[ Upstream commit 54624acf8843375a6de3717ac18df3b5104c39c5 ]
The test thread will start N benchmark kthreads and then schedule out
until the test time finished and notify the benchmark kthreads to stop.
The benchmark kthreads will keep running until notified to stop.
There's a problem with current implementation when the benchmark
kthreads number is equal to the CPUs on a non-preemptible kernel:
since the scheduler will balance the kthreads across the CPUs and
when the test time's out the test thread won't get a chance to be
scheduled on any CPU then cannot notify the benchmark kthreads to stop.
This can be easily reproduced on a VM (simulated with 16 CPUs) with
PREEMPT_VOLUNTARY:
estuary:/mnt$ ./dma_map_benchmark -t 16 -s 1
rcu: INFO: rcu_sched self-detected stall on CPU
rcu: 10-...!: (5221 ticks this GP) idle=ed24/1/0x4000000000000000 softirq=142/142 fqs=0
rcu: (t=5254 jiffies g=-559 q=45 ncpus=16)
rcu: rcu_sched kthread starved for 5255 jiffies! g-559 f0x0 RCU_GP_WAIT_FQS(5) ->state=0x0 ->cpu=12
rcu: Unless rcu_sched kthread gets sufficient CPU time, OOM is now expected behavior.
rcu: RCU grace-period kthread stack dump:
task:rcu_sched state:R running task stack:0 pid:16 tgid:16 ppid:2 flags:0x00000008
Call trace
__switch_to+0xec/0x138
__schedule+0x2f8/0x1080
schedule+0x30/0x130
schedule_timeout+0xa0/0x188
rcu_gp_fqs_loop+0x128/0x528
rcu_gp_kthread+0x1c8/0x208
kthread+0xec/0xf8
ret_from_fork+0x10/0x20
Sending NMI from CPU 10 to CPUs 0:
NMI backtrace for cpu 0
CPU: 0 PID: 332 Comm: dma-map-benchma Not tainted 6.10.0-rc1-vanilla-LSE #8
Hardware name: QEMU KVM Virtual Machine, BIOS 0.0.0 02/06/2015
pstate: 20400005 (nzCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : arm_smmu_cmdq_issue_cmdlist+0x218/0x730
lr : arm_smmu_cmdq_issue_cmdlist+0x488/0x730
sp : ffff80008748b630
x29: ffff80008748b630 x28: 0000000000000000 x27: ffff80008748b780
x26: 0000000000000000 x25: 000000000000bc70 x24: 000000000001bc70
x23: ffff0000c12af080 x22: 0000000000010000 x21: 000000000000ffff
x20: ffff80008748b700 x19: ffff0000c12af0c0 x18: 0000000000010000
x17: 0000000000000001 x16: 0000000000000040 x15: ffffffffffffffff
x14: 0001ffffffffffff x13: 000000000000ffff x12: 00000000000002f1
x11: 000000000001ffff x10: 0000000000000031 x9 : ffff800080b6b0b8
x8 : ffff0000c2a48000 x7 : 000000000001bc71 x6 : 0001800000000000
x5 : 00000000000002f1 x4 : 01ffffffffffffff x3 : 000000000009aaf1
x2 : 0000000000000018 x1 : 000000000000000f x0 : ffff0000c12af18c
Call trace:
arm_smmu_cmdq_issue_cmdlist+0x218/0x730
__arm_smmu_tlb_inv_range+0xe0/0x1a8
arm_smmu_iotlb_sync+0xc0/0x128
__iommu_dma_unmap+0x248/0x320
iommu_dma_unmap_page+0x5c/0xe8
dma_unmap_page_attrs+0x38/0x1d0
map_benchmark_thread+0x118/0x2c0
kthread+0xec/0xf8
ret_from_fork+0x10/0x20
Solve this by adding scheduling point in the kthread loop,
so if there're other threads in the system they may have
a chance to run, especially the thread to notify the test
end. However this may degrade the test concurrency so it's
recommended to run this on an idle system.
Signed-off-by: Yicong Yang <yangyicong@hisilicon.com>
Acked-by: Barry Song <baohua@kernel.org>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit bd44ca3de49cc1badcff7a96010fa2c64f04868c ]
Currently the dma debugging code can end up indirectly calling printk
under the radix_lock. This happens when a radix tree node allocation
fails.
This is a problem because the printk code, when used together with
netconsole, can end up inside the dma debugging code while trying to
transmit a message over netcons.
This creates the possibility of either a circular deadlock on the same
CPU, with that CPU trying to grab the radix_lock twice, or an ABBA
deadlock between different CPUs, where one CPU grabs the console lock
first and then waits for the radix_lock, while the other CPU is holding
the radix_lock and is waiting for the console lock.
The trace captured by lockdep is of the ABBA variant.
-> #2 (&dma_entry_hash[i].lock){-.-.}-{2:2}:
_raw_spin_lock_irqsave+0x5a/0x90
debug_dma_map_page+0x79/0x180
dma_map_page_attrs+0x1d2/0x2f0
bnxt_start_xmit+0x8c6/0x1540
netpoll_start_xmit+0x13f/0x180
netpoll_send_skb+0x20d/0x320
netpoll_send_udp+0x453/0x4a0
write_ext_msg+0x1b9/0x460
console_flush_all+0x2ff/0x5a0
console_unlock+0x55/0x180
vprintk_emit+0x2e3/0x3c0
devkmsg_emit+0x5a/0x80
devkmsg_write+0xfd/0x180
do_iter_readv_writev+0x164/0x1b0
vfs_writev+0xf9/0x2b0
do_writev+0x6d/0x110
do_syscall_64+0x80/0x150
entry_SYSCALL_64_after_hwframe+0x4b/0x53
-> #0 (console_owner){-.-.}-{0:0}:
__lock_acquire+0x15d1/0x31a0
lock_acquire+0xe8/0x290
console_flush_all+0x2ea/0x5a0
console_unlock+0x55/0x180
vprintk_emit+0x2e3/0x3c0
_printk+0x59/0x80
warn_alloc+0x122/0x1b0
__alloc_pages_slowpath+0x1101/0x1120
__alloc_pages+0x1eb/0x2c0
alloc_slab_page+0x5f/0x150
new_slab+0x2dc/0x4e0
___slab_alloc+0xdcb/0x1390
kmem_cache_alloc+0x23d/0x360
radix_tree_node_alloc+0x3c/0xf0
radix_tree_insert+0xf5/0x230
add_dma_entry+0xe9/0x360
dma_map_page_attrs+0x1d2/0x2f0
__bnxt_alloc_rx_frag+0x147/0x180
bnxt_alloc_rx_data+0x79/0x160
bnxt_rx_skb+0x29/0xc0
bnxt_rx_pkt+0xe22/0x1570
__bnxt_poll_work+0x101/0x390
bnxt_poll+0x7e/0x320
__napi_poll+0x29/0x160
net_rx_action+0x1e0/0x3e0
handle_softirqs+0x190/0x510
run_ksoftirqd+0x4e/0x90
smpboot_thread_fn+0x1a8/0x270
kthread+0x102/0x120
ret_from_fork+0x2f/0x40
ret_from_fork_asm+0x11/0x20
This bug is more likely than it seems, because when one CPU has run out
of memory, chances are the other has too.
The good news is, this bug is hidden behind the CONFIG_DMA_API_DEBUG, so
not many users are likely to trigger it.
Signed-off-by: Rik van Riel <riel@surriel.com>
Reported-by: Konstantin Ovsepian <ovs@meta.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 8a2f11878771da65b8ac135c73b47dae13afbd62 ]
After redefining alloc_pages, all uses of that name are being replaced.
Change the conflicting names to prevent preprocessor from replacing them
when it's not intended.
Link: https://lkml.kernel.org/r/20240321163705.3067592-18-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Tested-by: Kees Cook <keescook@chromium.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alex Gaynor <alex.gaynor@gmail.com>
Cc: Alice Ryhl <aliceryhl@google.com>
Cc: Andreas Hindborg <a.hindborg@samsung.com>
Cc: Benno Lossin <benno.lossin@proton.me>
Cc: "Björn Roy Baron" <bjorn3_gh@protonmail.com>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Gary Guo <gary@garyguo.net>
Cc: Kent Overstreet <kent.overstreet@linux.dev>
Cc: Miguel Ojeda <ojeda@kernel.org>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wedson Almeida Filho <wedsonaf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Stable-dep-of: 61ebe5a747da ("mm/vmalloc: fix page mapping if vm_area_alloc_pages() with high order fallback to order 0")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 28e8b7406d3a1f5329a03aa25a43aa28e087cb20 ]
dmam_free_coherent() frees a DMA allocation, which makes the
freed vaddr available for reuse, then calls devres_destroy()
to remove and free the data structure used to track the DMA
allocation. Between the two calls, it is possible for a
concurrent task to make an allocation with the same vaddr
and add it to the devres list.
If this happens, there will be two entries in the devres list
with the same vaddr and devres_destroy() can free the wrong
entry, triggering the WARN_ON() in dmam_match.
Fix by destroying the devres entry before freeing the DMA
allocation.
Tested:
kokonut //net/encryption
http://sponge2/b9145fe6-0f72-4325-ac2f-a84d81075b03
Fixes: 9ac7849e35 ("devres: device resource management")
Signed-off-by: Lance Richardson <rlance@google.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit f7c9ccaadffd13066353332c13d7e9bf73b8f92d ]
If do_map_benchmark() has failed, there is nothing useful to copy back
to userspace.
Suggested-by: Barry Song <21cnbao@gmail.com>
Signed-off-by: Fedor Pchelkin <pchelkin@ispras.ru>
Acked-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit af133562d5aff41fcdbe51f1a504ae04788b5fc0 upstream.
Allow a buffer pre-padding of up to alloc_align_mask, even if it requires
allocating additional IO TLB slots.
If the allocation alignment is bigger than IO_TLB_SIZE and min_align_mask
covers any non-zero bits in the original address between IO_TLB_SIZE and
alloc_align_mask, these bits are not preserved in the swiotlb buffer
address.
To fix this case, increase the allocation size and use a larger offset
within the allocated buffer. As a result, extra padding slots may be
allocated before the mapping start address.
Leave orig_addr in these padding slots initialized to INVALID_PHYS_ADDR.
These slots do not correspond to any CPU buffer, so attempts to sync the
data should be ignored.
The padding slots should be automatically released when the buffer is
unmapped. However, swiotlb_tbl_unmap_single() takes only the address of the
DMA buffer slot, not the first padding slot. Save the number of padding
slots in struct io_tlb_slot and use it to adjust the slot index in
swiotlb_release_slots(), so all allocated slots are properly freed.
Cc: stable@vger.kernel.org # v6.6+
Fixes: 2fd4fa5d3fb5 ("swiotlb: Fix alignment checks when both allocation and DMA masks are present")
Link: https://lore.kernel.org/linux-iommu/20240311210507.217daf8b@meshulam.tesarici.cz/
Signed-off-by: Petr Tesarik <petr.tesarik1@huawei-partners.com>
Reviewed-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Fabio Estevam <festevam@denx.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 14cebf689a78e8a1c041138af221ef6eac6bc7da upstream.
For swiotlb allocations >= PAGE_SIZE, the slab search historically
adjusted the stride to avoid checking unaligned slots. This had the
side-effect of aligning large mapping requests to PAGE_SIZE, but that
was broken by 0eee5ae102 ("swiotlb: fix slot alignment checks").
Since this alignment could be relied upon drivers, reinstate PAGE_SIZE
alignment for swiotlb mappings >= PAGE_SIZE.
Cc: stable@vger.kernel.org # v6.6+
Reported-by: Michael Kelley <mhklinux@outlook.com>
Signed-off-by: Will Deacon <will@kernel.org>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Reviewed-by: Petr Tesarik <petr.tesarik1@huawei-partners.com>
Tested-by: Nicolin Chen <nicolinc@nvidia.com>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Fabio Estevam <festevam@denx.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 823353b7cf0ea9dfb09f5181d5fb2825d727200b upstream.
When allocating pages from a restricted DMA pool in swiotlb_alloc(),
the buffer address is blindly converted to a 'struct page *' that is
returned to the caller. In the unlikely event of an allocation bug,
page-unaligned addresses are not detected and slots can silently be
double-allocated.
Add a simple check of the buffer alignment in swiotlb_alloc() to make
debugging a little easier if something has gone wonky.
Cc: stable@vger.kernel.org # v6.6+
Signed-off-by: Will Deacon <will@kernel.org>
Reviewed-by: Michael Kelley <mhklinux@outlook.com>
Reviewed-by: Petr Tesarik <petr.tesarik1@huawei-partners.com>
Tested-by: Nicolin Chen <nicolinc@nvidia.com>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Fabio Estevam <festevam@denx.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit e64746e74f717961250a155e14c156616fcd981f ]
cpumask_of_node() can be called for NUMA_NO_NODE inside do_map_benchmark()
resulting in the following sanitizer report:
UBSAN: array-index-out-of-bounds in ./arch/x86/include/asm/topology.h:72:28
index -1 is out of range for type 'cpumask [64][1]'
CPU: 1 PID: 990 Comm: dma_map_benchma Not tainted 6.9.0-rc6 #29
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996)
Call Trace:
<TASK>
dump_stack_lvl (lib/dump_stack.c:117)
ubsan_epilogue (lib/ubsan.c:232)
__ubsan_handle_out_of_bounds (lib/ubsan.c:429)
cpumask_of_node (arch/x86/include/asm/topology.h:72) [inline]
do_map_benchmark (kernel/dma/map_benchmark.c:104)
map_benchmark_ioctl (kernel/dma/map_benchmark.c:246)
full_proxy_unlocked_ioctl (fs/debugfs/file.c:333)
__x64_sys_ioctl (fs/ioctl.c:890)
do_syscall_64 (arch/x86/entry/common.c:83)
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130)
Use cpumask_of_node() in place when binding a kernel thread to a cpuset
of a particular node.
Note that the provided node id is checked inside map_benchmark_ioctl().
It's just a NUMA_NO_NODE case which is not handled properly later.
Found by Linux Verification Center (linuxtesting.org).
Fixes: 65789daa80 ("dma-mapping: add benchmark support for streaming DMA APIs")
Signed-off-by: Fedor Pchelkin <pchelkin@ispras.ru>
Acked-by: Barry Song <baohua@kernel.org>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 1ff05e723f7ca30644b8ec3fb093f16312e408ad ]
While validating node ids in map_benchmark_ioctl(), node_possible() may
be provided with invalid argument outside of [0,MAX_NUMNODES-1] range
leading to:
BUG: KASAN: wild-memory-access in map_benchmark_ioctl (kernel/dma/map_benchmark.c:214)
Read of size 8 at addr 1fffffff8ccb6398 by task dma_map_benchma/971
CPU: 7 PID: 971 Comm: dma_map_benchma Not tainted 6.9.0-rc6 #37
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996)
Call Trace:
<TASK>
dump_stack_lvl (lib/dump_stack.c:117)
kasan_report (mm/kasan/report.c:603)
kasan_check_range (mm/kasan/generic.c:189)
variable_test_bit (arch/x86/include/asm/bitops.h:227) [inline]
arch_test_bit (arch/x86/include/asm/bitops.h:239) [inline]
_test_bit at (include/asm-generic/bitops/instrumented-non-atomic.h:142) [inline]
node_state (include/linux/nodemask.h:423) [inline]
map_benchmark_ioctl (kernel/dma/map_benchmark.c:214)
full_proxy_unlocked_ioctl (fs/debugfs/file.c:333)
__x64_sys_ioctl (fs/ioctl.c:890)
do_syscall_64 (arch/x86/entry/common.c:83)
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130)
Compare node ids with sane bounds first. NUMA_NO_NODE is considered a
special valid case meaning that benchmarking kthreads won't be bound to a
cpuset of a given node.
Found by Linux Verification Center (linuxtesting.org).
Fixes: 65789daa80 ("dma-mapping: add benchmark support for streaming DMA APIs")
Signed-off-by: Fedor Pchelkin <pchelkin@ispras.ru>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit bb9025f4432f8c158322cf2c04c2b492f23eb511 ]
kthread creation failure is invalidly handled inside do_map_benchmark().
The put_task_struct() calls on the error path are supposed to balance the
get_task_struct() calls which only happen after all the kthreads are
successfully created. Rollback using kthread_stop() for already created
kthreads in case of such failure.
In normal situation call kthread_stop_put() to gracefully stop kthreads
and put their task refcounts. This should be done for all started
kthreads.
Found by Linux Verification Center (linuxtesting.org).
Fixes: 65789daa80 ("dma-mapping: add benchmark support for streaming DMA APIs")
Suggested-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Fedor Pchelkin <pchelkin@ispras.ru>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 75961ffb5cb3e5196f19cae7683f35cc88b50800 ]
Using restricted DMA pools (CONFIG_DMA_RESTRICTED_POOL=y) in conjunction
with dynamic SWIOTLB (CONFIG_SWIOTLB_DYNAMIC=y) leads to the following
crash when initialising the restricted pools at boot-time:
| Unable to handle kernel NULL pointer dereference at virtual address 0000000000000008
| Internal error: Oops: 0000000096000005 [#1] PREEMPT SMP
| pc : rmem_swiotlb_device_init+0xfc/0x1ec
| lr : rmem_swiotlb_device_init+0xf0/0x1ec
| Call trace:
| rmem_swiotlb_device_init+0xfc/0x1ec
| of_reserved_mem_device_init_by_idx+0x18c/0x238
| of_dma_configure_id+0x31c/0x33c
| platform_dma_configure+0x34/0x80
faddr2line reveals that the crash is in the list validation code:
include/linux/list.h:83
include/linux/rculist.h:79
include/linux/rculist.h:106
kernel/dma/swiotlb.c:306
kernel/dma/swiotlb.c:1695
because add_mem_pool() is trying to list_add_rcu() to a NULL
'mem->pools'.
Fix the crash by initialising the 'mem->pools' list_head in
rmem_swiotlb_device_init() before calling add_mem_pool().
Reported-by: Nikita Ioffe <ioffe@google.com>
Tested-by: Nikita Ioffe <ioffe@google.com>
Fixes: 1aaa736815 ("swiotlb: allocate a new memory pool when existing pools are full")
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit b9fa16949d18e06bdf728a560f5c8af56d2bdcaf ]
On TDX it is possible for the untrusted host to cause
set_memory_encrypted() or set_memory_decrypted() to fail such that an
error is returned and the resulting memory is shared. Callers need to
take care to handle these errors to avoid returning decrypted (shared)
memory to the page allocator, which could lead to functional or security
issues.
DMA could free decrypted/shared pages if dma_set_decrypted() fails. This
should be a rare case. Just leak the pages in this case instead of
freeing them.
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 51b30ecb73b481d5fac6ccf2ecb4a309c9ee3310 ]
Nicolin reports that swiotlb buffer allocations fail for an NVME device
behind an IOMMU using 64KiB pages. This is because we end up with a
minimum allocation alignment of 64KiB (for the IOMMU to map the buffer
safely) but a minimum DMA alignment mask corresponding to a 4KiB NVME
page (i.e. preserving the 4KiB page offset from the original allocation).
If the original address is not 4KiB-aligned, the allocation will fail
because swiotlb_search_pool_area() erroneously compares these unmasked
bits with the 64KiB-aligned candidate allocation.
Tweak swiotlb_search_pool_area() so that the DMA alignment mask is
reduced based on the required alignment of the allocation.
Fixes: 82612d66d5 ("iommu: Allow the dma-iommu api to use bounce buffers")
Link: https://lore.kernel.org/r/cover.1707851466.git.nicolinc@nvidia.com
Reported-by: Nicolin Chen <nicolinc@nvidia.com>
Signed-off-by: Will Deacon <will@kernel.org>
Reviewed-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Nicolin Chen <nicolinc@nvidia.com>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit cbf53074a528191df82b4dba1e3d21191102255e ]
core-api/dma-api-howto.rst states the following properties of
dma_alloc_coherent():
| The CPU virtual address and the DMA address are both guaranteed to
| be aligned to the smallest PAGE_SIZE order which is greater than or
| equal to the requested size.
However, swiotlb_alloc() passes zero for the 'alloc_align_mask'
parameter of swiotlb_find_slots() and so this property is not upheld.
Instead, allocations larger than a page are aligned to PAGE_SIZE,
Calculate the mask corresponding to the page order suitable for holding
the allocation and pass that to swiotlb_find_slots().
Fixes: e81e99bacc ("swiotlb: Support aligned swiotlb buffers")
Signed-off-by: Will Deacon <will@kernel.org>
Reviewed-by: Michael Kelley <mhklinux@outlook.com>
Reviewed-by: Petr Tesarik <petr.tesarik1@huawei-partners.com>
Tested-by: Nicolin Chen <nicolinc@nvidia.com>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 04867a7a33324c9c562ee7949dbcaab7aaad1fb4 ]
Commit bbb73a103f ("swiotlb: fix a braino in the alignment check fix"),
which was a fix for commit 0eee5ae102 ("swiotlb: fix slot alignment
checks"), causes a functional regression with vsock in a virtual machine
using bouncing via a restricted DMA SWIOTLB pool.
When virtio allocates the virtqueues for the vsock device using
dma_alloc_coherent(), the SWIOTLB search can return page-unaligned
allocations if 'area->index' was left unaligned by a previous allocation
from the buffer:
# Final address in brackets is the SWIOTLB address returned to the caller
| virtio-pci 0000:00:07.0: orig_addr 0x0 alloc_size 0x2000, iotlb_align_mask 0x800 stride 0x2: got slot 1645-1649/7168 (0x98326800)
| virtio-pci 0000:00:07.0: orig_addr 0x0 alloc_size 0x2000, iotlb_align_mask 0x800 stride 0x2: got slot 1649-1653/7168 (0x98328800)
| virtio-pci 0000:00:07.0: orig_addr 0x0 alloc_size 0x2000, iotlb_align_mask 0x800 stride 0x2: got slot 1653-1657/7168 (0x9832a800)
This ends badly (typically buffer corruption and/or a hang) because
swiotlb_alloc() is expecting a page-aligned allocation and so blindly
returns a pointer to the 'struct page' corresponding to the allocation,
therefore double-allocating the first half (2KiB slot) of the 4KiB page.
Fix the problem by treating the allocation alignment separately to any
additional alignment requirements from the device, using the maximum
of the two as the stride to search the buffer slots and taking care
to ensure a minimum of page-alignment for buffers larger than a page.
This also resolves swiotlb allocation failures occuring due to the
inclusion of ~PAGE_MASK in 'iotlb_align_mask' for large allocations and
resulting in alignment requirements exceeding swiotlb_max_mapping_size().
Fixes: bbb73a103f ("swiotlb: fix a braino in the alignment check fix")
Fixes: 0eee5ae102 ("swiotlb: fix slot alignment checks")
Signed-off-by: Will Deacon <will@kernel.org>
Reviewed-by: Michael Kelley <mhklinux@outlook.com>
Reviewed-by: Petr Tesarik <petr.tesarik1@huawei-partners.com>
Tested-by: Nicolin Chen <nicolinc@nvidia.com>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit b07bc2347672cc8c7293c64499f1488278c5ca3d ]
Reproduced with below sequence:
dma_declare_coherent_memory()->dma_release_coherent_memory()
->dma_declare_coherent_memory()->"return -EBUSY" error
It will return -EBUSY from the dma_assign_coherent_memory()
in dma_declare_coherent_memory(), the reason is that dev->dma_mem
pointer has not been set to NULL after it's freed.
Fixes: cf65a0f6f6 ("dma-mapping: move all DMA mapping code to kernel/dma")
Signed-off-by: Joakim Zhang <joakim.zhang@cixtech.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 53c87e846e335e3c18044c397cc35178163d7827 upstream.
Limit the free list length to the size of the IO TLB. Transient pool can be
smaller than IO_TLB_SEGSIZE, but the free list is initialized with the
assumption that the total number of slots is a multiple of IO_TLB_SEGSIZE.
As a result, swiotlb_area_find_slots() may allocate slots past the end of
a transient IO TLB buffer.
Reported-by: Niklas Schnelle <schnelle@linux.ibm.com>
Closes: https://lore.kernel.org/linux-iommu/104a8c8fedffd1ff8a2890983e2ec1c26bff6810.camel@linux.ibm.com/
Fixes: 79636caad3 ("swiotlb: if swiotlb is full, fall back to a transient memory pool")
Cc: stable@vger.kernel.org
Signed-off-by: Petr Tesarik <petr.tesarik1@huawei-partners.com>
Reviewed-by: Halil Pasic <pasic@linux.ibm.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a5e3b127455d073f146a2a4ea3e7117635d34c5c upstream.
Fix these two error paths:
1. When set_memory_decrypted() fails, pages may be left fully or partially
decrypted.
2. Decrypted pages may be freed if swiotlb_alloc_tlb() determines that the
physical address is too high.
To fix the first issue, call set_memory_encrypted() on the allocated region
after a failed decryption attempt. If that also fails, leak the pages.
To fix the second issue, check that the TLB physical address is below the
requested limit before decrypting.
Let the caller differentiate between unsuitable physical address (=> retry
from a lower zone) and allocation failures (=> no point in retrying).
Cc: stable@vger.kernel.org
Fixes: 79636caad3 ("swiotlb: if swiotlb is full, fall back to a transient memory pool")
Signed-off-by: Petr Tesarik <petr.tesarik1@huawei-partners.com>
Reviewed-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
When allocating a new pool at runtime, reduce the number of slabs so
that the allocation order is at most MAX_ORDER. This avoids a kernel
warning in __alloc_pages().
The warning is relatively benign, because the pool size is subsequently
reduced when allocation fails, but it is silly to start with a request
that is known to fail, especially since this is the default behavior if
the kernel is built with CONFIG_SWIOTLB_DYNAMIC=y and booted without any
swiotlb= parameter.
Reported-by: Ben Greear <greearb@candelatech.com>
Closes: https://lore.kernel.org/netdev/4f173dd2-324a-0240-ff8d-abf5c191be18@candelatech.com/
Fixes: 1aaa736815 ("swiotlb: allocate a new memory pool when existing pools are full")
Signed-off-by: Petr Tesarik <petr.tesarik1@huawei-partners.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
When CONFIG_SWIOTLB_DYNAMIC=y, devices which do not use the software IO TLB
can avoid swiotlb lookup. A flag is added by commit 1395706a14 ("swiotlb:
search the software IO TLB only if the device makes use of it"), the flag
is correctly set, but it is then never checked. Add the actual check here.
Note that this code is an alternative to the default pool check, not an
additional check, because:
1. swiotlb_find_pool() also searches the default pool;
2. if dma_uses_io_tlb is false, the default swiotlb pool is not used.
Tested in a KVM guest against a QEMU RAM-backed SATA disk over virtio and
*not* using software IO TLB, this patch increases IOPS by approx 2% for
4-way parallel I/O.
The write memory barrier in swiotlb_dyn_alloc() is not needed, because a
newly allocated pool must always be observed by swiotlb_find_slots() before
an address from that pool is passed to is_swiotlb_buffer().
Correctness was verified using the following litmus test:
C swiotlb-new-pool
(*
* Result: Never
*
* Check that a newly allocated pool is always visible when the
* corresponding swiotlb buffer is visible.
*)
{
mem_pools = default;
}
P0(int **mem_pools, int *pool)
{
/* add_mem_pool() */
WRITE_ONCE(*pool, 999);
rcu_assign_pointer(*mem_pools, pool);
}
P1(int **mem_pools, int *flag, int *buf)
{
/* swiotlb_find_slots() */
int *r0;
int r1;
rcu_read_lock();
r0 = READ_ONCE(*mem_pools);
r1 = READ_ONCE(*r0);
rcu_read_unlock();
if (r1) {
WRITE_ONCE(*flag, 1);
smp_mb();
}
/* device driver (presumed) */
WRITE_ONCE(*buf, r1);
}
P2(int **mem_pools, int *flag, int *buf)
{
/* device driver (presumed) */
int r0 = READ_ONCE(*buf);
/* is_swiotlb_buffer() */
int r1;
int *r2;
int r3;
smp_rmb();
r1 = READ_ONCE(*flag);
if (r1) {
/* swiotlb_find_pool() */
rcu_read_lock();
r2 = READ_ONCE(*mem_pools);
r3 = READ_ONCE(*r2);
rcu_read_unlock();
}
}
exists (2:r0<>0 /\ 2:r3=0) (* Not found. *)
Fixes: 1395706a14 ("swiotlb: search the software IO TLB only if the device makes use of it")
Reported-by: Jonathan Corbet <corbet@lwn.net>
Closes: https://lore.kernel.org/linux-iommu/87a5uz3ob8.fsf@meer.lwn.net/
Signed-off-by: Petr Tesarik <petr@tesarici.cz>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Commit 8ac0406335 ("swiotlb: reduce the number of areas to match
actual memory pool size") calculated the reduced number of areas in
swiotlb_init_remap() but didn't actually use the value. Replace usage of
default_nareas accordingly.
Fixes: 8ac0406335 ("swiotlb: reduce the number of areas to match actual memory pool size")
Signed-off-by: Ross Lagerwall <ross.lagerwall@citrix.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
This reverts commit 3fa6456ebe.
The Commit broke the CMA region creation through DT on arm64,
as showed below logs with "memblock=debug":
[ 0.000000] memblock_phys_alloc_range: 41943040 bytes align=0x200000
from=0x0000000000000000 max_addr=0x00000000ffffffff
early_init_dt_alloc_reserved_memory_arch+0x34/0xa0
[ 0.000000] memblock_reserve: [0x00000000fd600000-0x00000000ffdfffff]
memblock_alloc_range_nid+0xc0/0x19c
[ 0.000000] Reserved memory: overlap with other memblock reserved region
>From call flow, region we defined in DT was always reserved before entering
into rmem_cma_setup. Also, rmem_cma_setup has one routine cma_init_reserved_mem
to ensure the region was reserved. Checking the region not reserved here seems
not correct.
early_init_fdt_scan_reserved_mem:
fdt_scan_reserved_mem
__reserved_mem_reserve_reg
early_init_dt_reserve_memory
memblock_reserve(using “reg” prop case)
fdt_init_reserved_mem
__reserved_mem_alloc_size
*early_init_dt_alloc_reserved_memory_arch*
memblock_reserve(dynamic alloc case)
__reserved_mem_init_node
rmem_cma_setup(region overlap check here should always fail)
Example DT can be used to reproduce issue:
dump_mem: mem_dump_region {
compatible = "shared-dma-pool";
alloc-ranges = <0x0 0x00000000 0x0 0xffffffff>;
reusable;
size = <0 0x2800000>;
};
Signed-off-by: Zhenhua Huang <quic_zhenhuah@quicinc.com>
Move the #endif a line so that free_page label is only seen by the
compile pass when actually used.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Chunhui He <hchunhui@mail.ustc.edu.cn>
Reviewed-by: Robin Murphy <roin.murphy@arm.com>
It makes no sense to expose CONFIG_DMA_NUMA_CMA if CONFIG_NUMA is not
enabled, and random config options shouldn't be default unless there
is a good reason. Replace the default NUMA with a depends on to fix both
issues.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Robin Murphy <roin.murphy@arm.com>
Use a simple logical shift and increment to calculate the number of slots
taken by the DMA segment boundary.
At least GCC-13 is not able to optimize the expression, producing this
horrible assembly code on x86:
cmpq $-1, %rcx
je .L364
addq $2048, %rcx
shrq $11, %rcx
movq %rcx, %r13
.L331:
// rest of the function here...
// after function epilogue and return:
.L364:
movabsq $9007199254740992, %r13
jmp .L331
After the optimization, the code looks more reasonable:
shrq $11, %r11
leaq 1(%r11), %rbx
Signed-off-by: Petr Tesarik <petr.tesarik.ext@huawei.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Move the comment down in front of the loop that actually sets the list
member of struct io_tlb_slot to zero.
Fixes: 26a7e09478 ("swiotlb: refactor swiotlb_tbl_map_single")
Signed-off-by: Petr Tesarik <petr.tesarik.ext@huawei.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Skip searching the software IO TLB if a device has never used it, making
sure these devices are not affected by the introduction of multiple IO TLB
memory pools.
Additional memory barrier is required to ensure that the new value of the
flag is visible to other CPUs after mapping a new bounce buffer. For
efficiency, the flag check should be inlined, and then the memory barrier
must be moved to is_swiotlb_buffer(). However, it can replace the existing
barrier in swiotlb_find_pool(), because all callers use is_swiotlb_buffer()
first to verify that the buffer address belongs to the software IO TLB.
Signed-off-by: Petr Tesarik <petr.tesarik.ext@huawei.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
When swiotlb_find_slots() cannot find suitable slots, schedule the
allocation of a new memory pool. It is not possible to allocate the pool
immediately, because this code may run in interrupt context, which is not
suitable for large memory allocations. This means that the memory pool will
be available too late for the currently requested mapping, but the stress
on the software IO TLB allocator is likely to continue, and subsequent
allocations will benefit from the additional pool eventually.
Keep all memory pools for an allocator in an RCU list to avoid locking on
the read side. For modifications, add a new spinlock to struct io_tlb_mem.
The spinlock also protects updates to the total number of slabs (nslabs in
struct io_tlb_mem), but not reads of the value. Readers may therefore
encounter a stale value, but this is not an issue:
- swiotlb_tbl_map_single() and is_swiotlb_active() only check for non-zero
value. This is ensured by the existence of the default memory pool,
allocated at boot.
- The exact value is used only for non-critical purposes (debugfs, kernel
messages).
Signed-off-by: Petr Tesarik <petr.tesarik.ext@huawei.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
The value returned by default_swiotlb_limit() should be constant, because
it is used to decide whether DMA can be used. To allow allocating memory
pools on the fly, use the maximum possible physical address rather than the
highest address used by the default pool.
For swiotlb_init_remap(), this is either an arch-specific limit used by
memblock_alloc_low(), or the highest directly mapped physical address if
the initialization flags include SWIOTLB_ANY. For swiotlb_init_late(), the
highest address is determined by the GFP flags.
Signed-off-by: Petr Tesarik <petr.tesarik.ext@huawei.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Try to allocate a transient memory pool if no suitable slots can be found
and the respective SWIOTLB is allowed to grow. The transient pool is just
enough big for this one bounce buffer. It is inserted into a per-device
list of transient memory pools, and it is freed again when the bounce
buffer is unmapped.
Transient memory pools are kept in an RCU list. A memory barrier is
required after adding a new entry, because any address within a transient
buffer must be immediately recognized as belonging to the SWIOTLB, even if
it is passed to another CPU.
Deletion does not require any synchronization beyond RCU ordering
guarantees. After a buffer is unmapped, its physical addresses may no
longer be passed to the DMA API, so the memory range of the corresponding
stale entry in the RCU list never matches. If the memory range gets
allocated again, then it happens only after a RCU quiescent state.
Since bounce buffers can now be allocated from different pools, add a
parameter to swiotlb_alloc_pool() to let the caller know which memory pool
is used. Add swiotlb_find_pool() to find the memory pool corresponding to
an address. This function is now also used by is_swiotlb_buffer(), because
a simple boundary check is no longer sufficient.
The logic in swiotlb_alloc_tlb() is taken from __dma_direct_alloc_pages(),
simplified and enhanced to use coherent memory pools if needed.
Note that this is not the most efficient way to provide a bounce buffer,
but when a DMA buffer can't be mapped, something may (and will) actually
break. At that point it is better to make an allocation, even if it may be
an expensive operation.
Signed-off-by: Petr Tesarik <petr.tesarik.ext@huawei.com>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Add a config option (CONFIG_SWIOTLB_DYNAMIC) to enable or disable dynamic
allocation of additional bounce buffers.
If this option is set, mark the default SWIOTLB as able to grow and
restricted DMA pools as unable.
However, if the address of the default memory pool is explicitly queried,
make the default SWIOTLB also unable to grow. This is currently used to set
up PCI BAR movable regions on some Octeon MIPS boards which may not be able
to use a SWIOTLB pool elsewhere in physical memory. See octeon_pci_setup()
for more details.
If a remap function is specified, it must be also called on any dynamically
allocated pools, but there are some issues:
- The remap function may block, so it should not be called from an atomic
context.
- There is no corresponding unremap() function if the memory pool is
freed.
- The only in-tree implementation (xen_swiotlb_fixup) requires that the
number of slots in the memory pool is a multiple of SWIOTLB_SEGSIZE.
Keep it simple for now and disable growing the SWIOTLB if a remap function
was specified.
Signed-off-by: Petr Tesarik <petr.tesarik.ext@huawei.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Carve out memory pool specific fields from struct io_tlb_mem. The original
struct now contains shared data for the whole allocator, while the new
struct io_tlb_pool contains data that is specific to one memory pool of
(potentially) many.
Signed-off-by: Petr Tesarik <petr.tesarik.ext@huawei.com>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Add some kernel-doc comments and move the existing documentation of struct
io_tlb_slot to its correct location. The latter was forgotten in commit
942a8186eb ("swiotlb: move struct io_tlb_slot to swiotlb.c").
Use the opportunity to give swiotlb_do_find_slots() a more descriptive name
and make it clear how it differs from swiotlb_find_slots().
Signed-off-by: Petr Tesarik <petr.tesarik.ext@huawei.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
SWIOTLB implementation details should not be exposed to the rest of the
kernel. This will allow to make changes to the implementation without
modifying non-swiotlb code.
To avoid breaking existing users, provide helper functions for the few
required fields.
As a bonus, using a helper function to initialize struct device allows to
get rid of an #ifdef in driver core.
Signed-off-by: Petr Tesarik <petr.tesarik.ext@huawei.com>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Christoph Hellwig <hch@lst.de>
If swiotlb is allocated, immediately return 0, so callers do not have to
check io_tlb_default_mem.nslabs explicitly.
Signed-off-by: Petr Tesarik <petr.tesarik.ext@huawei.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
In the process of parsing the DTS, check whether the memory region
specified by the DTS CMA node area overlaps with the kernel text
memory space reserved by memblock before calling
early_init_fdt_scan_reserved_mem.
Signed-off-by: Binglei Wang <l3b2w1@gmail.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
The kernel parameter 'cma_pernuma=' only supports reserving the same
size of CMA area for each node. We need to reserve different sizes of
CMA area for specified nodes if these devices belong to different nodes.
Adding another kernel parameter 'numa_cma=' to reserve CMA area for
the specified node. If we want to use one of these parameters, we need to
enable DMA_NUMA_CMA.
At the same time, print the node id in cma_declare_contiguous_nid() if
CONFIG_NUMA is enabled.
Signed-off-by: Yajun Deng <yajun.deng@linux.dev>
Signed-off-by: Christoph Hellwig <hch@lst.de>
In the commit b7176c261c ("dma-contiguous: provide the ability to
reserve per-numa CMA"), Barry adds DMA_PERNUMA_CMA for ARM64.
But this feature is architecture independent, so support per-numa CMA
for all architectures, and enable it by default if NUMA.
Signed-off-by: Yajun Deng <yajun.deng@linux.dev>
Tested-by: Yicong Yang <yangyicong@hisilicon.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
This function has a __weak definition and an override that is only used on
freescale powerpc chips. The powerpc definition however does not see the
declaration that is in a .c file:
arch/powerpc/kernel/dma-mask.c:7:6: error: no previous prototype for 'arch_dma_set_mask' [-Werror=missing-prototypes]
Move it into the linux/dma-map-ops.h header where the other arch_dma_* functions
are declared.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Drivers have no business looking at dma-mapping or swiotlb internals.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Juergen Gross <jgross@suse.com>
- swiotlb area sizing fixes (Petr Tesarik)
-----BEGIN PGP SIGNATURE-----
iQI/BAABCgApFiEEgdbnc3r/njty3Iq9D55TZVIEUYMFAmSq57sLHGhjaEBsc3Qu
ZGUACgkQD55TZVIEUYOh0xAAkwklIxxzXvNlgjvy2hdgPWImPS8tGPDSIsqA9TDD
WDZq89nz/ndnchdPObDvyJXmfBgqa0qCHqopBVPqMKv5a1pKZhrRXYlbajGQQwji
MIqefTLZ/VGw7bDpEivOt+yadwQ3KxuxWWs7/JPKLLReSJ22H8P+jkrK7P7kBL5X
YaMtZG9d86fvFHnQHKdAOlF1iCvnoZDHPcvaZbI6m5mMSZ+HIYqK5pP1MTUEAbIU
MX4ZSI7/mL0q67+kZuM/NCSeq1pH0Cd0D2DGm+8k/y87G81GS6E5Wgg+xO7vYiXf
5ChuwlAO9K9KhH7NIRkKhkad/Ii89ENXSyv5gmPRoKYK5FXajnHSlJTUrZojV6XC
Pbsd9ATVzV0rY61EPyh6G1a+Ttp/pwMp+W0I2fi032GVAePQ/vhB9x9O+2O/3QiC
v80nUSatkciZncWqkguhp3NONsRmLKep3CCQnEAA/gLs27B0avdQeslnqbOOUQKd
Si+djIoel8ONjQ+mW8eFCsVYMH1xFSo0aGsgGe0y2cyBE3DN1AW9eRnOXWT4C1PR
UyDlx8ACs87ojec+YRQFYk2/PbsU7CQiH1pteXvBHcbhiVUAvrtXtg6ANQ+7066P
IIduAZmlHcHb1BhyrSQbAtRllVLIp/l9IAkCSY9SvL0tjh/B5CaRBD5m2Taow5I/
KUI=
=4Lfc
-----END PGP SIGNATURE-----
Merge tag 'dma-mapping-6.5-2023-07-09' of git://git.infradead.org/users/hch/dma-mapping
Pull dma-mapping fixes from Christoph Hellwig:
- swiotlb area sizing fixes (Petr Tesarik)
* tag 'dma-mapping-6.5-2023-07-09' of git://git.infradead.org/users/hch/dma-mapping:
swiotlb: reduce the number of areas to match actual memory pool size
swiotlb: always set the number of areas before allocating the pool
- swiotlb cleanups (Petr Tesarik)
- use kvmalloc_array (gaoxu)
- a small step towards removing is_swiotlb_active (Christoph Hellwig)
- fix a Kconfig typo Sui Jingfeng)
-----BEGIN PGP SIGNATURE-----
iQI/BAABCgApFiEEgdbnc3r/njty3Iq9D55TZVIEUYMFAmScHTELHGhjaEBsc3Qu
ZGUACgkQD55TZVIEUYOoGhAAuKdcWAumhEuKXu/vuA4/xH5Kvn2uhrAVs/RSKKh7
Wbh2WXh+9GOQs4dwpYI5/chRmCJgyC2ics/E7dny2ovJumM/RGOR9zff/+zJk5yh
3tpiZ4VW/2x/9qmoRpdQVTaj1uB2Ug8wpztUohyeEYPpjLX0/Vq/zTItAyvQs4kO
vskg2u9EGwzgV4qmHWq2fjowljHS1sMZq2URKGX8JDHrwOh0+uCke626ze/WznSQ
5quWW4mE0IYq/nldIMTvJxUx6273zBMm+yoZSfFY6K0VrP3WDE5endP5oYR7d251
zNRPyWqW78HQT0z/gntaPOKDB0t7YxsWVLwam98Yv8wl1wLJQYe5sRoL7qXL0yBz
cu4uTOGU6Kvw3ZHWQOk2qkGxYAxDLnaFejz8ZDCycWQA7T2+TNdaVXNnl/vE+aRN
25mnT0JtClfZOvHihhHKaiRXMKE0WgPy4vBZBT0SAUVuUR7JwtYDv/5giGf6Bi3x
QwNeXAmFD75VELJoqX1KL/UiJh8FzyWZMI7l7XmDVy9lJsA1P3PO+npI8SOmA+e8
q4GSD36BxDoDE06Hg/BQcRqPohDCEsrRgfvOaa7xld9SCwe1lGaN3kDsyv6HoBzX
NRS3aishdqHf21dNctjX9f+II+30NFkPbAa64B8L4tP5aQLy3bgjNLweLP9fhKgl
KQs=
=yYCS
-----END PGP SIGNATURE-----
Merge tag 'dma-mapping-6.5-2023-06-28' of git://git.infradead.org/users/hch/dma-mapping
Pull dma-mapping updates from Christoph Hellwig:
- swiotlb cleanups (Petr Tesarik)
- use kvmalloc_array (gaoxu)
- a small step towards removing is_swiotlb_active (Christoph Hellwig)
- fix a Kconfig typo Sui Jingfeng)
* tag 'dma-mapping-6.5-2023-06-28' of git://git.infradead.org/users/hch/dma-mapping:
drm/nouveau: stop using is_swiotlb_active
swiotlb: use the atomic counter of total used slabs if available
swiotlb: remove unused field "used" from struct io_tlb_mem
dma-remap: use kvmalloc_array/kvfree for larger dma memory remap
dma-mapping: fix a Kconfig typo
Although the desired size of the SWIOTLB memory pool is increased in
swiotlb_adjust_nareas() to match the number of areas, the actual allocation
may be smaller, which may require reducing the number of areas.
For example, Xen uses swiotlb_init_late(), which in turn uses the page
allocator. On x86, page size is 4 KiB and MAX_ORDER is 10 (1024 pages),
resulting in a maximum memory pool size of 4 MiB. This corresponds to 2048
slots of 2 KiB each. The minimum area size is 128 (IO_TLB_SEGSIZE),
allowing at most 2048 / 128 = 16 areas.
If num_possible_cpus() is greater than the maximum number of areas, areas
are smaller than IO_TLB_SEGSIZE and contiguous groups of free slots will
span multiple areas. When allocating and freeing slots, only one area will
be properly locked, causing race conditions on the unlocked slots and
ultimately data corruption, kernel hangs and crashes.
Fixes: 20347fca71 ("swiotlb: split up the global swiotlb lock")
Signed-off-by: Petr Tesarik <petr.tesarik.ext@huawei.com>
Reviewed-by: Roberto Sassu <roberto.sassu@huawei.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
The number of areas defaults to the number of possible CPUs. However, the
total number of slots may have to be increased after adjusting the number
of areas. Consequently, the number of areas must be determined before
allocating the memory pool. This is even explained with a comment in
swiotlb_init_remap(), but swiotlb_init_late() adjusts the number of areas
after slots are already allocated. The areas may end up being smaller than
IO_TLB_SEGSIZE, which breaks per-area locking.
While fixing swiotlb_init_late(), move all relevant comments before the
definition of swiotlb_adjust_nareas() and convert them to kernel-doc.
Fixes: 20347fca71 ("swiotlb: split up the global swiotlb lock")
Signed-off-by: Petr Tesarik <petr.tesarik.ext@huawei.com>
Reviewed-by: Roberto Sassu <roberto.sassu@huawei.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
For direct DMA, if the size is small enough to have originated from a
kmalloc() cache below ARCH_DMA_MINALIGN, check its alignment against
dma_get_cache_alignment() and bounce if necessary. For larger sizes, it
is the responsibility of the DMA API caller to ensure proper alignment.
At this point, the kmalloc() caches are properly aligned but this will
change in a subsequent patch.
Architectures can opt in by selecting DMA_BOUNCE_UNALIGNED_KMALLOC.
Link: https://lkml.kernel.org/r/20230612153201.554742-15-catalin.marinas@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Tested-by: Isaac J. Manjarres <isaacmanjarres@google.com>
Cc: Alasdair Kergon <agk@redhat.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Jerry Snitselaar <jsnitsel@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Jonathan Cameron <jic23@kernel.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Lars-Peter Clausen <lars@metafoo.de>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Brown <broonie@kernel.org>
Cc: Mike Snitzer <snitzer@kernel.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Saravana Kannan <saravanak@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
sg_is_dma_bus_address() is inconsistent with the naming pattern of its
corresponding setters and its own kerneldoc, so take the majority vote and
rename it sg_dma_is_bus_address() (and fix up the missing underscores in
the kerneldoc too). This gives us a nice clear pattern where SG DMA flags
are SG_DMA_<NAME>, and the helpers for acting on them are
sg_dma_<action>_<name>().
Link: https://lkml.kernel.org/r/20230612153201.554742-14-catalin.marinas@arm.com
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jerry Snitselaar <jsnitsel@redhat.com>
Reviewed-by: Logan Gunthorpe <logang@deltatee.com>
Link: https://lore.kernel.org/r/fa2eca2862c7ffc41b50337abffb2dfd2864d3ea.1685036694.git.robin.murphy@arm.com
Tested-by: Isaac J. Manjarres <isaacmanjarres@google.com>
Cc: Alasdair Kergon <agk@redhat.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Jonathan Cameron <jic23@kernel.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Lars-Peter Clausen <lars@metafoo.de>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Brown <broonie@kernel.org>
Cc: Mike Snitzer <snitzer@kernel.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Saravana Kannan <saravanak@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The DMA flags field will be useful for users beyond PCI P2P, so upgrade to
its own dedicated config option.
[catalin.marinas@arm.com: use #ifdef CONFIG_NEED_SG_DMA_FLAGS in scatterlist.h]
[catalin.marinas@arm.com: update PCI_P2PDMA dma_flags comment in scatterlist.h]
Link: https://lkml.kernel.org/r/20230612153201.554742-13-catalin.marinas@arm.com
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Tested-by: Isaac J. Manjarres <isaacmanjarres@google.com>
Cc: Alasdair Kergon <agk@redhat.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Jerry Snitselaar <jsnitsel@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Jonathan Cameron <jic23@kernel.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Lars-Peter Clausen <lars@metafoo.de>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Brown <broonie@kernel.org>
Cc: Mike Snitzer <snitzer@kernel.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Saravana Kannan <saravanak@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>