
- enable RX PPDU stats in monitor co-exist mode
- Intel WiFi (iwlwifi):
- UHB TAS enablement via BIOS
- band disablement via BIOS
- channel switch offload
- 32 Rx AMPDU sessions in newer devices
- MediaTek WiFi (mt76):
- background radar detection
- thermal management improvements on mt7915
- SAR support for more mt76 platforms
- MBSSID and 6 GHz band on mt7915
- RealTek WiFi:
- rtw89: AP mode
- rtw89: 160 MHz channels and 6 GHz band
- rtw89: hardware scan
- Bluetooth:
- mt7921s: wake on Bluetooth, SCO over I2S, wide-band-speed (WBS)
- Microchip CAN (mcp251xfd):
- multiple RX-FIFOs and runtime configurable RX/TX rings
- internal PLL, runtime PM handling simplification
- improve chip detection and error handling after wakeup"
* tag 'net-next-5.18' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (2521 commits)
llc: fix netdevice reference leaks in llc_ui_bind()
drivers: ethernet: cpsw: fix panic when interrupt coaleceing is set via ethtool
ice: don't allow to run ice_send_event_to_aux() in atomic ctx
ice: fix 'scheduling while atomic' on aux critical err interrupt
net/sched: fix incorrect vlan_push_eth dest field
net: bridge: mst: Restrict info size queries to bridge ports
net: marvell: prestera: add missing destroy_workqueue() in prestera_module_init()
drivers: net: xgene: Fix regression in CRC stripping
net: geneve: add missing netlink policy and size for IFLA_GENEVE_INNER_PROTO_INHERIT
net: dsa: fix missing host-filtered multicast addresses
net/mlx5e: Fix build warning, detected write beyond size of field
iwlwifi: mvm: Don't fail if PPAG isn't supported
selftests/bpf: Fix kprobe_multi test.
Revert "rethook: x86: Add rethook x86 implementation"
Revert "arm64: rethook: Add arm64 rethook implementation"
Revert "powerpc: Add rethook support"
Revert "ARM: rethook: Add rethook arm implementation"
netdevice: add missing dm_private kdoc
net: bridge: mst: prevent NULL deref in br_mst_info_size()
selftests: forwarding: Use same VRF for port and VLAN upper
...
Alexei Starovoitov says:
====================
pull-request: bpf-next 2022-03-21 v2
We've added 137 non-merge commits during the last 17 day(s) which contain
a total of 143 files changed, 7123 insertions(+), 1092 deletions(-).
The main changes are:
1) Custom SEC() handling in libbpf, from Andrii.
2) subskeleton support, from Delyan.
3) Use btf_tag to recognize __percpu pointers in the verifier, from Hao.
4) Fix net.core.bpf_jit_harden race, from Hou.
5) Fix bpf_sk_lookup remote_port on big-endian, from Jakub.
6) Introduce fprobe (multi kprobe) _without_ arch bits, from Masami.
The arch specific bits will come later.
7) Introduce multi_kprobe bpf programs on top of fprobe, from Jiri.
8) Enable non-atomic allocations in local storage, from Joanne.
9) Various var_off ptr_to_btf_id fixed, from Kumar.
10) bpf_ima_file_hash helper, from Roberto.
11) Add "live packet" mode for XDP in BPF_PROG_RUN, from Toke.
* https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (137 commits)
selftests/bpf: Fix kprobe_multi test.
Revert "rethook: x86: Add rethook x86 implementation"
Revert "arm64: rethook: Add arm64 rethook implementation"
Revert "powerpc: Add rethook support"
Revert "ARM: rethook: Add rethook arm implementation"
bpftool: Fix a bug in subskeleton code generation
bpf: Fix bpf_prog_pack when PMU_SIZE is not defined
bpf: Fix bpf_prog_pack for multi-node setup
bpf: Fix warning for cast from restricted gfp_t in verifier
bpf, arm: Fix various typos in comments
libbpf: Close fd in bpf_object__reuse_map
bpftool: Fix print error when show bpf map
bpf: Fix kprobe_multi return probe backtrace
Revert "bpf: Add support to inline bpf_get_func_ip helper on x86"
bpf: Simplify check in btf_parse_hdr()
selftests/bpf/test_lirc_mode2.sh: Exit with proper code
bpf: Check for NULL return from bpf_get_btf_vmlinux
selftests/bpf: Test skipping stacktrace
bpf: Adjust BPF stack helper functions to accommodate skip > 0
bpf: Select proper size for bpf_prog_pack
...
====================
Link: https://lore.kernel.org/r/20220322050159.5507-1-alexei.starovoitov@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
- Reduce the amount of work to release a task stack in context
switch. There is no real reason to do cgroup accounting and memory
freeing in this performance sensitive context. Aside of this the
invoked functions cannot be called from this preemption disabled
context on PREEMPT_RT enabled kernels. Solve this by moving the
accounting into do_exit() and delaying the freeing of the stack unless
the vmap stack can be cached.
- Provide a mechanism to delay raising signals from atomic context on
PREEMPT_RT enabled kernels as sighand::lock cannot be acquired. Store
the information in the task struct and raise it in the exit path.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmI4U6gTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoSpkEACwgaaQUbqVrpw5yb6LbwzUPnjEdFNN
uUQCv0XZD8LWbfhcQQVSPWGho7S/w2Mkpdhi0DkVb2K0dkB7EvITSNEC4KoS/yez
8iQBpv6Lm00quHdNLjkQySSZ4NYB8M1GasBI7zSBjROK/+sRqioTPQsM0oDemGmD
uMvw0dgDJRlB8X4LZv0xuJbYLdSzu2VOlWd5aJG9BUgHkd7PfUWMlHsa29FP0hkP
A5yziOnr9kMsmCAsgmiyDW/GmefrEealby5M/jgnxTruF/OLnDsP+PYMlws47fPx
g6xpHkT5H0zQJ/nMJtK2JAlxpnbIl4cLuUnpn7wX316yjBpP2s3Pw04AVdzPPoBa
ufAoOLFtnrKN6enIqLWaJHGAsBHEULw6d3/7HoAEQOVWChnQSuWOob8z0QDbvM14
kKtz+LTrO+P5a15fd4g5+9lFBXJUTnF74SYQNwxIm2cV9hxrf15NhAr8yg+RtUvF
/ilNNAFtXkASLqs9moEi7U+GyBYwemG+gduVZ3Dw8FBxK/vHmDrhlItcZdKom+UJ
k4VFDVhzd2GYRHMrcaLfkCYew6ou+LD/rjdPhIU9OQHgILIMLY5aLqxDuyPtHqDz
TEyF5qsL4wYLIUdsWlqyHISqQQ6LfnpIyko5kb2Zt56sYtrcZr8swDy+yimiEOdL
G4BzQu0nVbCLhw==
=uGTc
-----END PGP SIGNATURE-----
Merge tag 'core-core-2022-03-21' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull core process handling RT latency updates from Thomas Gleixner:
- Reduce the amount of work to release a task stack in context switch.
There is no real reason to do cgroup accounting and memory freeing in
this performance sensitive context.
Aside of this the invoked functions cannot be called from this
preemption disabled context on PREEMPT_RT enabled kernels. Solve this
by moving the accounting into do_exit() and delaying the freeing of
the stack unless the vmap stack can be cached.
- Provide a mechanism to delay raising signals from atomic context on
PREEMPT_RT enabled kernels as sighand::lock cannot be acquired. Store
the information in the task struct and raise it in the exit path.
* tag 'core-core-2022-03-21' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
signal, x86: Delay calling signals in atomic on RT enabled kernels
fork: Use IS_ENABLED() in account_kernel_stack()
fork: Only cache the VMAP stack in finish_task_switch()
fork: Move task stack accounting to do_exit()
fork: Move memcg_charge_kernel_stack() into CONFIG_VMAP_STACK
fork: Don't assign the stack pointer in dup_task_struct()
fork, IA64: Provide alloc_thread_stack_node() for IA64
fork: Duplicate task_struct before stack allocation
fork: Redo ifdefs around task stack handling
- Simplify the PASID handling to allocate the PASID once, associate it to
the mm of a process and free it on mm_exit(). The previous attempt of
refcounted PASIDs and dynamic alloc()/free() turned out to be error
prone and too complex. The PASID space is 20bits, so the case of
resource exhaustion is a pure academic concern.
- Populate the PASID MSR on demand via #GP to avoid racy updates via IPIs.
- Reenable ENQCMD and let objtool check for the forbidden usage of ENQCMD
in the kernel.
- Update the documentation for Shared Virtual Addressing accordingly.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmI4WpETHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoUfnD/0bY94rgEX4Uuy/mFQ1W8X8XlcyKrha
0/cRATb+4QV/pwJgGr2nClKhGlFMYPdJLvKMC1TCUPCVrLD1RNmluIZoFzeqXwhm
jDdCcFOuGZ2D4ujDPWwOOpKBT1ytovnQa7+lH6QJyKkEqdcC2ncOvGJQoiRxRQIG
8wTVs/OUvQJ5ZhSZQMKQN4uMWMyHEjhbroYS30/uNi/598jTPgzlEoa14XocQ9Os
nS6ALvjuc9MsJ34F61etMaJU1ZMI3Wx75u9QjEvX6hmJs87YdvgwE7lzJUKFDEuh
gewM0wp2fTa8/azzP0eMiHTin56PqFdmllzRqXmilbZMEPOeI29dZVArCdpKcAn0
r9p1kJUT3Xl2G3Oir/OdCaaQHcznD1Y5ZFOyh12wgEucZ/rdeSr7nq7n5HoOL5Bw
Q2o6YvTkE9DOL0nTN1lSXGiPspou7fzX0uUcRBrbJUS3sBv4zGIlaJXUaTVnSdAt
VZj4LeOK7v2BjyeiOY0iaaIQd3xjmLUF0UjozXS5M13SoVcToZRbyWqhDzPvNuKA
imQb/dnFpXhABgmuqAiJLeqM0VtGMFNc780OURkcsBSPng+iSEdV4DzuhK0jpU8x
Uk1RuGMd/vgmrlDFBrw+orQQiiKR1ixpI0LiHfcOBycfJhqTwcnrNZvAN5/do28Z
E23+QzlUbZF0cw==
=Dy8V
-----END PGP SIGNATURE-----
Merge tag 'x86-pasid-2022-03-21' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 PASID support from Thomas Gleixner:
"Reenable ENQCMD/PASID support:
- Simplify the PASID handling to allocate the PASID once, associate
it to the mm of a process and free it on mm_exit().
The previous attempt of refcounted PASIDs and dynamic
alloc()/free() turned out to be error prone and too complex. The
PASID space is 20bits, so the case of resource exhaustion is a pure
academic concern.
- Populate the PASID MSR on demand via #GP to avoid racy updates via
IPIs.
- Reenable ENQCMD and let objtool check for the forbidden usage of
ENQCMD in the kernel.
- Update the documentation for Shared Virtual Addressing accordingly"
* tag 'x86-pasid-2022-03-21' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
Documentation/x86: Update documentation for SVA (Shared Virtual Addressing)
tools/objtool: Check for use of the ENQCMD instruction in the kernel
x86/cpufeatures: Re-enable ENQCMD
x86/traps: Demand-populate PASID MSR via #GP
sched: Define and initialize a flag to identify valid PASID in the task
x86/fpu: Clear PASID when copying fpstate
iommu/sva: Assign a PASID to mm on PASID allocation and free it on mm exit
kernel/fork: Initialize mm's PASID
iommu/ioasid: Introduce a helper to check for valid PASIDs
mm: Change CONFIG option for mm->pasid field
iommu/sva: Rename CONFIG_IOMMU_SVA_LIB to CONFIG_IOMMU_SVA
Add a return hook framework which hooks the function return. Most of the
logic came from the kretprobe, but this is independent from kretprobe.
Note that this is expected to be used with other function entry hooking
feature, like ftrace, fprobe, adn kprobes. Eventually this will replace
the kretprobe (e.g. kprobe + rethook = kretprobe), but at this moment,
this is just an additional hook.
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Tested-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/164735285066.1084943.9259661137330166643.stgit@devnote2
Not strickly needed but checking CONFIG_VMAP_STACK instead of
task_stack_vm_area()' result allows the compiler the remove the else
path in the CONFIG_VMAP_STACK case where the pointer can't be NULL.
Check for CONFIG_VMAP_STACK in order to use the proper path.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20220217102406.3697941-9-bigeasy@linutronix.de
The task stack could be deallocated later, but for fork()/exec() kind of
workloads (say a shell script executing several commands) it is important
that the stack is released in finish_task_switch() so that in VMAP_STACK
case it can be cached and reused in the new task.
For PREEMPT_RT it would be good if the wake-up in vfree_atomic() could
be avoided in the scheduling path. Far worse are the other
free_thread_stack() implementations which invoke __free_pages()/
kmem_cache_free() with disabled preemption.
Cache the stack in free_thread_stack() in the VMAP_STACK case and
RCU-delay the free path otherwise. Free the stack in the RCU callback.
In the VMAP_STACK case this is another opportunity to fill the cache.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20220217102406.3697941-8-bigeasy@linutronix.de
There is no need to perform the stack accounting of the outgoing task in
its final schedule() invocation which happens with preemption disabled.
The task is leaving, the resources will be freed and the accounting can
happen in do_exit() before the actual schedule invocation which
frees the stack memory.
Move the accounting of the stack memory from release_task_stack() to
exit_task_stack_account() which then can be invoked from do_exit().
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20220217102406.3697941-7-bigeasy@linutronix.de
memcg_charge_kernel_stack() is only used in the CONFIG_VMAP_STACK case.
Move memcg_charge_kernel_stack() into the CONFIG_VMAP_STACK block and
invoke it from within alloc_thread_stack_node().
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20220217102406.3697941-6-bigeasy@linutronix.de
All four versions of alloc_thread_stack_node() assign now
task_struct::stack in case the allocation was successful.
Let alloc_thread_stack_node() return an error code instead of the stack
pointer and remove the stack assignment in dup_task_struct().
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20220217102406.3697941-5-bigeasy@linutronix.de
Provide a generic alloc_thread_stack_node() for IA64 and
CONFIG_ARCH_THREAD_STACK_ALLOCATOR which returns stack pointer and sets
task_struct::stack so it behaves exactly like the other implementations.
Rename IA64's alloc_thread_stack_node() and add the generic version to the
fork code so it is in one place _and_ to drastically lower the chances of
fat fingering the IA64 code. Do the same for free_thread_stack().
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20220217102406.3697941-4-bigeasy@linutronix.de
alloc_thread_stack_node() already populates the task_struct::stack
member except on IA64. The stack pointer is saved and populated again
because IA64 needs it and arch_dup_task_struct() overwrites it.
Allocate thread's stack after task_struct has been duplicated as a
preparation for further changes.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20220217102406.3697941-3-bigeasy@linutronix.de
The use of ifdef CONFIG_VMAP_STACK is confusing in terms what is
actually happenning and what can happen.
For instance from reading free_thread_stack() it appears that in the
CONFIG_VMAP_STACK case it may receive a non-NULL vm pointer but it may also
be NULL in which case __free_pages() is used to free the stack. This is
however not the case because in the VMAP case a non-NULL pointer is always
returned here. Since it looks like this might happen, the compiler creates
the correct dead code with the invocation to __free_pages() and everything
around it. Twice.
Add spaces between the ifdef and the identifer to recognize the ifdef
level which is currently in scope.
Add the current identifer as a comment behind #else and #endif.
Move the code within free_thread_stack() and alloc_thread_stack_node()
into the relevant ifdef blocks.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20220217102406.3697941-2-bigeasy@linutronix.de
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCYhDKMgAKCRCRxhvAZXjc
opUwAPwORv7MD8rh5va7LFWUxX1UFpxVILWcC1umuhHAOKZ7YAEA3DTYFrQZhxA2
nMBR6hBEDKRARIFv3zHZYflYK97FnQA=
=NPXo
-----END PGP SIGNATURE-----
Merge tag 'pidfd.v5.17-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux
Pull pidfd fix from Christian Brauner:
"This fixes a problem reported by lockdep when installing a pidfd via
fd_install() with siglock and the tasklisk write lock held in
copy_process() when calling clone()/clone3() with CLONE_PIDFD.
Originally a pidfd was created prior to holding any of these locks but
this required a call to ksys_close(). So quite some time ago in
6fd2fe494b ("copy_process(): don't use ksys_close() on cleanups") we
switched to a get_unused_fd_flags() + fd_install() model.
As part of that we moved fd_install() as late as possible. This was
done for two main reasons. First, because we needed to ensure that we
call fd_install() past the point of no return as once that's called
the fd is live in the task's file table. Second, because we tried to
ensure that the fd is visible in /proc/<pid>/fd/<pidfd> right when the
task is visible.
This fix moves the fd_install() to an even later point which means
that a task will be visible in proc while the pidfd isn't yet under
/proc/<pid>/fd/<pidfd>.
While this is a user visible change it's very unlikely that this will
have any impact. Nobody should be relying on that and if they do we
need to come up with something better but again, it's doubtful this is
relevant"
* tag 'pidfd.v5.17-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux:
copy_process(): Move fd_install() out of sighand->siglock critical section
Where commit 4ef0c5c6b5 ("kernel/sched: Fix sched_fork() access an
invalid sched_task_group") fixed a fork race vs cgroup, it opened up a
race vs syscalls by not placing the task on the runqueue before it
gets exposed through the pidhash.
Commit 13765de814 ("sched/fair: Fix fault in reweight_entity") is
trying to fix a single instance of this, instead fix the whole class
of issues, effectively reverting this commit.
Fixes: 4ef0c5c6b5 ("kernel/sched: Fix sched_fork() access an invalid sched_task_group")
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Tadeusz Struk <tadeusz.struk@linaro.org>
Tested-by: Zhang Qiao <zhangqiao22@huawei.com>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lkml.kernel.org/r/YgoeCbwj5mbCR0qA@hirez.programming.kicks-ass.net
Michal Koutný <mkoutny@suse.com> wrote:
> It was reported that v5.14 behaves differently when enforcing
> RLIMIT_NPROC limit, namely, it allows one more task than previously.
> This is consequence of the commit 21d1c5e386 ("Reimplement
> RLIMIT_NPROC on top of ucounts") that missed the sharpness of
> equality in the forking path.
This can be fixed either by fixing the test or by moving the increment
to be before the test. Fix it my moving copy_creds which contains
the increment before is_ucounts_overlimit.
In the case of CLONE_NEWUSER the ucounts in the task_cred changes.
The function is_ucounts_overlimit needs to use the final version of
the ucounts for the new process. Which means moving the
is_ucounts_overlimit test after copy_creds is necessary.
Both the test in fork and the test in set_user were semantically
changed when the code moved to ucounts. The change of the test in
fork was bad because it was before the increment. The test in
set_user was wrong and the change to ucounts fixed it. So this
fix only restores the old behavior in one lcation not two.
Link: https://lkml.kernel.org/r/20220204181144.24462-1-mkoutny@suse.com
Link: https://lkml.kernel.org/r/20220216155832.680775-2-ebiederm@xmission.com
Cc: stable@vger.kernel.org
Reported-by: Michal Koutný <mkoutny@suse.com>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Fixes: 21d1c5e386 ("Reimplement RLIMIT_NPROC on top of ucounts")
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Add a new single bit field to the task structure to track whether this task
has initialized the IA32_PASID MSR to the mm's PASID.
Initialize the field to zero when creating a new task with fork/clone.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Co-developed-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20220207230254.3342514-8-fenghua.yu@intel.com
PASIDs are process-wide. It was attempted to use refcounted PASIDs to
free them when the last thread drops the refcount. This turned out to
be complex and error prone. Given the fact that the PASID space is 20
bits, which allows up to 1M processes to have a PASID associated
concurrently, PASID resource exhaustion is not a realistic concern.
Therefore, it was decided to simplify the approach and stick with lazy
on demand PASID allocation, but drop the eager free approach and make an
allocated PASID's lifetime bound to the lifetime of the process.
Get rid of the refcounting mechanisms and replace/rename the interfaces
to reflect this new approach.
[ bp: Massage commit message. ]
Suggested-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Lu Baolu <baolu.lu@linux.intel.com>
Reviewed-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Joerg Roedel <jroedel@suse.de>
Link: https://lore.kernel.org/r/20220207230254.3342514-6-fenghua.yu@intel.com
A new mm doesn't have a PASID yet when it's created. Initialize
the mm's PASID on fork() or for init_mm to INVALID_IOASID (-1).
INIT_PASID (0) is reserved for kernel legacy DMA PASID. It cannot be
allocated to a user process. Initializing the process's PASID to 0 may
cause confusion that's why the process uses the reserved kernel legacy
DMA PASID. Initializing the PASID to INVALID_IOASID (-1) explicitly
tells the process doesn't have a valid PASID yet.
Even though the only user of mm_pasid_init() is in fork.c, define it in
<linux/sched/mm.h> as the first of three mm/pasid life cycle functions
(init/set/drop) to keep these all together.
Suggested-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20220207230254.3342514-5-fenghua.yu@intel.com
This currently depends on CONFIG_IOMMU_SUPPORT. But it is only
needed when CONFIG_IOMMU_SVA option is enabled.
Change the CONFIG guards around definition and initialization
of mm->pasid field.
Suggested-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Lu Baolu <baolu.lu@linux.intel.com>
Link: https://lore.kernel.org/r/20220207230254.3342514-3-fenghua.yu@intel.com
Pull signal/exit/ptrace updates from Eric Biederman:
"This set of changes deletes some dead code, makes a lot of cleanups
which hopefully make the code easier to follow, and fixes bugs found
along the way.
The end-game which I have not yet reached yet is for fatal signals
that generate coredumps to be short-circuit deliverable from
complete_signal, for force_siginfo_to_task not to require changing
userspace configured signal delivery state, and for the ptrace stops
to always happen in locations where we can guarantee on all
architectures that the all of the registers are saved and available on
the stack.
Removal of profile_task_ext, profile_munmap, and profile_handoff_task
are the big successes for dead code removal this round.
A bunch of small bug fixes are included, as most of the issues
reported were small enough that they would not affect bisection so I
simply added the fixes and did not fold the fixes into the changes
they were fixing.
There was a bug that broke coredumps piped to systemd-coredump. I
dropped the change that caused that bug and replaced it entirely with
something much more restrained. Unfortunately that required some
rebasing.
Some successes after this set of changes: There are few enough calls
to do_exit to audit in a reasonable amount of time. The lifetime of
struct kthread now matches the lifetime of struct task, and the
pointer to struct kthread is no longer stored in set_child_tid. The
flag SIGNAL_GROUP_COREDUMP is removed. The field group_exit_task is
removed. Issues where task->exit_code was examined with
signal->group_exit_code should been examined were fixed.
There are several loosely related changes included because I am
cleaning up and if I don't include them they will probably get lost.
The original postings of these changes can be found at:
https://lkml.kernel.org/r/87a6ha4zsd.fsf@email.froward.int.ebiederm.orghttps://lkml.kernel.org/r/87bl1kunjj.fsf@email.froward.int.ebiederm.orghttps://lkml.kernel.org/r/87r19opkx1.fsf_-_@email.froward.int.ebiederm.org
I trimmed back the last set of changes to only the obviously correct
once. Simply because there was less time for review than I had hoped"
* 'signal-for-v5.17' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (44 commits)
ptrace/m68k: Stop open coding ptrace_report_syscall
ptrace: Remove unused regs argument from ptrace_report_syscall
ptrace: Remove second setting of PT_SEIZED in ptrace_attach
taskstats: Cleanup the use of task->exit_code
exit: Use the correct exit_code in /proc/<pid>/stat
exit: Fix the exit_code for wait_task_zombie
exit: Coredumps reach do_group_exit
exit: Remove profile_handoff_task
exit: Remove profile_task_exit & profile_munmap
signal: clean up kernel-doc comments
signal: Remove the helper signal_group_exit
signal: Rename group_exit_task group_exec_task
coredump: Stop setting signal->group_exit_task
signal: Remove SIGNAL_GROUP_COREDUMP
signal: During coredumps set SIGNAL_GROUP_EXIT in zap_process
signal: Make coredump handling explicit in complete_signal
signal: Have prepare_signal detect coredumps using signal->core_state
signal: Have the oom killer detect coredumps using signal->core_state
exit: Move force_uaccess back into do_exit
exit: Guarantee make_task_dead leaks the tsk when calling do_task_exit
...
Merge misc updates from Andrew Morton:
"146 patches.
Subsystems affected by this patch series: kthread, ia64, scripts,
ntfs, squashfs, ocfs2, vfs, and mm (slab-generic, slab, kmemleak,
dax, kasan, debug, pagecache, gup, shmem, frontswap, memremap,
memcg, selftests, pagemap, dma, vmalloc, memory-failure, hugetlb,
userfaultfd, vmscan, mempolicy, oom-kill, hugetlbfs, migration, thp,
ksm, page-poison, percpu, rmap, zswap, zram, cleanups, hmm, and
damon)"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (146 commits)
mm/damon: hide kernel pointer from tracepoint event
mm/damon/vaddr: hide kernel pointer from damon_va_three_regions() failure log
mm/damon/vaddr: use pr_debug() for damon_va_three_regions() failure logging
mm/damon/dbgfs: remove an unnecessary variable
mm/damon: move the implementation of damon_insert_region to damon.h
mm/damon: add access checking for hugetlb pages
Docs/admin-guide/mm/damon/usage: update for schemes statistics
mm/damon/dbgfs: support all DAMOS stats
Docs/admin-guide/mm/damon/reclaim: document statistics parameters
mm/damon/reclaim: provide reclamation statistics
mm/damon/schemes: account how many times quota limit has exceeded
mm/damon/schemes: account scheme actions that successfully applied
mm/damon: remove a mistakenly added comment for a future feature
Docs/admin-guide/mm/damon/usage: update for kdamond_pid and (mk|rm)_contexts
Docs/admin-guide/mm/damon/usage: mention tracepoint at the beginning
Docs/admin-guide/mm/damon/usage: remove redundant information
Docs/admin-guide/mm/damon/usage: update for scheme quotas and watermarks
mm/damon: convert macro functions to static inline functions
mm/damon: modify damon_rand() macro to static inline function
mm/damon: move damon_rand() definition into damon.h
...
The patch to add anonymous vma names causes a build failure in some
configurations:
include/linux/mm_types.h: In function 'is_same_vma_anon_name':
include/linux/mm_types.h:924:37: error: implicit declaration of function 'strcmp' [-Werror=implicit-function-declaration]
924 | return name && vma_name && !strcmp(name, vma_name);
| ^~~~~~
include/linux/mm_types.h:22:1: note: 'strcmp' is defined in header '<string.h>'; did you forget to '#include <string.h>'?
This should not really be part of linux/mm_types.h in the first place,
as that header is meant to only contain structure defintions and need a
minimum set of indirect includes itself.
While the header clearly includes more than it should at this point,
let's not make it worse by including string.h as well, which would pull
in the expensive (compile-speed wise) fortify-string logic.
Move the new functions into a separate header that only needs to be
included in a couple of locations.
Link: https://lkml.kernel.org/r/20211207125710.2503446-1-arnd@kernel.org
Fixes: "mm: add a field to store names for private anonymous memory"
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Colin Cross <ccross@google.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In many userspace applications, and especially in VM based applications
like Android uses heavily, there are multiple different allocators in
use. At a minimum there is libc malloc and the stack, and in many cases
there are libc malloc, the stack, direct syscalls to mmap anonymous
memory, and multiple VM heaps (one for small objects, one for big
objects, etc.). Each of these layers usually has its own tools to
inspect its usage; malloc by compiling a debug version, the VM through
heap inspection tools, and for direct syscalls there is usually no way
to track them.
On Android we heavily use a set of tools that use an extended version of
the logic covered in Documentation/vm/pagemap.txt to walk all pages
mapped in userspace and slice their usage by process, shared (COW) vs.
unique mappings, backing, etc. This can account for real physical
memory usage even in cases like fork without exec (which Android uses
heavily to share as many private COW pages as possible between
processes), Kernel SamePage Merging, and clean zero pages. It produces
a measurement of the pages that only exist in that process (USS, for
unique), and a measurement of the physical memory usage of that process
with the cost of shared pages being evenly split between processes that
share them (PSS).
If all anonymous memory is indistinguishable then figuring out the real
physical memory usage (PSS) of each heap requires either a pagemap
walking tool that can understand the heap debugging of every layer, or
for every layer's heap debugging tools to implement the pagemap walking
logic, in which case it is hard to get a consistent view of memory
across the whole system.
Tracking the information in userspace leads to all sorts of problems.
It either needs to be stored inside the process, which means every
process has to have an API to export its current heap information upon
request, or it has to be stored externally in a filesystem that somebody
needs to clean up on crashes. It needs to be readable while the process
is still running, so it has to have some sort of synchronization with
every layer of userspace. Efficiently tracking the ranges requires
reimplementing something like the kernel vma trees, and linking to it
from every layer of userspace. It requires more memory, more syscalls,
more runtime cost, and more complexity to separately track regions that
the kernel is already tracking.
This patch adds a field to /proc/pid/maps and /proc/pid/smaps to show a
userspace-provided name for anonymous vmas. The names of named
anonymous vmas are shown in /proc/pid/maps and /proc/pid/smaps as
[anon:<name>].
Userspace can set the name for a region of memory by calling
prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, start, len, (unsigned long)name)
Setting the name to NULL clears it. The name length limit is 80 bytes
including NUL-terminator and is checked to contain only printable ascii
characters (including space), except '[',']','\','$' and '`'.
Ascii strings are being used to have a descriptive identifiers for vmas,
which can be understood by the users reading /proc/pid/maps or
/proc/pid/smaps. Names can be standardized for a given system and they
can include some variable parts such as the name of the allocator or a
library, tid of the thread using it, etc.
The name is stored in a pointer in the shared union in vm_area_struct
that points to a null terminated string. Anonymous vmas with the same
name (equivalent strings) and are otherwise mergeable will be merged.
The name pointers are not shared between vmas even if they contain the
same name. The name pointer is stored in a union with fields that are
only used on file-backed mappings, so it does not increase memory usage.
CONFIG_ANON_VMA_NAME kernel configuration is introduced to enable this
feature. It keeps the feature disabled by default to prevent any
additional memory overhead and to avoid confusing procfs parsers on
systems which are not ready to support named anonymous vmas.
The patch is based on the original patch developed by Colin Cross, more
specifically on its latest version [1] posted upstream by Sumit Semwal.
It used a userspace pointer to store vma names. In that design, name
pointers could be shared between vmas. However during the last
upstreaming attempt, Kees Cook raised concerns [2] about this approach
and suggested to copy the name into kernel memory space, perform
validity checks [3] and store as a string referenced from
vm_area_struct.
One big concern is about fork() performance which would need to strdup
anonymous vma names. Dave Hansen suggested experimenting with
worst-case scenario of forking a process with 64k vmas having longest
possible names [4]. I ran this experiment on an ARM64 Android device
and recorded a worst-case regression of almost 40% when forking such a
process.
This regression is addressed in the followup patch which replaces the
pointer to a name with a refcounted structure that allows sharing the
name pointer between vmas of the same name. Instead of duplicating the
string during fork() or when splitting a vma it increments the refcount.
[1] https://lore.kernel.org/linux-mm/20200901161459.11772-4-sumit.semwal@linaro.org/
[2] https://lore.kernel.org/linux-mm/202009031031.D32EF57ED@keescook/
[3] https://lore.kernel.org/linux-mm/202009031022.3834F692@keescook/
[4] https://lore.kernel.org/linux-mm/5d0358ab-8c47-2f5f-8e43-23b89d6a8e95@intel.com/
Changes for prctl(2) manual page (in the options section):
PR_SET_VMA
Sets an attribute specified in arg2 for virtual memory areas
starting from the address specified in arg3 and spanning the
size specified in arg4. arg5 specifies the value of the attribute
to be set. Note that assigning an attribute to a virtual memory
area might prevent it from being merged with adjacent virtual
memory areas due to the difference in that attribute's value.
Currently, arg2 must be one of:
PR_SET_VMA_ANON_NAME
Set a name for anonymous virtual memory areas. arg5 should
be a pointer to a null-terminated string containing the
name. The name length including null byte cannot exceed
80 bytes. If arg5 is NULL, the name of the appropriate
anonymous virtual memory areas will be reset. The name
can contain only printable ascii characters (including
space), except '[',']','\','$' and '`'.
This feature is available only if the kernel is built with
the CONFIG_ANON_VMA_NAME option enabled.
[surenb@google.com: docs: proc.rst: /proc/PID/maps: fix malformed table]
Link: https://lkml.kernel.org/r/20211123185928.2513763-1-surenb@google.com
[surenb: rebased over v5.15-rc6, replaced userpointer with a kernel copy,
added input sanitization and CONFIG_ANON_VMA_NAME config. The bulk of the
work here was done by Colin Cross, therefore, with his permission, keeping
him as the author]
Link: https://lkml.kernel.org/r/20211019215511.3771969-2-surenb@google.com
Signed-off-by: Colin Cross <ccross@google.com>
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jan Glauber <jan.glauber@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rob Landley <rob@landley.net>
Cc: "Serge E. Hallyn" <serge.hallyn@ubuntu.com>
Cc: Shaohua Li <shli@fusionio.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
All profile_handoff_task does is notify the task_free_notifier chain.
The helpers task_handoff_register and task_handoff_unregister are used
to add and delete entries from that chain and are never called.
So remove the dead code and make it much easier to read and reason
about __put_task_struct.
Suggested-by: Al Viro <viro@zeniv.linux.org.uk>
Link: https://lkml.kernel.org/r/87fspyw6m0.fsf@email.froward.int.ebiederm.org
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
The point of using set_child_tid to hold the kthread pointer was that
it already did what is necessary. There are now restrictions on when
set_child_tid can be initialized and when set_child_tid can be used in
schedule_tail. Which indicates that continuing to use set_child_tid
to hold the kthread pointer is a bad idea.
Instead of continuing to use the set_child_tid field of task_struct
generalize the pf_io_worker field of task_struct and use it to hold
the kthread pointer.
Rename pf_io_worker (which is a void * pointer) to worker_private so
it can be used to store kthreads struct kthread pointer. Update the
kthread code to store the kthread pointer in the worker_private field.
Remove the places where set_child_tid had to be dealt with carefully
because kthreads also used it.
Link: https://lkml.kernel.org/r/CAHk-=wgtFAA9SbVYg0gR1tqPMC17-NYcs0GQkaYg1bGhh1uJQQ@mail.gmail.com
Link: https://lkml.kernel.org/r/87a6grvqy8.fsf_-_@email.froward.int.ebiederm.org
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
I just fixed a bug in copy_process when using the label
bad_fork_cleanup_threadgroup_lock. While fixing the bug I looked
closer at the label and realized it has been misnamed since
568ac88821 ("cgroup: reduce read locked section of
cgroup_threadgroup_rwsem during fork").
Fix the name so that fork is easier to understand.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Mark Brown <broonie@kernel.org> reported:
> This is also causing further build errors including but not limited to:
>
> /tmp/next/build/kernel/fork.c: In function 'copy_process':
> /tmp/next/build/kernel/fork.c:2106:4: error: label 'bad_fork_cleanup_threadgroup_lock' used but not defined
> 2106 | goto bad_fork_cleanup_threadgroup_lock;
> | ^~~~
It turns out that I messed up and was depending upon a label protected
by an ifdef. Move the label out of the ifdef as the ifdef around the label
no longer makes sense (if it ever did).
Link: https://lkml.kernel.org/r/YbugCP144uxXvRsk@sirena.org.uk
Fixes: 40966e316f ("kthread: Ensure struct kthread is present for all kthreads")
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Today the rules are a bit iffy and arbitrary about which kernel
threads have struct kthread present. Both idle threads and thread
started with create_kthread want struct kthread present so that is
effectively all kernel threads. Make the rule that if PF_KTHREAD
and the task is running then struct kthread is present.
This will allow the kernel thread code to using tsk->exit_code
with different semantics from ordinary processes.
To make ensure that struct kthread is present for all
kernel threads move it's allocation into copy_process.
Add a deallocation of struct kthread in exec for processes
that were kernel threads.
Move the allocation of struct kthread for the initial thread
earlier so that it is not repeated for each additional idle
thread.
Move the initialization of struct kthread into set_kthread_struct
so that the structure is always and reliably initailized.
Clear set_child_tid in free_kthread_struct to ensure the kthread
struct is reliably freed during exec. The function
free_kthread_struct does not need to clear vfork_done during exec as
exec_mm_release called from exec_mmap has already cleared vfork_done.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Move the copying of the I/O context to the block layer as that is where
we can use the proper low-level interfaces.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Link: https://lore.kernel.org/r/20211126115817.2087431-3-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
timer delivery stops working for a new child task because copy_process()
copies state information which is only valid for the parent task.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmGRDVUTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYocOFD/42NOdli73N+Jdq7APHUIHXzu+6DVT6
CI5toLQw+0KPoF0s1wg4+J0YCDt2k0Pu4lOabF3Ze/+c6RlR5zfCXESqsXdHaCjh
E91Vs57u0ataRMEHo6KB6eBIutuF8hyxfY6vVXfkTRNAreUIWiwWYrlB0G64JVOG
+/l1W7adovjLcLwcW+ArrnLJwkBKtXunK6PVv2IrdRHwpMHbwoNRCCCFvzkqnWmQ
4Yy2/NaB/PEBK5kezP1/j9EMcGCTWk1JJIm+l/PEwCCcbIgIdUahpW3XHAaqms6R
oukqCvE5ukfmVzBFYBhCamhF8heyEeBVRqGU+Yyk48+I+DQFBCqaqa1NKSuEUdNL
Nycy6Rp1yn7CHVSB461shMS6NJGOSNDBjv7vxer3WjV3HPJu7y0RrN7jXbkSfQnm
hVKjkmbDEYwylgzFE5+T857NqD5MEXeuIBtTO08hNRnpd61aB3x+qq+8ElE6ST8Y
pm6rMzw0AZ5buPK8QdGVDk0dD4WKObj1LzmRZvBtYeWynO6sxyKUl6B2CgAxrvn5
D1Li2/arkJMCVeIuIL5uE6DPoxSh8J7OuEC4KeWX8M8xQSEDImqfZ+tDL2Esv6jv
xDmymq584hiCBc1CJjCOA9kZYe6KNXC7lkVOns6GaKKzLhkrcvUR3dUGhMyzxAMO
t9QIAinR6JwRRA==
=EBbc
-----END PGP SIGNATURE-----
Merge tag 'timers-urgent-2021-11-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer fix from Thomas Gleixner:
"A single fix for POSIX CPU timers to address a problem where POSIX CPU
timer delivery stops working for a new child task because
copy_process() copies state information which is only valid for the
parent task"
* tag 'timers-urgent-2021-11-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
posix-cpu-timers: Clear task::posix_cputimers_work in copy_process()
Merge more updates from Andrew Morton:
"87 patches.
Subsystems affected by this patch series: mm (pagecache and hugetlb),
procfs, misc, MAINTAINERS, lib, checkpatch, binfmt, kallsyms, ramfs,
init, codafs, nilfs2, hfs, crash_dump, signals, seq_file, fork,
sysvfs, kcov, gdb, resource, selftests, and ipc"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (87 commits)
ipc/ipc_sysctl.c: remove fallback for !CONFIG_PROC_SYSCTL
ipc: check checkpoint_restore_ns_capable() to modify C/R proc files
selftests/kselftest/runner/run_one(): allow running non-executable files
virtio-mem: disallow mapping virtio-mem memory via /dev/mem
kernel/resource: disallow access to exclusive system RAM regions
kernel/resource: clean up and optimize iomem_is_exclusive()
scripts/gdb: handle split debug for vmlinux
kcov: replace local_irq_save() with a local_lock_t
kcov: avoid enable+disable interrupts if !in_task()
kcov: allocate per-CPU memory on the relevant node
Documentation/kcov: define `ip' in the example
Documentation/kcov: include types.h in the example
sysv: use BUILD_BUG_ON instead of runtime check
kernel/fork.c: unshare(): use swap() to make code cleaner
seq_file: fix passing wrong private data
seq_file: move seq_escape() to a header
signal: remove duplicate include in signal.h
crash_dump: remove duplicate include in crash_dump.h
crash_dump: fix boolreturn.cocci warning
hfs/hfsplus: use WARN_ON for sanity check
...
Use swap() instead of reimplementing it.
Link: https://lkml.kernel.org/r/20210909022046.8151-1-ran.xiaokai@zte.com.cn
Signed-off-by: Ran Xiaokai <ran.xiaokai@zte.com.cn>
Cc: Gabriel Krisman Bertazi <krisman@collabora.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Alexey Gladkov <legion@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull per signal_struct coredumps from Eric Biederman:
"Current coredumps are mixed up with the exit code, the signal handling
code, and the ptrace code making coredumps much more complicated than
necessary and difficult to follow.
This series of changes starts with ptrace_stop and cleans it up,
making it easier to follow what is happening in ptrace_stop. Then
cleans up the exec interactions with coredumps. Then cleans up the
coredump interactions with exit. Finally the coredump interactions
with the signal handling code is cleaned up.
The first and last changes are bug fixes for minor bugs.
I believe the fact that vfork followed by execve can kill the process
the called vfork if exec fails is sufficient justification to change
the userspace visible behavior.
In previous discussions some of these changes were organized
differently and individually appeared to make the code base worse. As
currently written I believe they all stand on their own as cleanups
and bug fixes.
Which means that even if the worst should happen and the last change
needs to be reverted for some unimaginable reason, the code base will
still be improved.
If the worst does not happen there are a more cleanups that can be
made. Signals that generate coredumps can easily become eligible for
short circuit delivery in complete_signal. The entire rendezvous for
generating a coredump can move into get_signal. The function
force_sig_info_to_task be written in a way that does not modify the
signal handling state of the target task (because coredumps are
eligible for short circuit delivery). Many of these future cleanups
can be done another way but nothing so cleanly as if coredumps become
per signal_struct"
* 'per_signal_struct_coredumps-for-v5.16' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
coredump: Limit coredumps to a single thread group
coredump: Don't perform any cleanups before dumping core
exit: Factor coredump_exit_mm out of exit_mm
exec: Check for a pending fatal signal instead of core_state
ptrace: Remove the unnecessary arguments from arch_ptrace_stop
signal: Remove the bogus sigkill_pending in ptrace_stop
copy_process currently copies task_struct.posix_cputimers_work as-is. If a
timer interrupt arrives while handling clone and before dup_task_struct
completes then the child task will have:
1. posix_cputimers_work.scheduled = true
2. posix_cputimers_work.work queued.
copy_process clears task_struct.task_works, so (2) will have no effect and
posix_cpu_timers_work will never run (not to mention it doesn't make sense
for two tasks to share a common linked list).
Since posix_cpu_timers_work never runs, posix_cputimers_work.scheduled is
never cleared. Since scheduled is set, future timer interrupts will skip
scheduling work, with the ultimate result that the task will never receive
timer expirations.
Together, the complete flow is:
1. Task 1 calls clone(), enters kernel.
2. Timer interrupt fires, schedules task work on Task 1.
2a. task_struct.posix_cputimers_work.scheduled = true
2b. task_struct.posix_cputimers_work.work added to
task_struct.task_works.
3. dup_task_struct() copies Task 1 to Task 2.
4. copy_process() clears task_struct.task_works for Task 2.
5. Future timer interrupts on Task 2 see
task_struct.posix_cputimers_work.scheduled = true and skip scheduling
work.
Fix this by explicitly clearing contents of task_struct.posix_cputimers_work
in copy_process(). This was never meant to be shared or inherited across
tasks in the first place.
Fixes: 1fb497dd00 ("posix-cpu-timers: Provide mechanisms to defer timer handling to task_work")
Reported-by: Rhys Hiltner <rhys@justin.tv>
Signed-off-by: Michael Pratt <mpratt@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/r/20211101210615.716522-1-mpratt@google.com
- Revert the printk format based wchan() symbol resolution as it can leak
the raw value in case that the symbol is not resolvable.
- Make wchan() more robust and work with all kind of unwinders by
enforcing that the task stays blocked while unwinding is in progress.
- Prevent sched_fork() from accessing an invalid sched_task_group
- Improve asymmetric packing logic
- Extend scheduler statistics to RT and DL scheduling classes and add
statistics for bandwith burst to the SCHED_FAIR class.
- Properly account SCHED_IDLE entities
- Prevent a potential deadlock when initial priority is assigned to a
newly created kthread. A recent change to plug a race between cpuset and
__sched_setscheduler() introduced a new lock dependency which is now
triggered. Break the lock dependency chain by moving the priority
assignment to the thread function.
- Fix the idle time reporting in /proc/uptime for NOHZ enabled systems.
- Improve idle balancing in general and especially for NOHZ enabled
systems.
- Provide proper interfaces for live patching so it does not have to
fiddle with scheduler internals.
- Add cluster aware scheduling support.
- A small set of tweaks for RT (irqwork, wait_task_inactive(), various
scheduler options and delaying mmdrop)
- The usual small tweaks and improvements all over the place
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmF/OUkTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoR/5D/9ikdGNpKg9osNqJ3GjAmxsK6kVkB29
iFe2k8pIpWDToWQf/wQRGih4Yj3Cl49QSnZcPIibh2/12EB1qrrW6iSPJkInz8Ec
/1LS5/Vewn2OyoxyXZjdvGC5gTXEodSbIazASvX7nvdMeI4gsAsL5etzrMJirT/t
aymqvr7zovvywrwMTQJrGjUMo9l4ewE8tafMNNhRu1BHU1U4ojM9yvThyRAAcmp7
3Xy49A+Yq3IgrvYI4u8FMK5Zh08KaxSFjiLhePGm/bF+wSfYmWop2TP1jY05W2Uo
ti8hfbJMUoFRYuMxAiEldkItnc0wV4M9PtWZZ/x+B71bs65Y4Zjt9cW+rxJv2+m1
vzV31EsQwGnOti072dzWN4c/cZqngVXAjaNtErvDwJUr+Tw1ayv9KUvuodMQqZY6
mu68bFUO2kV9EMe1CBOv51Uy1RGHyLj3rlNqrkw+Xp5ISE9Ad2vhUEiRp5bQx5Ci
V/XFhGZkGUluh0vccrdFlNYZwhj8cZEzkOPCnPSeZ+bq8SyZE6xuHH/lTP1CJCOy
s800rW1huM+kgV+zRN8adDkGXibAk9N3RtVGnQXmuEy8gB9LZmQg+JeM2wsc9B+6
i0gdqZnsjNAfoK+BBAG4holxptSL8/eOJsFH8ZNIoxQ+iqooyPx9tFX7yXnRTBQj
d2qWG7UvoseT+g==
=fgtS
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2021-11-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Thomas Gleixner:
- Revert the printk format based wchan() symbol resolution as it can
leak the raw value in case that the symbol is not resolvable.
- Make wchan() more robust and work with all kind of unwinders by
enforcing that the task stays blocked while unwinding is in progress.
- Prevent sched_fork() from accessing an invalid sched_task_group
- Improve asymmetric packing logic
- Extend scheduler statistics to RT and DL scheduling classes and add
statistics for bandwith burst to the SCHED_FAIR class.
- Properly account SCHED_IDLE entities
- Prevent a potential deadlock when initial priority is assigned to a
newly created kthread. A recent change to plug a race between cpuset
and __sched_setscheduler() introduced a new lock dependency which is
now triggered. Break the lock dependency chain by moving the priority
assignment to the thread function.
- Fix the idle time reporting in /proc/uptime for NOHZ enabled systems.
- Improve idle balancing in general and especially for NOHZ enabled
systems.
- Provide proper interfaces for live patching so it does not have to
fiddle with scheduler internals.
- Add cluster aware scheduling support.
- A small set of tweaks for RT (irqwork, wait_task_inactive(), various
scheduler options and delaying mmdrop)
- The usual small tweaks and improvements all over the place
* tag 'sched-core-2021-11-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (69 commits)
sched/fair: Cleanup newidle_balance
sched/fair: Remove sysctl_sched_migration_cost condition
sched/fair: Wait before decaying max_newidle_lb_cost
sched/fair: Skip update_blocked_averages if we are defering load balance
sched/fair: Account update_blocked_averages in newidle_balance cost
x86: Fix __get_wchan() for !STACKTRACE
sched,x86: Fix L2 cache mask
sched/core: Remove rq_relock()
sched: Improve wake_up_all_idle_cpus() take #2
irq_work: Also rcuwait for !IRQ_WORK_HARD_IRQ on PREEMPT_RT
irq_work: Handle some irq_work in a per-CPU thread on PREEMPT_RT
irq_work: Allow irq_work_sync() to sleep if irq_work() no IRQ support.
sched/rt: Annotate the RT balancing logic irqwork as IRQ_WORK_HARD_IRQ
sched: Add cluster scheduler level for x86
sched: Add cluster scheduler level in core and related Kconfig for ARM64
topology: Represent clusters of CPUs within a die
sched: Disable -Wunused-but-set-variable
sched: Add wrapper for get_wchan() to keep task blocked
x86: Fix get_wchan() to support the ORC unwinder
proc: Use task_is_running() for wchan in /proc/$pid/stat
...
Various files have acquired spurious includes of <linux/blkdev.h> over
time. Remove them.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Link: https://lore.kernel.org/r/20210920123328.1399408-7-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
There is a small race between copy_process() and sched_fork()
where child->sched_task_group point to an already freed pointer.
parent doing fork() | someone moving the parent
| to another cgroup
-------------------------------+-------------------------------
copy_process()
+ dup_task_struct()<1>
parent move to another cgroup,
and free the old cgroup. <2>
+ sched_fork()
+ __set_task_cpu()<3>
+ task_fork_fair()
+ sched_slice()<4>
In the worst case, this bug can lead to "use-after-free" and
cause panic as shown above:
(1) parent copy its sched_task_group to child at <1>;
(2) someone move the parent to another cgroup and free the old
cgroup at <2>;
(3) the sched_task_group and cfs_rq that belong to the old cgroup
will be accessed at <3> and <4>, which cause a panic:
[] BUG: unable to handle kernel NULL pointer dereference at 0000000000000000
[] PGD 8000001fa0a86067 P4D 8000001fa0a86067 PUD 2029955067 PMD 0
[] Oops: 0000 [#1] SMP PTI
[] CPU: 7 PID: 648398 Comm: ebizzy Kdump: loaded Tainted: G OE --------- - - 4.18.0.x86_64+ #1
[] RIP: 0010:sched_slice+0x84/0xc0
[] Call Trace:
[] task_fork_fair+0x81/0x120
[] sched_fork+0x132/0x240
[] copy_process.part.5+0x675/0x20e0
[] ? __handle_mm_fault+0x63f/0x690
[] _do_fork+0xcd/0x3b0
[] do_syscall_64+0x5d/0x1d0
[] entry_SYSCALL_64_after_hwframe+0x65/0xca
[] RIP: 0033:0x7f04418cd7e1
Between cgroup_can_fork() and cgroup_post_fork(), the cgroup
membership and thus sched_task_group can't change. So update child's
sched_task_group at sched_post_fork() and move task_fork() and
__set_task_cpu() (where accees the sched_task_group) from sched_fork()
to sched_post_fork().
Fixes: 8323f26ce3 ("sched: Fix race in task_group")
Signed-off-by: Zhang Qiao <zhangqiao22@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Tejun Heo <tj@kernel.org>
Link: https://lkml.kernel.org/r/20210915064030.2231-1-zhangqiao22@huawei.com
Today when a signal is delivered with a handler of SIG_DFL whose
default behavior is to generate a core dump not only that process but
every process that shares the mm is killed.
In the case of vfork this looks like a real world problem. Consider
the following well defined sequence.
if (vfork() == 0) {
execve(...);
_exit(EXIT_FAILURE);
}
If a signal that generates a core dump is received after vfork but
before the execve changes the mm the process that called vfork will
also be killed (as the mm is shared).
Similarly if the execve fails after the point of no return the kernel
delivers SIGSEGV which will kill both the exec'ing process and because
the mm is shared the process that called vfork as well.
As far as I can tell this behavior is a violation of people's
reasonable expectations, POSIX, and is unnecessarily fragile when the
system is low on memory.
Solve this by making a userspace visible change to only kill a single
process/thread group. This is possible because Jann Horn recently
modified[1] the coredump code so that the mm can safely be modified
while the coredump is happening. With LinuxThreads long gone I don't
expect anyone to have a notice this behavior change in practice.
To accomplish this move the core_state pointer from mm_struct to
signal_struct, which allows different thread groups to coredump
simultatenously.
In zap_threads remove the work to kill anything except for the current
thread group.
v2: Remove core_state from the VM_BUG_ON_MM print to fix
compile failure when CONFIG_DEBUG_VM is enabled.
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
[1] a07279c9a8 ("binfmt_elf, binfmt_elf_fdpic: use a VMA list snapshot")
Fixes: d89f3847def4 ("[PATCH] thread-aware coredumps, 2.5.43-C3")
History-tree: git://git.kernel.org/pub/scm/linux/kernel/git/tglx/history.git
Link: https://lkml.kernel.org/r/87y27mvnke.fsf@disp2133
Link: https://lkml.kernel.org/r/20211007144701.67592574@canb.auug.org.au
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Rename coredump_exit_mm to coredump_task_exit and call it from do_exit
before PTRACE_EVENT_EXIT, and before any cleanup work for a task
happens. This ensures that an accurate copy of the process can be
captured in the coredump as no cleanup for the process happens before
the coredump completes. This also ensures that PTRACE_EVENT_EXIT
will not be visited by any thread until the coredump is complete.
Add a new flag PF_POSTCOREDUMP so that tasks that have passed through
coredump_task_exit can be recognized and ignored in zap_process.
Now that all of the coredumping happens before exit_mm remove code to
test for a coredump in progress from mm_release.
Replace "may_ptrace_stop()" with a simple test of "current->ptrace".
The other tests in may_ptrace_stop all concern avoiding stopping
during a coredump. These tests are no longer necessary as it is now
guaranteed that fatal_signal_pending will be set if the code enters
ptrace_stop during a coredump. The code in ptrace_stop is guaranteed
not to stop if fatal_signal_pending returns true.
Until this change "ptrace_event(PTRACE_EVENT_EXIT)" could call
ptrace_stop without fatal_signal_pending being true, as signals are
dequeued in get_signal before calling do_exit. This is no longer
an issue as "ptrace_event(PTRACE_EVENT_EXIT)" is no longer reached
until after the coredump completes.
Link: https://lkml.kernel.org/r/874kaax26c.fsf@disp2133
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
After fork, the child process will get incorrect (2x) hugetlb_usage. If
a process uses 5 2MB hugetlb pages in an anonymous mapping,
HugetlbPages: 10240 kB
and then forks, the child will show,
HugetlbPages: 20480 kB
The reason for double the amount is because hugetlb_usage will be copied
from the parent and then increased when we copy page tables from parent
to child. Child will have 2x actual usage.
Fix this by adding hugetlb_count_init in mm_init.
Link: https://lkml.kernel.org/r/20210826071742.877-1-liuzixian4@huawei.com
Fixes: 5d317b2b65 ("mm: hugetlb: proc: add HugetlbPages field to /proc/PID/status")
Signed-off-by: Liu Zixian <liuzixian4@huawei.com>
Reviewed-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge more updates from Andrew Morton:
"147 patches, based on 7d2a07b769.
Subsystems affected by this patch series: mm (memory-hotplug, rmap,
ioremap, highmem, cleanups, secretmem, kfence, damon, and vmscan),
alpha, percpu, procfs, misc, core-kernel, MAINTAINERS, lib,
checkpatch, epoll, init, nilfs2, coredump, fork, pids, criu, kconfig,
selftests, ipc, and scripts"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (94 commits)
scripts: check_extable: fix typo in user error message
mm/workingset: correct kernel-doc notations
ipc: replace costly bailout check in sysvipc_find_ipc()
selftests/memfd: remove unused variable
Kconfig.debug: drop selecting non-existing HARDLOCKUP_DETECTOR_ARCH
configs: remove the obsolete CONFIG_INPUT_POLLDEV
prctl: allow to setup brk for et_dyn executables
pid: cleanup the stale comment mentioning pidmap_init().
kernel/fork.c: unexport get_{mm,task}_exe_file
coredump: fix memleak in dump_vma_snapshot()
fs/coredump.c: log if a core dump is aborted due to changed file permissions
nilfs2: use refcount_dec_and_lock() to fix potential UAF
nilfs2: fix memory leak in nilfs_sysfs_delete_snapshot_group
nilfs2: fix memory leak in nilfs_sysfs_create_snapshot_group
nilfs2: fix memory leak in nilfs_sysfs_delete_##name##_group
nilfs2: fix memory leak in nilfs_sysfs_create_##name##_group
nilfs2: fix NULL pointer in nilfs_##name##_attr_release
nilfs2: fix memory leak in nilfs_sysfs_create_device_group
trap: cleanup trap_init()
init: move usermodehelper_enable() to populate_rootfs()
...
Only used by core code and the tomoyo which can't be a module either.
Link: https://lkml.kernel.org/r/20210820095430.445242-1-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull MAP_DENYWRITE removal from David Hildenbrand:
"Remove all in-tree usage of MAP_DENYWRITE from the kernel and remove
VM_DENYWRITE.
There are some (minor) user-visible changes:
- We no longer deny write access to shared libaries loaded via legacy
uselib(); this behavior matches modern user space e.g. dlopen().
- We no longer deny write access to the elf interpreter after exec
completed, treating it just like shared libraries (which it often
is).
- We always deny write access to the file linked via /proc/pid/exe:
sys_prctl(PR_SET_MM_MAP/EXE_FILE) will fail if write access to the
file cannot be denied, and write access to the file will remain
denied until the link is effectivel gone (exec, termination,
sys_prctl(PR_SET_MM_MAP/EXE_FILE)) -- just as if exec'ing the file.
Cross-compiled for a bunch of architectures (alpha, microblaze, i386,
s390x, ...) and verified via ltp that especially the relevant tests
(i.e., creat07 and execve04) continue working as expected"
* tag 'denywrite-for-5.15' of git://github.com/davidhildenbrand/linux:
fs: update documentation of get_write_access() and friends
mm: ignore MAP_DENYWRITE in ksys_mmap_pgoff()
mm: remove VM_DENYWRITE
binfmt: remove in-tree usage of MAP_DENYWRITE
kernel/fork: always deny write access to current MM exe_file
kernel/fork: factor out replacing the current MM exe_file
binfmt: don't use MAP_DENYWRITE when loading shared libraries via uselib()
All in-tree users of MAP_DENYWRITE are gone. MAP_DENYWRITE cannot be
set from user space, so all users are gone; let's remove it.
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Acked-by: Christian König <christian.koenig@amd.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
We want to remove VM_DENYWRITE only currently only used when mapping the
executable during exec. During exec, we already deny_write_access() the
executable, however, after exec completes the VMAs mapped
with VM_DENYWRITE effectively keeps write access denied via
deny_write_access().
Let's deny write access when setting or replacing the MM exe_file. With
this change, we can remove VM_DENYWRITE for mapping executables.
Make set_mm_exe_file() return an error in case deny_write_access()
fails; note that this should never happen, because exec code does a
deny_write_access() early and keeps write access denied when calling
set_mm_exe_file. However, it makes the code easier to read and makes
set_mm_exe_file() and replace_mm_exe_file() look more similar.
This represents a minor user space visible change:
sys_prctl(PR_SET_MM_MAP/EXE_FILE) can now fail if the file is already
opened writable. Also, after sys_prctl(PR_SET_MM_MAP/EXE_FILE) the file
cannot be opened writable. Note that we can already fail with -EACCES if
the file doesn't have execute permissions.
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Acked-by: Christian König <christian.koenig@amd.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Let's factor the main logic out into replace_mm_exe_file(), such that
all mm->exe_file logic is contained in kernel/fork.c.
While at it, perform some simple cleanups that are possible now that
we're simplifying the individual functions.
Acked-by: Christian Brauner <christian.brauner@ubuntu.com>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Acked-by: Christian König <christian.koenig@amd.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
- Enable memcg accounting for various networking objects.
BPF:
- Introduce bpf timers.
- Add perf link and opaque bpf_cookie which the program can read
out again, to be used in libbpf-based USDT library.
- Add bpf_task_pt_regs() helper to access user space pt_regs
in kprobes, to help user space stack unwinding.
- Add support for UNIX sockets for BPF sockmap.
- Extend BPF iterator support for UNIX domain sockets.
- Allow BPF TCP congestion control progs and bpf iterators to call
bpf_setsockopt(), e.g. to switch to another congestion control
algorithm.
Protocols:
- Support IOAM Pre-allocated Trace with IPv6.
- Support Management Component Transport Protocol.
- bridge: multicast: add vlan support.
- netfilter: add hooks for the SRv6 lightweight tunnel driver.
- tcp:
- enable mid-stream window clamping (by user space or BPF)
- allow data-less, empty-cookie SYN with TFO_SERVER_COOKIE_NOT_REQD
- more accurate DSACK processing for RACK-TLP
- mptcp:
- add full mesh path manager option
- add partial support for MP_FAIL
- improve use of backup subflows
- optimize option processing
- af_unix: add OOB notification support.
- ipv6: add IFLA_INET6_RA_MTU to expose MTU value advertised by
the router.
- mac80211: Target Wake Time support in AP mode.
- can: j1939: extend UAPI to notify about RX status.
Driver APIs:
- Add page frag support in page pool API.
- Many improvements to the DSA (distributed switch) APIs.
- ethtool: extend IRQ coalesce uAPI with timer reset modes.
- devlink: control which auxiliary devices are created.
- Support CAN PHYs via the generic PHY subsystem.
- Proper cross-chip support for tag_8021q.
- Allow TX forwarding for the software bridge data path to be
offloaded to capable devices.
Drivers:
- veth: more flexible channels number configuration.
- openvswitch: introduce per-cpu upcall dispatch.
- Add internet mix (IMIX) mode to pktgen.
- Transparently handle XDP operations in the bonding driver.
- Add LiteETH network driver.
- Renesas (ravb):
- support Gigabit Ethernet IP
- NXP Ethernet switch (sja1105)
- fast aging support
- support for "H" switch topologies
- traffic termination for ports under VLAN-aware bridge
- Intel 1G Ethernet
- support getcrosststamp() with PCIe PTM (Precision Time
Measurement) for better time sync
- support Credit-Based Shaper (CBS) offload, enabling HW traffic
prioritization and bandwidth reservation
- Broadcom Ethernet (bnxt)
- support pulse-per-second output
- support larger Rx rings
- Mellanox Ethernet (mlx5)
- support ethtool RSS contexts and MQPRIO channel mode
- support LAG offload with bridging
- support devlink rate limit API
- support packet sampling on tunnels
- Huawei Ethernet (hns3):
- basic devlink support
- add extended IRQ coalescing support
- report extended link state
- Netronome Ethernet (nfp):
- add conntrack offload support
- Broadcom WiFi (brcmfmac):
- add WPA3 Personal with FT to supported cipher suites
- support 43752 SDIO device
- Intel WiFi (iwlwifi):
- support scanning hidden 6GHz networks
- support for a new hardware family (Bz)
- Xen pv driver:
- harden netfront against malicious backends
- Qualcomm mobile
- ipa: refactor power management and enable automatic suspend
- mhi: move MBIM to WWAN subsystem interfaces
Refactor:
- Ambient BPF run context and cgroup storage cleanup.
- Compat rework for ndo_ioctl.
Old code removal:
- prism54 remove the obsoleted driver, deprecated by the p54 driver.
- wan: remove sbni/granch driver.
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEE6jPA+I1ugmIBA4hXMUZtbf5SIrsFAmEukBYACgkQMUZtbf5S
IrsyHA//TO8dw18NYts4n9LmlJT2naJ7yBUUSSXK/M+DtW0MQ9nnHhqzPm5uJdRl
IgQTNJrW3dYzRwgqaWZqEwO1t5/FI+f87ND1Nsekg7x9tF66a6ov5WxU26TwwSba
U+si/inQ/4chuQ+LxMQobqCDxaLE46I2dIoRl+YfndJ24DRzYSwAEYIPPbSdfyU+
+/l+3s4GaxO4k/hLciPAiOniyxLoUNiGUTNh+2yqRBXelSRJRKVnl+V22ANFrxRW
nTEiplfVKhlPU1e4iLuRtaxDDiePHhw9I3j/lMHhfeFU2P/gKJIvz4QpGV0CAZg2
1VvDU32WEx1GQLXJbKm0KwoNRUq1QSjOyyFti+BO7ugGaYAR4gKhShOqlSYLzUtB
tbtzQhSNLWOGqgmSJOztZb5kFDm2EdRSll5/lP2uyFlPkIsIp0QbscJVzNTnS74b
Xz15ZOw41Z4TfWPEMWgfrx6Zkm7pPWkly+7WfUkPcHa1gftNz6tzXXxSXcXIBPdi
yQ5JCzzxrM5573YHuk5YedwZpn6PiAt4A/muFGk9C6aXP60TQAOS/ppaUzZdnk4D
NfOk9mj06WEULjYjPcKEuT3GGWE6kmjb8Pu0QZWKOchv7vr6oZly1EkVZqYlXELP
AfhcrFeuufie8mqm0jdb4LnYaAnqyLzlb1J4Zxh9F+/IX7G3yoc=
=JDGD
-----END PGP SIGNATURE-----
Merge tag 'net-next-5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next
Pull networking updates from Jakub Kicinski:
"Core:
- Enable memcg accounting for various networking objects.
BPF:
- Introduce bpf timers.
- Add perf link and opaque bpf_cookie which the program can read out
again, to be used in libbpf-based USDT library.
- Add bpf_task_pt_regs() helper to access user space pt_regs in
kprobes, to help user space stack unwinding.
- Add support for UNIX sockets for BPF sockmap.
- Extend BPF iterator support for UNIX domain sockets.
- Allow BPF TCP congestion control progs and bpf iterators to call
bpf_setsockopt(), e.g. to switch to another congestion control
algorithm.
Protocols:
- Support IOAM Pre-allocated Trace with IPv6.
- Support Management Component Transport Protocol.
- bridge: multicast: add vlan support.
- netfilter: add hooks for the SRv6 lightweight tunnel driver.
- tcp:
- enable mid-stream window clamping (by user space or BPF)
- allow data-less, empty-cookie SYN with TFO_SERVER_COOKIE_NOT_REQD
- more accurate DSACK processing for RACK-TLP
- mptcp:
- add full mesh path manager option
- add partial support for MP_FAIL
- improve use of backup subflows
- optimize option processing
- af_unix: add OOB notification support.
- ipv6: add IFLA_INET6_RA_MTU to expose MTU value advertised by the
router.
- mac80211: Target Wake Time support in AP mode.
- can: j1939: extend UAPI to notify about RX status.
Driver APIs:
- Add page frag support in page pool API.
- Many improvements to the DSA (distributed switch) APIs.
- ethtool: extend IRQ coalesce uAPI with timer reset modes.
- devlink: control which auxiliary devices are created.
- Support CAN PHYs via the generic PHY subsystem.
- Proper cross-chip support for tag_8021q.
- Allow TX forwarding for the software bridge data path to be
offloaded to capable devices.
Drivers:
- veth: more flexible channels number configuration.
- openvswitch: introduce per-cpu upcall dispatch.
- Add internet mix (IMIX) mode to pktgen.
- Transparently handle XDP operations in the bonding driver.
- Add LiteETH network driver.
- Renesas (ravb):
- support Gigabit Ethernet IP
- NXP Ethernet switch (sja1105):
- fast aging support
- support for "H" switch topologies
- traffic termination for ports under VLAN-aware bridge
- Intel 1G Ethernet
- support getcrosststamp() with PCIe PTM (Precision Time
Measurement) for better time sync
- support Credit-Based Shaper (CBS) offload, enabling HW traffic
prioritization and bandwidth reservation
- Broadcom Ethernet (bnxt)
- support pulse-per-second output
- support larger Rx rings
- Mellanox Ethernet (mlx5)
- support ethtool RSS contexts and MQPRIO channel mode
- support LAG offload with bridging
- support devlink rate limit API
- support packet sampling on tunnels
- Huawei Ethernet (hns3):
- basic devlink support
- add extended IRQ coalescing support
- report extended link state
- Netronome Ethernet (nfp):
- add conntrack offload support
- Broadcom WiFi (brcmfmac):
- add WPA3 Personal with FT to supported cipher suites
- support 43752 SDIO device
- Intel WiFi (iwlwifi):
- support scanning hidden 6GHz networks
- support for a new hardware family (Bz)
- Xen pv driver:
- harden netfront against malicious backends
- Qualcomm mobile
- ipa: refactor power management and enable automatic suspend
- mhi: move MBIM to WWAN subsystem interfaces
Refactor:
- Ambient BPF run context and cgroup storage cleanup.
- Compat rework for ndo_ioctl.
Old code removal:
- prism54 remove the obsoleted driver, deprecated by the p54 driver.
- wan: remove sbni/granch driver"
* tag 'net-next-5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1715 commits)
net: Add depends on OF_NET for LiteX's LiteETH
ipv6: seg6: remove duplicated include
net: hns3: remove unnecessary spaces
net: hns3: add some required spaces
net: hns3: clean up a type mismatch warning
net: hns3: refine function hns3_set_default_feature()
ipv6: remove duplicated 'net/lwtunnel.h' include
net: w5100: check return value after calling platform_get_resource()
net/mlxbf_gige: Make use of devm_platform_ioremap_resourcexxx()
net: mdio: mscc-miim: Make use of the helper function devm_platform_ioremap_resource()
net: mdio-ipq4019: Make use of devm_platform_ioremap_resource()
fou: remove sparse errors
ipv4: fix endianness issue in inet_rtm_getroute_build_skb()
octeontx2-af: Set proper errorcode for IPv4 checksum errors
octeontx2-af: Fix static code analyzer reported issues
octeontx2-af: Fix mailbox errors in nix_rss_flowkey_cfg
octeontx2-af: Fix loop in free and unmap counter
af_unix: fix potential NULL deref in unix_dgram_connect()
dpaa2-eth: Replace strlcpy with strscpy
octeontx2-af: Use NDC TX for transmit packet data
...
- The biggest change in this cycle is scheduler support for asymmetric
scheduling affinity, to support the execution of legacy 32-bit tasks on
AArch32 systems that also have 64-bit-only CPUs.
Architectures can fill in this functionality by defining their
own task_cpu_possible_mask(p). When this is done, the scheduler will
make sure the task will only be scheduled on CPUs that support it.
(The actual arm64 specific changes are not part of this tree.)
For other architectures there will be no change in functionality.
- Add cgroup SCHED_IDLE support
- Increase node-distance flexibility & delay determining it until a CPU
is brought online. (This enables platforms where node distance isn't
final until the CPU is only.)
- Deadline scheduler enhancements & fixes
- Misc fixes & cleanups.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmEsrDgRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1gMxBAAmzXPnDm1pDBBUaEwc+DynNGHNxZcBO5E
CaNyfywp4GMA+OC3JzUgDg1B9uvKQRdBGtv6SZ8OcyhJMfmkEvjt5/wYUrcdtQVP
TA2lt80/Is8LQMnvcz7X0gmsLt+fXWQTF8ik1KT4wsi/k03Xw8BH11zHct6sV2QN
NNQ+7BEjqU1HA1UXJFiaoGtWF0gdh29VyE5dSzfAis79L0XUQadS512LJKin/AK0
wYz8E+L7QIrjhfX9FQdOrR6da4TK6jAXyEY6a9dpaMHnFdtxuwhT4/BPtovNTeeY
yxEZm3qSZbpghWHsMEa6Z4GIeLE6aNi3wcHt10fgdZDdotSRsNZuF6gi4A8nhRC+
6wm+fCcFGEIBCL6eE/16Wms6YMdFfuiEAgtJGNy7GGyfH3/mS6u8eylXbLZncYXn
DFHY+xUvmVZSzoPzcnYXEy4FB3kywNL7WBFxyhdXf5/EvWmmtHi4K3jVQ8jaqvhL
MDk3NX9Hd0ariff3zUltWhMY5ouj6bIbBZmWWnD3s1xQT68VvE563cq0qH15dlnr
j5M71eNRWvoOdZKzflgjRZzmdQtsZQ51tiMA6W6ZRfwYkHjb70qiia0r5GFf41X1
MYelmcaA8+RjKrQ5etxzzDjoXl0xDXiZric6gRQHjG1Y1Zm2rVaoD+vkJGD5TQJ0
2XTOGQgAxh4=
=VdGE
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2021-08-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
- The biggest change in this cycle is scheduler support for asymmetric
scheduling affinity, to support the execution of legacy 32-bit tasks
on AArch32 systems that also have 64-bit-only CPUs.
Architectures can fill in this functionality by defining their own
task_cpu_possible_mask(p). When this is done, the scheduler will make
sure the task will only be scheduled on CPUs that support it.
(The actual arm64 specific changes are not part of this tree.)
For other architectures there will be no change in functionality.
- Add cgroup SCHED_IDLE support
- Increase node-distance flexibility & delay determining it until a CPU
is brought online. (This enables platforms where node distance isn't
final until the CPU is only.)
- Deadline scheduler enhancements & fixes
- Misc fixes & cleanups.
* tag 'sched-core-2021-08-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (27 commits)
eventfd: Make signal recursion protection a task bit
sched/fair: Mark tg_is_idle() an inline in the !CONFIG_FAIR_GROUP_SCHED case
sched: Introduce dl_task_check_affinity() to check proposed affinity
sched: Allow task CPU affinity to be restricted on asymmetric systems
sched: Split the guts of sched_setaffinity() into a helper function
sched: Introduce task_struct::user_cpus_ptr to track requested affinity
sched: Reject CPU affinity changes based on task_cpu_possible_mask()
cpuset: Cleanup cpuset_cpus_allowed_fallback() use in select_fallback_rq()
cpuset: Honour task_cpu_possible_mask() in guarantee_online_cpus()
cpuset: Don't use the cpu_possible_mask as a last resort for cgroup v1
sched: Introduce task_cpu_possible_mask() to limit fallback rq selection
sched: Cgroup SCHED_IDLE support
sched/topology: Skip updating masks for non-online nodes
sched: Replace deprecated CPU-hotplug functions.
sched: Skip priority checks with SCHED_FLAG_KEEP_PARAMS
sched: Fix UCLAMP_FLAG_IDLE setting
sched/deadline: Fix missing clock update in migrate_task_rq_dl()
sched/fair: Avoid a second scan of target in select_idle_cpu
sched/fair: Use prev instead of new target as recent_used_cpu
sched: Don't report SCHED_FLAG_SUGOV in sched_getattr()
...
"Ma, XinjianX" <xinjianx.ma@intel.com> reported:
> When lkp team run kernel selftests, we found after these series of patches, testcase mqueue: mq_perf_tests
> in kselftest failed with following message.
>
> # selftests: mqueue: mq_perf_tests
> #
> # Initial system state:
> # Using queue path: /mq_perf_tests
> # RLIMIT_MSGQUEUE(soft): 819200
> # RLIMIT_MSGQUEUE(hard): 819200
> # Maximum Message Size: 8192
> # Maximum Queue Size: 10
> # Nice value: 0
> #
> # Adjusted system state for testing:
> # RLIMIT_MSGQUEUE(soft): (unlimited)
> # RLIMIT_MSGQUEUE(hard): (unlimited)
> # Maximum Message Size: 16777216
> # Maximum Queue Size: 65530
> # Nice value: -20
> # Continuous mode: (disabled)
> # CPUs to pin: 3
> # ./mq_perf_tests: mq_open() at 296: Too many open files
> not ok 2 selftests: mqueue: mq_perf_tests # exit=1
> ```
>
> Test env:
> rootfs: debian-10
> gcc version: 9
After investigation the problem turned out to be that ucount_max for
the rlimits in init_user_ns was being set to the initial rlimit value.
The practical problem is that ucount_max provides a limit that
applications inside the user namespace can not exceed. Which means in
practice that rlimits that have been converted to use the ucount
infrastructure were not able to exceend their initial rlimits.
Solve this by setting the relevant values of ucount_max to
RLIM_INIFINITY. A limit in init_user_ns is pointless so the code
should allow the values to grow as large as possible without riscking
an underflow or an overflow.
As the ltp test case was a bit of a pain I have reproduced the rlimit failure
and tested the fix with the following little C program:
> #include <stdio.h>
> #include <fcntl.h>
> #include <sys/stat.h>
> #include <mqueue.h>
> #include <sys/time.h>
> #include <sys/resource.h>
> #include <errno.h>
> #include <string.h>
> #include <stdlib.h>
> #include <limits.h>
> #include <unistd.h>
>
> int main(int argc, char **argv)
> {
> struct mq_attr mq_attr;
> struct rlimit rlim;
> mqd_t mqd;
> int ret;
>
> ret = getrlimit(RLIMIT_MSGQUEUE, &rlim);
> if (ret != 0) {
> fprintf(stderr, "getrlimit(RLIMIT_MSGQUEUE) failed: %s\n", strerror(errno));
> exit(EXIT_FAILURE);
> }
> printf("RLIMIT_MSGQUEUE %lu %lu\n",
> rlim.rlim_cur, rlim.rlim_max);
> rlim.rlim_cur = RLIM_INFINITY;
> rlim.rlim_max = RLIM_INFINITY;
> ret = setrlimit(RLIMIT_MSGQUEUE, &rlim);
> if (ret != 0) {
> fprintf(stderr, "setrlimit(RLIMIT_MSGQUEUE, RLIM_INFINITY) failed: %s\n", strerror(errno));
> exit(EXIT_FAILURE);
> }
>
> memset(&mq_attr, 0, sizeof(struct mq_attr));
> mq_attr.mq_maxmsg = 65536 - 1;
> mq_attr.mq_msgsize = 16*1024*1024 - 1;
>
> mqd = mq_open("/mq_rlimit_test", O_RDONLY|O_CREAT, 0600, &mq_attr);
> if (mqd == (mqd_t)-1) {
> fprintf(stderr, "mq_open failed: %s\n", strerror(errno));
> exit(EXIT_FAILURE);
> }
> ret = mq_close(mqd);
> if (ret) {
> fprintf(stderr, "mq_close failed; %s\n", strerror(errno));
> exit(EXIT_FAILURE);
> }
>
> return EXIT_SUCCESS;
> }
Fixes: 6e52a9f053 ("Reimplement RLIMIT_MSGQUEUE on top of ucounts")
Fixes: d7c9e99aee ("Reimplement RLIMIT_MEMLOCK on top of ucounts")
Fixes: d646969055 ("Reimplement RLIMIT_SIGPENDING on top of ucounts")
Fixes: 21d1c5e386 ("Reimplement RLIMIT_NPROC on top of ucounts")
Reported-by: kernel test robot lkp@intel.com
Acked-by: Alexey Gladkov <legion@kernel.org>
Link: https://lkml.kernel.org/r/87eeajswfc.fsf_-_@disp2133
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
In preparation for saving and restoring the user-requested CPU affinity
mask of a task, add a new cpumask_t pointer to 'struct task_struct'.
If the pointer is non-NULL, then the mask is copied across fork() and
freed on task exit.
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <Valentin.Schneider@arm.com>
Link: https://lore.kernel.org/r/20210730112443.23245-7-will@kernel.org
b910eaaaa4 ("bpf: Fix NULL pointer dereference in bpf_get_local_storage()
helper") fixed the problem with cgroup-local storage use in BPF by
pre-allocating per-CPU array of 8 cgroup storage pointers to accommodate
possible BPF program preemptions and nested executions.
While this seems to work good in practice, it introduces new and unnecessary
failure mode in which not all BPF programs might be executed if we fail to
find an unused slot for cgroup storage, however unlikely it is. It might also
not be so unlikely when/if we allow sleepable cgroup BPF programs in the
future.
Further, the way that cgroup storage is implemented as ambiently-available
property during entire BPF program execution is a convenient way to pass extra
information to BPF program and helpers without requiring user code to pass
around extra arguments explicitly. So it would be good to have a generic
solution that can allow implementing this without arbitrary restrictions.
Ideally, such solution would work for both preemptable and sleepable BPF
programs in exactly the same way.
This patch introduces such solution, bpf_run_ctx. It adds one pointer field
(bpf_ctx) to task_struct. This field is maintained by BPF_PROG_RUN family of
macros in such a way that it always stays valid throughout BPF program
execution. BPF program preemption is handled by remembering previous
current->bpf_ctx value locally while executing nested BPF program and
restoring old value after nested BPF program finishes. This is handled by two
helper functions, bpf_set_run_ctx() and bpf_reset_run_ctx(), which are
supposed to be used before and after BPF program runs, respectively.
Restoring old value of the pointer handles preemption, while bpf_run_ctx
pointer being a property of current task_struct naturally solves this problem
for sleepable BPF programs by "following" BPF program execution as it is
scheduled in and out of CPU. It would even allow CPU migration of BPF
programs, even though it's not currently allowed by BPF infra.
This patch cleans up cgroup local storage handling as a first application. The
design itself is generic, though, with bpf_run_ctx being an empty struct that
is supposed to be embedded into a specific struct for a given BPF program type
(bpf_cg_run_ctx in this case). Follow up patches are planned that will expand
this mechanism for other uses within tracing BPF programs.
To verify that this change doesn't revert the fix to the original cgroup
storage issue, I ran the same repro as in the original report ([0]) and didn't
get any problems. Replacing bpf_reset_run_ctx(old_run_ctx) with
bpf_reset_run_ctx(NULL) triggers the issue pretty quickly (so repro does work).
[0] https://lore.kernel.org/bpf/YEEvBUiJl2pJkxTd@krava/
Fixes: b910eaaaa4 ("bpf: Fix NULL pointer dereference in bpf_get_local_storage() helper")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20210712230615.3525979-1-andrii@kernel.org
Merge misc updates from Andrew Morton:
"191 patches.
Subsystems affected by this patch series: kthread, ia64, scripts,
ntfs, squashfs, ocfs2, kernel/watchdog, and mm (gup, pagealloc, slab,
slub, kmemleak, dax, debug, pagecache, gup, swap, memcg, pagemap,
mprotect, bootmem, dma, tracing, vmalloc, kasan, initialization,
pagealloc, and memory-failure)"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (191 commits)
mm,hwpoison: make get_hwpoison_page() call get_any_page()
mm,hwpoison: send SIGBUS with error virutal address
mm/page_alloc: split pcp->high across all online CPUs for cpuless nodes
mm/page_alloc: allow high-order pages to be stored on the per-cpu lists
mm: replace CONFIG_FLAT_NODE_MEM_MAP with CONFIG_FLATMEM
mm: replace CONFIG_NEED_MULTIPLE_NODES with CONFIG_NUMA
docs: remove description of DISCONTIGMEM
arch, mm: remove stale mentions of DISCONIGMEM
mm: remove CONFIG_DISCONTIGMEM
m68k: remove support for DISCONTIGMEM
arc: remove support for DISCONTIGMEM
arc: update comment about HIGHMEM implementation
alpha: remove DISCONTIGMEM and NUMA
mm/page_alloc: move free_the_page
mm/page_alloc: fix counting of managed_pages
mm/page_alloc: improve memmap_pages dbg msg
mm: drop SECTION_SHIFT in code comments
mm/page_alloc: introduce vm.percpu_pagelist_high_fraction
mm/page_alloc: limit the number of pages on PCP lists when reclaim is active
mm/page_alloc: scale the number of pages that are batch freed
...
has_pinned 32bit can be packed in the MMF_HAS_PINNED bit as a noop
cleanup.
Any atomic_inc/dec to the mm cacheline shared by all threads in pin-fast
would reintroduce a loss of SMP scalability to pin-fast, so there's no
future potential usefulness to keep an atomic in the mm for this.
set_bit(MMF_HAS_PINNED) will be theoretically a bit slower than WRITE_ONCE
(atomic_set is equivalent to WRITE_ONCE), but the set_bit (just like
atomic_set after this commit) has to be still issued only once per "mm",
so the difference between the two will be lost in the noise.
will-it-scale "mmap2" shows no change in performance with enterprise
config as expected.
will-it-scale "pin_fast" retains the > 4000% SMP scalability performance
improvement against upstream as expected.
This is a noop as far as overall performance and SMP scalability are
concerned.
[peterx@redhat.com: pack has_pinned in MMF_HAS_PINNED]
Link: https://lkml.kernel.org/r/YJqWESqyxa8OZA+2@t490s
[akpm@linux-foundation.org: coding style fixes]
[peterx@redhat.com: fix build for task_mmu.c, introduce mm_set_has_pinned_flag, fix comments]
Link: https://lkml.kernel.org/r/20210507150553.208763-4-peterx@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jann Horn <jannh@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Kirill Shutemov <kirill@shutemov.name>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull user namespace rlimit handling update from Eric Biederman:
"This is the work mainly by Alexey Gladkov to limit rlimits to the
rlimits of the user that created a user namespace, and to allow users
to have stricter limits on the resources created within a user
namespace."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
cred: add missing return error code when set_cred_ucounts() failed
ucounts: Silence warning in dec_rlimit_ucounts
ucounts: Set ucount_max to the largest positive value the type can hold
kselftests: Add test to check for rlimit changes in different user namespaces
Reimplement RLIMIT_MEMLOCK on top of ucounts
Reimplement RLIMIT_SIGPENDING on top of ucounts
Reimplement RLIMIT_MSGQUEUE on top of ucounts
Reimplement RLIMIT_NPROC on top of ucounts
Use atomic_t for ucounts reference counting
Add a reference to ucounts for each cred
Increase size of ucounts to atomic_long_t
- Changes to core scheduling facilities:
- Add "Core Scheduling" via CONFIG_SCHED_CORE=y, which enables
coordinated scheduling across SMT siblings. This is a much
requested feature for cloud computing platforms, to allow
the flexible utilization of SMT siblings, without exposing
untrusted domains to information leaks & side channels, plus
to ensure more deterministic computing performance on SMT
systems used by heterogenous workloads.
There's new prctls to set core scheduling groups, which
allows more flexible management of workloads that can share
siblings.
- Fix task->state access anti-patterns that may result in missed
wakeups and rename it to ->__state in the process to catch new
abuses.
- Load-balancing changes:
- Tweak newidle_balance for fair-sched, to improve
'memcache'-like workloads.
- "Age" (decay) average idle time, to better track & improve workloads
such as 'tbench'.
- Fix & improve energy-aware (EAS) balancing logic & metrics.
- Fix & improve the uclamp metrics.
- Fix task migration (taskset) corner case on !CONFIG_CPUSET.
- Fix RT and deadline utilization tracking across policy changes
- Introduce a "burstable" CFS controller via cgroups, which allows
bursty CPU-bound workloads to borrow a bit against their future
quota to improve overall latencies & batching. Can be tweaked
via /sys/fs/cgroup/cpu/<X>/cpu.cfs_burst_us.
- Rework assymetric topology/capacity detection & handling.
- Scheduler statistics & tooling:
- Disable delayacct by default, but add a sysctl to enable
it at runtime if tooling needs it. Use static keys and
other optimizations to make it more palatable.
- Use sched_clock() in delayacct, instead of ktime_get_ns().
- Misc cleanups and fixes.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmDZcPoRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1g3yw//WfhIqy7Psa9d/MBMjQDRGbTuO4+w22Dj
vmWFU44Q4KJxQHWeIgUlrK+dzvYWvNmflUs2CUUOiDVzxFTHMIyBtL4qCBUbx4Ns
vKAcB9wsWZge2o3WzZqpProRhdoRaSKw8egUr2q7rACVBkckY7eGP/OjWxXU8BdA
b7D0LPWwuIBFfN4pFYeCDLn32Dqr9s6Chyj+ZecabdG7EE6Gu+f1diVcxy7JE/mc
4WWL0D1RqdgpGrBEuMJIxPYekdrZiuy4jtEbztz5gbTBteN1cj3BLfqn0Pc/e6rO
Vyuc5mXCAmzRVi18z6g6bsVl+IA/nrbErENB2OHOhOYtqiZxqGTd4GPWZszMyY17
5AsEO5+5pcaBsy4gyp09qURggBu9zhJnMVmOI3rIHZkmkhwzc6uUJlyhDCTiFWOz
3ZF3LjbZEyCKodMD8qMHbs3axIBpIfZqjzkvSKyFnvfXEGVytVse7NUuWtQ36u92
GnURxVeYY1TDVXvE1Y8owNKMxknKQ6YRlypP7Dtbeo/qG6hShp0xmS7qDLDi0ybZ
ZlK+bDECiVoDf3nvJo+8v5M82IJ3CBt4UYldeRJsa1YCK/FsbK8tp91fkEfnXVue
+U6LPX0AmMpXacR5HaZfb3uBIKRw/QMdP/7RFtBPhpV6jqCrEmuqHnpPQiEVtxwO
UmG7bt94Trk=
=3VDr
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler udpates from Ingo Molnar:
- Changes to core scheduling facilities:
- Add "Core Scheduling" via CONFIG_SCHED_CORE=y, which enables
coordinated scheduling across SMT siblings. This is a much
requested feature for cloud computing platforms, to allow the
flexible utilization of SMT siblings, without exposing untrusted
domains to information leaks & side channels, plus to ensure more
deterministic computing performance on SMT systems used by
heterogenous workloads.
There are new prctls to set core scheduling groups, which allows
more flexible management of workloads that can share siblings.
- Fix task->state access anti-patterns that may result in missed
wakeups and rename it to ->__state in the process to catch new
abuses.
- Load-balancing changes:
- Tweak newidle_balance for fair-sched, to improve 'memcache'-like
workloads.
- "Age" (decay) average idle time, to better track & improve
workloads such as 'tbench'.
- Fix & improve energy-aware (EAS) balancing logic & metrics.
- Fix & improve the uclamp metrics.
- Fix task migration (taskset) corner case on !CONFIG_CPUSET.
- Fix RT and deadline utilization tracking across policy changes
- Introduce a "burstable" CFS controller via cgroups, which allows
bursty CPU-bound workloads to borrow a bit against their future
quota to improve overall latencies & batching. Can be tweaked via
/sys/fs/cgroup/cpu/<X>/cpu.cfs_burst_us.
- Rework assymetric topology/capacity detection & handling.
- Scheduler statistics & tooling:
- Disable delayacct by default, but add a sysctl to enable it at
runtime if tooling needs it. Use static keys and other
optimizations to make it more palatable.
- Use sched_clock() in delayacct, instead of ktime_get_ns().
- Misc cleanups and fixes.
* tag 'sched-core-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (72 commits)
sched/doc: Update the CPU capacity asymmetry bits
sched/topology: Rework CPU capacity asymmetry detection
sched/core: Introduce SD_ASYM_CPUCAPACITY_FULL sched_domain flag
psi: Fix race between psi_trigger_create/destroy
sched/fair: Introduce the burstable CFS controller
sched/uclamp: Fix uclamp_tg_restrict()
sched/rt: Fix Deadline utilization tracking during policy change
sched/rt: Fix RT utilization tracking during policy change
sched: Change task_struct::state
sched,arch: Remove unused TASK_STATE offsets
sched,timer: Use __set_current_state()
sched: Add get_current_state()
sched,perf,kvm: Fix preemption condition
sched: Introduce task_is_running()
sched: Unbreak wakeups
sched/fair: Age the average idle time
sched/cpufreq: Consider reduced CPU capacity in energy calculation
sched/fair: Take thermal pressure into account while estimating energy
thermal/cpufreq_cooling: Update offline CPUs per-cpu thermal_pressure
sched/fair: Return early from update_tg_cfs_load() if delta == 0
...
This reverts commits 4bad58ebc8 (and
399f8dd9a8, which tried to fix it).
I do not believe these are correct, and I'm about to release 5.13, so am
reverting them out of an abundance of caution.
The locking is odd, and appears broken.
On the allocation side (in __sigqueue_alloc()), the locking is somewhat
straightforward: it depends on sighand->siglock. Since one caller
doesn't hold that lock, it further then tests 'sigqueue_flags' to avoid
the case with no locks held.
On the freeing side (in sigqueue_cache_or_free()), there is no locking
at all, and the logic instead depends on 'current' being a single
thread, and not able to race with itself.
To make things more exciting, there's also the data race between freeing
a signal and allocating one, which is handled by using WRITE_ONCE() and
READ_ONCE(), and being mutually exclusive wrt the initial state (ie
freeing will only free if the old state was NULL, while allocating will
obviously only use the value if it was non-NULL, so only one or the
other will actually act on the value).
However, while the free->alloc paths do seem mutually exclusive thanks
to just the data value dependency, it's not clear what the memory
ordering constraints are on it. Could writes from the previous
allocation possibly be delayed and seen by the new allocation later,
causing logical inconsistencies?
So it's all very exciting and unusual.
And in particular, it seems that the freeing side is incorrect in
depending on "current" being single-threaded. Yes, 'current' is a
single thread, but in the presense of asynchronous events even a single
thread can have data races.
And such asynchronous events can and do happen, with interrupts causing
signals to be flushed and thus free'd (for example - sending a
SIGCONT/SIGSTOP can happen from interrupt context, and can flush
previously queued process control signals).
So regardless of all the other questions about the memory ordering and
locking for this new cached allocation, the sigqueue_cache_or_free()
assumptions seem to be fundamentally incorrect.
It may be that people will show me the errors of my ways, and tell me
why this is all safe after all. We can reinstate it if so. But my
current belief is that the WRITE_ONCE() that sets the cached entry needs
to be a smp_store_release(), and the READ_ONCE() that finds a cached
entry needs to be a smp_load_acquire() to handle memory ordering
correctly.
And the sequence in sigqueue_cache_or_free() would need to either use a
lock or at least be interrupt-safe some way (perhaps by using something
like the percpu 'cmpxchg': it doesn't need to be SMP-safe, but like the
percpu operations it needs to be interrupt-safe).
Fixes: 399f8dd9a8 ("signal: Prevent sigqueue caching after task got released")
Fixes: 4bad58ebc8 ("signal: Allow tasks to cache one sigqueue struct")
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Christian Brauner <christian.brauner@ubuntu.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Change the type and name of task_struct::state. Drop the volatile and
shrink it to an 'unsigned int'. Rename it in order to find all uses
such that we can use READ_ONCE/WRITE_ONCE as appropriate.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Acked-by: Will Deacon <will@kernel.org>
Acked-by: Daniel Thompson <daniel.thompson@linaro.org>
Link: https://lore.kernel.org/r/20210611082838.550736351@infradead.org
Commit:
00b89fe019 ("sched: Make the idle task quack like a per-CPU kthread")
... added PF_KTHREAD | PF_NO_SETAFFINITY to the idle kernel threads.
Unfortunately these properties are inherited to the init/0 children
through kernel_thread() calls: init/1 and kthreadd. There are several
side effects to that:
1) kthreadd affinity can not be reset anymore from userspace. Also
PF_NO_SETAFFINITY propagates to all kthreadd children, including
the unbound kthreads Therefore it's not possible anymore to overwrite
the affinity of any of them. Here is an example of warning reported
by rcutorture:
WARNING: CPU: 0 PID: 116 at kernel/rcu/tree_nocb.h:1306 rcu_bind_current_to_nocb+0x31/0x40
Call Trace:
rcu_torture_fwd_prog+0x62/0x730
kthread+0x122/0x140
ret_from_fork+0x22/0x30
2) init/1 does an exec() in the end which clears both
PF_KTHREAD and PF_NO_SETAFFINITY so we are fine once kernel_init()
escapes to userspace. But until then, no initcall or init code can
successfully call sched_setaffinity() to init/1.
Also PF_KTHREAD looks legit on init/1 before it calls exec() but
we better be careful with unknown introduced side effects.
One way to solve the PF_NO_SETAFFINITY issue is to not inherit this flag
on copy_process() at all. The cases where it matters are:
* fork_idle(): explicitly set the flag already.
* fork() syscalls: userspace tasks that shouldn't be concerned by that.
* create_io_thread(): the callers explicitly attribute the flag to the
newly created tasks.
* kernel_thread():
- Fix the issues on init/1 and kthreadd
- Fix the issues on kthreadd children.
- Usermode helper created by an unbound workqueue. This shouldn't
matter. In the worst case it gives more control to userspace
on setting affinity to these short living tasks although this can
be tuned with inherited unbound workqueues affinity already.
Fixes: 00b89fe019 ("sched: Make the idle task quack like a per-CPU kthread")
Reported-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Paul E. McKenney <paulmck@kernel.org>
Link: https://lore.kernel.org/r/20210525235849.441842-1-frederic@kernel.org
As pointed out by commit
de9b8f5dcb ("sched: Fix crash trying to dequeue/enqueue the idle thread")
init_idle() can and will be invoked more than once on the same idle
task. At boot time, it is invoked for the boot CPU thread by
sched_init(). Then smp_init() creates the threads for all the secondary
CPUs and invokes init_idle() on them.
As the hotplug machinery brings the secondaries to life, it will issue
calls to idle_thread_get(), which itself invokes init_idle() yet again.
In this case it's invoked twice more per secondary: at _cpu_up(), and at
bringup_cpu().
Given smp_init() already initializes the idle tasks for all *possible*
CPUs, no further initialization should be required. Now, removing
init_idle() from idle_thread_get() exposes some interesting expectations
with regards to the idle task's preempt_count: the secondary startup always
issues a preempt_disable(), requiring some reset of the preempt count to 0
between hot-unplug and hotplug, which is currently served by
idle_thread_get() -> idle_init().
Given the idle task is supposed to have preemption disabled once and never
see it re-enabled, it seems that what we actually want is to initialize its
preempt_count to PREEMPT_DISABLED and leave it there. Do that, and remove
init_idle() from idle_thread_get().
Secondary startups were patched via coccinelle:
@begone@
@@
-preempt_disable();
...
cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210512094636.2958515-1-valentin.schneider@arm.com
Note that sched_core_fork() is called from under tasklist_lock, and
not from sched_fork() earlier. This avoids a few races later.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Don Hiatt <dhiatt@digitalocean.com>
Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210422123308.980003687@infradead.org
In order to not have to use pid_struct, create a new, smaller,
structure to manage task cookies for core scheduling.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Don Hiatt <dhiatt@digitalocean.com>
Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210422123308.919768100@infradead.org
All this can happen without a single goto.
Link: https://lkml.kernel.org/r/2072685.XptgVkyDqn@devpool47
Signed-off-by: Rolf Eike Beer <eb@emlix.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The ns->ucount_max[] is signed long which is less than the rlimit size.
We have to protect ucount_max[] from overflow and only use the largest
value that we can hold.
On 32bit using "long" instead of "unsigned long" to hold the counts has
the downside that RLIMIT_MSGQUEUE and RLIMIT_MEMLOCK are limited to 2GiB
instead of 4GiB. I don't think anyone cares but it should be mentioned
in case someone does.
The RLIMIT_NPROC and RLIMIT_SIGPENDING used atomic_t so their maximum
hasn't changed.
Signed-off-by: Alexey Gladkov <legion@kernel.org>
Link: https://lkml.kernel.org/r/1825a5dfa18bc5a570e79feb05e2bd07fd57e7e3.1619094428.git.legion@kernel.org
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
The rlimit counter is tied to uid in the user_namespace. This allows
rlimit values to be specified in userns even if they are already
globally exceeded by the user. However, the value of the previous
user_namespaces cannot be exceeded.
Changelog
v11:
* Fix issue found by lkp robot.
v8:
* Fix issues found by lkp-tests project.
v7:
* Keep only ucounts for RLIMIT_MEMLOCK checks instead of struct cred.
v6:
* Fix bug in hugetlb_file_setup() detected by trinity.
Reported-by: kernel test robot <oliver.sang@intel.com>
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Alexey Gladkov <legion@kernel.org>
Link: https://lkml.kernel.org/r/970d50c70c71bfd4496e0e8d2a0a32feebebb350.1619094428.git.legion@kernel.org
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
The rlimit counter is tied to uid in the user_namespace. This allows
rlimit values to be specified in userns even if they are already
globally exceeded by the user. However, the value of the previous
user_namespaces cannot be exceeded.
Changelog
v11:
* Revert most of changes to fix performance issues.
v10:
* Fix memory leak on get_ucounts failure.
Signed-off-by: Alexey Gladkov <legion@kernel.org>
Link: https://lkml.kernel.org/r/df9d7764dddd50f28616b7840de74ec0f81711a8.1619094428.git.legion@kernel.org
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
The rlimit counter is tied to uid in the user_namespace. This allows
rlimit values to be specified in userns even if they are already
globally exceeded by the user. However, the value of the previous
user_namespaces cannot be exceeded.
Signed-off-by: Alexey Gladkov <legion@kernel.org>
Link: https://lkml.kernel.org/r/2531f42f7884bbfee56a978040b3e0d25cdf6cde.1619094428.git.legion@kernel.org
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
The rlimit counter is tied to uid in the user_namespace. This allows
rlimit values to be specified in userns even if they are already
globally exceeded by the user. However, the value of the previous
user_namespaces cannot be exceeded.
To illustrate the impact of rlimits, let's say there is a program that
does not fork. Some service-A wants to run this program as user X in
multiple containers. Since the program never fork the service wants to
set RLIMIT_NPROC=1.
service-A
\- program (uid=1000, container1, rlimit_nproc=1)
\- program (uid=1000, container2, rlimit_nproc=1)
The service-A sets RLIMIT_NPROC=1 and runs the program in container1.
When the service-A tries to run a program with RLIMIT_NPROC=1 in
container2 it fails since user X already has one running process.
We cannot use existing inc_ucounts / dec_ucounts because they do not
allow us to exceed the maximum for the counter. Some rlimits can be
overlimited by root or if the user has the appropriate capability.
Changelog
v11:
* Change inc_rlimit_ucounts() which now returns top value of ucounts.
* Drop inc_rlimit_ucounts_and_test() because the return code of
inc_rlimit_ucounts() can be checked.
Signed-off-by: Alexey Gladkov <legion@kernel.org>
Link: https://lkml.kernel.org/r/c5286a8aa16d2d698c222f7532f3d735c82bc6bc.1619094428.git.legion@kernel.org
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
For RLIMIT_NPROC and some other rlimits the user_struct that holds the
global limit is kept alive for the lifetime of a process by keeping it
in struct cred. Adding a pointer to ucounts in the struct cred will
allow to track RLIMIT_NPROC not only for user in the system, but for
user in the user_namespace.
Updating ucounts may require memory allocation which may fail. So, we
cannot change cred.ucounts in the commit_creds() because this function
cannot fail and it should always return 0. For this reason, we modify
cred.ucounts before calling the commit_creds().
Changelog
v6:
* Fix null-ptr-deref in is_ucounts_overlimit() detected by trinity. This
error was caused by the fact that cred_alloc_blank() left the ucounts
pointer empty.
Reported-by: kernel test robot <oliver.sang@intel.com>
Signed-off-by: Alexey Gladkov <legion@kernel.org>
Link: https://lkml.kernel.org/r/b37aaef28d8b9b0d757e07ba6dd27281bbe39259.1619094428.git.legion@kernel.org
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
For simplification commit 991e767385 ("mm: memcontrol: account kernel
stack per node") changed the per zone vmalloc backed stack pages
accounting to per node.
By doing that we have lost a certain precision because those pages might
live in different NUMA nodes. In the end NR_KERNEL_STACK_KB exported to
the userspace might be over estimated on some nodes while underestimated
on others. But this is not a real world problem, just a problem found
by reading the code. So there is no actual data to showing how much
impact it has on users.
This doesn't impose any real problem to correctnes of the kernel
behavior as the counter is not used for any internal processing but it
can cause some confusion to the userspace.
Address the problem by accounting each vmalloc backing page to its own
node.
Link: https://lkml.kernel.org/r/20210303151843.81156-1-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Core:
- bpf:
- allow bpf programs calling kernel functions (initially to
reuse TCP congestion control implementations)
- enable task local storage for tracing programs - remove the
need to store per-task state in hash maps, and allow tracing
programs access to task local storage previously added for
BPF_LSM
- add bpf_for_each_map_elem() helper, allowing programs to
walk all map elements in a more robust and easier to verify
fashion
- sockmap: support UDP and cross-protocol BPF_SK_SKB_VERDICT
redirection
- lpm: add support for batched ops in LPM trie
- add BTF_KIND_FLOAT support - mostly to allow use of BTF
on s390 which has floats in its headers files
- improve BPF syscall documentation and extend the use of kdoc
parsing scripts we already employ for bpf-helpers
- libbpf, bpftool: support static linking of BPF ELF files
- improve support for encapsulation of L2 packets
- xdp: restructure redirect actions to avoid a runtime lookup,
improving performance by 4-8% in microbenchmarks
- xsk: build skb by page (aka generic zerocopy xmit) - improve
performance of software AF_XDP path by 33% for devices
which don't need headers in the linear skb part (e.g. virtio)
- nexthop: resilient next-hop groups - improve path stability
on next-hops group changes (incl. offload for mlxsw)
- ipv6: segment routing: add support for IPv4 decapsulation
- icmp: add support for RFC 8335 extended PROBE messages
- inet: use bigger hash table for IP ID generation
- tcp: deal better with delayed TX completions - make sure we don't
give up on fast TCP retransmissions only because driver is
slow in reporting that it completed transmitting the original
- tcp: reorder tcp_congestion_ops for better cache locality
- mptcp:
- add sockopt support for common TCP options
- add support for common TCP msg flags
- include multiple address ids in RM_ADDR
- add reset option support for resetting one subflow
- udp: GRO L4 improvements - improve 'forward' / 'frag_list'
co-existence with UDP tunnel GRO, allowing the first to take
place correctly even for encapsulated UDP traffic
- micro-optimize dev_gro_receive() and flow dissection, avoid
retpoline overhead on VLAN and TEB GRO
- use less memory for sysctls, add a new sysctl type, to allow using
u8 instead of "int" and "long" and shrink networking sysctls
- veth: allow GRO without XDP - this allows aggregating UDP
packets before handing them off to routing, bridge, OvS, etc.
- allow specifing ifindex when device is moved to another namespace
- netfilter:
- nft_socket: add support for cgroupsv2
- nftables: add catch-all set element - special element used
to define a default action in case normal lookup missed
- use net_generic infra in many modules to avoid allocating
per-ns memory unnecessarily
- xps: improve the xps handling to avoid potential out-of-bound
accesses and use-after-free when XPS change race with other
re-configuration under traffic
- add a config knob to turn off per-cpu netdev refcnt to catch
underflows in testing
Device APIs:
- add WWAN subsystem to organize the WWAN interfaces better and
hopefully start driving towards more unified and vendor-
-independent APIs
- ethtool:
- add interface for reading IEEE MIB stats (incl. mlx5 and
bnxt support)
- allow network drivers to dump arbitrary SFP EEPROM data,
current offset+length API was a poor fit for modern SFP
which define EEPROM in terms of pages (incl. mlx5 support)
- act_police, flow_offload: add support for packet-per-second
policing (incl. offload for nfp)
- psample: add additional metadata attributes like transit delay
for packets sampled from switch HW (and corresponding egress
and policy-based sampling in the mlxsw driver)
- dsa: improve support for sandwiched LAGs with bridge and DSA
- netfilter:
- flowtable: use direct xmit in topologies with IP
forwarding, bridging, vlans etc.
- nftables: counter hardware offload support
- Bluetooth:
- improvements for firmware download w/ Intel devices
- add support for reading AOSP vendor capabilities
- add support for virtio transport driver
- mac80211:
- allow concurrent monitor iface and ethernet rx decap
- set priority and queue mapping for injected frames
- phy: add support for Clause-45 PHY Loopback
- pci/iov: add sysfs MSI-X vector assignment interface
to distribute MSI-X resources to VFs (incl. mlx5 support)
New hardware/drivers:
- dsa: mv88e6xxx: add support for Marvell mv88e6393x -
11-port Ethernet switch with 8x 1-Gigabit Ethernet
and 3x 10-Gigabit interfaces.
- dsa: support for legacy Broadcom tags used on BCM5325, BCM5365
and BCM63xx switches
- Microchip KSZ8863 and KSZ8873; 3x 10/100Mbps Ethernet switches
- ath11k: support for QCN9074 a 802.11ax device
- Bluetooth: Broadcom BCM4330 and BMC4334
- phy: Marvell 88X2222 transceiver support
- mdio: add BCM6368 MDIO mux bus controller
- r8152: support RTL8153 and RTL8156 (USB Ethernet) chips
- mana: driver for Microsoft Azure Network Adapter (MANA)
- Actions Semi Owl Ethernet MAC
- can: driver for ETAS ES58X CAN/USB interfaces
Pure driver changes:
- add XDP support to: enetc, igc, stmmac
- add AF_XDP support to: stmmac
- virtio:
- page_to_skb() use build_skb when there's sufficient tailroom
(21% improvement for 1000B UDP frames)
- support XDP even without dedicated Tx queues - share the Tx
queues with the stack when necessary
- mlx5:
- flow rules: add support for mirroring with conntrack,
matching on ICMP, GTP, flex filters and more
- support packet sampling with flow offloads
- persist uplink representor netdev across eswitch mode
changes
- allow coexistence of CQE compression and HW time-stamping
- add ethtool extended link error state reporting
- ice, iavf: support flow filters, UDP Segmentation Offload
- dpaa2-switch:
- move the driver out of staging
- add spanning tree (STP) support
- add rx copybreak support
- add tc flower hardware offload on ingress traffic
- ionic:
- implement Rx page reuse
- support HW PTP time-stamping
- octeon: support TC hardware offloads - flower matching on ingress
and egress ratelimitting.
- stmmac:
- add RX frame steering based on VLAN priority in tc flower
- support frame preemption (FPE)
- intel: add cross time-stamping freq difference adjustment
- ocelot:
- support forwarding of MRP frames in HW
- support multiple bridges
- support PTP Sync one-step timestamping
- dsa: mv88e6xxx, dpaa2-switch: offload bridge port flags like
learning, flooding etc.
- ipa: add IPA v4.5, v4.9 and v4.11 support (Qualcomm SDX55, SM8350,
SC7280 SoCs)
- mt7601u: enable TDLS support
- mt76:
- add support for 802.3 rx frames (mt7915/mt7615)
- mt7915 flash pre-calibration support
- mt7921/mt7663 runtime power management fixes
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEE6jPA+I1ugmIBA4hXMUZtbf5SIrsFAmCKFPIACgkQMUZtbf5S
Irtw0g/+NA8bWdHNgG4H5rya0pv2z3IieLRmSdDfKRQQXcJpklawc5MKVVaTee/Q
5/QqgPdCsu1LAU6JXBKsKmyDDaMlQKdWuKbOqDSiAQKoMesZStTEHf9d851ZzgxA
Cdb6O7BD3lBl/IN+oxNG+KcmD1LKquTPKGySq2mQtEdLO12ekAsranzmj4voKffd
q9tBShpXQ7Dq77DLYfiQXVCvsizNcbbJFuxX0o9Lpb9+61ZyYAbogZSa9ypiZZwR
I/9azRBtJg7UV1aD/cLuAfy66Qh7t63+rCxVazs5Os8jVO26P/jQdisnnOe/x+p9
wYEmKm3GSu0V4SAPxkWW+ooKusflCeqDoMIuooKt6kbP6BRj540veGw3Ww/m5YFr
7pLQkTSP/tSjuGQIdBE1LOP5LBO8DZeC8Kiop9V0fzAW9hFSZbEq25WW0bPj8QQO
zA4Z7yWlslvxcfY2BdJX3wD8klaINkl/8fDWZFFsBdfFX2VeLtm7Xfduw34BJpvU
rYT3oWr6PhtkPAKR32SUcemSfeWgIVU41eSshzRz3kez1NngBUuLlSGGSEaKbes5
pZVt6pYFFVByyf6MTHFEoQvafZfEw04JILZpo4R5V8iTHzom0kD3Py064sBiXEw2
B6t+OW4qgcxGblpFkK2lD4kR2s1TPUs0ckVO6sAy1x8q60KKKjY=
=vcbA
-----END PGP SIGNATURE-----
Merge tag 'net-next-5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next
Pull networking updates from Jakub Kicinski:
"Core:
- bpf:
- allow bpf programs calling kernel functions (initially to
reuse TCP congestion control implementations)
- enable task local storage for tracing programs - remove the
need to store per-task state in hash maps, and allow tracing
programs access to task local storage previously added for
BPF_LSM
- add bpf_for_each_map_elem() helper, allowing programs to walk
all map elements in a more robust and easier to verify fashion
- sockmap: support UDP and cross-protocol BPF_SK_SKB_VERDICT
redirection
- lpm: add support for batched ops in LPM trie
- add BTF_KIND_FLOAT support - mostly to allow use of BTF on
s390 which has floats in its headers files
- improve BPF syscall documentation and extend the use of kdoc
parsing scripts we already employ for bpf-helpers
- libbpf, bpftool: support static linking of BPF ELF files
- improve support for encapsulation of L2 packets
- xdp: restructure redirect actions to avoid a runtime lookup,
improving performance by 4-8% in microbenchmarks
- xsk: build skb by page (aka generic zerocopy xmit) - improve
performance of software AF_XDP path by 33% for devices which don't
need headers in the linear skb part (e.g. virtio)
- nexthop: resilient next-hop groups - improve path stability on
next-hops group changes (incl. offload for mlxsw)
- ipv6: segment routing: add support for IPv4 decapsulation
- icmp: add support for RFC 8335 extended PROBE messages
- inet: use bigger hash table for IP ID generation
- tcp: deal better with delayed TX completions - make sure we don't
give up on fast TCP retransmissions only because driver is slow in
reporting that it completed transmitting the original
- tcp: reorder tcp_congestion_ops for better cache locality
- mptcp:
- add sockopt support for common TCP options
- add support for common TCP msg flags
- include multiple address ids in RM_ADDR
- add reset option support for resetting one subflow
- udp: GRO L4 improvements - improve 'forward' / 'frag_list'
co-existence with UDP tunnel GRO, allowing the first to take place
correctly even for encapsulated UDP traffic
- micro-optimize dev_gro_receive() and flow dissection, avoid
retpoline overhead on VLAN and TEB GRO
- use less memory for sysctls, add a new sysctl type, to allow using
u8 instead of "int" and "long" and shrink networking sysctls
- veth: allow GRO without XDP - this allows aggregating UDP packets
before handing them off to routing, bridge, OvS, etc.
- allow specifing ifindex when device is moved to another namespace
- netfilter:
- nft_socket: add support for cgroupsv2
- nftables: add catch-all set element - special element used to
define a default action in case normal lookup missed
- use net_generic infra in many modules to avoid allocating
per-ns memory unnecessarily
- xps: improve the xps handling to avoid potential out-of-bound
accesses and use-after-free when XPS change race with other
re-configuration under traffic
- add a config knob to turn off per-cpu netdev refcnt to catch
underflows in testing
Device APIs:
- add WWAN subsystem to organize the WWAN interfaces better and
hopefully start driving towards more unified and vendor-
independent APIs
- ethtool:
- add interface for reading IEEE MIB stats (incl. mlx5 and bnxt
support)
- allow network drivers to dump arbitrary SFP EEPROM data,
current offset+length API was a poor fit for modern SFP which
define EEPROM in terms of pages (incl. mlx5 support)
- act_police, flow_offload: add support for packet-per-second
policing (incl. offload for nfp)
- psample: add additional metadata attributes like transit delay for
packets sampled from switch HW (and corresponding egress and
policy-based sampling in the mlxsw driver)
- dsa: improve support for sandwiched LAGs with bridge and DSA
- netfilter:
- flowtable: use direct xmit in topologies with IP forwarding,
bridging, vlans etc.
- nftables: counter hardware offload support
- Bluetooth:
- improvements for firmware download w/ Intel devices
- add support for reading AOSP vendor capabilities
- add support for virtio transport driver
- mac80211:
- allow concurrent monitor iface and ethernet rx decap
- set priority and queue mapping for injected frames
- phy: add support for Clause-45 PHY Loopback
- pci/iov: add sysfs MSI-X vector assignment interface to distribute
MSI-X resources to VFs (incl. mlx5 support)
New hardware/drivers:
- dsa: mv88e6xxx: add support for Marvell mv88e6393x - 11-port
Ethernet switch with 8x 1-Gigabit Ethernet and 3x 10-Gigabit
interfaces.
- dsa: support for legacy Broadcom tags used on BCM5325, BCM5365 and
BCM63xx switches
- Microchip KSZ8863 and KSZ8873; 3x 10/100Mbps Ethernet switches
- ath11k: support for QCN9074 a 802.11ax device
- Bluetooth: Broadcom BCM4330 and BMC4334
- phy: Marvell 88X2222 transceiver support
- mdio: add BCM6368 MDIO mux bus controller
- r8152: support RTL8153 and RTL8156 (USB Ethernet) chips
- mana: driver for Microsoft Azure Network Adapter (MANA)
- Actions Semi Owl Ethernet MAC
- can: driver for ETAS ES58X CAN/USB interfaces
Pure driver changes:
- add XDP support to: enetc, igc, stmmac
- add AF_XDP support to: stmmac
- virtio:
- page_to_skb() use build_skb when there's sufficient tailroom
(21% improvement for 1000B UDP frames)
- support XDP even without dedicated Tx queues - share the Tx
queues with the stack when necessary
- mlx5:
- flow rules: add support for mirroring with conntrack, matching
on ICMP, GTP, flex filters and more
- support packet sampling with flow offloads
- persist uplink representor netdev across eswitch mode changes
- allow coexistence of CQE compression and HW time-stamping
- add ethtool extended link error state reporting
- ice, iavf: support flow filters, UDP Segmentation Offload
- dpaa2-switch:
- move the driver out of staging
- add spanning tree (STP) support
- add rx copybreak support
- add tc flower hardware offload on ingress traffic
- ionic:
- implement Rx page reuse
- support HW PTP time-stamping
- octeon: support TC hardware offloads - flower matching on ingress
and egress ratelimitting.
- stmmac:
- add RX frame steering based on VLAN priority in tc flower
- support frame preemption (FPE)
- intel: add cross time-stamping freq difference adjustment
- ocelot:
- support forwarding of MRP frames in HW
- support multiple bridges
- support PTP Sync one-step timestamping
- dsa: mv88e6xxx, dpaa2-switch: offload bridge port flags like
learning, flooding etc.
- ipa: add IPA v4.5, v4.9 and v4.11 support (Qualcomm SDX55, SM8350,
SC7280 SoCs)
- mt7601u: enable TDLS support
- mt76:
- add support for 802.3 rx frames (mt7915/mt7615)
- mt7915 flash pre-calibration support
- mt7921/mt7663 runtime power management fixes"
* tag 'net-next-5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (2451 commits)
net: selftest: fix build issue if INET is disabled
net: netrom: nr_in: Remove redundant assignment to ns
net: tun: Remove redundant assignment to ret
net: phy: marvell: add downshift support for M88E1240
net: dsa: ksz: Make reg_mib_cnt a u8 as it never exceeds 255
net/sched: act_ct: Remove redundant ct get and check
icmp: standardize naming of RFC 8335 PROBE constants
bpf, selftests: Update array map tests for per-cpu batched ops
bpf: Add batched ops support for percpu array
bpf: Implement formatted output helpers with bstr_printf
seq_file: Add a seq_bprintf function
sfc: adjust efx->xdp_tx_queue_count with the real number of initialized queues
net:nfc:digital: Fix a double free in digital_tg_recv_dep_req
net: fix a concurrency bug in l2tp_tunnel_register()
net/smc: Remove redundant assignment to rc
mpls: Remove redundant assignment to err
llc2: Remove redundant assignment to rc
net/tls: Remove redundant initialization of record
rds: Remove redundant assignment to nr_sig
dt-bindings: net: mdio-gpio: add compatible for microchip,mdio-smi0
...
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmCIRBUQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpjt5D/9de6zCaha6CyfIIPiU+crropQ2jPzO49cb
WzcOCmdhSv0GtYlhdnIqCOo5p8mRDWJAEBU9upTDTCWOx9hwr5Ms0TCNQHxuQ/T0
4Ll+/cMsOxeTypiykfMtOG9TEmYSria2vTJKLgpyaP4ohfJa3uT7r2NZ8NK/8T4t
wwbJ+jCSKewelI1l0XD8k8LBU39FS/KRgLTdfYj/rCW3PWt/ZE2eSIYjZQvMCVOC
3fIdgOOJAMQVQafz+YAeJd2E+/l5/8YcJVKpJMVtBNbqTHIjA4EsInZauy8TpBgW
OzJ3I+XdF70qZM119tI/nXw3sb0e+UV0fRsIXLkOwTEBzowernrAtsEwAOP+qFKS
2YnqSKOSjMO5d5Mpkz6T0MDMloU45jph88lUH0RoShVxGa7jv+TMOL6QU1oOyxc1
+gPPbApQs9WtSZDHsTJ0xFLpol804UDQmwb38mHdzedDVSE7iip1jANkw6LEhKkJ
Mlg60ZF1Z305G+cDhrbs02ZGVa+fzbrtXtLlTqZw8bNX9lBp0JLtDpzskjbnUmck
6A04nfg+Eto5GvAn+FRBuOCPridLEk2K6ygko/gwQWsYCgqkCgRuqjlIQCSZy5iu
jHEFixIXKn6eACf+YzLVxSLyEQrmFyDSypbN7LvzoKJYo/loy8Q1+42nGlrVC3zi
+CB1NokPng==
=ZJ8L
-----END PGP SIGNATURE-----
Merge tag 'for-5.13/io_uring-2021-04-27' of git://git.kernel.dk/linux-block
Pull io_uring updates from Jens Axboe:
- Support for multi-shot mode for POLL requests
- More efficient reference counting. This is shamelessly stolen from
the mm side. Even though referencing is mostly single/dual user, the
128 count was retained to keep the code the same. Maybe this
should/could be made generic at some point.
- Removal of the need to have a manager thread for each ring. The
manager threads only job was checking and creating new io-threads as
needed, instead we handle this from the queue path.
- Allow SQPOLL without CAP_SYS_ADMIN or CAP_SYS_NICE. Since 5.12, this
thread is "just" a regular application thread, so no need to restrict
use of it anymore.
- Cleanup of how internal async poll data lifetime is managed.
- Fix for syzbot reported crash on SQPOLL cancelation.
- Make buffer registration more like file registrations, which includes
flexibility in avoiding full set unregistration and re-registration.
- Fix for io-wq affinity setting.
- Be a bit more defensive in task->pf_io_worker setup.
- Various SQPOLL fixes.
- Cleanup of SQPOLL creds handling.
- Improvements to in-flight request tracking.
- File registration cleanups.
- Tons of cleanups and little fixes
* tag 'for-5.13/io_uring-2021-04-27' of git://git.kernel.dk/linux-block: (156 commits)
io_uring: maintain drain logic for multishot poll requests
io_uring: Check current->io_uring in io_uring_cancel_sqpoll
io_uring: fix NULL reg-buffer
io_uring: simplify SQPOLL cancellations
io_uring: fix work_exit sqpoll cancellations
io_uring: Fix uninitialized variable up.resv
io_uring: fix invalid error check after malloc
io_uring: io_sq_thread() no longer needs to reset current->pf_io_worker
kernel: always initialize task->pf_io_worker to NULL
io_uring: update sq_thread_idle after ctx deleted
io_uring: add full-fledged dynamic buffers support
io_uring: implement fixed buffers registration similar to fixed files
io_uring: prepare fixed rw for dynanic buffers
io_uring: keep table of pointers to ubufs
io_uring: add generic rsrc update with tags
io_uring: add IORING_REGISTER_RSRC
io_uring: enumerate dynamic resources
io_uring: add generic path for rsrc update
io_uring: preparation for rsrc tagging
io_uring: decouple CQE filling from requests
...
- Clean up SCHED_DEBUG: move the decades old mess of sysctl, procfs and debugfs interfaces
to a unified debugfs interface.
- Signals: Allow caching one sigqueue object per task, to improve performance & latencies.
- Improve newidle_balance() irq-off latencies on systems with a large number of CPU cgroups.
- Improve energy-aware scheduling
- Improve the PELT metrics for certain workloads
- Reintroduce select_idle_smt() to improve load-balancing locality - but without the previous
regressions
- Add 'scheduler latency debugging': warn after long periods of pending need_resched. This
is an opt-in feature that requires the enabling of the LATENCY_WARN scheduler feature,
or the use of the resched_latency_warn_ms=xx boot parameter.
- CPU hotplug fixes for HP-rollback, and for the 'fail' interface. Fix remaining
balance_push() vs. hotplug holes/races
- PSI fixes, plus allow /proc/pressure/ files to be written by CAP_SYS_RESOURCE tasks as well
- Fix/improve various load-balancing corner cases vs. capacity margins
- Fix sched topology on systems with NUMA diameter of 3 or above
- Fix PF_KTHREAD vs to_kthread() race
- Minor rseq optimizations
- Misc cleanups, optimizations, fixes and smaller updates
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmCJInsRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1i5XxAArh0b+fwXlkVGzTUly7HQjhU7lFbChnmF
h6ToyNLi6pXoZ14VC/WoRIME+RzK3gmw9cEFaSLVPxbkbekTcyWS78kqmcg1/j2v
kO/20QhXobiIxVskYfoMmqSavZ5mKhMWBqtFXkCuYfxwGylas0VVdh3AZLJ7N21G
WEoFh99pVULwWnPHxM2ZQ87Ex9BkGKbsBTswxWpprCfXLqD0N2hHlABpwJP78zRf
VniWFOcC7lslILCFawb7CqGgAwbgV85nDRS4QCuCKisrkFywvjJrEeu/W+h1NfhF
d6ves/osNdEAM1DSALoxwEA42An8l8xh8NyJnl8JZV00LW0DM108O5/7pf5Zcryc
RHV3RxA7skgezBh5uThvo60QzNK+kVMatI4qpQEHxLE52CaDl/fBu1Cgb/VUxnIl
AEBfyiFbk+skHpuMFKtl30Tx3M+yJKMTzFPd4kYjHYGEDwtAcXcB3dJQW48A79i3
H3IWcDcXpk5Rjo2UZmaXdt/qlj7mP6U0xdOUq8ZK6JOC4uY9skszVGsfuNN9QQ5u
2E2YKKVrGFoQydl4C8R6A7axL2VzIJszHFZNipd8E3YOyW7PWRAkr02tOOkBTj8N
dLMcNM7aPJWqEYiEIjEzGQN20pweJ1dRA29LDuOswKh+7W2bWTQFh6F2Q8Haansc
RVg5PDzl+Mc=
=E7mz
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2021-04-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
- Clean up SCHED_DEBUG: move the decades old mess of sysctl, procfs and
debugfs interfaces to a unified debugfs interface.
- Signals: Allow caching one sigqueue object per task, to improve
performance & latencies.
- Improve newidle_balance() irq-off latencies on systems with a large
number of CPU cgroups.
- Improve energy-aware scheduling
- Improve the PELT metrics for certain workloads
- Reintroduce select_idle_smt() to improve load-balancing locality -
but without the previous regressions
- Add 'scheduler latency debugging': warn after long periods of pending
need_resched. This is an opt-in feature that requires the enabling of
the LATENCY_WARN scheduler feature, or the use of the
resched_latency_warn_ms=xx boot parameter.
- CPU hotplug fixes for HP-rollback, and for the 'fail' interface. Fix
remaining balance_push() vs. hotplug holes/races
- PSI fixes, plus allow /proc/pressure/ files to be written by
CAP_SYS_RESOURCE tasks as well
- Fix/improve various load-balancing corner cases vs. capacity margins
- Fix sched topology on systems with NUMA diameter of 3 or above
- Fix PF_KTHREAD vs to_kthread() race
- Minor rseq optimizations
- Misc cleanups, optimizations, fixes and smaller updates
* tag 'sched-core-2021-04-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (61 commits)
cpumask/hotplug: Fix cpu_dying() state tracking
kthread: Fix PF_KTHREAD vs to_kthread() race
sched/debug: Fix cgroup_path[] serialization
sched,psi: Handle potential task count underflow bugs more gracefully
sched: Warn on long periods of pending need_resched
sched/fair: Move update_nohz_stats() to the CONFIG_NO_HZ_COMMON block to simplify the code & fix an unused function warning
sched/debug: Rename the sched_debug parameter to sched_verbose
sched,fair: Alternative sched_slice()
sched: Move /proc/sched_debug to debugfs
sched,debug: Convert sysctl sched_domains to debugfs
debugfs: Implement debugfs_create_str()
sched,preempt: Move preempt_dynamic to debug.c
sched: Move SCHED_DEBUG sysctl to debugfs
sched: Don't make LATENCYTOP select SCHED_DEBUG
sched: Remove sched_schedstats sysctl out from under SCHED_DEBUG
sched/numa: Allow runtime enabling/disabling of NUMA balance without SCHED_DEBUG
sched: Use cpu_dying() to fix balance_push vs hotplug-rollback
cpumask: Introduce DYING mask
cpumask: Make cpu_{online,possible,present,active}() inline
rseq: Optimise rseq_get_rseq_cs() and clear_rseq_cs()
...
- Improve Intel uncore PMU support:
- Parse uncore 'discovery tables' - a new hardware capability enumeration method
introduced on the latest Intel platforms. This table is in a well-defined PCI
namespace location and is read via MMIO. It is organized in an rbtree.
These uncore tables will allow the discovery of standard counter blocks, but
fancier counters still need to be enumerated explicitly.
- Add Alder Lake support
- Improve IIO stacks to PMON mapping support on Skylake servers
- Add Intel Alder Lake PMU support - which requires the introduction of 'hybrid' CPUs
and PMUs. Alder Lake is a mix of Golden Cove ('big') and Gracemont ('small' - Atom derived)
cores.
The CPU-side feature set is entirely symmetrical - but on the PMU side there's
core type dependent PMU functionality.
- Reduce data loss with CPU level hardware tracing on Intel PT / AUX profiling, by
fixing the AUX allocation watermark logic.
- Improve ring buffer allocation on NUMA systems
- Put 'struct perf_event' into their separate kmem_cache pool
- Add support for synchronous signals for select perf events. The immediate motivation
is to support low-overhead sampling-based race detection for user-space code. The
feature consists of the following main changes:
- Add thread-only event inheritance via perf_event_attr::inherit_thread, which limits
inheritance of events to CLONE_THREAD.
- Add the ability for events to not leak through exec(), via perf_event_attr::remove_on_exec.
- Allow the generation of SIGTRAP via perf_event_attr::sigtrap, extend siginfo with an u64
::si_perf, and add the breakpoint information to ::si_addr and ::si_perf if the event is
PERF_TYPE_BREAKPOINT.
The siginfo support is adequate for breakpoints right now - but the new field can be used
to introduce support for other types of metadata passed over siginfo as well.
- Misc fixes, cleanups and smaller updates.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmCJGpERHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1j9zBAAuVbG2snV6SBSdXLhQcM66N3NckOXvSY5
QjjhQcuwJQEK/NJB3266K5d8qSmdyRBsWf3GCsrmyBT67P1V28K44Pu7oCV0UDtf
mpVRjEP0oR7hNsANSSgo8Fa4ZD7H5waX7dK7925Tvw8By3mMoZoddiD/84WJHhxO
NDF+GRFaRj+/dpbhV8cdCoXTjYdkC36vYuZs3b9lu0tS9D/AJgsNy7TinLvO02Cs
5peP+2y29dgvCXiGBiuJtEA6JyGnX3nUJCvfOZZ/DWDc3fdduARlRrc5Aiq4n/wY
UdSkw1VTZBlZ1wMSdmHQVeC5RIH3uWUtRoNqy0Yc90lBm55AQ0EENwIfWDUDC5zy
USdBqWTNWKMBxlEilUIyqKPQK8LW/31TRzqy8BWKPNcZt5yP5YS1SjAJRDDjSwL/
I+OBw1vjLJamYh8oNiD5b+VLqNQba81jFASfv+HVWcULumnY6ImECCpkg289Fkpi
BVR065boifJDlyENXFbvTxyMBXQsZfA+EhtxG7ju2Ni+TokBbogyCb3L2injPt9g
7jjtTOqmfad4gX1WSc+215iYZMkgECcUd9E+BfOseEjBohqlo7yNKIfYnT8mE/Xq
nb7eHjyvLiE8tRtZ+7SjsujOMHv9LhWFAbSaxU/kEVzpkp0zyd6mnnslDKaaHLhz
goUMOL/D0lg=
=NhQ7
-----END PGP SIGNATURE-----
Merge tag 'perf-core-2021-04-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf event updates from Ingo Molnar:
- Improve Intel uncore PMU support:
- Parse uncore 'discovery tables' - a new hardware capability
enumeration method introduced on the latest Intel platforms. This
table is in a well-defined PCI namespace location and is read via
MMIO. It is organized in an rbtree.
These uncore tables will allow the discovery of standard counter
blocks, but fancier counters still need to be enumerated
explicitly.
- Add Alder Lake support
- Improve IIO stacks to PMON mapping support on Skylake servers
- Add Intel Alder Lake PMU support - which requires the introduction of
'hybrid' CPUs and PMUs. Alder Lake is a mix of Golden Cove ('big')
and Gracemont ('small' - Atom derived) cores.
The CPU-side feature set is entirely symmetrical - but on the PMU
side there's core type dependent PMU functionality.
- Reduce data loss with CPU level hardware tracing on Intel PT / AUX
profiling, by fixing the AUX allocation watermark logic.
- Improve ring buffer allocation on NUMA systems
- Put 'struct perf_event' into their separate kmem_cache pool
- Add support for synchronous signals for select perf events. The
immediate motivation is to support low-overhead sampling-based race
detection for user-space code. The feature consists of the following
main changes:
- Add thread-only event inheritance via
perf_event_attr::inherit_thread, which limits inheritance of
events to CLONE_THREAD.
- Add the ability for events to not leak through exec(), via
perf_event_attr::remove_on_exec.
- Allow the generation of SIGTRAP via perf_event_attr::sigtrap,
extend siginfo with an u64 ::si_perf, and add the breakpoint
information to ::si_addr and ::si_perf if the event is
PERF_TYPE_BREAKPOINT.
The siginfo support is adequate for breakpoints right now - but the
new field can be used to introduce support for other types of
metadata passed over siginfo as well.
- Misc fixes, cleanups and smaller updates.
* tag 'perf-core-2021-04-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (53 commits)
signal, perf: Add missing TRAP_PERF case in siginfo_layout()
signal, perf: Fix siginfo_t by avoiding u64 on 32-bit architectures
perf/x86: Allow for 8<num_fixed_counters<16
perf/x86/rapl: Add support for Intel Alder Lake
perf/x86/cstate: Add Alder Lake CPU support
perf/x86/msr: Add Alder Lake CPU support
perf/x86/intel/uncore: Add Alder Lake support
perf: Extend PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
perf/x86/intel: Add Alder Lake Hybrid support
perf/x86: Support filter_match callback
perf/x86/intel: Add attr_update for Hybrid PMUs
perf/x86: Add structures for the attributes of Hybrid PMUs
perf/x86: Register hybrid PMUs
perf/x86: Factor out x86_pmu_show_pmu_cap
perf/x86: Remove temporary pmu assignment in event_init
perf/x86/intel: Factor out intel_pmu_check_extra_regs
perf/x86/intel: Factor out intel_pmu_check_event_constraints
perf/x86/intel: Factor out intel_pmu_check_num_counters
perf/x86: Hybrid PMU support for extra_regs
perf/x86: Hybrid PMU support for event constraints
...
Otherwise io_wq_worker_{running,sleeping}() may dereference an
invalid pointer (in future). Currently all users of create_io_thread()
are fine and get task->pf_io_worker = NULL implicitly from the
wq_manager, which got it either from the userspace thread
of the sq_thread, which explicitly reset it to NULL.
I think it's safer to always reset it in order to avoid future
problems.
Fixes: 3bfe610669 ("io-wq: fork worker threads from original task")
cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Stefan Metzmacher <metze@samba.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Adds bit perf_event_attr::inherit_thread, to restricting inheriting
events only if the child was cloned with CLONE_THREAD.
This option supports the case where an event is supposed to be
process-wide only (including subthreads), but should not propagate
beyond the current process's shared environment.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/lkml/YBvj6eJR%2FDY2TsEB@hirez.programming.kicks-ass.net/
The idea for this originates from the real time tree to make signal
delivery for realtime applications more efficient. In quite some of these
application scenarios a control tasks signals workers to start their
computations. There is usually only one signal per worker on flight. This
works nicely as long as the kmem cache allocations do not hit the slow path
and cause latencies.
To cure this an optimistic caching was introduced (limited to RT tasks)
which allows a task to cache a single sigqueue in a pointer in task_struct
instead of handing it back to the kmem cache after consuming a signal. When
the next signal is sent to the task then the cached sigqueue is used
instead of allocating a new one. This solved the problem for this set of
application scenarios nicely.
The task cache is not preallocated so the first signal sent to a task goes
always to the cache allocator. The cached sigqueue stays around until the
task exits and is freed when task::sighand is dropped.
After posting this solution for mainline the discussion came up whether
this would be useful in general and should not be limited to realtime
tasks: https://lore.kernel.org/r/m11rcu7nbr.fsf@fess.ebiederm.org
One concern leading to the original limitation was to avoid a large amount
of pointlessly cached sigqueues in alive tasks. The other concern was
vs. RLIMIT_SIGPENDING as these cached sigqueues are not accounted for.
The accounting problem is real, but on the other hand slightly academic.
After gathering some statistics it turned out that after boot of a regular
distro install there are less than 10 sigqueues cached in ~1500 tasks.
In case of a 'mass fork and fire signal to child' scenario the extra 80
bytes of memory per task are well in the noise of the overall memory
consumption of the fork bomb.
If this should be limited then this would need an extra counter in struct
user, more atomic instructions and a seperate rlimit. Yet another tunable
which is mostly unused.
The caching is actually used. After boot and a full kernel compile on a
64CPU machine with make -j128 the number of 'allocations' looks like this:
From slab: 23996
From task cache: 52223
I.e. it reduces the number of slab cache operations by ~68%.
A typical pattern there is:
<...>-58490 __sigqueue_alloc: for 58488 from slab ffff8881132df460
<...>-58488 __sigqueue_free: cache ffff8881132df460
<...>-58488 __sigqueue_alloc: for 1149 from cache ffff8881103dc550
bash-1149 exit_task_sighand: free ffff8881132df460
bash-1149 __sigqueue_free: cache ffff8881103dc550
The interesting sequence is that the exiting task 58488 grabs the sigqueue
from bash's task cache to signal exit and bash sticks it back into it's own
cache. Lather, rinse and repeat.
The caching is probably not noticable for the general use case, but the
benefit for latency sensitive applications is clear. While kmem caches are
usually just serving from the fast path the slab merging (default) can
depending on the usage pattern of the merged slabs cause occasional slow
path allocations.
The time spared per cached entry is a few micro seconds per signal which is
not relevant for e.g. a kernel build, but for signal heavy workloads it's
measurable.
As there is no real downside of this caching mechanism making it
unconditionally available is preferred over more conditional code or new
magic tunables.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Link: https://lkml.kernel.org/r/87sg4lbmxo.fsf@nanos.tec.linutronix.de
fork() fails if signal_pending() is true, but there are two conditions
that can lead to that:
1) An actual signal is pending. We want fork to fail for that one, like
we always have.
2) TIF_NOTIFY_SIGNAL is pending, because the task has pending task_work.
We don't need to make it fail for that case.
Allow fork() to proceed if just task_work is pending, by changing the
signal_pending() check to task_sigpending().
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Conflicts:
MAINTAINERS
- keep Chandrasekar
drivers/net/ethernet/mellanox/mlx5/core/en_main.c
- simple fix + trust the code re-added to param.c in -next is fine
include/linux/bpf.h
- trivial
include/linux/ethtool.h
- trivial, fix kdoc while at it
include/linux/skmsg.h
- move to relevant place in tcp.c, comment re-wrapped
net/core/skmsg.c
- add the sk = sk // sk = NULL around calls
net/tipc/crypto.c
- trivial
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmBf1KAQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpjVSD/0f1HdekXnIE6aSRQ7YEV8ux2t5wUeDyP8U
cdcZ8fBW9PvKZLdODSI4sw8UYV5OYEBcfImFe3nRVHR+RIVQo72UTYvuHqeUYNct
w3drgF2GEMIxJFZR6zf9LDrQVduPqXvbEJLui6TN+eX/5E99ZlUWMLwkX1k+vDju
QfaGZjz2736GTn1MPc7jdyZKoK7eCi5xtNFPash5wGck7aYl5TGXnG/8bRYsv2Tw
eCYKbvv4x0s8OFcYVQMooDfbIMCyyfTwt6YatFHQEtM/RM+M66gndvv3jfkeJQju
hz0I8qOJ8X5lf0VucncWs5J8b9Whr5YZV+k9461xalBbV9ed2vzIIikP8DpCxtYz
yKbsdDm0+3hwfuZOz+d7ooEXKsphJ1PnSsEeuNZXtKDXVtphksUbbq4H2NLINcsQ
m6dwaRPSEA0EymngGY2e+8+CU0euiE4mqoMpw4D9m9Irs+BAaWYGk9xCWr0BGem0
auZOMqvV2xktdBlGx1BJCLts1sHHxy8IM3u0852R/1AfcKOkXwNVPt62I8e9ceIA
wc731aWHwJfS25m430xFDPJKJpUZoZgste4qwVym70CmRziuamgYyIfrfRg1ZjsD
ZBa9Z4hPiT4e0eDqlYjcMpl9FORgYQXVXy5ofd/eZg5xkU8X+i6TVZkaQNkZyqV/
4ogBZYUolg==
=mwLC
-----END PGP SIGNATURE-----
Merge tag 'io_uring-5.12-2021-03-27' of git://git.kernel.dk/linux-block
Pull io_uring fixes from Jens Axboe:
- Use thread info versions of flag testing, as discussed last week.
- The series enabling PF_IO_WORKER to just take signals, instead of
needing to special case that they do not in a bunch of places. Ends
up being pretty trivial to do, and then we can revert all the special
casing we're currently doing.
- Kill dead pointer assignment
- Fix hashed part of async work queue trace
- Fix sign extension issue for IORING_OP_PROVIDE_BUFFERS
- Fix a link completion ordering regression in this merge window
- Cancellation fixes
* tag 'io_uring-5.12-2021-03-27' of git://git.kernel.dk/linux-block:
io_uring: remove unsued assignment to pointer io
io_uring: don't cancel extra on files match
io_uring: don't cancel-track common timeouts
io_uring: do post-completion chore on t-out cancel
io_uring: fix timeout cancel return code
Revert "signal: don't allow STOP on PF_IO_WORKER threads"
Revert "kernel: freezer should treat PF_IO_WORKER like PF_KTHREAD for freezing"
Revert "kernel: treat PF_IO_WORKER like PF_KTHREAD for ptrace/signals"
Revert "signal: don't allow sending any signals to PF_IO_WORKER threads"
kernel: stop masking signals in create_io_thread()
io_uring: handle signals for IO threads like a normal thread
kernel: don't call do_exit() for PF_IO_WORKER threads
io_uring: maintain CQE order of a failed link
io-wq: fix race around pending work on teardown
io_uring: do ctx sqd ejection in a clear context
io_uring: fix provide_buffers sign extension
io_uring: don't skip file_end_write() on reissue
io_uring: correct io_queue_async_work() traces
io_uring: don't use {test,clear}_tsk_thread_flag() for current
This is racy - move the blocking into when the task is created and
we're marking it as PF_IO_WORKER anyway. The IO threads are now
prepared to handle signals like SIGSTOP as well, so clear that from
the mask to allow proper stopping of IO threads.
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Reported-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmBVI8cQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpuFOD/494N0khk5EpLnoq0+/uyRpnqnTjL3n+iWc
fviiodL2/eirKWML/WbNUaKOWMs76iBwRqvTFnmCuyVexM9iPq3BXHocNYESYFni
0EfuL+jzs/LjQLVJgCxyYUyafDtCGZ5ct/3ilfGWSY13ngfYdUVT1p+u9NK94T63
4SrT6KKqEnpStpA1kjCw+doL17Tx2jrcrnX8gztIm0IarTnJGusiNZboy1IBMcqf
Lw7CEePn4b9/0wKJa8sDYIFtI8Rvj2Jk86c4DDpGgoPU6I9fGPnp3oMGrxlwectT
uTguzTlKAvbSu6v+2jqHCcXpkOG3aQJJM+YaNZmWOKwkLdyzLLIDT7SPlNHlacDF
yBj+Ou3FbKvVUrYldUHlQoLZIAgp7AQO1JBilijNNibXsH0M4Gaw3aGPFmhEFfeJ
/y+DXEfi2TGC6Yo+Ogub9Rh3gd2kgATu9Qbbnxi5TmYFc6WASBHP3OQEMVpVkD6F
IZxZDvIKMj3DoYX3Can0vlqiWhmL5o7gyaRTkmxc4A21CR+AHstupDNTHbR23IsY
dVxWmfrU25VFcIUAUOUgzPayDRn5KevexXjpkC8MVPQUqe/8FgI18eigDWTwlkcG
0AZUraswv8uT5b0oLj9cawtAU9Dlit7niI6r9I3dtoUAD3JY4+yDp7oZp2TTOV2z
+rgS+5zjug==
=aPxz
-----END PGP SIGNATURE-----
Merge tag 'io_uring-5.12-2021-03-19' of git://git.kernel.dk/linux-block
Pull io_uring fixes from Jens Axboe:
"Quieter week this time, which was both expected and desired. About
half of the below is fixes for this release, the other half are just
fixes in general. In detail:
- Fix the freezing of IO threads, by making the freezer not send them
fake signals. Make them freezable by default.
- Like we did for personalities, move the buffer IDR to xarray. Kills
some code and avoids a use-after-free on teardown.
- SQPOLL cleanups and fixes (Pavel)
- Fix linked timeout race (Pavel)
- Fix potential completion post use-after-free (Pavel)
- Cleanup and move internal structures outside of general kernel view
(Stefan)
- Use MSG_SIGNAL for send/recv from io_uring (Stefan)"
* tag 'io_uring-5.12-2021-03-19' of git://git.kernel.dk/linux-block:
io_uring: don't leak creds on SQO attach error
io_uring: use typesafe pointers in io_uring_task
io_uring: remove structures from include/linux/io_uring.h
io_uring: imply MSG_NOSIGNAL for send[msg]()/recv[msg]() calls
io_uring: fix sqpoll cancellation via task_work
io_uring: add generic callback_head helpers
io_uring: fix concurrent parking
io_uring: halt SQO submission on ctx exit
io_uring: replace sqd rw_semaphore with mutex
io_uring: fix complete_post use ctx after free
io_uring: fix ->flags races by linked timeouts
io_uring: convert io_buffer_idr to XArray
io_uring: allow IO worker threads to be frozen
kernel: freezer should treat PF_IO_WORKER like PF_KTHREAD for freezing
Merge misc fixes from Andrew Morton:
"28 patches.
Subsystems affected by this series: mm (memblock, pagealloc, hugetlb,
highmem, kfence, oom-kill, madvise, kasan, userfaultfd, memcg, and
zram), core-kernel, kconfig, fork, binfmt, MAINTAINERS, kbuild, and
ia64"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (28 commits)
zram: fix broken page writeback
zram: fix return value on writeback_store
mm/memcg: set memcg when splitting page
mm/memcg: rename mem_cgroup_split_huge_fixup to split_page_memcg and add nr_pages argument
ia64: fix ptrace(PTRACE_SYSCALL_INFO_EXIT) sign
ia64: fix ia64_syscall_get_set_arguments() for break-based syscalls
mm/userfaultfd: fix memory corruption due to writeprotect
kasan: fix KASAN_STACK dependency for HW_TAGS
kasan, mm: fix crash with HW_TAGS and DEBUG_PAGEALLOC
mm/madvise: replace ptrace attach requirement for process_madvise
include/linux/sched/mm.h: use rcu_dereference in in_vfork()
kfence: fix reports if constant function prefixes exist
kfence, slab: fix cache_alloc_debugcheck_after() for bulk allocations
kfence: fix printk format for ptrdiff_t
linux/compiler-clang.h: define HAVE_BUILTIN_BSWAP*
MAINTAINERS: exclude uapi directories in API/ABI section
binfmt_misc: fix possible deadlock in bm_register_write
mm/highmem.c: fix zero_user_segments() with start > end
hugetlb: do early cow when page pinned on src mm
mm: use is_cow_mapping() across tree where proper
...
When a new mm is created, its PASID should be cleared, i.e. the PASID is
initialized to its init state 0 on both ARM and X86.
This patch was part of the series introducing mm->pasid, but got lost
along the way [1]. It still makes sense to have it, because each address
space has a different PASID. And the IOMMU code in
iommu_sva_alloc_pasid() expects the pasid field of a new mm struct to be
cleared.
[1] https://lore.kernel.org/linux-iommu/YDgh53AcQHT+T3L0@otcwcpicx3.sc.intel.com/
Link: https://lkml.kernel.org/r/20210302103837.2562625-1-jean-philippe@linaro.org
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Jean-Philippe Brucker <jean-philippe@linaro.org>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Cc: Jacob Pan <jacob.jun.pan@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With the freezer using the proper signaling to notify us of when it's
time to freeze a thread, we can re-enable normal freezer usage for the
IO threads. Ensure that SQPOLL, io-wq, and the io-wq manager call
try_to_freeze() appropriately, and remove the default setting of
PF_NOFREEZE from create_io_thread().
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The io-wq threads were already marked as no-freeze, but the manager was
not. On resume, we perpetually have signal_pending() being true, and
hence the manager will loop and spin 100% of the time.
Just mark the tasks created by create_io_thread() as PF_NOFREEZE by
default, and remove any knowledge of it in io-wq and io_uring.
Reported-by: Kevin Locke <kevin@kevinlocke.name>
Tested-by: Kevin Locke <kevin@kevinlocke.name>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Alexei Starovoitov says:
====================
pull-request: bpf-next 2021-03-09
The following pull-request contains BPF updates for your *net-next* tree.
We've added 90 non-merge commits during the last 17 day(s) which contain
a total of 114 files changed, 5158 insertions(+), 1288 deletions(-).
The main changes are:
1) Faster bpf_redirect_map(), from Björn.
2) skmsg cleanup, from Cong.
3) Support for floating point types in BTF, from Ilya.
4) Documentation for sys_bpf commands, from Joe.
5) Support for sk_lookup in bpf_prog_test_run, form Lorenz.
6) Enable task local storage for tracing programs, from Song.
7) bpf_for_each_map_elem() helper, from Yonghong.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
Provide a generic helper for setting up an io_uring worker. Returns a
task_struct so that the caller can do whatever setup is needed, then call
wake_up_new_task() to kick it into gear.
Add a kernel_clone_args member, io_thread, which tells copy_process() to
mark the task with PF_IO_WORKER.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
To access per-task data, BPF programs usually creates a hash table with
pid as the key. This is not ideal because:
1. The user need to estimate the proper size of the hash table, which may
be inaccurate;
2. Big hash tables are slow;
3. To clean up the data properly during task terminations, the user need
to write extra logic.
Task local storage overcomes these issues and offers a better option for
these per-task data. Task local storage is only available to BPF_LSM. Now
enable it for tracing programs.
Unlike LSM programs, tracing programs can be called in IRQ contexts.
Helpers that access task local storage are updated to use
raw_spin_lock_irqsave() instead of raw_spin_lock_bh().
Tracing programs can attach to functions on the task free path, e.g.
exit_creds(). To avoid allocating task local storage after
bpf_task_storage_free(). bpf_task_storage_get() is updated to not allocate
new storage when the task is not refcounted (task->usage == 0).
Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: KP Singh <kpsingh@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20210225234319.336131-2-songliubraving@fb.com
Pull exec-update-lock update from Eric Biederman:
"The key point of this is to transform exec_update_mutex into a
rw_semaphore so readers can be separated from writers.
This makes it easier to understand what the holders of the lock are
doing, and makes it harder to contend or deadlock on the lock.
The real deadlock fix wound up in perf_event_open"
* 'exec-update-lock-for-v5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
exec: Transform exec_update_mutex into a rw_semaphore
Pull execve updates from Eric Biederman:
"This set of changes ultimately fixes the interaction of posix file
lock and exec. Fundamentally most of the change is just moving where
unshare_files is called during exec, and tweaking the users of
files_struct so that the count of files_struct is not unnecessarily
played with.
Along the way fcheck and related helpers were renamed to more
accurately reflect what they do.
There were also many other small changes that fell out, as this is the
first time in a long time much of this code has been touched.
Benchmarks haven't turned up any practical issues but Al Viro has
observed a possibility for a lot of pounding on task_lock. So I have
some changes in progress to convert put_files_struct to always rcu
free files_struct. That wasn't ready for the merge window so that will
have to wait until next time"
* 'exec-for-v5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (27 commits)
exec: Move io_uring_task_cancel after the point of no return
coredump: Document coredump code exclusively used by cell spufs
file: Remove get_files_struct
file: Rename __close_fd_get_file close_fd_get_file
file: Replace ksys_close with close_fd
file: Rename __close_fd to close_fd and remove the files parameter
file: Merge __alloc_fd into alloc_fd
file: In f_dupfd read RLIMIT_NOFILE once.
file: Merge __fd_install into fd_install
proc/fd: In fdinfo seq_show don't use get_files_struct
bpf/task_iter: In task_file_seq_get_next use task_lookup_next_fd_rcu
proc/fd: In proc_readfd_common use task_lookup_next_fd_rcu
file: Implement task_lookup_next_fd_rcu
kcmp: In get_file_raw_ptr use task_lookup_fd_rcu
proc/fd: In tid_fd_mode use task_lookup_fd_rcu
file: Implement task_lookup_fd_rcu
file: Rename fcheck lookup_fd_rcu
file: Replace fcheck_files with files_lookup_fd_rcu
file: Factor files_lookup_fd_locked out of fcheck_files
file: Rename __fcheck_files to files_lookup_fd_raw
...
Core:
- support "prefer busy polling" NAPI operation mode, where we defer softirq
for some time expecting applications to periodically busy poll
- AF_XDP: improve efficiency by more batching and hindering
the adjacency cache prefetcher
- af_packet: make packet_fanout.arr size configurable up to 64K
- tcp: optimize TCP zero copy receive in presence of partial or unaligned
reads making zero copy a performance win for much smaller messages
- XDP: add bulk APIs for returning / freeing frames
- sched: support fragmenting IP packets as they come out of conntrack
- net: allow virtual netdevs to forward UDP L4 and fraglist GSO skbs
BPF:
- BPF switch from crude rlimit-based to memcg-based memory accounting
- BPF type format information for kernel modules and related tracing
enhancements
- BPF implement task local storage for BPF LSM
- allow the FENTRY/FEXIT/RAW_TP tracing programs to use bpf_sk_storage
Protocols:
- mptcp: improve multiple xmit streams support, memory accounting and
many smaller improvements
- TLS: support CHACHA20-POLY1305 cipher
- seg6: add support for SRv6 End.DT4/DT6 behavior
- sctp: Implement RFC 6951: UDP Encapsulation of SCTP
- ppp_generic: add ability to bridge channels directly
- bridge: Connectivity Fault Management (CFM) support as is defined in
IEEE 802.1Q section 12.14.
Drivers:
- mlx5: make use of the new auxiliary bus to organize the driver internals
- mlx5: more accurate port TX timestamping support
- mlxsw:
- improve the efficiency of offloaded next hop updates by using
the new nexthop object API
- support blackhole nexthops
- support IEEE 802.1ad (Q-in-Q) bridging
- rtw88: major bluetooth co-existance improvements
- iwlwifi: support new 6 GHz frequency band
- ath11k: Fast Initial Link Setup (FILS)
- mt7915: dual band concurrent (DBDC) support
- net: ipa: add basic support for IPA v4.5
Refactor:
- a few pieces of in_interrupt() cleanup work from Sebastian Andrzej Siewior
- phy: add support for shared interrupts; get rid of multiple driver
APIs and have the drivers write a full IRQ handler, slight growth
of driver code should be compensated by the simpler API which
also allows shared IRQs
- add common code for handling netdev per-cpu counters
- move TX packet re-allocation from Ethernet switch tag drivers to
a central place
- improve efficiency and rename nla_strlcpy
- number of W=1 warning cleanups as we now catch those in a patchwork
build bot
Old code removal:
- wan: delete the DLCI / SDLA drivers
- wimax: move to staging
- wifi: remove old WDS wifi bridging support
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEE6jPA+I1ugmIBA4hXMUZtbf5SIrsFAl/YXmUACgkQMUZtbf5S
IrvSQBAAgOrt4EFopEvVqlTHZbqI45IEqgtXS+YWmlgnjZCgshyMj8q1yK1zzane
qYxr/NNJ9kV3FdtaynmmHPgEEEfR5kJ/D3B2BsxYDkaDDrD0vbNsBGw+L+/Gbhxl
N/5l/9FjLyLY1D+EErknuwR5XGuQ6BSDVaKQMhYOiK2hgdnAAI4hszo8Chf6wdD0
XDBslQ7vpD/05r+eMj0IkS5dSAoGOIFXUxhJ5dqrDbRHiKsIyWqA3PLbYemfAhxI
s2XckjfmSgGE3FKL8PSFu+EcfHbJQQjLcULJUnqgVcdwEEtRuE9ggEi52nZRXMWM
4e8sQJAR9Fx7pZy0G1xfS149j6iPU5LjRlU9TNSpVABz14Vvvo3gEL6gyIdsz+xh
hMN7UBdp0FEaP028CXoIYpaBesvQqj0BSndmee8qsYAtN6j+QKcM2AOSr7JN1uMH
C/86EDoGAATiEQIVWJvnX5MPmlAoblyLA+RuVhmxkIBx2InGXkFmWqRkXT5l4jtk
LVl8/TArR4alSQqLXictXCjYlCm9j5N4zFFtEVasSYi7/ZoPfgRNWT+lJ2R8Y+Zv
+htzGaFuyj6RJTVeFQMrkl3whAtBamo2a0kwg45NnxmmXcspN6kJX1WOIy82+MhD
Yht7uplSs7MGKA78q/CDU0XBeGjpABUvmplUQBIfrR/jKLW2730=
=GXs1
-----END PGP SIGNATURE-----
Merge tag 'net-next-5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next
Pull networking updates from Jakub Kicinski:
"Core:
- support "prefer busy polling" NAPI operation mode, where we defer
softirq for some time expecting applications to periodically busy
poll
- AF_XDP: improve efficiency by more batching and hindering the
adjacency cache prefetcher
- af_packet: make packet_fanout.arr size configurable up to 64K
- tcp: optimize TCP zero copy receive in presence of partial or
unaligned reads making zero copy a performance win for much smaller
messages
- XDP: add bulk APIs for returning / freeing frames
- sched: support fragmenting IP packets as they come out of conntrack
- net: allow virtual netdevs to forward UDP L4 and fraglist GSO skbs
BPF:
- BPF switch from crude rlimit-based to memcg-based memory accounting
- BPF type format information for kernel modules and related tracing
enhancements
- BPF implement task local storage for BPF LSM
- allow the FENTRY/FEXIT/RAW_TP tracing programs to use
bpf_sk_storage
Protocols:
- mptcp: improve multiple xmit streams support, memory accounting and
many smaller improvements
- TLS: support CHACHA20-POLY1305 cipher
- seg6: add support for SRv6 End.DT4/DT6 behavior
- sctp: Implement RFC 6951: UDP Encapsulation of SCTP
- ppp_generic: add ability to bridge channels directly
- bridge: Connectivity Fault Management (CFM) support as is defined
in IEEE 802.1Q section 12.14.
Drivers:
- mlx5: make use of the new auxiliary bus to organize the driver
internals
- mlx5: more accurate port TX timestamping support
- mlxsw:
- improve the efficiency of offloaded next hop updates by using
the new nexthop object API
- support blackhole nexthops
- support IEEE 802.1ad (Q-in-Q) bridging
- rtw88: major bluetooth co-existance improvements
- iwlwifi: support new 6 GHz frequency band
- ath11k: Fast Initial Link Setup (FILS)
- mt7915: dual band concurrent (DBDC) support
- net: ipa: add basic support for IPA v4.5
Refactor:
- a few pieces of in_interrupt() cleanup work from Sebastian Andrzej
Siewior
- phy: add support for shared interrupts; get rid of multiple driver
APIs and have the drivers write a full IRQ handler, slight growth
of driver code should be compensated by the simpler API which also
allows shared IRQs
- add common code for handling netdev per-cpu counters
- move TX packet re-allocation from Ethernet switch tag drivers to a
central place
- improve efficiency and rename nla_strlcpy
- number of W=1 warning cleanups as we now catch those in a patchwork
build bot
Old code removal:
- wan: delete the DLCI / SDLA drivers
- wimax: move to staging
- wifi: remove old WDS wifi bridging support"
* tag 'net-next-5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1922 commits)
net: hns3: fix expression that is currently always true
net: fix proc_fs init handling in af_packet and tls
nfc: pn533: convert comma to semicolon
af_vsock: Assign the vsock transport considering the vsock address flags
af_vsock: Set VMADDR_FLAG_TO_HOST flag on the receive path
vsock_addr: Check for supported flag values
vm_sockets: Add VMADDR_FLAG_TO_HOST vsock flag
vm_sockets: Add flags field in the vsock address data structure
net: Disable NETIF_F_HW_TLS_TX when HW_CSUM is disabled
tcp: Add logic to check for SYN w/ data in tcp_simple_retransmit
net: mscc: ocelot: install MAC addresses in .ndo_set_rx_mode from process context
nfc: s3fwrn5: Release the nfc firmware
net: vxget: clean up sparse warnings
mlxsw: spectrum_router: Use eXtended mezzanine to offload IPv4 router
mlxsw: spectrum: Set KVH XLT cache mode for Spectrum2/3
mlxsw: spectrum_router_xm: Introduce basic XM cache flushing
mlxsw: reg: Add Router LPM Cache Enable Register
mlxsw: reg: Add Router LPM Cache ML Delete Register
mlxsw: spectrum_router_xm: Implement L-value tracking for M-index
mlxsw: reg: Add XM Router M Table Register
...
Merge misc updates from Andrew Morton:
- a few random little subsystems
- almost all of the MM patches which are staged ahead of linux-next
material. I'll trickle to post-linux-next work in as the dependents
get merged up.
Subsystems affected by this patch series: kthread, kbuild, ide, ntfs,
ocfs2, arch, and mm (slab-generic, slab, slub, dax, debug, pagecache,
gup, swap, shmem, memcg, pagemap, mremap, hmm, vmalloc, documentation,
kasan, pagealloc, memory-failure, hugetlb, vmscan, z3fold, compaction,
oom-kill, migration, cma, page-poison, userfaultfd, zswap, zsmalloc,
uaccess, zram, and cleanups).
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (200 commits)
mm: cleanup kstrto*() usage
mm: fix fall-through warnings for Clang
mm: slub: convert sysfs sprintf family to sysfs_emit/sysfs_emit_at
mm: shmem: convert shmem_enabled_show to use sysfs_emit_at
mm:backing-dev: use sysfs_emit in macro defining functions
mm: huge_memory: convert remaining use of sprintf to sysfs_emit and neatening
mm: use sysfs_emit for struct kobject * uses
mm: fix kernel-doc markups
zram: break the strict dependency from lzo
zram: add stat to gather incompressible pages since zram set up
zram: support page writeback
mm/process_vm_access: remove redundant initialization of iov_r
mm/zsmalloc.c: rework the list_add code in insert_zspage()
mm/zswap: move to use crypto_acomp API for hardware acceleration
mm/zswap: fix passing zero to 'PTR_ERR' warning
mm/zswap: make struct kernel_param_ops definitions const
userfaultfd/selftests: hint the test runner on required privilege
userfaultfd/selftests: fix retval check for userfaultfd_open()
userfaultfd/selftests: always dump something in modes
userfaultfd: selftests: make __{s,u}64 format specifiers portable
...
The *_lruvec_slab_state is also suitable for pages allocated from buddy,
not just for the slab objects. But the function name seems to tell us
that only slab object is applicable. So we can rename the keyword of slab
to kmem.
Link: https://lkml.kernel.org/r/20201117085249.24319-1-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit 70e806e4e6 ("mm: Do early cow for pinned pages during
fork() for ptes") pages under a FOLL_PIN will not be write protected
during COW for fork. This means that pages returned from
pin_user_pages(FOLL_WRITE) should not become write protected while the pin
is active.
However, there is a small race where get_user_pages_fast(FOLL_PIN) can
establish a FOLL_PIN at the same time copy_present_page() is write
protecting it:
CPU 0 CPU 1
get_user_pages_fast()
internal_get_user_pages_fast()
copy_page_range()
pte_alloc_map_lock()
copy_present_page()
atomic_read(has_pinned) == 0
page_maybe_dma_pinned() == false
atomic_set(has_pinned, 1);
gup_pgd_range()
gup_pte_range()
pte_t pte = gup_get_pte(ptep)
pte_access_permitted(pte)
try_grab_compound_head()
pte = pte_wrprotect(pte)
set_pte_at();
pte_unmap_unlock()
// GUP now returns with a write protected page
The first attempt to resolve this by using the write protect caused
problems (and was missing a barrrier), see commit f3c64eda3e ("mm: avoid
early COW write protect games during fork()")
Instead wrap copy_p4d_range() with the write side of a seqcount and check
the read side around gup_pgd_range(). If there is a collision then
get_user_pages_fast() fails and falls back to slow GUP.
Slow GUP is safe against this race because copy_page_range() is only
called while holding the exclusive side of the mmap_lock on the src
mm_struct.
[akpm@linux-foundation.org: coding style fixes]
Link: https://lore.kernel.org/r/CAHk-=wi=iCnYCARbPGjkVJu9eyYeZ13N64tZYLdOB8CP5Q_PLw@mail.gmail.com
Link: https://lkml.kernel.org/r/2-v4-908497cf359a+4782-gup_fork_jgg@nvidia.com
Fixes: f3c64eda3e ("mm: avoid early COW write protect games during fork()")
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Peter Xu <peterx@redhat.com>
Acked-by: "Ahmed S. Darwish" <a.darwish@linutronix.de> [seqcount_t parts]
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Kirill Shutemov <kirill@shutemov.name>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Leon Romanovsky <leonro@nvidia.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- Consolidate all kmap_atomic() internals into a generic implementation
which builds the base for the kmap_local() API and make the
kmap_atomic() interface wrappers which handle the disabling/enabling of
preemption and pagefaults.
- Switch the storage from per-CPU to per task and provide scheduler
support for clearing mapping when scheduling out and restoring them
when scheduling back in.
- Merge the migrate_disable/enable() code, which is also part of the
scheduler pull request. This was required to make the kmap_local()
interface available which does not disable preemption when a mapping
is established. It has to disable migration instead to guarantee that
the virtual address of the mapped slot is the same accross preemption.
- Provide better debug facilities: guard pages and enforced utilization
of the mapping mechanics on 64bit systems when the architecture allows
it.
- Provide the new kmap_local() API which can now be used to cleanup the
kmap_atomic() usage sites all over the place. Most of the usage sites
do not require the implicit disabling of preemption and pagefaults so
the penalty on 64bit and 32bit non-highmem systems is removed and quite
some of the code can be simplified. A wholesale conversion is not
possible because some usage depends on the implicit side effects and
some need to be cleaned up because they work around these side effects.
The migrate disable side effect is only effective on highmem systems
and when enforced debugging is enabled. On 64bit and 32bit non-highmem
systems the overhead is completely avoided.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl/XyQwTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoUolD/9+R+BX96fGir+I8rG9dc3cbLw5meSi
0I/Nq3PToZMs2Iqv50DsoaPYHHz/M6fcAO9LRIgsE9jRbnY93GnsBM0wU9Y8yQaT
4wUzOG5WHaLDfqIkx/CN9coUl458oEiwOEbn79A2FmPXFzr7IpkufnV3ybGDwzwP
p73bjMJMPPFrsa9ig87YiYfV/5IAZHi82PN8Cq1v4yNzgXRP3Tg6QoAuCO84ZnWF
RYlrfKjcJ2xPdn+RuYyXolPtxr1hJQ0bOUpe4xu/UfeZjxZ7i1wtwLN9kWZe8CKH
+x4Lz8HZZ5QMTQ9sCHOLtKzu2MceMcpISzoQH4/aFQCNMgLn1zLbS790XkYiQCuR
ne9Cua+IqgYfGMG8cq8+bkU9HCNKaXqIBgPEKE/iHYVmqzCOqhW5Cogu4KFekf6V
Wi7pyyUdX2en8BAWpk5NHc8de9cGcc+HXMq2NIcgXjVWvPaqRP6DeITERTZLJOmz
XPxq5oPLGl7wdm7z+ICIaNApy8zuxpzb6sPLNcn7l5OeorViORlUu08AN8587wAj
FiVjp6ZYomg+gyMkiNkDqFOGDH5TMENpOFoB0hNNEyJwwS0xh6CgWuwZcv+N8aPO
HuS/P+tNANbD8ggT4UparXYce7YCtgOf3IG4GA3JJYvYmJ6pU+AZOWRoDScWq4o+
+jlfoJhMbtx5Gg==
=n71I
-----END PGP SIGNATURE-----
Merge tag 'core-mm-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull kmap updates from Thomas Gleixner:
"The new preemtible kmap_local() implementation:
- Consolidate all kmap_atomic() internals into a generic
implementation which builds the base for the kmap_local() API and
make the kmap_atomic() interface wrappers which handle the
disabling/enabling of preemption and pagefaults.
- Switch the storage from per-CPU to per task and provide scheduler
support for clearing mapping when scheduling out and restoring them
when scheduling back in.
- Merge the migrate_disable/enable() code, which is also part of the
scheduler pull request. This was required to make the kmap_local()
interface available which does not disable preemption when a
mapping is established. It has to disable migration instead to
guarantee that the virtual address of the mapped slot is the same
across preemption.
- Provide better debug facilities: guard pages and enforced
utilization of the mapping mechanics on 64bit systems when the
architecture allows it.
- Provide the new kmap_local() API which can now be used to cleanup
the kmap_atomic() usage sites all over the place. Most of the usage
sites do not require the implicit disabling of preemption and
pagefaults so the penalty on 64bit and 32bit non-highmem systems is
removed and quite some of the code can be simplified. A wholesale
conversion is not possible because some usage depends on the
implicit side effects and some need to be cleaned up because they
work around these side effects.
The migrate disable side effect is only effective on highmem
systems and when enforced debugging is enabled. On 64bit and 32bit
non-highmem systems the overhead is completely avoided"
* tag 'core-mm-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (33 commits)
ARM: highmem: Fix cache_is_vivt() reference
x86/crashdump/32: Simplify copy_oldmem_page()
io-mapping: Provide iomap_local variant
mm/highmem: Provide kmap_local*
sched: highmem: Store local kmaps in task struct
x86: Support kmap_local() forced debugging
mm/highmem: Provide CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP
mm/highmem: Provide and use CONFIG_DEBUG_KMAP_LOCAL
microblaze/mm/highmem: Add dropped #ifdef back
xtensa/mm/highmem: Make generic kmap_atomic() work correctly
mm/highmem: Take kmap_high_get() properly into account
highmem: High implementation details and document API
Documentation/io-mapping: Remove outdated blurb
io-mapping: Cleanup atomic iomap
mm/highmem: Remove the old kmap_atomic cruft
highmem: Get rid of kmap_types.h
xtensa/mm/highmem: Switch to generic kmap atomic
sparc/mm/highmem: Switch to generic kmap atomic
powerpc/mm/highmem: Switch to generic kmap atomic
nds32/mm/highmem: Switch to generic kmap atomic
...
- More generalization of entry/exit functionality
- The consolidation work to reclaim TIF flags on x86 and also for non-x86
specific TIF flags which are solely relevant for syscall related work
and have been moved into their own storage space. The x86 specific part
had to be merged in to avoid a major conflict.
- The TIF_NOTIFY_SIGNAL work which replaces the inefficient signal
delivery mode of task work and results in an impressive performance
improvement for io_uring. The non-x86 consolidation of this is going to
come seperate via Jens.
- The selective syscall redirection facility which provides a clean and
efficient way to support the non-Linux syscalls of WINE by catching them
at syscall entry and redirecting them to the user space emulation. This
can be utilized for other purposes as well and has been designed
carefully to avoid overhead for the regular fastpath. This includes the
core changes and the x86 support code.
- Simplification of the context tracking entry/exit handling for the users
of the generic entry code which guarantee the proper ordering and
protection.
- Preparatory changes to make the generic entry code accomodate S390
specific requirements which are mostly related to their syscall restart
mechanism.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl/XoPoTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoe0tD/4jSKHIogVM9kVpiYfwjDGS1NluaBXn
71ZoASbX9GZebyGandMyF2QP1iJ24ZO0RztBwHEVH6fyomKB2iFNedssCpO9yfWV
3eFRpOvMpbszY2W2bd0QG3GrqaTttjVfB4ahkGLzqeSbchdob6hZpNDYtBZnujA6
GSnrrurfJkCGoQny+yJQYdQJXQU+BIX90B2a2Q+jW123Luy/iHXC1f/krZSA1m14
fC9xYLSUjPphTzh2ZOW+C3DgdjOL5PfAm/6F+DArt4GtLgrEGD7R74aLSFhvetky
dn5QtG+yAsz1i0cc5Wu/JBcT9tOkY92rPYSyLI9bYQUSQ/bMyuprz6oYKj3dubsu
ZSsKPdkNFPIniL4fLdCMWZcIXX5xgnrxKjdgXZXW3gtrcxSns8w8uED3Sh7dgE08
pgIeq67E5g/OB8kJXH1VxdewmeQb9cOmnzzHwNO7TrrGbBKjDTYHNdYOKf1dUTTK
ZX1UjLfGwxTkMYAbQD1k0JGZ2OLRshzSaH5BW/ZKa3bvJW6yYOq+/YT8B8hbJ8U3
vThlO75/55IJxS5r5Y3vZd/IHdsYbPuETD+TA8tNYtPqNZasW8nnk4TYctWqzDuO
/Ka1wvWYid3c6ySznQn4zSyRjr968AfHeZ9YTUMhWufy5waXVmdBMG41u3IKfsVt
osyzNc4EK19/Mg==
=hsjV
-----END PGP SIGNATURE-----
Merge tag 'core-entry-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull core entry/exit updates from Thomas Gleixner:
"A set of updates for entry/exit handling:
- More generalization of entry/exit functionality
- The consolidation work to reclaim TIF flags on x86 and also for
non-x86 specific TIF flags which are solely relevant for syscall
related work and have been moved into their own storage space. The
x86 specific part had to be merged in to avoid a major conflict.
- The TIF_NOTIFY_SIGNAL work which replaces the inefficient signal
delivery mode of task work and results in an impressive performance
improvement for io_uring. The non-x86 consolidation of this is
going to come seperate via Jens.
- The selective syscall redirection facility which provides a clean
and efficient way to support the non-Linux syscalls of WINE by
catching them at syscall entry and redirecting them to the user
space emulation. This can be utilized for other purposes as well
and has been designed carefully to avoid overhead for the regular
fastpath. This includes the core changes and the x86 support code.
- Simplification of the context tracking entry/exit handling for the
users of the generic entry code which guarantee the proper ordering
and protection.
- Preparatory changes to make the generic entry code accomodate S390
specific requirements which are mostly related to their syscall
restart mechanism"
* tag 'core-entry-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (36 commits)
entry: Add syscall_exit_to_user_mode_work()
entry: Add exit_to_user_mode() wrapper
entry_Add_enter_from_user_mode_wrapper
entry: Rename exit_to_user_mode()
entry: Rename enter_from_user_mode()
docs: Document Syscall User Dispatch
selftests: Add benchmark for syscall user dispatch
selftests: Add kselftest for syscall user dispatch
entry: Support Syscall User Dispatch on common syscall entry
kernel: Implement selective syscall userspace redirection
signal: Expose SYS_USER_DISPATCH si_code type
x86: vdso: Expose sigreturn address on vdso to the kernel
MAINTAINERS: Add entry for common entry code
entry: Fix boot for !CONFIG_GENERIC_ENTRY
x86: Support HAVE_CONTEXT_TRACKING_OFFSTACK
context_tracking: Only define schedule_user() on !HAVE_CONTEXT_TRACKING_OFFSTACK archs
sched: Detect call to schedule from critical entry code
context_tracking: Don't implement exception_enter/exit() on CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK
context_tracking: Introduce HAVE_CONTEXT_TRACKING_OFFSTACK
x86: Reclaim unused x86 TI flags
...
Recently syzbot reported[0] that there is a deadlock amongst the users
of exec_update_mutex. The problematic lock ordering found by lockdep
was:
perf_event_open (exec_update_mutex -> ovl_i_mutex)
chown (ovl_i_mutex -> sb_writes)
sendfile (sb_writes -> p->lock)
by reading from a proc file and writing to overlayfs
proc_pid_syscall (p->lock -> exec_update_mutex)
While looking at possible solutions it occured to me that all of the
users and possible users involved only wanted to state of the given
process to remain the same. They are all readers. The only writer is
exec.
There is no reason for readers to block on each other. So fix
this deadlock by transforming exec_update_mutex into a rw_semaphore
named exec_update_lock that only exec takes for writing.
Cc: Jann Horn <jannh@google.com>
Cc: Vasiliy Kulikov <segoon@openwall.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Bernd Edlinger <bernd.edlinger@hotmail.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Christopher Yeoh <cyeoh@au1.ibm.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Sargun Dhillon <sargun@sargun.me>
Cc: Christian Brauner <christian.brauner@ubuntu.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Fixes: eea9673250 ("exec: Add exec_update_mutex to replace cred_guard_mutex")
[0] https://lkml.kernel.org/r/00000000000063640c05ade8e3de@google.com
Reported-by: syzbot+db9cdf3dd1f64252c6ef@syzkaller.appspotmail.com
Link: https://lkml.kernel.org/r/87ft4mbqen.fsf@x220.int.ebiederm.org
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Patch series "mm: allow mapping accounted kernel pages to userspace", v6.
Currently a non-slab kernel page which has been charged to a memory cgroup
can't be mapped to userspace. The underlying reason is simple: PageKmemcg
flag is defined as a page type (like buddy, offline, etc), so it takes a
bit from a page->mapped counter. Pages with a type set can't be mapped to
userspace.
But in general the kmemcg flag has nothing to do with mapping to
userspace. It only means that the page has been accounted by the page
allocator, so it has to be properly uncharged on release.
Some bpf maps are mapping the vmalloc-based memory to userspace, and their
memory can't be accounted because of this implementation detail.
This patchset removes this limitation by moving the PageKmemcg flag into
one of the free bits of the page->mem_cgroup pointer. Also it formalizes
accesses to the page->mem_cgroup and page->obj_cgroups using new helpers,
adds several checks and removes a couple of obsolete functions. As the
result the code became more robust with fewer open-coded bit tricks.
This patch (of 4):
Currently there are many open-coded reads of the page->mem_cgroup pointer,
as well as a couple of read helpers, which are barely used.
It creates an obstacle on a way to reuse some bits of the pointer for
storing additional bits of information. In fact, we already do this for
slab pages, where the last bit indicates that a pointer has an attached
vector of objcg pointers instead of a regular memcg pointer.
This commits uses 2 existing helpers and introduces a new helper to
converts all read sides to calls of these helpers:
struct mem_cgroup *page_memcg(struct page *page);
struct mem_cgroup *page_memcg_rcu(struct page *page);
struct mem_cgroup *page_memcg_check(struct page *page);
page_memcg_check() is intended to be used in cases when the page can be a
slab page and have a memcg pointer pointing at objcg vector. It does
check the lowest bit, and if set, returns NULL. page_memcg() contains a
VM_BUG_ON_PAGE() check for the page not being a slab page.
To make sure nobody uses a direct access, struct page's
mem_cgroup/obj_cgroups is converted to unsigned long memcg_data.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Link: https://lkml.kernel.org/r/20201027001657.3398190-1-guro@fb.com
Link: https://lkml.kernel.org/r/20201027001657.3398190-2-guro@fb.com
Link: https://lore.kernel.org/bpf/20201201215900.3569844-2-guro@fb.com
Introduce a mechanism to quickly disable/enable syscall handling for a
specific process and redirect to userspace via SIGSYS. This is useful
for processes with parts that require syscall redirection and parts that
don't, but who need to perform this boundary crossing really fast,
without paying the cost of a system call to reconfigure syscall handling
on each boundary transition. This is particularly important for Windows
games running over Wine.
The proposed interface looks like this:
prctl(PR_SET_SYSCALL_USER_DISPATCH, <op>, <off>, <length>, [selector])
The range [<offset>,<offset>+<length>) is a part of the process memory
map that is allowed to by-pass the redirection code and dispatch
syscalls directly, such that in fast paths a process doesn't need to
disable the trap nor the kernel has to check the selector. This is
essential to return from SIGSYS to a blocked area without triggering
another SIGSYS from rt_sigreturn.
selector is an optional pointer to a char-sized userspace memory region
that has a key switch for the mechanism. This key switch is set to
either PR_SYS_DISPATCH_ON, PR_SYS_DISPATCH_OFF to enable and disable the
redirection without calling the kernel.
The feature is meant to be set per-thread and it is disabled on
fork/clone/execv.
Internally, this doesn't add overhead to the syscall hot path, and it
requires very little per-architecture support. I avoided using seccomp,
even though it duplicates some functionality, due to previous feedback
that maybe it shouldn't mix with seccomp since it is not a security
mechanism. And obviously, this should never be considered a security
mechanism, since any part of the program can by-pass it by using the
syscall dispatcher.
For the sysinfo benchmark, which measures the overhead added to
executing a native syscall that doesn't require interception, the
overhead using only the direct dispatcher region to issue syscalls is
pretty much irrelevant. The overhead of using the selector goes around
40ns for a native (unredirected) syscall in my system, and it is (as
expected) dominated by the supervisor-mode user-address access. In
fact, with SMAP off, the overhead is consistently less than 5ns on my
test box.
Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20201127193238.821364-4-krisman@collabora.com
Instead of storing the map per CPU provide and use per task storage. That
prepares for local kmaps which are preemptible.
The context switch code is preparatory and not yet in use because
kmap_atomic() runs with preemption disabled. Will be made usable in the
next step.
The context switch logic is safe even when an interrupt happens after
clearing or before restoring the kmaps. The kmap index in task struct is
not modified so any nesting kmap in an interrupt will use unused indices
and on return the counter is the same as before.
Also add an assert into the return to user space code. Going back to user
space with an active kmap local is a nono.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20201118204007.372935758@linutronix.de
On architectures using the generic syscall entry code the architecture
independent syscall work is moved to flags in thread_info::syscall_work.
This removes architecture dependencies and frees up TIF bits.
Define SYSCALL_WORK_SYSCALL_EMU, use it in the generic entry code and
convert the code which uses the TIF specific helper functions to use the
new *_syscall_work() helpers which either resolve to the new mode for users
of the generic entry code or to the TIF based functions for the other
architectures.
Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20201116174206.2639648-8-krisman@collabora.com
On architectures using the generic syscall entry code the architecture
independent syscall work is moved to flags in thread_info::syscall_work.
This removes architecture dependencies and frees up TIF bits.
Define SYSCALL_WORK_SYSCALL_TRACE, use it in the generic entry code and
convert the code which uses the TIF specific helper functions to use the
new *_syscall_work() helpers which either resolve to the new mode for users
of the generic entry code or to the TIF based functions for the other
architectures.
Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20201116174206.2639648-7-krisman@collabora.com
On architectures using the generic syscall entry code the architecture
independent syscall work is moved to flags in thread_info::syscall_work.
This removes architecture dependencies and frees up TIF bits.
Define SYSCALL_WORK_SECCOMP, use it in the generic entry code and convert
the code which uses the TIF specific helper functions to use the new
*_syscall_work() helpers which either resolve to the new mode for users of
the generic entry code or to the TIF based functions for the other
architectures.
Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20201116174206.2639648-5-krisman@collabora.com
current->group_leader->exit_signal may change during copy_process() if
current->real_parent exits.
Move the assignment inside tasklist_lock to avoid the race.
Signed-off-by: Eddy Wu <eddy_wu@trendmicro.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Conflicts:
include/asm-generic/atomic-instrumented.h
kernel/kprobes.c
Use the upstream atomic-instrumented.h checksum, and pick
the kprobes version of kernel/kprobes.c, which effectively
reverts this upstream workaround:
645f224e7ba2: ("kprobes: Tell lockdep about kprobe nesting")
Since the new code *should* be fine without nesting.
Knock on wood ...
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Fix multiple occurrences of duplicated words in kernel/.
Fix one typo/spello on the same line as a duplicate word. Change one
instance of "the the" to "that the". Otherwise just drop one of the
repeated words.
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Link: https://lkml.kernel.org/r/98202fa6-8919-ef63-9efe-c0fad5ca7af1@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In commit 1da177e4c3 ("Linux-2.6.12-rc2"), the helper put_write_access()
came with the atomic_dec operation of the i_writecount field. But it
forgot to use this helper in __vma_link_file() and dup_mmap().
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Link: https://lkml.kernel.org/r/20200924115235.5111-1-linmiaohe@huawei.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCXz5bNAAKCRCRxhvAZXjc
opfjAP9R/J72yxdd2CLGNZ96hyiRX1NgFDOVUhscOvujYJf8ZwD+OoLmKMvAyFW6
hnMhT1n9Q+aq194hyzChOLQaBTejBQ8=
=4WCX
-----END PGP SIGNATURE-----
Merge tag 'kernel-clone-v5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux
Pull kernel_clone() updates from Christian Brauner:
"During the v5.9 merge window we reworked the process creation
codepaths across multiple architectures. After this work we were only
left with the _do_fork() helper based on the struct kernel_clone_args
calling convention. As was pointed out _do_fork() isn't valid
kernelese especially for a helper that isn't just static.
This series removes the _do_fork() helper and introduces the new
kernel_clone() helper. The process creation cleanup didn't change the
name to something more reasonable mainly because _do_fork() was used
in quite a few places. So sending this as a separate series seemed the
better strategy.
I originally intended to send this early in the v5.9 development cycle
after the merge window had closed but given that this was touching
quite a few places I decided to defer this until the v5.10 merge
window"
* tag 'kernel-clone-v5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux:
sched: remove _do_fork()
tracing: switch to kernel_clone()
kgdbts: switch to kernel_clone()
kprobes: switch to kernel_clone()
x86: switch to kernel_clone()
sparc: switch to kernel_clone()
nios2: switch to kernel_clone()
m68k: switch to kernel_clone()
ia64: switch to kernel_clone()
h8300: switch to kernel_clone()
fork: introduce kernel_clone()
Currently __set_oom_adj loops through all processes in the system to keep
oom_score_adj and oom_score_adj_min in sync between processes sharing
their mm. This is done for any task with more that one mm_users, which
includes processes with multiple threads (sharing mm and signals).
However for such processes the loop is unnecessary because their signal
structure is shared as well.
Android updates oom_score_adj whenever a tasks changes its role
(background/foreground/...) or binds to/unbinds from a service, making it
more/less important. Such operation can happen frequently. We noticed
that updates to oom_score_adj became more expensive and after further
investigation found out that the patch mentioned in "Fixes" introduced a
regression. Using Pixel 4 with a typical Android workload, write time to
oom_score_adj increased from ~3.57us to ~362us. Moreover this regression
linearly depends on the number of multi-threaded processes running on the
system.
Mark the mm with a new MMF_MULTIPROCESS flag bit when task is created with
(CLONE_VM && !CLONE_THREAD && !CLONE_VFORK). Change __set_oom_adj to use
MMF_MULTIPROCESS instead of mm_users to decide whether oom_score_adj
update should be synchronized between multiple processes. To prevent
races between clone() and __set_oom_adj(), when oom_score_adj of the
process being cloned might be modified from userspace, we use
oom_adj_mutex. Its scope is changed to global.
The combination of (CLONE_VM && !CLONE_THREAD) is rarely used except for
the case of vfork(). To prevent performance regressions of vfork(), we
skip taking oom_adj_mutex and setting MMF_MULTIPROCESS when CLONE_VFORK is
specified. Clearing the MMF_MULTIPROCESS flag (when the last process
sharing the mm exits) is left out of this patch to keep it simple and
because it is believed that this threading model is rare. Should there
ever be a need for optimizing that case as well, it can be done by hooking
into the exit path, likely following the mm_update_next_owner pattern.
With the combination of (CLONE_VM && !CLONE_THREAD && !CLONE_VFORK) being
quite rare, the regression is gone after the change is applied.
[surenb@google.com: v3]
Link: https://lkml.kernel.org/r/20200902012558.2335613-1-surenb@google.com
Fixes: 44a70adec9 ("mm, oom_adj: make sure processes sharing mm have same view of oom_score_adj")
Reported-by: Tim Murray <timmurray@google.com>
Suggested-by: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Christian Brauner <christian.brauner@ubuntu.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Eugene Syromiatnikov <esyr@redhat.com>
Cc: Christian Kellner <christian@kellner.me>
Cc: Adrian Reber <areber@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Aleksa Sarai <cyphar@cyphar.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Alexey Gladkov <gladkov.alexey@gmail.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Andrei Vagin <avagin@gmail.com>
Cc: Bernd Edlinger <bernd.edlinger@hotmail.de>
Cc: John Johansen <john.johansen@canonical.com>
Cc: Yafang Shao <laoar.shao@gmail.com>
Link: https://lkml.kernel.org/r/20200824153036.3201505-1-surenb@google.com
Debugged-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Both of the mm pointers are not needed after commit 7a4830c380
("mm/fork: Pass new vma pointer into copy_page_range()").
Jason Gunthorpe also reported that the ordering of copy_page_range() is
odd. Since working at it, reorder the parameters to be logical, by (1)
always put the dst_* fields to be before src_* fields, and (2) keep the
same type of parameters together.
[peterx@redhat.com: further reorder some parameters and line format, per Jason]
Link: https://lkml.kernel.org/r/20201002192647.7161-1-peterx@redhat.com
[peterx@redhat.com: fix warnings]
Link: https://lkml.kernel.org/r/20201006200138.GA6026@xz-x1
Reported-by: Kirill A. Shutemov <kirill@shutemov.name>
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Link: https://lkml.kernel.org/r/20200930204950.6668-1-peterx@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 4bb5f5d939 ("mm: allow drivers to prevent new writable mappings")
changed i_mmap_writable from unsigned int to atomic_t and add the helper
function mapping_allow_writable() to atomic_inc i_mmap_writable. But it
forgot to use this helper function in dup_mmap() and __vma_link_file().
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Christian Brauner <christian.brauner@ubuntu.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Christian Kellner <christian@kellner.me>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Adrian Reber <areber@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Aleksa Sarai <cyphar@cyphar.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200917112736.7789-1-linmiaohe@huawei.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The kretprobe hash is mostly superfluous, replace it with a per-task
variable.
This gets rid of the task hash and it's related locking.
Note that this may change the kprobes module-exported API for kretprobe
handlers. If any out-of-tree kretprobe user uses ri->rp, use
get_kretprobe(ri) instead.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/159870620431.1229682.16325792502413731312.stgit@devnote2
Grab actual references to the files_struct. To avoid circular references
issues due to this, we add a per-task note that keeps track of what
io_uring contexts a task has used. When the tasks execs or exits its
assigned files, we cancel requests based on this tracking.
With that, we can grab proper references to the files table, and no
longer need to rely on stashing away ring_fd and ring_file to check
if the ring_fd may have been closed.
Cc: stable@vger.kernel.org # v5.5+
Reviewed-by: Pavel Begunkov <asml.silence@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This prepares for the future work to trigger early cow on pinned pages
during fork().
No functional change intended.
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
(Commit message majorly collected from Jason Gunthorpe)
Reduce the chance of false positive from page_maybe_dma_pinned() by
keeping track if the mm_struct has ever been used with pin_user_pages().
This allows cases that might drive up the page ref_count to avoid any
penalty from handling dma_pinned pages.
Future work is planned, to provide a more sophisticated solution, likely
to turn it into a real counter. For now, make it atomic_t but use it as
a boolean for simplicity.
Suggested-by: Jason Gunthorpe <jgg@ziepe.ca>
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 32927393dc ("sysctl: pass kernel pointers to ->proc_handler")
changed ctl_table.proc_handler to take a kernel pointer. Adjust the
definition of sysctl_max_threads to match its prototype in
linux/sysctl.h which fixes the following sparse error/warning:
kernel/fork.c:3050:47: warning: incorrect type in argument 3 (different address spaces)
kernel/fork.c:3050:47: expected void *
kernel/fork.c:3050:47: got void [noderef] __user *buffer
kernel/fork.c:3036:5: error: symbol 'sysctl_max_threads' redeclared with different type (incompatible argument 3 (different address spaces)):
kernel/fork.c:3036:5: int extern [addressable] [signed] [toplevel] sysctl_max_threads( ... )
kernel/fork.c: note: in included file (through include/linux/key.h, include/linux/cred.h, include/linux/sched/signal.h, include/linux/sched/cputime.h):
include/linux/sysctl.h:242:5: note: previously declared as:
include/linux/sysctl.h:242:5: int extern [addressable] [signed] [toplevel] sysctl_max_threads( ... )
Fixes: 32927393dc ("sysctl: pass kernel pointers to ->proc_handler")
Signed-off-by: Tobias Klauser <tklauser@distanz.ch>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Link: https://lkml.kernel.org/r/20200825093647.24263-1-tklauser@distanz.ch
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The old _do_fork() helper doesn't follow naming conventions of in-kernel
helpers for syscalls. The process creation cleanup in [1] didn't change the
name to something more reasonable mainly because _do_fork() was used in quite a
few places. So sending this as a separate series seemed the better strategy.
This commit does two things:
1. renames _do_fork() to kernel_clone() but keeps _do_fork() as a simple static
inline wrapper around kernel_clone().
2. Changes the return type from long to pid_t. This aligns kernel_thread() and
kernel_clone(). Also, the return value from kernel_clone that is surfaced in
fork(), vfork(), clone(), and clone3() is taken from pid_vrn() which returns
a pid_t too.
Follow-up patches will switch each caller of _do_fork() and each place where it
is referenced over to kernel_clone(). After all these changes are done, we can
remove _do_fork() completely and will only be left with kernel_clone().
[1]: 9ba27414f2 ("Merge tag 'fork-v5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux")
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Link: https://lore.kernel.org/r/20200819104655.436656-2-christian.brauner@ubuntu.com
- Untangle the header spaghetti which causes build failures in various
situations caused by the lockdep additions to seqcount to validate that
the write side critical sections are non-preemptible.
- The seqcount associated lock debug addons which were blocked by the
above fallout.
seqcount writers contrary to seqlock writers must be externally
serialized, which usually happens via locking - except for strict per
CPU seqcounts. As the lock is not part of the seqcount, lockdep cannot
validate that the lock is held.
This new debug mechanism adds the concept of associated locks.
sequence count has now lock type variants and corresponding
initializers which take a pointer to the associated lock used for
writer serialization. If lockdep is enabled the pointer is stored and
write_seqcount_begin() has a lockdep assertion to validate that the
lock is held.
Aside of the type and the initializer no other code changes are
required at the seqcount usage sites. The rest of the seqcount API is
unchanged and determines the type at compile time with the help of
_Generic which is possible now that the minimal GCC version has been
moved up.
Adding this lockdep coverage unearthed a handful of seqcount bugs which
have been addressed already independent of this.
While generaly useful this comes with a Trojan Horse twist: On RT
kernels the write side critical section can become preemtible if the
writers are serialized by an associated lock, which leads to the well
known reader preempts writer livelock. RT prevents this by storing the
associated lock pointer independent of lockdep in the seqcount and
changing the reader side to block on the lock when a reader detects
that a writer is in the write side critical section.
- Conversion of seqcount usage sites to associated types and initializers.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl8xmPYTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoTuQEACyzQCjU8PgehPp9oMqWzaX2fcVyuZO
QU2yw6gmz2oTz3ZHUNwdW8UnzGh2OWosK3kDruoD9FtSS51lER1/ISfSPCGfyqxC
KTjOcB1Kvxwq/3LcCx7Zi3ZxWApat74qs3EhYhKtEiQ2Y9xv9rLq8VV1UWAwyxq0
eHpjlIJ6b6rbt+ARslaB7drnccOsdK+W/roNj4kfyt+gezjBfojGRdMGQNMFcpnv
shuTC+vYurAVIiVA/0IuizgHfwZiXOtVpjVoEWaxg6bBH6HNuYMYzdSa/YrlDkZs
n/aBI/Xkvx+Eacu8b1Zwmbzs5EnikUK/2dMqbzXKUZK61eV4hX5c2xrnr1yGWKTs
F/juh69Squ7X6VZyKVgJ9RIccVueqwR2EprXWgH3+RMice5kjnXH4zURp0GHALxa
DFPfB6fawcH3Ps87kcRFvjgm6FBo0hJ1AxmsW1dY4ACFB9azFa2euW+AARDzHOy2
VRsUdhL9CGwtPjXcZ/9Rhej6fZLGBXKr8uq5QiMuvttp4b6+j9FEfBgD4S6h8csl
AT2c2I9LcbWqyUM9P4S7zY/YgOZw88vHRuDH7tEBdIeoiHfrbSBU7EQ9jlAKq/59
f+Htu2Io281c005g7DEeuCYvpzSYnJnAitj5Lmp/kzk2Wn3utY1uIAVszqwf95Ul
81ppn2KlvzUK8g==
=7Gj+
-----END PGP SIGNATURE-----
Merge tag 'locking-urgent-2020-08-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking updates from Thomas Gleixner:
"A set of locking fixes and updates:
- Untangle the header spaghetti which causes build failures in
various situations caused by the lockdep additions to seqcount to
validate that the write side critical sections are non-preemptible.
- The seqcount associated lock debug addons which were blocked by the
above fallout.
seqcount writers contrary to seqlock writers must be externally
serialized, which usually happens via locking - except for strict
per CPU seqcounts. As the lock is not part of the seqcount, lockdep
cannot validate that the lock is held.
This new debug mechanism adds the concept of associated locks.
sequence count has now lock type variants and corresponding
initializers which take a pointer to the associated lock used for
writer serialization. If lockdep is enabled the pointer is stored
and write_seqcount_begin() has a lockdep assertion to validate that
the lock is held.
Aside of the type and the initializer no other code changes are
required at the seqcount usage sites. The rest of the seqcount API
is unchanged and determines the type at compile time with the help
of _Generic which is possible now that the minimal GCC version has
been moved up.
Adding this lockdep coverage unearthed a handful of seqcount bugs
which have been addressed already independent of this.
While generally useful this comes with a Trojan Horse twist: On RT
kernels the write side critical section can become preemtible if
the writers are serialized by an associated lock, which leads to
the well known reader preempts writer livelock. RT prevents this by
storing the associated lock pointer independent of lockdep in the
seqcount and changing the reader side to block on the lock when a
reader detects that a writer is in the write side critical section.
- Conversion of seqcount usage sites to associated types and
initializers"
* tag 'locking-urgent-2020-08-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (25 commits)
locking/seqlock, headers: Untangle the spaghetti monster
locking, arch/ia64: Reduce <asm/smp.h> header dependencies by moving XTP bits into the new <asm/xtp.h> header
x86/headers: Remove APIC headers from <asm/smp.h>
seqcount: More consistent seqprop names
seqcount: Compress SEQCNT_LOCKNAME_ZERO()
seqlock: Fold seqcount_LOCKNAME_init() definition
seqlock: Fold seqcount_LOCKNAME_t definition
seqlock: s/__SEQ_LOCKDEP/__SEQ_LOCK/g
hrtimer: Use sequence counter with associated raw spinlock
kvm/eventfd: Use sequence counter with associated spinlock
userfaultfd: Use sequence counter with associated spinlock
NFSv4: Use sequence counter with associated spinlock
iocost: Use sequence counter with associated spinlock
raid5: Use sequence counter with associated spinlock
vfs: Use sequence counter with associated spinlock
timekeeping: Use sequence counter with associated raw spinlock
xfrm: policy: Use sequence counters with associated lock
netfilter: nft_set_rbtree: Use sequence counter with associated rwlock
netfilter: conntrack: Use sequence counter with associated spinlock
sched: tasks: Use sequence counter with associated spinlock
...
Currently the kernel stack is being accounted per-zone. There is no need
to do that. In addition due to being per-zone, memcg has to keep a
separate MEMCG_KERNEL_STACK_KB. Make the stat per-node and deprecate
MEMCG_KERNEL_STACK_KB as memcg_stat_item is an extension of
node_stat_item. In addition localize the kernel stack stats updates to
account_kernel_stack().
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Link: http://lkml.kernel.org/r/20200630161539.1759185-1-shakeelb@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCXygcpgAKCRCRxhvAZXjc
ogPeAQDv1ncqtNroFAC4pJ4tQhH7JSjW0OltiMk/AocY/J2SdQD9GJ15luYJ0/om
697q/Z68sndRynhdoZlMuf3oYuBlHQw=
=3ZhE
-----END PGP SIGNATURE-----
Merge tag 'close-range-v5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux
Pull close_range() implementation from Christian Brauner:
"This adds the close_range() syscall. It allows to efficiently close a
range of file descriptors up to all file descriptors of a calling
task.
This is coordinated with the FreeBSD folks which have copied our
version of this syscall and in the meantime have already merged it in
April 2019:
https://reviews.freebsd.org/D21627https://svnweb.freebsd.org/base?view=revision&revision=359836
The syscall originally came up in a discussion around the new mount
API and making new file descriptor types cloexec by default. During
this discussion, Al suggested the close_range() syscall.
First, it helps to close all file descriptors of an exec()ing task.
This can be done safely via (quoting Al's example from [1] verbatim):
/* that exec is sensitive */
unshare(CLONE_FILES);
/* we don't want anything past stderr here */
close_range(3, ~0U);
execve(....);
The code snippet above is one way of working around the problem that
file descriptors are not cloexec by default. This is aggravated by the
fact that we can't just switch them over without massively regressing
userspace. For a whole class of programs having an in-kernel method of
closing all file descriptors is very helpful (e.g. demons, service
managers, programming language standard libraries, container managers
etc.).
Second, it allows userspace to avoid implementing closing all file
descriptors by parsing through /proc/<pid>/fd/* and calling close() on
each file descriptor and other hacks. From looking at various
large(ish) userspace code bases this or similar patterns are very
common in service managers, container runtimes, and programming
language runtimes/standard libraries such as Python or Rust.
In addition, the syscall will also work for tasks that do not have
procfs mounted and on kernels that do not have procfs support compiled
in. In such situations the only way to make sure that all file
descriptors are closed is to call close() on each file descriptor up
to UINT_MAX or RLIMIT_NOFILE, OPEN_MAX trickery.
Based on Linus' suggestion close_range() also comes with a new flag
CLOSE_RANGE_UNSHARE to more elegantly handle file descriptor dropping
right before exec. This would usually be expressed in the sequence:
unshare(CLONE_FILES);
close_range(3, ~0U);
as pointed out by Linus it might be desirable to have this be a part
of close_range() itself under a new flag CLOSE_RANGE_UNSHARE which
gets especially handy when we're closing all file descriptors above a
certain threshold.
Test-suite as always included"
* tag 'close-range-v5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux:
tests: add CLOSE_RANGE_UNSHARE tests
close_range: add CLOSE_RANGE_UNSHARE
tests: add close_range() tests
arch: wire-up close_range()
open: add close_range()
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCXyge/QAKCRCRxhvAZXjc
oildAQCCWpnTeXm6hrIE3VZ36X5npFtbaEthdBVAUJM7mo0FYwEA8+Wbnubg6jCw
mztkXCnTfU7tApUdhKtQzcpEws45/Qk=
=REE/
-----END PGP SIGNATURE-----
Merge tag 'fork-v5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux
Pull fork cleanups from Christian Brauner:
"This is cleanup series from when we reworked a chunk of the process
creation paths in the kernel and switched to struct
{kernel_}clone_args.
High-level this does two main things:
- Remove the double export of both do_fork() and _do_fork() where
do_fork() used the incosistent legacy clone calling convention.
Now we only export _do_fork() which is based on struct
kernel_clone_args.
- Remove the copy_thread_tls()/copy_thread() split making the
architecture specific HAVE_COYP_THREAD_TLS config option obsolete.
This switches all remaining architectures to select
HAVE_COPY_THREAD_TLS and thus to the copy_thread_tls() calling
convention. The current split makes the process creation codepaths
more convoluted than they need to be. Each architecture has their own
copy_thread() function unless it selects HAVE_COPY_THREAD_TLS then it
has a copy_thread_tls() function.
The split is not needed anymore nowadays, all architectures support
CLONE_SETTLS but quite a few of them never bothered to select
HAVE_COPY_THREAD_TLS and instead simply continued to use copy_thread()
and use the old calling convention. Removing this split cleans up the
process creation codepaths and paves the way for implementing clone3()
on such architectures since it requires the copy_thread_tls() calling
convention.
After having made each architectures support copy_thread_tls() this
series simply renames that function back to copy_thread(). It also
switches all architectures that call do_fork() directly over to
_do_fork() and the struct kernel_clone_args calling convention. This
is a corollary of switching the architectures that did not yet support
it over to copy_thread_tls() since do_fork() is conditional on not
supporting copy_thread_tls() (Mostly because it lacks a separate
argument for tls which is trivial to fix but there's no need for this
function to exist.).
The do_fork() removal is in itself already useful as it allows to to
remove the export of both do_fork() and _do_fork() we currently have
in favor of only _do_fork(). This has already been discussed back when
we added clone3(). The legacy clone() calling convention is - as is
probably well-known - somewhat odd:
#
# ABI hall of shame
#
config CLONE_BACKWARDS
config CLONE_BACKWARDS2
config CLONE_BACKWARDS3
that is aggravated by the fact that some architectures such as sparc
follow the CLONE_BACKWARDSx calling convention but don't really select
the corresponding config option since they call do_fork() directly.
So do_fork() enforces a somewhat arbitrary calling convention in the
first place that doesn't really help the individual architectures that
deviate from it. They can thus simply be switched to _do_fork()
enforcing a single calling convention. (I really hope that any new
architectures will __not__ try to implement their own calling
conventions...)
Most architectures already have made a similar switch (m68k comes to
mind).
Overall this removes more code than it adds even with a good portion
of added comments. It simplifies a chunk of arch specific assembly
either by moving the code into C or by simply rewriting the assembly.
Architectures that have been touched in non-trivial ways have all been
actually boot and stress tested: sparc and ia64 have been tested with
Debian 9 images. They are the two architectures which have been
touched the most. All non-trivial changes to architectures have seen
acks from the relevant maintainers. nios2 with a custom built
buildroot image. h8300 I couldn't get something bootable to test on
but the changes have been fairly automatic and I'm sure we'll hear
people yell if I broke something there.
All other architectures that have been touched in trivial ways have
been compile tested for each single patch of the series via git rebase
-x "make ..." v5.8-rc2. arm{64} and x86{_64} have been boot tested
even though they have just been trivially touched (removal of the
HAVE_COPY_THREAD_TLS macro from their Kconfig) because well they are
basically "core architectures" and since it is trivial to get your
hands on a useable image"
* tag 'fork-v5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux:
arch: rename copy_thread_tls() back to copy_thread()
arch: remove HAVE_COPY_THREAD_TLS
unicore: switch to copy_thread_tls()
sh: switch to copy_thread_tls()
nds32: switch to copy_thread_tls()
microblaze: switch to copy_thread_tls()
hexagon: switch to copy_thread_tls()
c6x: switch to copy_thread_tls()
alpha: switch to copy_thread_tls()
fork: remove do_fork()
h8300: select HAVE_COPY_THREAD_TLS, switch to kernel_clone_args
nios2: enable HAVE_COPY_THREAD_TLS, switch to kernel_clone_args
ia64: enable HAVE_COPY_THREAD_TLS, switch to kernel_clone_args
sparc: unconditionally enable HAVE_COPY_THREAD_TLS
sparc: share process creation helpers between sparc and sparc64
sparc64: enable HAVE_COPY_THREAD_TLS
fork: fold legacy_clone_args_valid() into _do_fork()
Pull execve updates from Eric Biederman:
"During the development of v5.7 I ran into bugs and quality of
implementation issues related to exec that could not be easily fixed
because of the way exec is implemented. So I have been diggin into
exec and cleaning up what I can.
This cycle I have been looking at different ideas and different
implementations to see what is possible to improve exec, and cleaning
the way exec interfaces with in kernel users. Only cleaning up the
interfaces of exec with rest of the kernel has managed to stabalize
and make it through review in time for v5.9-rc1 resulting in 2 sets of
changes this cycle.
- Implement kernel_execve
- Make the user mode driver code a better citizen
With kernel_execve the code size got a little larger as the copying of
parameters from userspace and copying of parameters from userspace is
now separate. The good news is kernel threads no longer need to play
games with set_fs to use exec. Which when combined with the rest of
Christophs set_fs changes should security bugs with set_fs much more
difficult"
* 'exec-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (23 commits)
exec: Implement kernel_execve
exec: Factor bprm_stack_limits out of prepare_arg_pages
exec: Factor bprm_execve out of do_execve_common
exec: Move bprm_mm_init into alloc_bprm
exec: Move initialization of bprm->filename into alloc_bprm
exec: Factor out alloc_bprm
exec: Remove unnecessary spaces from binfmts.h
umd: Stop using split_argv
umd: Remove exit_umh
bpfilter: Take advantage of the facilities of struct pid
exit: Factor thread_group_exited out of pidfd_poll
umd: Track user space drivers with struct pid
bpfilter: Move bpfilter_umh back into init data
exec: Remove do_execve_file
umh: Stop calling do_execve_file
umd: Transform fork_usermode_blob into fork_usermode_driver
umd: Rename umd_info.cmdline umd_info.driver_name
umd: For clarity rename umh_info umd_info
umh: Separate the user mode driver and the user mode helper support
umh: Remove call_usermodehelper_setup_file.
...
- Improved selftest coverage, timeouts, and reporting
- Add EPOLLHUP support for SECCOMP_RET_USER_NOTIF (Christian Brauner)
- Refactor __scm_install_fd() into __receive_fd() and fix buggy callers
- Introduce "addfd" command for SECCOMP_RET_USER_NOTIF (Sargun Dhillon)
-----BEGIN PGP SIGNATURE-----
iQJKBAABCgA0FiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAl8oZcQWHGtlZXNjb29r
QGNocm9taXVtLm9yZwAKCRCJcvTf3G3AJomDD/4x3j7eXREcXDsHOmlgEaHWGx4l
JldHFQhV5GjmD7gOkPcoZSG7NfG7F6VpwAJg7ZoR3qUkem7K8DFucxqgo1RldCot
nigleeLX6JeMS0Z+iwjAVZd+5t4xG4J/7GGDHIIMiG5qvwJ0Yf64o1bkjaB2Q/Bv
tluBg0WF32kFMG/ZwyY/V2QDbbue97CFPflybOh1o2nWbVzmUlFEEum3UUvZsxc8
smMsattJyuAV7kcEKzKrs8b010NdFZqwdbub5Np9W3XEXGBYMdIPoNsOQGmB9wby
j2ui0lzboXRG997jM7TCd1l/XZAv8aAwvPplw3FJRybzkOGs9NDyLMoz87yJpR1T
xp511vnMyMbyKIGdungkt7cIyzaictHwaYzznsmuNdCPEjTaIQJr1ctsa4GEgtqf
pnkktZ9YbMCcHU0CtZ8GlOVqA9wE+FUm0/u0zgikzJQsB+HcNItiARTTTHRyco7p
VJCqK8o4Zx4ELV7QNkSH4nhFkVgRopvrvBiPAGro/qwGOofBg8W8wM8O1+V/MDmp
zSU22v4SncT1Xb7dtmdJqDEeHfDikhaCAb4Je2hsGQWzbdAqwHGlpa7vpk9x3Q5r
L+XyP+Z+rPHlXYyypJwUvvOQhXOmP0zYxcEHxByqIBfXiwy+3dN4tDDfatWbccwl
uTlTDM8kmQn6QzSztA==
=yb55
-----END PGP SIGNATURE-----
Merge tag 'seccomp-v5.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull seccomp updates from Kees Cook:
"There are a bunch of clean ups and selftest improvements along with
two major updates to the SECCOMP_RET_USER_NOTIF filter return:
EPOLLHUP support to more easily detect the death of a monitored
process, and being able to inject fds when intercepting syscalls that
expect an fd-opening side-effect (needed by both container folks and
Chrome). The latter continued the refactoring of __scm_install_fd()
started by Christoph, and in the process found and fixed a handful of
bugs in various callers.
- Improved selftest coverage, timeouts, and reporting
- Add EPOLLHUP support for SECCOMP_RET_USER_NOTIF (Christian Brauner)
- Refactor __scm_install_fd() into __receive_fd() and fix buggy
callers
- Introduce 'addfd' command for SECCOMP_RET_USER_NOTIF (Sargun
Dhillon)"
* tag 'seccomp-v5.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: (30 commits)
selftests/seccomp: Test SECCOMP_IOCTL_NOTIF_ADDFD
seccomp: Introduce addfd ioctl to seccomp user notifier
fs: Expand __receive_fd() to accept existing fd
pidfd: Replace open-coded receive_fd()
fs: Add receive_fd() wrapper for __receive_fd()
fs: Move __scm_install_fd() to __receive_fd()
net/scm: Regularize compat handling of scm_detach_fds()
pidfd: Add missing sock updates for pidfd_getfd()
net/compat: Add missing sock updates for SCM_RIGHTS
selftests/seccomp: Check ENOSYS under tracing
selftests/seccomp: Refactor to use fixture variants
selftests/harness: Clean up kern-doc for fixtures
seccomp: Use -1 marker for end of mode 1 syscall list
seccomp: Fix ioctl number for SECCOMP_IOCTL_NOTIF_ID_VALID
selftests/seccomp: Rename user_trap_syscall() to user_notif_syscall()
selftests/seccomp: Make kcmp() less required
seccomp: Use pr_fmt
selftests/seccomp: Improve calibration loop
selftests/seccomp: use 90s as timeout
selftests/seccomp: Expand benchmark to per-filter measurements
...
- Improve uclamp performance by using a static key for the fast path
- Add the "sched_util_clamp_min_rt_default" sysctl, to optimize for
better power efficiency of RT tasks on battery powered devices.
(The default is to maximize performance & reduce RT latencies.)
- Improve utime and stime tracking accuracy, which had a fixed boundary
of error, which created larger and larger relative errors as the values
become larger. This is now replaced with more precise arithmetics,
using the new mul_u64_u64_div_u64() helper in math64.h.
- Improve the deadline scheduler, such as making it capacity aware
- Improve frequency-invariant scheduling
- Misc cleanups in energy/power aware scheduling
- Add sched_update_nr_running tracepoint to track changes to nr_running
- Documentation additions and updates
- Misc cleanups and smaller fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAl8oJDURHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1ixLg//bqWzFlfWirvngTgDxDnplwUTyKXmMCcq
R1IYhlyK2O5FxvhbRmdmW11W3yzyTPvgCs6Q/70negGaPNe2w1OxfxiK9NMKz5eu
M1LoXas7pL5g7Pr/ZxxHk/8VqJLV4t9MkodiiInmV6lTaznT3sU6a/kpYQjJyFnG
Tuu9jd6JhdRKmePDJnNmUBoGQ7JiOQDcX4HtkcQ3OA+An3624tmJzbW1yts+uj7J
ZWo2EY60RfbA9MxQXGPOaR/nAjngWs4Q6tddAh10mftsPq1gR2iFUKju1d31MQt/
RHLdiqJf+AyUC4popKG7a+7ilCKMBwPociSreTJNPyEUQ1X4AM3vUVk4yjUoiDph
k2WdsCF8/JRdhXg0NnrpPUqOaAbQj53EeXnitEb92E7WyTZgLOvAtpV//xZo6utp
2QHerfrQ9SoGQjz/ho78za5vQtV1x25yDhd+X4XV4QEhIy85G9/2JCpC/Kc/TXLf
OO7A4X69XztKTEJhP60g8ldCPUe4N2vbh1vKY6oAD8AFQVVNZ6n7375/Qa//b0/k
++hcYkPc2EK97/aBFdvzDgqb7aUo7Mtn2ibke16sQU4szulaoRuAHQG4jdGKMwbD
dk2VBoxyxeYFXWHsNneSe87+ha3sd0dSN0ul1EB/SlFrVELMvy634YXnMYGW8ima
PzyPB0ezpuA=
=PbO7
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2020-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
- Improve uclamp performance by using a static key for the fast path
- Add the "sched_util_clamp_min_rt_default" sysctl, to optimize for
better power efficiency of RT tasks on battery powered devices.
(The default is to maximize performance & reduce RT latencies.)
- Improve utime and stime tracking accuracy, which had a fixed boundary
of error, which created larger and larger relative errors as the
values become larger. This is now replaced with more precise
arithmetics, using the new mul_u64_u64_div_u64() helper in math64.h.
- Improve the deadline scheduler, such as making it capacity aware
- Improve frequency-invariant scheduling
- Misc cleanups in energy/power aware scheduling
- Add sched_update_nr_running tracepoint to track changes to nr_running
- Documentation additions and updates
- Misc cleanups and smaller fixes
* tag 'sched-core-2020-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (54 commits)
sched/doc: Factorize bits between sched-energy.rst & sched-capacity.rst
sched/doc: Document capacity aware scheduling
sched: Document arch_scale_*_capacity()
arm, arm64: Fix selection of CONFIG_SCHED_THERMAL_PRESSURE
Documentation/sysctl: Document uclamp sysctl knobs
sched/uclamp: Add a new sysctl to control RT default boost value
sched/uclamp: Fix a deadlock when enabling uclamp static key
sched: Remove duplicated tick_nohz_full_enabled() check
sched: Fix a typo in a comment
sched/uclamp: Remove unnecessary mutex_init()
arm, arm64: Select CONFIG_SCHED_THERMAL_PRESSURE
sched: Cleanup SCHED_THERMAL_PRESSURE kconfig entry
arch_topology, sched/core: Cleanup thermal pressure definition
trace/events/sched.h: fix duplicated word
linux/sched/mm.h: drop duplicated words in comments
smp: Fix a potential usage of stale nr_cpus
sched/fair: update_pick_idlest() Select group with lowest group_util when idle_cpus are equal
sched: nohz: stop passing around unused "ticks" parameter.
sched: Better document ttwu()
sched: Add a tracepoint to track rq->nr_running
...
Pull v5.9 KCSAN bits from Paul E. McKenney.
Perhaps the most important change is that GCC 11 now has all fixes in place
to support KCSAN, so GCC support can be enabled again.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Refactor the IRQ trace events fields, used for printing information
about the IRQ trace events, into a separate struct 'irqtrace_events'.
This improves readability by separating the information only used in
reporting, as well as enables (simplified) storing/restoring of
irqtrace_events snapshots.
No functional change intended.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200729110916.3920464-1-elver@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A sequence counter write side critical section must be protected by some
form of locking to serialize writers. A plain seqcount_t does not
contain the information of which lock must be held when entering a write
side critical section.
Use the new seqcount_spinlock_t data type, which allows to associate a
spinlock with the sequence counter. This enables lockdep to verify that
the spinlock used for writer serialization is held when the write side
critical section is entered.
If lockdep is disabled this lock association is compiled out and has
neither storage size nor runtime overhead.
Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200720155530.1173732-14-a.darwish@linutronix.de
RT tasks by default run at the highest capacity/performance level. When
uclamp is selected this default behavior is retained by enforcing the
requested uclamp.min (p->uclamp_req[UCLAMP_MIN]) of the RT tasks to be
uclamp_none(UCLAMP_MAX), which is SCHED_CAPACITY_SCALE; the maximum
value.
This is also referred to as 'the default boost value of RT tasks'.
See commit 1a00d99997 ("sched/uclamp: Set default clamps for RT tasks").
On battery powered devices, it is desired to control this default
(currently hardcoded) behavior at runtime to reduce energy consumed by
RT tasks.
For example, a mobile device manufacturer where big.LITTLE architecture
is dominant, the performance of the little cores varies across SoCs, and
on high end ones the big cores could be too power hungry.
Given the diversity of SoCs, the new knob allows manufactures to tune
the best performance/power for RT tasks for the particular hardware they
run on.
They could opt to further tune the value when the user selects
a different power saving mode or when the device is actively charging.
The runtime aspect of it further helps in creating a single kernel image
that can be run on multiple devices that require different tuning.
Keep in mind that a lot of RT tasks in the system are created by the
kernel. On Android for instance I can see over 50 RT tasks, only
a handful of which created by the Android framework.
To control the default behavior globally by system admins and device
integrator, introduce the new sysctl_sched_uclamp_util_min_rt_default
to change the default boost value of the RT tasks.
I anticipate this to be mostly in the form of modifying the init script
of a particular device.
To avoid polluting the fast path with unnecessary code, the approach
taken is to synchronously do the update by traversing all the existing
tasks in the system. This could race with a concurrent fork(), which is
dealt with by introducing sched_post_fork() function which will ensure
the racy fork will get the right update applied.
Tested on Juno-r2 in combination with the RT capacity awareness [1].
By default an RT task will go to the highest capacity CPU and run at the
maximum frequency, which is particularly energy inefficient on high end
mobile devices because the biggest core[s] are 'huge' and power hungry.
With this patch the RT task can be controlled to run anywhere by
default, and doesn't cause the frequency to be maximum all the time.
Yet any task that really needs to be boosted can easily escape this
default behavior by modifying its requested uclamp.min value
(p->uclamp_req[UCLAMP_MIN]) via sched_setattr() syscall.
[1] 804d402fb6f6: ("sched/rt: Make RT capacity-aware")
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200716110347.19553-2-qais.yousef@arm.com
The seccomp filter used to be released in free_task() which is called
asynchronously via call_rcu() and assorted mechanisms. Since we need
to inform tasks waiting on the seccomp notifier when a filter goes empty
we will notify them as soon as a task has been marked fully dead in
release_task(). To not split seccomp cleanup into two parts, move
filter release out of free_task() and into release_task() after we've
unhashed struct task from struct pid, exited signals, and unlinked it
from the threadgroups' thread list. We'll put the empty filter
notification infrastructure into it in a follow up patch.
This also renames put_seccomp_filter() to seccomp_filter_release() which
is a more descriptive name of what we're doing here especially once
we've added the empty filter notification mechanism in there.
We're also NULL-ing the task's filter tree entrypoint which seems
cleaner than leaving a dangling pointer in there. Note that this shouldn't
need any memory barriers since we're calling this when the task is in
release_task() which means it's EXIT_DEAD. So it can't modify its seccomp
filters anymore. You can also see this from the point where we're calling
seccomp_filter_release(). It's after __exit_signal() and at this point,
tsk->sighand will already have been NULLed which is required for
thread-sync and filter installation alike.
Cc: Tycho Andersen <tycho@tycho.ws>
Cc: Kees Cook <keescook@chromium.org>
Cc: Matt Denton <mpdenton@google.com>
Cc: Sargun Dhillon <sargun@sargun.me>
Cc: Jann Horn <jannh@google.com>
Cc: Chris Palmer <palmer@google.com>
Cc: Aleksa Sarai <cyphar@cyphar.com>
Cc: Robert Sesek <rsesek@google.com>
Cc: Jeffrey Vander Stoep <jeffv@google.com>
Cc: Linux Containers <containers@lists.linux-foundation.org>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Link: https://lore.kernel.org/r/20200531115031.391515-2-christian.brauner@ubuntu.com
Signed-off-by: Kees Cook <keescook@chromium.org>
Currently all IRQ-tracking state is in task_struct, this means that
task_struct needs to be defined before we use it.
Especially for lockdep_assert_irq*() this can lead to header-hell.
Move the hardirq state into per-cpu variables to avoid the task_struct
dependency.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20200623083721.512673481@infradead.org
Create an independent helper thread_group_exited which returns true
when all threads have passed exit_notify in do_exit. AKA all of the
threads are at least zombies and might be dead or completely gone.
Create this helper by taking the logic out of pidfd_poll where it is
already tested, and adding a READ_ONCE on the read of
task->exit_state.
I will be changing the user mode driver code to use this same logic
to know when a user mode driver needs to be restarted.
Place the new helper thread_group_exited in kernel/exit.c and
EXPORT it so it can be used by modules.
Link: https://lkml.kernel.org/r/20200702164140.4468-13-ebiederm@xmission.com
Acked-by: Christian Brauner <christian.brauner@ubuntu.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Tested-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Now that HAVE_COPY_THREAD_TLS has been removed, rename copy_thread_tls()
back simply copy_thread(). It's a simpler name, and doesn't imply that only
tls is copied here. This finishes an outstanding chunk of internal process
creation work since we've added clone3().
Cc: linux-arch@vger.kernel.org
Acked-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de>A
Acked-by: Stafford Horne <shorne@gmail.com>
Acked-by: Greentime Hu <green.hu@gmail.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>A
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
All architectures support copy_thread_tls() now, so remove the legacy
copy_thread() function and the HAVE_COPY_THREAD_TLS config option. Everyone
uses the same process creation calling convention based on
copy_thread_tls() and struct kernel_clone_args. This will make it easier to
maintain the core process creation code under kernel/, simplifies the
callpaths and makes the identical for all architectures.
Cc: linux-arch@vger.kernel.org
Acked-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Acked-by: Greentime Hu <green.hu@gmail.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Now that all architectures have been switched to use _do_fork() and the new
struct kernel_clone_args calling convention we can remove the legacy
do_fork() helper completely. The calling convention used to be brittle and
do_fork() didn't buy us anything. The only calling convention accepted
should be based on struct kernel_clone_args going forward. It's cleaner and
uniform.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>