Add TIF_NOTIFY_SIGNAL handling in the generic entry code, which if set,
will return true if signal_pending() is used in a wait loop. That causes an
exit of the loop so that notify_signal tracehooks can be run. If the wait
loop is currently inside a system call, the system call is restarted once
task_work has been processed.
In preparation for only having arch_do_signal() handle syscall restarts if
_TIF_SIGPENDING isn't set, rename it to arch_do_signal_or_restart(). Pass
in a boolean that tells the architecture specific signal handler if it
should attempt to get a signal, or just process a potential syscall
restart.
For !CONFIG_GENERIC_ENTRY archs, add the TIF_NOTIFY_SIGNAL handling to
get_signal(). This is done to minimize the needed architecture changes to
support this feature.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Link: https://lore.kernel.org/r/20201026203230.386348-3-axboe@kernel.dk
This is in preparation for maintaining signal_pending() as the decider of
whether or not a schedule() loop should be broken, or continue sleeping.
This is different than the core signal use cases, which really need to know
whether an actual signal is pending or not. task_sigpending() returns
non-zero if TIF_SIGPENDING is set.
Only core kernel use cases should care about the distinction between
the two, make sure those use the task_sigpending() helper.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Link: https://lore.kernel.org/r/20201026203230.386348-2-axboe@kernel.dk
Use a more generic form for __section that requires quotes to avoid
complications with clang and gcc differences.
Remove the quote operator # from compiler_attributes.h __section macro.
Convert all unquoted __section(foo) uses to quoted __section("foo").
Also convert __attribute__((section("foo"))) uses to __section("foo")
even if the __attribute__ has multiple list entry forms.
Conversion done using the script at:
https://lore.kernel.org/lkml/75393e5ddc272dc7403de74d645e6c6e0f4e70eb.camel@perches.com/2-convert_section.pl
Signed-off-by: Joe Perches <joe@perches.com>
Reviewed-by: Nick Desaulniers <ndesaulniers@gooogle.com>
Reviewed-by: Miguel Ojeda <ojeda@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remote memcg charging API uses current->active_memcg to store the
currently active memory cgroup, which overwrites the memory cgroup of the
current process. It works well for normal contexts, but doesn't work for
interrupt contexts: indeed, if an interrupt occurs during the execution of
a section with an active memcg set, all allocations inside the interrupt
will be charged to the active memcg set (given that we'll enable
accounting for allocations from an interrupt context). But because the
interrupt might have no relation to the active memcg set outside, it's
obviously wrong from the accounting prospective.
To resolve this problem, let's add a global percpu int_active_memcg
variable, which will be used to store an active memory cgroup which will
be used from interrupt contexts. set_active_memcg() will transparently
use current->active_memcg or int_active_memcg depending on the context.
To make the read part simple and transparent for the caller, let's
introduce two new functions:
- struct mem_cgroup *active_memcg(void),
- struct mem_cgroup *get_active_memcg(void).
They are returning the active memcg if it's set, hiding all implementation
details: where to get it depending on the current context.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Link: http://lkml.kernel.org/r/20200827225843.1270629-4-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently the remote memcg charging API consists of two functions:
memalloc_use_memcg() and memalloc_unuse_memcg(), which set and clear the
memcg value, which overwrites the memcg of the current task.
memalloc_use_memcg(target_memcg);
<...>
memalloc_unuse_memcg();
It works perfectly for allocations performed from a normal context,
however an attempt to call it from an interrupt context or just nest two
remote charging blocks will lead to an incorrect accounting. On exit from
the inner block the active memcg will be cleared instead of being
restored.
memalloc_use_memcg(target_memcg);
memalloc_use_memcg(target_memcg_2);
<...>
memalloc_unuse_memcg();
Error: allocation here are charged to the memcg of the current
process instead of target_memcg.
memalloc_unuse_memcg();
This patch extends the remote charging API by switching to a single
function: struct mem_cgroup *set_active_memcg(struct mem_cgroup *memcg),
which sets the new value and returns the old one. So a remote charging
block will look like:
old_memcg = set_active_memcg(target_memcg);
<...>
set_active_memcg(old_memcg);
This patch is heavily based on the patch by Johannes Weiner, which can be
found here: https://lkml.org/lkml/2020/5/28/806 .
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Dan Schatzberg <dschatzberg@fb.com>
Link: https://lkml.kernel.org/r/20200821212056.3769116-1-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The preceding patches have ensured that core dumping properly takes the
mmap_lock. Thanks to that, we can now remove mmget_still_valid() and all
its users.
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: "Eric W . Biederman" <ebiederm@xmission.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Link: http://lkml.kernel.org/r/20200827114932.3572699-8-jannh@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCXz5bNAAKCRCRxhvAZXjc
opfjAP9R/J72yxdd2CLGNZ96hyiRX1NgFDOVUhscOvujYJf8ZwD+OoLmKMvAyFW6
hnMhT1n9Q+aq194hyzChOLQaBTejBQ8=
=4WCX
-----END PGP SIGNATURE-----
Merge tag 'kernel-clone-v5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux
Pull kernel_clone() updates from Christian Brauner:
"During the v5.9 merge window we reworked the process creation
codepaths across multiple architectures. After this work we were only
left with the _do_fork() helper based on the struct kernel_clone_args
calling convention. As was pointed out _do_fork() isn't valid
kernelese especially for a helper that isn't just static.
This series removes the _do_fork() helper and introduces the new
kernel_clone() helper. The process creation cleanup didn't change the
name to something more reasonable mainly because _do_fork() was used
in quite a few places. So sending this as a separate series seemed the
better strategy.
I originally intended to send this early in the v5.9 development cycle
after the merge window had closed but given that this was touching
quite a few places I decided to defer this until the v5.10 merge
window"
* tag 'kernel-clone-v5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux:
sched: remove _do_fork()
tracing: switch to kernel_clone()
kgdbts: switch to kernel_clone()
kprobes: switch to kernel_clone()
x86: switch to kernel_clone()
sparc: switch to kernel_clone()
nios2: switch to kernel_clone()
m68k: switch to kernel_clone()
ia64: switch to kernel_clone()
h8300: switch to kernel_clone()
fork: introduce kernel_clone()
Currently __set_oom_adj loops through all processes in the system to keep
oom_score_adj and oom_score_adj_min in sync between processes sharing
their mm. This is done for any task with more that one mm_users, which
includes processes with multiple threads (sharing mm and signals).
However for such processes the loop is unnecessary because their signal
structure is shared as well.
Android updates oom_score_adj whenever a tasks changes its role
(background/foreground/...) or binds to/unbinds from a service, making it
more/less important. Such operation can happen frequently. We noticed
that updates to oom_score_adj became more expensive and after further
investigation found out that the patch mentioned in "Fixes" introduced a
regression. Using Pixel 4 with a typical Android workload, write time to
oom_score_adj increased from ~3.57us to ~362us. Moreover this regression
linearly depends on the number of multi-threaded processes running on the
system.
Mark the mm with a new MMF_MULTIPROCESS flag bit when task is created with
(CLONE_VM && !CLONE_THREAD && !CLONE_VFORK). Change __set_oom_adj to use
MMF_MULTIPROCESS instead of mm_users to decide whether oom_score_adj
update should be synchronized between multiple processes. To prevent
races between clone() and __set_oom_adj(), when oom_score_adj of the
process being cloned might be modified from userspace, we use
oom_adj_mutex. Its scope is changed to global.
The combination of (CLONE_VM && !CLONE_THREAD) is rarely used except for
the case of vfork(). To prevent performance regressions of vfork(), we
skip taking oom_adj_mutex and setting MMF_MULTIPROCESS when CLONE_VFORK is
specified. Clearing the MMF_MULTIPROCESS flag (when the last process
sharing the mm exits) is left out of this patch to keep it simple and
because it is believed that this threading model is rare. Should there
ever be a need for optimizing that case as well, it can be done by hooking
into the exit path, likely following the mm_update_next_owner pattern.
With the combination of (CLONE_VM && !CLONE_THREAD && !CLONE_VFORK) being
quite rare, the regression is gone after the change is applied.
[surenb@google.com: v3]
Link: https://lkml.kernel.org/r/20200902012558.2335613-1-surenb@google.com
Fixes: 44a70adec9 ("mm, oom_adj: make sure processes sharing mm have same view of oom_score_adj")
Reported-by: Tim Murray <timmurray@google.com>
Suggested-by: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Christian Brauner <christian.brauner@ubuntu.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Eugene Syromiatnikov <esyr@redhat.com>
Cc: Christian Kellner <christian@kellner.me>
Cc: Adrian Reber <areber@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Aleksa Sarai <cyphar@cyphar.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Alexey Gladkov <gladkov.alexey@gmail.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Andrei Vagin <avagin@gmail.com>
Cc: Bernd Edlinger <bernd.edlinger@hotmail.de>
Cc: John Johansen <john.johansen@canonical.com>
Cc: Yafang Shao <laoar.shao@gmail.com>
Link: https://lkml.kernel.org/r/20200824153036.3201505-1-surenb@google.com
Debugged-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patchset is based on Google-internal RSEQ work done by Paul
Turner and Andrew Hunter.
When working with per-CPU RSEQ-based memory allocations, it is
sometimes important to make sure that a global memory location is no
longer accessed from RSEQ critical sections. For example, there can be
two per-CPU lists, one is "active" and accessed per-CPU, while another
one is inactive and worked on asynchronously "off CPU" (e.g. garbage
collection is performed). Then at some point the two lists are
swapped, and a fast RCU-like mechanism is required to make sure that
the previously active list is no longer accessed.
This patch introduces such a mechanism: in short, membarrier() syscall
issues an IPI to a CPU, restarting a potentially active RSEQ critical
section on the CPU.
Signed-off-by: Peter Oskolkov <posk@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lkml.kernel.org/r/20200923233618.2572849-1-posk@google.com
SD_DEGENERATE_GROUPS_MASK is only useful for sched/topology.c, but still
gets defined for anyone who imports topology.h, leading to a flurry of
unused variable warnings.
Move it out of the header and place it next to the SD degeneration
functions in sched/topology.c.
Fixes: 4ee4ea443a ("sched/topology: Introduce SD metaflag for flags needing > 1 groups")
Reported-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200825133216.9163-2-valentin.schneider@arm.com
Defining an array in a header imported all over the place clearly is a daft
idea, that still didn't stop me from doing it.
Leave a declaration of sd_flag_debug in topology.h and move its definition
to sched/debug.c.
Fixes: b6e862f386 ("sched/topology: Define and assign sched_domain flag metadata")
Reported-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200825133216.9163-1-valentin.schneider@arm.com
The old _do_fork() helper doesn't follow naming conventions of in-kernel
helpers for syscalls. The process creation cleanup in [1] didn't change the
name to something more reasonable mainly because _do_fork() was used in quite a
few places. So sending this as a separate series seemed the better strategy.
This commit does two things:
1. renames _do_fork() to kernel_clone() but keeps _do_fork() as a simple static
inline wrapper around kernel_clone().
2. Changes the return type from long to pid_t. This aligns kernel_thread() and
kernel_clone(). Also, the return value from kernel_clone that is surfaced in
fork(), vfork(), clone(), and clone3() is taken from pid_vrn() which returns
a pid_t too.
Follow-up patches will switch each caller of _do_fork() and each place where it
is referenced over to kernel_clone(). After all these changes are done, we can
remove _do_fork() completely and will only be left with kernel_clone().
[1]: 9ba27414f2 ("Merge tag 'fork-v5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux")
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Link: https://lore.kernel.org/r/20200819104655.436656-2-christian.brauner@ubuntu.com
There would be no point in preserving a sched_domain with a single group
just because it has this flag set. Add it to SD_DEGENERATE_GROUPS_MASK.
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: https://lore.kernel.org/r/20200817113003.20802-17-valentin.schneider@arm.com
A sched_domain can only have overlapping sched_groups if it has more than
one group.
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: https://lore.kernel.org/r/20200817113003.20802-16-valentin.schneider@arm.com
Being a load-balancing flag, it requires 2+ groups to have any effect.
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: https://lore.kernel.org/r/20200817113003.20802-15-valentin.schneider@arm.com
There would be no point in preserving a sched_domain with a single group
just because it has this flag set. Add it to SD_DEGENERATE_GROUPS_MASK.
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: https://lore.kernel.org/r/20200817113003.20802-14-valentin.schneider@arm.com
Even if no mainline topology uses this flag, it is a load balancing flag
just like SD_BALANCE_FORK and requires 2+ groups to have any effect.
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: https://lore.kernel.org/r/20200817113003.20802-13-valentin.schneider@arm.com
SD_PREFER_SIBLING is currently considered in sd_parent_degenerate() but not
in sd_degenerate(). It too hinges on load balancing, and thus won't have
any effect when set on a domain with a single group. Add it to
SD_DEGENERATE_GROUPS_MASK.
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: https://lore.kernel.org/r/20200817113003.20802-12-valentin.schneider@arm.com
We currently set this flag *only* on domains whose topology level exactly
match the level where we detect asymmetry (as returned by
asym_cpu_capacity_level()). This is rather problematic.
Say there are two clusters in the system, one with a lone big CPU and the
other with a mix of big and LITTLE CPUs (as is allowed by DynamIQ):
DIE [ ]
MC [ ][ ]
0 1 2 3 4
L L B B B
asym_cpu_capacity_level() will figure out that the MC level is the one
where all CPUs can see a CPU of max capacity, and we will thus set
SD_ASYM_CPUCAPACITY at MC level for all CPUs.
That lone big CPU will degenerate its MC domain, since it would be alone in
there, and will end up with just a DIE domain. Since the flag was only set
at MC, this CPU ends up not seeing any SD with the flag set, which is
broken.
Rather than clearing dflags at every topology level, clear it before
entering the topology level loop. This will properly propagate upwards
flags that are set starting from a certain level.
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Quentin Perret <qperret@google.com>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: https://lore.kernel.org/r/20200817113003.20802-11-valentin.schneider@arm.com
In preparation of cleaning up the sd_degenerate*() functions, mark flags
used in sd_degenerate() with the new SDF_NEEDS_GROUPS flag. With this,
build a compile-time mask of those SD flags.
Note that sd_parent_degenerate() uses an extra flag in its mask,
SD_PREFER_SIBLING, which remains singled out for now.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: https://lore.kernel.org/r/20200817113003.20802-8-valentin.schneider@arm.com
There are some expectations regarding how sched domain flags should be laid
out, but none of them are checked or asserted in
sched_domain_debug_one(). After staring at said flags for a while, I've
come to realize there's two repeating patterns:
- Shared with children: those flags are set from the base CPU domain
upwards. Any domain that has it set will have it set in its children. It
hints at "some property holds true / some behaviour is enabled until this
level".
- Shared with parents: those flags are set from the topmost domain
downwards. Any domain that has it set will have it set in its parents. It
hints at "some property isn't visible / some behaviour is disabled until
this level".
There are two outliers that (currently) do not map to either of these:
o SD_PREFER_SIBLING, which is cleared below levels with
SD_ASYM_CPUCAPACITY. The change was introduced by commit:
9c63e84db2 ("sched/core: Disable SD_PREFER_SIBLING on asymmetric CPU capacity domains")
as it could break misfit migration on some systems. In light of this, we
might want to change it back to make it fit one of the two categories and
fix the issue another way.
o SD_ASYM_CPUCAPACITY, which gets set on a single level and isn't
propagated up nor down. From a topology description point of view, it
really wants to be SDF_SHARED_PARENT; this will be rectified in a later
patch.
Tweak the sched_domain flag declaration to assign each flag an expected
layout, and include the rationale for each flag "meta type" assignment as a
comment. Consolidate the flag metadata into an array; the index of a flag's
metadata can easily be found with log2(flag), IOW __ffs(flag).
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: https://lore.kernel.org/r/20200817113003.20802-5-valentin.schneider@arm.com
To associate the SD flags with some metadata, we need some more structure
in the way they are declared.
Rather than shove that in a free-standing macro list, move the declaration
in a separate file that can be re-imported with different SD_FLAG
definitions. This is inspired by what is done with the syscall
table (see uapi/asm/unistd.h and sys_call_table).
The value assigned to a given SD flag now depends on the order it appears
in sd_flags.h. No change in functionality.
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: https://lore.kernel.org/r/20200817113003.20802-4-valentin.schneider@arm.com
This flag was introduced in 2014 by commit:
d77b3ed5c9 ("sched: Add a new SD_SHARE_POWERDOMAIN for sched_domain")
but AFAIA it was never leveraged by the scheduler. The closest thing I can
think of is EAS caring about frequency domains, and it does that by
leveraging performance domains.
Remove the flag. No change in functionality is expected.
Suggested-by: Morten Rasmussen <morten.rasmussen@arm.com>
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: https://lore.kernel.org/r/20200817113003.20802-2-valentin.schneider@arm.com
Impose a limit on the number of watches that a user can hold so that
they can't use this mechanism to fill up all the available memory.
This is done by putting a counter in user_struct that's incremented when
a watch is allocated and decreased when it is released. If the number
exceeds the RLIMIT_NOFILE limit, the watch is rejected with EAGAIN.
This can be tested by the following means:
(1) Create a watch queue and attach it to fd 5 in the program given - in
this case, bash:
keyctl watch_session /tmp/nlog /tmp/gclog 5 bash
(2) In the shell, set the maximum number of files to, say, 99:
ulimit -n 99
(3) Add 200 keyrings:
for ((i=0; i<200; i++)); do keyctl newring a$i @s || break; done
(4) Try to watch all of the keyrings:
for ((i=0; i<200; i++)); do echo $i; keyctl watch_add 5 %:a$i || break; done
This should fail when the number of watches belonging to the user hits
99.
(5) Remove all the keyrings and all of those watches should go away:
for ((i=0; i<200; i++)); do keyctl unlink %:a$i; done
(6) Kill off the watch queue by exiting the shell spawned by
watch_session.
Fixes: c73be61ced ("pipe: Add general notification queue support")
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a helper that waits for a pid and stores the status in the passed in
kernel pointer. Use it to fix the usage of kernel_wait4 in
call_usermodehelper_exec_sync that only happens to work due to the
implicit set_fs(KERNEL_DS) for kernel threads.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Link: http://lkml.kernel.org/r/20200721130449.5008-1-hch@lst.de
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The current_gfp_context() converts a number of PF_MEMALLOC_* per-process
flags into the corresponding GFP_* flags for memory allocation. In that
function, current->flags is accessed 3 times. That may lead to duplicated
access of the same memory location.
This is not usually a problem with minimal debug config options on as the
compiler can optimize away the duplicated memory accesses. With most of
the debug config options on, however, that may not be the case. For
example, the x86-64 object size of the __need_fs_reclaim() in a debug
kernel that calls current_gfp_context() was 309 bytes. With this patch
applied, the object size is reduced to 202 bytes. This is a saving of 107
bytes and will probably be slightly faster too.
Use READ_ONCE() to access current->flags to prevent the compiler from
possibly accessing current->flags multiple times.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Michel Lespinasse <walken@google.com>
Link: http://lkml.kernel.org/r/20200618212936.9776-1-longman@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, memalloc_nocma_{save/restore} API that prevents CMA area
in page allocation is implemented by using current_gfp_context(). However,
there are two problems of this implementation.
First, this doesn't work for allocation fastpath. In the fastpath,
original gfp_mask is used since current_gfp_context() is introduced in
order to control reclaim and it is on slowpath. So, CMA area can be
allocated through the allocation fastpath even if
memalloc_nocma_{save/restore} APIs are used. Currently, there is just
one user for these APIs and it has a fallback method to prevent actual
problem.
Second, clearing __GFP_MOVABLE in current_gfp_context() has a side effect
to exclude the memory on the ZONE_MOVABLE for allocation target.
To fix these problems, this patch changes the implementation to exclude
CMA area in page allocation. Main point of this change is using the
alloc_flags. alloc_flags is mainly used to control allocation so it fits
for excluding CMA area in allocation.
Fixes: d7fefcc8de (mm/cma: add PF flag to force non cma alloc)
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com>
Link: http://lkml.kernel.org/r/1595468942-29687-1-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCXyge/QAKCRCRxhvAZXjc
oildAQCCWpnTeXm6hrIE3VZ36X5npFtbaEthdBVAUJM7mo0FYwEA8+Wbnubg6jCw
mztkXCnTfU7tApUdhKtQzcpEws45/Qk=
=REE/
-----END PGP SIGNATURE-----
Merge tag 'fork-v5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux
Pull fork cleanups from Christian Brauner:
"This is cleanup series from when we reworked a chunk of the process
creation paths in the kernel and switched to struct
{kernel_}clone_args.
High-level this does two main things:
- Remove the double export of both do_fork() and _do_fork() where
do_fork() used the incosistent legacy clone calling convention.
Now we only export _do_fork() which is based on struct
kernel_clone_args.
- Remove the copy_thread_tls()/copy_thread() split making the
architecture specific HAVE_COYP_THREAD_TLS config option obsolete.
This switches all remaining architectures to select
HAVE_COPY_THREAD_TLS and thus to the copy_thread_tls() calling
convention. The current split makes the process creation codepaths
more convoluted than they need to be. Each architecture has their own
copy_thread() function unless it selects HAVE_COPY_THREAD_TLS then it
has a copy_thread_tls() function.
The split is not needed anymore nowadays, all architectures support
CLONE_SETTLS but quite a few of them never bothered to select
HAVE_COPY_THREAD_TLS and instead simply continued to use copy_thread()
and use the old calling convention. Removing this split cleans up the
process creation codepaths and paves the way for implementing clone3()
on such architectures since it requires the copy_thread_tls() calling
convention.
After having made each architectures support copy_thread_tls() this
series simply renames that function back to copy_thread(). It also
switches all architectures that call do_fork() directly over to
_do_fork() and the struct kernel_clone_args calling convention. This
is a corollary of switching the architectures that did not yet support
it over to copy_thread_tls() since do_fork() is conditional on not
supporting copy_thread_tls() (Mostly because it lacks a separate
argument for tls which is trivial to fix but there's no need for this
function to exist.).
The do_fork() removal is in itself already useful as it allows to to
remove the export of both do_fork() and _do_fork() we currently have
in favor of only _do_fork(). This has already been discussed back when
we added clone3(). The legacy clone() calling convention is - as is
probably well-known - somewhat odd:
#
# ABI hall of shame
#
config CLONE_BACKWARDS
config CLONE_BACKWARDS2
config CLONE_BACKWARDS3
that is aggravated by the fact that some architectures such as sparc
follow the CLONE_BACKWARDSx calling convention but don't really select
the corresponding config option since they call do_fork() directly.
So do_fork() enforces a somewhat arbitrary calling convention in the
first place that doesn't really help the individual architectures that
deviate from it. They can thus simply be switched to _do_fork()
enforcing a single calling convention. (I really hope that any new
architectures will __not__ try to implement their own calling
conventions...)
Most architectures already have made a similar switch (m68k comes to
mind).
Overall this removes more code than it adds even with a good portion
of added comments. It simplifies a chunk of arch specific assembly
either by moving the code into C or by simply rewriting the assembly.
Architectures that have been touched in non-trivial ways have all been
actually boot and stress tested: sparc and ia64 have been tested with
Debian 9 images. They are the two architectures which have been
touched the most. All non-trivial changes to architectures have seen
acks from the relevant maintainers. nios2 with a custom built
buildroot image. h8300 I couldn't get something bootable to test on
but the changes have been fairly automatic and I'm sure we'll hear
people yell if I broke something there.
All other architectures that have been touched in trivial ways have
been compile tested for each single patch of the series via git rebase
-x "make ..." v5.8-rc2. arm{64} and x86{_64} have been boot tested
even though they have just been trivially touched (removal of the
HAVE_COPY_THREAD_TLS macro from their Kconfig) because well they are
basically "core architectures" and since it is trivial to get your
hands on a useable image"
* tag 'fork-v5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux:
arch: rename copy_thread_tls() back to copy_thread()
arch: remove HAVE_COPY_THREAD_TLS
unicore: switch to copy_thread_tls()
sh: switch to copy_thread_tls()
nds32: switch to copy_thread_tls()
microblaze: switch to copy_thread_tls()
hexagon: switch to copy_thread_tls()
c6x: switch to copy_thread_tls()
alpha: switch to copy_thread_tls()
fork: remove do_fork()
h8300: select HAVE_COPY_THREAD_TLS, switch to kernel_clone_args
nios2: enable HAVE_COPY_THREAD_TLS, switch to kernel_clone_args
ia64: enable HAVE_COPY_THREAD_TLS, switch to kernel_clone_args
sparc: unconditionally enable HAVE_COPY_THREAD_TLS
sparc: share process creation helpers between sparc and sparc64
sparc64: enable HAVE_COPY_THREAD_TLS
fork: fold legacy_clone_args_valid() into _do_fork()
Pull execve updates from Eric Biederman:
"During the development of v5.7 I ran into bugs and quality of
implementation issues related to exec that could not be easily fixed
because of the way exec is implemented. So I have been diggin into
exec and cleaning up what I can.
This cycle I have been looking at different ideas and different
implementations to see what is possible to improve exec, and cleaning
the way exec interfaces with in kernel users. Only cleaning up the
interfaces of exec with rest of the kernel has managed to stabalize
and make it through review in time for v5.9-rc1 resulting in 2 sets of
changes this cycle.
- Implement kernel_execve
- Make the user mode driver code a better citizen
With kernel_execve the code size got a little larger as the copying of
parameters from userspace and copying of parameters from userspace is
now separate. The good news is kernel threads no longer need to play
games with set_fs to use exec. Which when combined with the rest of
Christophs set_fs changes should security bugs with set_fs much more
difficult"
* 'exec-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (23 commits)
exec: Implement kernel_execve
exec: Factor bprm_stack_limits out of prepare_arg_pages
exec: Factor bprm_execve out of do_execve_common
exec: Move bprm_mm_init into alloc_bprm
exec: Move initialization of bprm->filename into alloc_bprm
exec: Factor out alloc_bprm
exec: Remove unnecessary spaces from binfmts.h
umd: Stop using split_argv
umd: Remove exit_umh
bpfilter: Take advantage of the facilities of struct pid
exit: Factor thread_group_exited out of pidfd_poll
umd: Track user space drivers with struct pid
bpfilter: Move bpfilter_umh back into init data
exec: Remove do_execve_file
umh: Stop calling do_execve_file
umd: Transform fork_usermode_blob into fork_usermode_driver
umd: Rename umd_info.cmdline umd_info.driver_name
umd: For clarity rename umh_info umd_info
umh: Separate the user mode driver and the user mode helper support
umh: Remove call_usermodehelper_setup_file.
...
- Improve uclamp performance by using a static key for the fast path
- Add the "sched_util_clamp_min_rt_default" sysctl, to optimize for
better power efficiency of RT tasks on battery powered devices.
(The default is to maximize performance & reduce RT latencies.)
- Improve utime and stime tracking accuracy, which had a fixed boundary
of error, which created larger and larger relative errors as the values
become larger. This is now replaced with more precise arithmetics,
using the new mul_u64_u64_div_u64() helper in math64.h.
- Improve the deadline scheduler, such as making it capacity aware
- Improve frequency-invariant scheduling
- Misc cleanups in energy/power aware scheduling
- Add sched_update_nr_running tracepoint to track changes to nr_running
- Documentation additions and updates
- Misc cleanups and smaller fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAl8oJDURHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1ixLg//bqWzFlfWirvngTgDxDnplwUTyKXmMCcq
R1IYhlyK2O5FxvhbRmdmW11W3yzyTPvgCs6Q/70negGaPNe2w1OxfxiK9NMKz5eu
M1LoXas7pL5g7Pr/ZxxHk/8VqJLV4t9MkodiiInmV6lTaznT3sU6a/kpYQjJyFnG
Tuu9jd6JhdRKmePDJnNmUBoGQ7JiOQDcX4HtkcQ3OA+An3624tmJzbW1yts+uj7J
ZWo2EY60RfbA9MxQXGPOaR/nAjngWs4Q6tddAh10mftsPq1gR2iFUKju1d31MQt/
RHLdiqJf+AyUC4popKG7a+7ilCKMBwPociSreTJNPyEUQ1X4AM3vUVk4yjUoiDph
k2WdsCF8/JRdhXg0NnrpPUqOaAbQj53EeXnitEb92E7WyTZgLOvAtpV//xZo6utp
2QHerfrQ9SoGQjz/ho78za5vQtV1x25yDhd+X4XV4QEhIy85G9/2JCpC/Kc/TXLf
OO7A4X69XztKTEJhP60g8ldCPUe4N2vbh1vKY6oAD8AFQVVNZ6n7375/Qa//b0/k
++hcYkPc2EK97/aBFdvzDgqb7aUo7Mtn2ibke16sQU4szulaoRuAHQG4jdGKMwbD
dk2VBoxyxeYFXWHsNneSe87+ha3sd0dSN0ul1EB/SlFrVELMvy634YXnMYGW8ima
PzyPB0ezpuA=
=PbO7
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2020-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
- Improve uclamp performance by using a static key for the fast path
- Add the "sched_util_clamp_min_rt_default" sysctl, to optimize for
better power efficiency of RT tasks on battery powered devices.
(The default is to maximize performance & reduce RT latencies.)
- Improve utime and stime tracking accuracy, which had a fixed boundary
of error, which created larger and larger relative errors as the
values become larger. This is now replaced with more precise
arithmetics, using the new mul_u64_u64_div_u64() helper in math64.h.
- Improve the deadline scheduler, such as making it capacity aware
- Improve frequency-invariant scheduling
- Misc cleanups in energy/power aware scheduling
- Add sched_update_nr_running tracepoint to track changes to nr_running
- Documentation additions and updates
- Misc cleanups and smaller fixes
* tag 'sched-core-2020-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (54 commits)
sched/doc: Factorize bits between sched-energy.rst & sched-capacity.rst
sched/doc: Document capacity aware scheduling
sched: Document arch_scale_*_capacity()
arm, arm64: Fix selection of CONFIG_SCHED_THERMAL_PRESSURE
Documentation/sysctl: Document uclamp sysctl knobs
sched/uclamp: Add a new sysctl to control RT default boost value
sched/uclamp: Fix a deadlock when enabling uclamp static key
sched: Remove duplicated tick_nohz_full_enabled() check
sched: Fix a typo in a comment
sched/uclamp: Remove unnecessary mutex_init()
arm, arm64: Select CONFIG_SCHED_THERMAL_PRESSURE
sched: Cleanup SCHED_THERMAL_PRESSURE kconfig entry
arch_topology, sched/core: Cleanup thermal pressure definition
trace/events/sched.h: fix duplicated word
linux/sched/mm.h: drop duplicated words in comments
smp: Fix a potential usage of stale nr_cpus
sched/fair: update_pick_idlest() Select group with lowest group_util when idle_cpus are equal
sched: nohz: stop passing around unused "ticks" parameter.
sched: Better document ttwu()
sched: Add a tracepoint to track rq->nr_running
...
Rather that hide their purpose in some dark, damp corner of Documentation/,
add some documentation to the default implementations.
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200731192016.7484-2-valentin.schneider@arm.com
RT tasks by default run at the highest capacity/performance level. When
uclamp is selected this default behavior is retained by enforcing the
requested uclamp.min (p->uclamp_req[UCLAMP_MIN]) of the RT tasks to be
uclamp_none(UCLAMP_MAX), which is SCHED_CAPACITY_SCALE; the maximum
value.
This is also referred to as 'the default boost value of RT tasks'.
See commit 1a00d99997 ("sched/uclamp: Set default clamps for RT tasks").
On battery powered devices, it is desired to control this default
(currently hardcoded) behavior at runtime to reduce energy consumed by
RT tasks.
For example, a mobile device manufacturer where big.LITTLE architecture
is dominant, the performance of the little cores varies across SoCs, and
on high end ones the big cores could be too power hungry.
Given the diversity of SoCs, the new knob allows manufactures to tune
the best performance/power for RT tasks for the particular hardware they
run on.
They could opt to further tune the value when the user selects
a different power saving mode or when the device is actively charging.
The runtime aspect of it further helps in creating a single kernel image
that can be run on multiple devices that require different tuning.
Keep in mind that a lot of RT tasks in the system are created by the
kernel. On Android for instance I can see over 50 RT tasks, only
a handful of which created by the Android framework.
To control the default behavior globally by system admins and device
integrator, introduce the new sysctl_sched_uclamp_util_min_rt_default
to change the default boost value of the RT tasks.
I anticipate this to be mostly in the form of modifying the init script
of a particular device.
To avoid polluting the fast path with unnecessary code, the approach
taken is to synchronously do the update by traversing all the existing
tasks in the system. This could race with a concurrent fork(), which is
dealt with by introducing sched_post_fork() function which will ensure
the racy fork will get the right update applied.
Tested on Juno-r2 in combination with the RT capacity awareness [1].
By default an RT task will go to the highest capacity CPU and run at the
maximum frequency, which is particularly energy inefficient on high end
mobile devices because the biggest core[s] are 'huge' and power hungry.
With this patch the RT task can be controlled to run anywhere by
default, and doesn't cause the frequency to be maximum all the time.
Yet any task that really needs to be boosted can easily escape this
default behavior by modifying its requested uclamp.min value
(p->uclamp_req[UCLAMP_MIN]) via sched_setattr() syscall.
[1] 804d402fb6f6: ("sched/rt: Make RT capacity-aware")
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200716110347.19553-2-qais.yousef@arm.com
put_task_struct_many() is as put_task_struct() but puts several
references at once. Useful to batching it.
Signed-off-by: Pavel Begunkov <asml.silence@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The following commit:
14533a16c4 ("thermal/cpu-cooling, sched/core: Move the arch_set_thermal_pressure() API to generic scheduler code")
moved the definition of arch_set_thermal_pressure() to sched/core.c, but
kept its declaration in linux/arch_topology.h. When building e.g. an x86
kernel with CONFIG_SCHED_THERMAL_PRESSURE=y, cpufreq_cooling.c ends up
getting the declaration of arch_set_thermal_pressure() from
include/linux/arch_topology.h, which is somewhat awkward.
On top of this, sched/core.c unconditionally defines
o The thermal_pressure percpu variable
o arch_set_thermal_pressure()
while arch_scale_thermal_pressure() does nothing unless redefined by the
architecture.
arch_*() functions are meant to be defined by architectures, so revert the
aforementioned commit and re-implement it in a way that keeps
arch_set_thermal_pressure() architecture-definable, and doesn't define the
thermal pressure percpu variable for kernels that don't need
it (CONFIG_SCHED_THERMAL_PRESSURE=n).
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200712165917.9168-2-valentin.schneider@arm.com
The "ticks" parameter was added in commit 0f004f5a69 ("sched: Cure more
NO_HZ load average woes") since calc_global_nohz() was called and needed
the "ticks" argument.
But in commit c308b56b53 ("sched: Fix nohz load accounting -- again!")
it became unused as the function calc_global_nohz() dropped using "ticks".
Fixes: c308b56b53 ("sched: Fix nohz load accounting -- again!")
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1593628458-32290-1-git-send-email-paul.gortmaker@windriver.com
Create an independent helper thread_group_exited which returns true
when all threads have passed exit_notify in do_exit. AKA all of the
threads are at least zombies and might be dead or completely gone.
Create this helper by taking the logic out of pidfd_poll where it is
already tested, and adding a READ_ONCE on the read of
task->exit_state.
I will be changing the user mode driver code to use this same logic
to know when a user mode driver needs to be restarted.
Place the new helper thread_group_exited in kernel/exit.c and
EXPORT it so it can be used by modules.
Link: https://lkml.kernel.org/r/20200702164140.4468-13-ebiederm@xmission.com
Acked-by: Christian Brauner <christian.brauner@ubuntu.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Tested-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Now that HAVE_COPY_THREAD_TLS has been removed, rename copy_thread_tls()
back simply copy_thread(). It's a simpler name, and doesn't imply that only
tls is copied here. This finishes an outstanding chunk of internal process
creation work since we've added clone3().
Cc: linux-arch@vger.kernel.org
Acked-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de>A
Acked-by: Stafford Horne <shorne@gmail.com>
Acked-by: Greentime Hu <green.hu@gmail.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>A
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
All architectures support copy_thread_tls() now, so remove the legacy
copy_thread() function and the HAVE_COPY_THREAD_TLS config option. Everyone
uses the same process creation calling convention based on
copy_thread_tls() and struct kernel_clone_args. This will make it easier to
maintain the core process creation code under kernel/, simplifies the
callpaths and makes the identical for all architectures.
Cc: linux-arch@vger.kernel.org
Acked-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Acked-by: Greentime Hu <green.hu@gmail.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Now that all architectures have been switched to use _do_fork() and the new
struct kernel_clone_args calling convention we can remove the legacy
do_fork() helper completely. The calling convention used to be brittle and
do_fork() didn't buy us anything. The only calling convention accepted
should be based on struct kernel_clone_args going forward. It's cleaner and
uniform.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
So that the target task will exit the wait_event_interruptible-like
loop and call task_work_run() asap.
The patch turns "bool notify" into 0,TWA_RESUME,TWA_SIGNAL enum, the
new TWA_SIGNAL flag implies signal_wake_up(). However, it needs to
avoid the race with recalc_sigpending(), so the patch also adds the
new JOBCTL_TASK_WORK bit included in JOBCTL_PENDING_MASK.
TODO: once this patch is merged we need to change all current users
of task_work_add(notify = true) to use TWA_RESUME.
Cc: stable@vger.kernel.org # v5.7
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Commit
bf2c59fce4 ("sched/core: Fix illegal RCU from offline CPUs")
introduced a definition for mmdrop() but a a few lines above there is
already mmdrop() defined as static inline.
Remove the newly introduced mmdrop() definition.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200618190810.790211-1-bigeasy@linutronix.de
This separate helper only existed to guarantee the mutual exclusivity of
CLONE_PIDFD and CLONE_PARENT_SETTID for legacy clone since CLONE_PIDFD
abuses the parent_tid field to return the pidfd. But we can actually handle
this uniformely thus removing the helper. For legacy clone we can detect
that CLONE_PIDFD is specified in conjunction with CLONE_PARENT_SETTID
because they will share the same memory which is invalid and for clone3()
setting the separate pidfd and parent_tid fields to the same memory is
bogus as well. So fold that helper directly into _do_fork() by detecting
this case.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Cc: linux-m68k@lists.linux-m68k.org
Cc: x86@kernel.org
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
This is a kernel enhancement that configures the cpu affinity of kernel
threads via kernel boot option nohz_full=.
When this option is specified, the cpumask is immediately applied upon
kthread launch. This does not affect kernel threads that specify cpu
and node.
This allows CPU isolation (that is not allowing certain threads
to execute on certain CPUs) without using the isolcpus=domain parameter,
making it possible to enable load balancing on such CPUs
during runtime (see kernel-parameters.txt).
Note-1: this is based off on Wind River's patch at
https://github.com/starlingx-staging/stx-integ/blob/master/kernel/kernel-std/centos/patches/affine-compute-kernel-threads.patch
Difference being that this patch is limited to modifying kernel thread
cpumask. Behaviour of other threads can be controlled via cgroups or
sched_setaffinity.
Note-2: Wind River's patch was based off Christoph Lameter's patch at
https://lwn.net/Articles/565932/ with the only difference being
the kernel parameter changed from kthread to kthread_cpus.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200527142909.23372-3-frederic@kernel.org
Now the last users of show_stack() got converted to use an explicit log
level, show_stack_loglvl() can drop it's redundant suffix and become once
again well known show_stack().
Signed-off-by: Dmitry Safonov <dima@arista.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20200418201944.482088-51-dima@arista.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>