Deferred invalidation is an ECS specific feature. It will not be
supported when IOMMU works in scalable mode. As we deprecated the
ECS support, remove deferred invalidation and cleanup the code.
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Jacob Pan <jacob.jun.pan@linux.intel.com>
Cc: Kevin Tian <kevin.tian@intel.com>
Cc: Liu Yi L <yi.l.liu@intel.com>
Cc: Sanjay Kumar <sanjay.k.kumar@intel.com>
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Reviewed-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
This patch enables the current SVA (Shared Virtual Address)
implementation to work in the scalable mode.
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Jacob Pan <jacob.jun.pan@linux.intel.com>
Cc: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Sanjay Kumar <sanjay.k.kumar@intel.com>
Signed-off-by: Liu Yi L <yi.l.liu@intel.com>
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Reviewed-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
This adds an interface to setup the PASID entries for first
level page table translation.
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Jacob Pan <jacob.jun.pan@linux.intel.com>
Cc: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Sanjay Kumar <sanjay.k.kumar@intel.com>
Signed-off-by: Liu Yi L <yi.l.liu@intel.com>
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Reviewed-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
This patch enables the translation for requests without PASID in
the scalable mode by setting up the root and context entries.
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Jacob Pan <jacob.jun.pan@linux.intel.com>
Cc: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Sanjay Kumar <sanjay.k.kumar@intel.com>
Signed-off-by: Liu Yi L <yi.l.liu@intel.com>
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Reviewed-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
This adds the interfaces to setup or tear down the structures
for second level page table translations. This includes types
of second level only translation and pass through.
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Jacob Pan <jacob.jun.pan@linux.intel.com>
Cc: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Sanjay Kumar <sanjay.k.kumar@intel.com>
Signed-off-by: Liu Yi L <yi.l.liu@intel.com>
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Reviewed-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Intel vt-d spec rev3.0 requires software to use 256-bit
descriptors in invalidation queue. As the spec reads in
section 6.5.2:
Remapping hardware supporting Scalable Mode Translations
(ECAP_REG.SMTS=1) allow software to additionally program
the width of the descriptors (128-bits or 256-bits) that
will be written into the Queue. Software should setup the
Invalidation Queue for 256-bit descriptors before progra-
mming remapping hardware for scalable-mode translation as
128-bit descriptors are treated as invalid descriptors
(see Table 21 in Section 6.5.2.10) in scalable-mode.
This patch adds 256-bit invalidation descriptor support
if the hardware presents scalable mode capability.
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Jacob Pan <jacob.jun.pan@linux.intel.com>
Cc: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Sanjay Kumar <sanjay.k.kumar@intel.com>
Signed-off-by: Liu Yi L <yi.l.liu@intel.com>
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
So that they could also be used in other source files.
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Jacob Pan <jacob.jun.pan@linux.intel.com>
Cc: Kevin Tian <kevin.tian@intel.com>
Cc: Liu Yi L <yi.l.liu@intel.com>
Cc: Sanjay Kumar <sanjay.k.kumar@intel.com>
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Reviewed-by: Ashok Raj <ashok.raj@intel.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
The Intel vt-d spec rev3.0 introduces a new translation
mode called scalable mode, which enables PASID-granular
translations for first level, second level, nested and
pass-through modes. At the same time, the previous
Extended Context (ECS) mode is deprecated (no production
ever implements ECS).
This patch adds enumeration for Scalable Mode and removes
the deprecated ECS enumeration. It provides a boot time
option to disable scalable mode even hardware claims to
support it.
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Jacob Pan <jacob.jun.pan@linux.intel.com>
Cc: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Sanjay Kumar <sanjay.k.kumar@intel.com>
Signed-off-by: Liu Yi L <yi.l.liu@intel.com>
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Reviewed-by: Ashok Raj <ashok.raj@intel.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Commit e61d98d8da ("x64, x2apic/intr-remap: Intel vt-d, IOMMU
code reorganization") moved dma_remapping.h from drivers/pci/ to
current place. It is entirely VT-d specific, but uses a generic
name. This merges dma_remapping.h with include/linux/intel-iommu.h
and removes dma_remapping.h as the result.
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Jacob Pan <jacob.jun.pan@linux.intel.com>
Cc: Sohil Mehta <sohil.mehta@intel.com>
Suggested-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Liu, Yi L <yi.l.liu@intel.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Add a new config option CONFIG_INTEL_IOMMU_DEBUGFS and do the base
enabling for Intel IOMMU debugfs.
Cc: Lu Baolu <baolu.lu@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Jacob Pan <jacob.jun.pan@linux.intel.com>
Co-Developed-by: Gayatri Kammela <gayatri.kammela@intel.com>
Signed-off-by: Gayatri Kammela <gayatri.kammela@intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Reviewed-by: Lu Baolu <baolu.lu@linux.intel.com>
Signed-off-by: Sohil Mehta <sohil.mehta@intel.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Add new register definitions added in the VT-d 3.0 specification. Also
include registers that were missing previously.
Cc: Lu Baolu <baolu.lu@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Jacob Pan <jacob.jun.pan@linux.intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Gayatri Kammela <gayatri.kammela@intel.com>
Signed-off-by: Sohil Mehta <sohil.mehta@intel.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
To reuse the static functions and the struct declarations, move them to
corresponding header files and export the needed functions.
Cc: Lu Baolu <baolu.lu@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Jacob Pan <jacob.jun.pan@linux.intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Gayatri Kammela <gayatri.kammela@intel.com>
Signed-off-by: Sohil Mehta <sohil.mehta@intel.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
The obsolete per iommu pasid tables are no longer used. Hence,
clean up them.
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Jacob Pan <jacob.jun.pan@linux.intel.com>
Cc: Kevin Tian <kevin.tian@intel.com>
Cc: Liu Yi L <yi.l.liu@intel.com>
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Reviewed-by: Liu Yi L <yi.l.liu@intel.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
This patch adds the interfaces for per PCI device pasid
table management. Currently we allocate one pasid table
for all PCI devices under the scope of an IOMMU. It's
insecure in some cases where multiple devices under one
single IOMMU unit support PASID features. With per PCI
device pasid table, we can achieve finer protection and
isolation granularity.
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Jacob Pan <jacob.jun.pan@linux.intel.com>
Cc: Kevin Tian <kevin.tian@intel.com>
Cc: Liu Yi L <yi.l.liu@intel.com>
Suggested-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Reviewed-by: Liu Yi L <yi.l.liu@intel.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
This adds a helper named for_each_device_domain() to iterate
over the elements in device_domain_list and invoke a callback
against each element. This allows to search the device_domain
list in other source files.
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Jacob Pan <jacob.jun.pan@linux.intel.com>
Cc: Kevin Tian <kevin.tian@intel.com>
Cc: Liu Yi L <yi.l.liu@intel.com>
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Reviewed-by: Liu Yi L <yi.l.liu@intel.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
This allows the per device iommu data and some helpers to be
used in other files.
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Jacob Pan <jacob.jun.pan@linux.intel.com>
Cc: Kevin Tian <kevin.tian@intel.com>
Cc: Liu Yi L <yi.l.liu@intel.com>
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Reviewed-by: Liu Yi L <yi.l.liu@intel.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
This patch applies the global pasid name space in the shared
virtual address (SVA) implementation.
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Jacob Pan <jacob.jun.pan@linux.intel.com>
Cc: Kevin Tian <kevin.tian@intel.com>
Cc: Liu Yi L <yi.l.liu@intel.com>
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Reviewed-by: Liu Yi L <yi.l.liu@intel.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
idr_for_each_entry() is used to iteratte over idr elements
of a given type. It isn't suitable for the globle pasid idr
since the pasid idr consumer could specify different types
of pointers to bind with a pasid.
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Jacob Pan <jacob.jun.pan@linux.intel.com>
Cc: Kevin Tian <kevin.tian@intel.com>
Cc: Liu Yi L <yi.l.liu@intel.com>
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Reviewed-by: Liu Yi L <yi.l.liu@intel.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
This reverts commit ab96746aaa.
The commit ab96746aaa ("iommu/vt-d: Clean up pasid quirk for
pre-production devices") triggers ECS mode on some platforms
which have broken ECS support. As the result, graphic device
will be inoperable on boot.
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=107017
Cc: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
PFSID should be used in the invalidation descriptor for flushing
device IOTLBs on SRIOV VFs.
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Cc: stable@vger.kernel.org
Cc: "Ashok Raj" <ashok.raj@intel.com>
Cc: "Lu Baolu" <baolu.lu@linux.intel.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
When SRIOV VF device IOTLB is invalidated, we need to provide
the PF source ID such that IOMMU hardware can gauge the depth
of invalidation queue which is shared among VFs. This is needed
when device invalidation throttle (DIT) capability is supported.
This patch adds bit definitions for checking and tracking PFSID.
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Cc: stable@vger.kernel.org
Cc: "Ashok Raj" <ashok.raj@intel.com>
Cc: "Lu Baolu" <baolu.lu@linux.intel.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
The pasid28 quirk is needed only for some pre-production devices.
Remove it to make the code concise.
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
So one could decode them without opening the specification.
Signed-off-by: Dmitry Safonov <dima@arista.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Add a check to verify IOMMU 5-level paging support. If the CPU supports
supports 5-level paging but the IOMMU does not support it then disable
SVM by not allocating PASID tables.
Signed-off-by: Sohil Mehta <sohil.mehta@intel.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Add a check to verify IOMMU 1GB page support. If the CPU supports 1GB
pages but the IOMMU does not support it then disable SVM by not
allocating PASID tables.
Signed-off-by: Sohil Mehta <sohil.mehta@intel.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Currently Page Request Overflow bit in IOMMU Fault Status register
is not cleared. Not clearing this bit would mean that any future
page-request is going to be automatically dropped by IOMMU.
Suggested-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
There is already helper functions to do 64-bit I/O on 32-bit machines or
buses, thus we don't need to reinvent the wheel.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
There is currently support for iommu sysfs bindings, but
those need to be implemented in the IOMMU drivers. Add a
more generic version of this by adding a struct device to
struct iommu_device and use that for the sysfs bindings.
Also convert the AMD and Intel IOMMU driver to make use of
it.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
This struct represents one hardware iommu in the iommu core
code. For now it only has the iommu-ops associated with it,
but that will be extended soon.
The register/unregister interface is also added, as well as
making use of it in the Intel and AMD IOMMU drivers.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Somehow I ended up with an off-by-three error in calculating the size of
the PASID and PASID State tables, which triggers allocations failures as
those tables unfortunately have to be physically contiguous.
In fact, even the *correct* maximum size of 8MiB is problematic and is
wont to lead to allocation failures. Since I have extracted a promise
that this *will* be fixed in hardware, I'm happy to limit it on the
current hardware to a maximum of 0x20000 PASIDs, which gives us 1MiB
tables — still not ideal, but better than before.
Reported by Mika Kuoppala <mika.kuoppala@linux.intel.com> and also by
Xunlei Pang <xlpang@redhat.com> who submitted a simpler patch to fix
only the allocation (and not the free) to the "correct" limit... which
was still problematic.
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
Cc: stable@vger.kernel.org
According to the VT-d specification we need to clear the PPR bit in
the Page Request Status register when handling page requests, or the
hardware won't generate any more interrupts.
This wasn't actually necessary on SKL/KBL (which may well be the
subject of a hardware erratum, although it's harmless enough). But
other implementations do appear to get it right, and we only ever get
one interrupt unless we clear the PPR bit.
Reported-by: CQ Tang <cq.tang@intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Cc: stable@vger.kernel.org
This provides basic PASID support for endpoint devices, tested with a
version of the i915 driver.
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
As long as we use an identity mapping to work around the worst of the
hardware bugs which caused us to defeature it and change the definition
of the capability bit, we *can* use PASID support on the devices which
advertised it in bit 28 of the Extended Capability Register.
Allow people to do so with 'intel_iommu=pasid28' on the command line.
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
This array is indexed by the domain-id and contains the
pointers to the domains attached to this iommu. Modern
systems support 65536 domain ids, so that this array has a
size of 512kb, per iommu.
This is a huge waste of space, as the array is usually
sparsely populated. This patch makes the array
two-dimensional and allocates the memory for the domain
pointers on-demand.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
This time with bigger changes than usual:
* A new IOMMU driver for the ARM SMMUv3. This IOMMU is pretty
different from SMMUv1 and v2 in that it is configured through
in-memory structures and not through the MMIO register region.
The ARM SMMUv3 also supports IO demand paging for PCI devices
with PRI/PASID capabilities, but this is not implemented in
the driver yet.
* Lots of cleanups and device-tree support for the Exynos IOMMU
driver. This is part of the effort to bring Exynos DRM support
upstream.
* Introduction of default domains into the IOMMU core code. The
rationale behind this is to move functionalily out of the
IOMMU drivers to common code to get to a unified behavior
between different drivers.
The patches here introduce a default domain for iommu-groups
(isolation groups). A device will now always be attached to a
domain, either the default domain or another domain handled by
the device driver. The IOMMU drivers have to be modified to
make use of that feature. So long the AMD IOMMU driver is
converted, with others to follow.
* Patches for the Intel VT-d drvier to fix DMAR faults that
happen when a kdump kernel boots. When the kdump kernel boots
it re-initializes the IOMMU hardware, which destroys all
mappings from the crashed kernel. As this happens before
the endpoint devices are re-initialized, any in-flight DMA
causes a DMAR fault. These faults cause PCI master aborts,
which some devices can't handle properly and go into an
undefined state, so that the device driver in the kdump kernel
fails to initialize them and the dump fails.
This is now fixed by copying over the mapping structures (only
context tables and interrupt remapping tables) from the old
kernel and keep the old mappings in place until the device
driver of the new kernel takes over. This emulates the the
behavior without an IOMMU to the best degree possible.
* A couple of other small fixes and cleanups.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABAgAGBQJViSIWAAoJECvwRC2XARrjl+cP/2FXS7SWDq91VFiIZfXfPt8H
C5Ef3OGWCnMzn4MKE1ExkyDhC+AH6pF1s4zi3XfT6b8iOA+DUpa51rxJjixszt31
tQwmvB7hWu4mznGxSN7EA0Pm0l/v3tBAY5BvG598af0aNZFFJ6po+31MyQA5X67+
6xpqLbH/hm4IZhFBOEzZwxuWWsNxlJwwzKqeAjGyqeUhdruRYZiPHWQ17sDjwLM/
QcVvWBb7meOtKv1OCtpzC4sglSk3scbAfEHMEBuDt8cI6OD7/t2VzPXDWWZuXGqK
nRAxCT7NrXvyOnv0xwdn0j5p1FUGipVxvhsGWX7sJsh3UHWm8Q+5rRKFFVI9pm50
QcMjiIMazK5VwcAkDnLoDgSz4Zz6TfHXEOqSJ2vjTPt2VDP/J9zdM2iwHx2ujicI
mIkrtmsBprvAPx6e9jcqiS5L/Xy1y1xewXuGxa5F2XOjqdoXkPqaupjlyrWzrChA
MC8w67FdzjHDPCfIqfIWZpJQj4f1OFQGd3HS5HpkBACxIwCg85gRw4DEMfD/sirO
BL2VM0RO/bB5+4R0AY7UA2VszQvNMqedj1bA4vAbrnXqOh8BI/0GgeoWiBMXhyX1
qvT1jl+cxuCm5tgBOMUGYoRyF+//bH+l78jLsTYaWRtuVzFlkAX6idNvYYK0dmNt
tLII2IIZBk87P3pF4d6A
=Zicw
-----END PGP SIGNATURE-----
Merge tag 'iommu-updates-v4.2' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu
Pull IOMMU updates from Joerg Roedel:
"This time with bigger changes than usual:
- A new IOMMU driver for the ARM SMMUv3.
This IOMMU is pretty different from SMMUv1 and v2 in that it is
configured through in-memory structures and not through the MMIO
register region. The ARM SMMUv3 also supports IO demand paging for
PCI devices with PRI/PASID capabilities, but this is not
implemented in the driver yet.
- Lots of cleanups and device-tree support for the Exynos IOMMU
driver. This is part of the effort to bring Exynos DRM support
upstream.
- Introduction of default domains into the IOMMU core code.
The rationale behind this is to move functionalily out of the IOMMU
drivers to common code to get to a unified behavior between
different drivers. The patches here introduce a default domain for
iommu-groups (isolation groups).
A device will now always be attached to a domain, either the
default domain or another domain handled by the device driver. The
IOMMU drivers have to be modified to make use of that feature. So
long the AMD IOMMU driver is converted, with others to follow.
- Patches for the Intel VT-d drvier to fix DMAR faults that happen
when a kdump kernel boots.
When the kdump kernel boots it re-initializes the IOMMU hardware,
which destroys all mappings from the crashed kernel. As this
happens before the endpoint devices are re-initialized, any
in-flight DMA causes a DMAR fault. These faults cause PCI master
aborts, which some devices can't handle properly and go into an
undefined state, so that the device driver in the kdump kernel
fails to initialize them and the dump fails.
This is now fixed by copying over the mapping structures (only
context tables and interrupt remapping tables) from the old kernel
and keep the old mappings in place until the device driver of the
new kernel takes over. This emulates the the behavior without an
IOMMU to the best degree possible.
- A couple of other small fixes and cleanups"
* tag 'iommu-updates-v4.2' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu: (69 commits)
iommu/amd: Handle large pages correctly in free_pagetable
iommu/vt-d: Don't disable IR when it was previously enabled
iommu/vt-d: Make sure copied over IR entries are not reused
iommu/vt-d: Copy IR table from old kernel when in kdump mode
iommu/vt-d: Set IRTA in intel_setup_irq_remapping
iommu/vt-d: Disable IRQ remapping in intel_prepare_irq_remapping
iommu/vt-d: Move QI initializationt to intel_setup_irq_remapping
iommu/vt-d: Move EIM detection to intel_prepare_irq_remapping
iommu/vt-d: Enable Translation only if it was previously disabled
iommu/vt-d: Don't disable translation prior to OS handover
iommu/vt-d: Don't copy translation tables if RTT bit needs to be changed
iommu/vt-d: Don't do early domain assignment if kdump kernel
iommu/vt-d: Allocate si_domain in init_dmars()
iommu/vt-d: Mark copied context entries
iommu/vt-d: Do not re-use domain-ids from the old kernel
iommu/vt-d: Copy translation tables from old kernel
iommu/vt-d: Detect pre enabled translation
iommu/vt-d: Make root entry visible for hardware right after allocation
iommu/vt-d: Init QI before root entry is allocated
iommu/vt-d: Cleanup log messages
...
Pull x86 core updates from Ingo Molnar:
"There were so many changes in the x86/asm, x86/apic and x86/mm topics
in this cycle that the topical separation of -tip broke down somewhat -
so the result is a more traditional architecture pull request,
collected into the 'x86/core' topic.
The topics were still maintained separately as far as possible, so
bisectability and conceptual separation should still be pretty good -
but there were a handful of merge points to avoid excessive
dependencies (and conflicts) that would have been poorly tested in the
end.
The next cycle will hopefully be much more quiet (or at least will
have fewer dependencies).
The main changes in this cycle were:
* x86/apic changes, with related IRQ core changes: (Jiang Liu, Thomas
Gleixner)
- This is the second and most intrusive part of changes to the x86
interrupt handling - full conversion to hierarchical interrupt
domains:
[IOAPIC domain] -----
|
[MSI domain] --------[Remapping domain] ----- [ Vector domain ]
| (optional) |
[HPET MSI domain] ----- |
|
[DMAR domain] -----------------------------
|
[Legacy domain] -----------------------------
This now reflects the actual hardware and allowed us to distangle
the domain specific code from the underlying parent domain, which
can be optional in the case of interrupt remapping. It's a clear
separation of functionality and removes quite some duct tape
constructs which plugged the remap code between ioapic/msi/hpet
and the vector management.
- Intel IOMMU IRQ remapping enhancements, to allow direct interrupt
injection into guests (Feng Wu)
* x86/asm changes:
- Tons of cleanups and small speedups, micro-optimizations. This
is in preparation to move a good chunk of the low level entry
code from assembly to C code (Denys Vlasenko, Andy Lutomirski,
Brian Gerst)
- Moved all system entry related code to a new home under
arch/x86/entry/ (Ingo Molnar)
- Removal of the fragile and ugly CFI dwarf debuginfo annotations.
Conversion to C will reintroduce many of them - but meanwhile
they are only getting in the way, and the upstream kernel does
not rely on them (Ingo Molnar)
- NOP handling refinements. (Borislav Petkov)
* x86/mm changes:
- Big PAT and MTRR rework: making the code more robust and
preparing to phase out exposing direct MTRR interfaces to drivers -
in favor of using PAT driven interfaces (Toshi Kani, Luis R
Rodriguez, Borislav Petkov)
- New ioremap_wt()/set_memory_wt() interfaces to support
Write-Through cached memory mappings. This is especially
important for good performance on NVDIMM hardware (Toshi Kani)
* x86/ras changes:
- Add support for deferred errors on AMD (Aravind Gopalakrishnan)
This is an important RAS feature which adds hardware support for
poisoned data. That means roughly that the hardware marks data
which it has detected as corrupted but wasn't able to correct, as
poisoned data and raises an APIC interrupt to signal that in the
form of a deferred error. It is the OS's responsibility then to
take proper recovery action and thus prolonge system lifetime as
far as possible.
- Add support for Intel "Local MCE"s: upcoming CPUs will support
CPU-local MCE interrupts, as opposed to the traditional system-
wide broadcasted MCE interrupts (Ashok Raj)
- Misc cleanups (Borislav Petkov)
* x86/platform changes:
- Intel Atom SoC updates
... and lots of other cleanups, fixlets and other changes - see the
shortlog and the Git log for details"
* 'x86-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (222 commits)
x86/hpet: Use proper hpet device number for MSI allocation
x86/hpet: Check for irq==0 when allocating hpet MSI interrupts
x86/mm/pat, drivers/infiniband/ipath: Use arch_phys_wc_add() and require PAT disabled
x86/mm/pat, drivers/media/ivtv: Use arch_phys_wc_add() and require PAT disabled
x86/platform/intel/baytrail: Add comments about why we disabled HPET on Baytrail
genirq: Prevent crash in irq_move_irq()
genirq: Enhance irq_data_to_desc() to support hierarchy irqdomain
iommu, x86: Properly handle posted interrupts for IOMMU hotplug
iommu, x86: Provide irq_remapping_cap() interface
iommu, x86: Setup Posted-Interrupts capability for Intel iommu
iommu, x86: Add cap_pi_support() to detect VT-d PI capability
iommu, x86: Avoid migrating VT-d posted interrupts
iommu, x86: Save the mode (posted or remapped) of an IRTE
iommu, x86: Implement irq_set_vcpu_affinity for intel_ir_chip
iommu: dmar: Provide helper to copy shared irte fields
iommu: dmar: Extend struct irte for VT-d Posted-Interrupts
iommu: Add new member capability to struct irq_remap_ops
x86/asm/entry/64: Disentangle error_entry/exit gsbase/ebx/usermode code
x86/asm/entry/32: Shorten __audit_syscall_entry() args preparation
x86/asm/entry/32: Explain reloading of registers after __audit_syscall_entry()
...
When we are booting into a kdump kernel and find IR enabled,
copy over the contents of the previous IR table so that
spurious interrupts will not be target aborted.
Tested-by: ZhenHua Li <zhen-hual@hp.com>
Tested-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Add code to detect whether translation is already enabled in
the IOMMU. Save this state in a flags field added to
struct intel_iommu.
Tested-by: ZhenHua Li <zhen-hual@hp.com>
Tested-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
The existing hardware implementations with PASID support advertised in
bit 28? Forget them. They do not exist. Bit 28 means nothing. When we
have something that works, it'll use bit 40. Do not attempt to infer
anything meaningful from bit 28.
This will be reflected in an updated VT-d spec in the extremely near
future.
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>