Trace the port status of each port of a roothub when
the xhci roothub receives a Get Hub Status request.
Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Add tracing showing the port status register content each time
the xhci roothub receives a Get Port Status request.
Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
xHCI compatible USB host controllers(i.e. super-speed USB3 controllers)
can be implemented with the Debug Capability(DbC). It presents a debug
device which is fully compliant with the USB framework and provides the
equivalent of a very high performance full-duplex serial link. The debug
capability operation model and registers interface are defined in 7.6.8
of the xHCI specification, revision 1.1.
The DbC debug device shares a root port with the xHCI host. By default,
the debug capability is disabled and the root port is assigned to xHCI.
When the DbC is enabled, the root port will be assigned to the DbC debug
device, and the xHCI sees nothing on this port. This implementation uses
a sysfs node named <dbc> under the xHCI device to manage the enabling
and disabling of the debug capability.
When the debug capability is enabled, it will present a debug device
through the debug port. This debug device is fully compliant with the
USB3 framework, and it can be enumerated by a debug host on the other
end of the USB link. As soon as the debug device is configured, a TTY
serial device named /dev/ttyDBC0 will be created.
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Now that the SPDX tag is in all USB files, that identifies the license
in a specific and legally-defined manner. So the extra GPL text wording
can be removed as it is no longer needed at all.
This is done on a quest to remove the 700+ different ways that files in
the kernel describe the GPL license text. And there's unneeded stuff
like the address (sometimes incorrect) for the FSF which is never
needed.
No copyright headers or other non-license-description text was removed.
Cc: Matthias Brugger <matthias.bgg@gmail.com>
Cc: Thierry Reding <thierry.reding@gmail.com>
Cc: Jonathan Hunter <jonathanh@nvidia.com>
Acked-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
It's good to have SPDX identifiers in all files to make it easier to
audit the kernel tree for correct licenses.
Update the drivers/usb/ and include/linux/usb* files with the correct
SPDX license identifier based on the license text in the file itself.
The SPDX identifier is a legally binding shorthand, which can be used
instead of the full boiler plate text.
This work is based on a script and data from Thomas Gleixner, Philippe
Ombredanne, and Kate Stewart.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: Felipe Balbi <felipe.balbi@linux.intel.com>
Acked-by: Johan Hovold <johan@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Track the port status in a human readble way each time we get a
port status change event
Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This patch creates a new event class called xhci_log_ring, and
defines the events used for tracing the change of all kinds of
rings used by an xhci host. An xHCI ring is basically a memory
block shared between software and hardware. By tracing changes
of rings, it makes the life easier for debugging hardware or
software problems.
This info can be used, later, to print, in a human readable way,
the life cycle of an xHCI ring using the trace-cmd tool and the
appropriate plugin.
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Reviewed-by: Felipe Balbi <felipe.balbi@linux.intel.com>
Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
With these, we can track what's happening with the HW while executing
each and every command. It will give us visibility into how the
different contexts are being modified by xHC which can bring insight
into problems while debugging.
Signed-off-by: Felipe Balbi <felipe.balbi@linux.intel.com>
Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This will help us figuring out which device $this URB belongs to while
debugging.
Signed-off-by: Felipe Balbi <felipe.balbi@linux.intel.com>
Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Let's start tracing at least part of an xhci_virt_device lifetime. We
might want to extend this tracepoint class later, but for now it already
exposes quite a bit of valuable information.
Signed-off-by: Felipe Balbi <felipe.balbi@linux.intel.com>
Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
If we add that newline, the output will look like the following:
kworker/2:1-42 [002] .... 169.811435: xhci_address_ctx:
ctx_64=0, ctx_type=2, ctx_dma=@153fbd000, ctx_va=@ffff880153fbd000
We would rather have that in a single line.
Signed-off-by: Felipe Balbi <felipe.balbi@linux.intel.com>
Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
These three new tracers will help us tie TRBs into URBs by *also*
looking into URB lifetime.
Signed-off-by: Felipe Balbi <felipe.balbi@linux.intel.com>
Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
instead of having a tracer that can only trace command completions,
let's promote this tracer so it can trace and decode any TRB.
With that, it will be easier to extrapolate the lifetime of any TRB
which might help debugging certain issues.
Signed-off-by: Felipe Balbi <felipe.balbi@linux.intel.com>
Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
New code will require TRACE_SYSTEM to be a valid C variable name,
but some tracepoints have TRACE_SYSTEM with '-' and not '_', so
it can not be used. Instead, add a TRACE_SYSTEM_VAR that can
give the tracing infrastructure a unique name for the trace system.
Cc: Xenia Ragiadakou <burzalodowa@gmail.com>
Cc: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Reviewed-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
This patch fixes the following sparse warnings:
drivers/usb/host/./xhci-trace.h:116:1: warning: cast to restricted __le32
drivers/usb/host/./xhci-trace.h:116:1: warning: cast to restricted __le32
drivers/usb/host/./xhci-trace.h:116:1: warning: restricted __le32 degrades to
integer
drivers/usb/host/./xhci-trace.h:116:1: warning: restricted __le32 degrades to
integer
by converting the field 'trb' of the trace buffer entry structure from array
with elements of type __le32 to an array with elements of type u8.
Into the trb array are copied the contents of the TRB that generated the event.
The trace-cmd tool with the help of plugin_xhci.py will use this field to
parse the TRB contents in a human readable way.
Signed-off-by: Xenia Ragiadakou <burzalodowa@gmail.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
This patch fixes the retrieval of the DMA address of the TRB that generated
the event by converting the field[0] (low address bits) and field[1] (high
address bits) to CPU byteorder and then typecasting field[1] to u64 so that
the bitshift will not lead to overflow.
In the original code, the typecasting of le32 to u64 was incorrect and the
subsequent conversion to le64 reverts the low and high address parts.
This bug was found using sparse.
Signed-off-by: Xenia Ragiadakou <burzalodowa@gmail.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
This patch defines a new trace event, which is called xhci_dbg_ring_expansion
and belongs to the event class xhci_log_msg, and adds tracepoints that trace
the debug messages associated with the expansion of endpoint ring when there
is not enough space allocated to hold all pending TRBs.
Signed-off-by: Xenia Ragiadakou <burzalodowa@gmail.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
This patch defines a new trace event, which is called xhci_dbg_init
and belongs to the event class xhci_log_msg, and adds tracepoints that
trace the debug statements in the functions used to start and stop the
xhci-hcd driver.
Also, it removes an unnecessary cast of variable val to unsigned int
in xhci_mem_init(), since val is already declared as unsigned int.
Signed-off-by: Xenia Ragiadakou <burzalodowa@gmail.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
This patch defines a new trace event, which is called xhci_dbg_cancel_urb
and belongs to the event class xhci_log_msg, and adds tracepoints that
trace the debug messages related to the removal of a cancelled URB from
the endpoint's transfer ring.
Signed-off-by: Xenia Ragiadakou <burzalodowa@gmail.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
This patch creates a new event class, called xhci_log_event,
and defines the xhci_cmd_completion trace event used for
tracing the commands issued to xHC that generate a completion
event in the event ring.
This info can be used, later, to print, in a human readable
way, the completion status and flags as well as the command's
type and fields using the trace-cmd tool and the appropriate
plugin.
Also, a tracepoint is added in handle_cmd_completion().
Signed-off-by: Xenia Ragiadakou <burzalodowa@gmail.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
This patch defines a new event class, called xhci_log_ctx,
that records in the ring buffer the context data, the
context type (input or output), the context dma and virtual
addresses, the context endpoint entries, the slot ID and
whether the xHC uses 64 byte context data structures.
This information can be used, later, to parse and display
the context data fields with the appropriate plugin using
the trace-cmd tool.
Also, this patch defines a trace event, called xhci_address_ctx,
to trace the contexts related to the Address Device command and
adds the associated tracepoints in xhci_address_device().
Signed-off-by: Xenia Ragiadakou <burzalodowa@gmail.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
This patch defines a new trace event, which is called xhci_dbg_reset_ep
and belongs in the event class xhci_log_msg, and adds tracepoints that
trace the debug messages associated with resetting an endpoint after
the reception of a STALL packet.
Signed-off-by: Xenia Ragiadakou <burzalodowa@gmail.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
This patch defines a new trace event, which is called xhci_dbg_quirks
and belongs in the event class xhci_log_msg, and adds tracepoints that
trace the debug messages associated with xHCs' quirks.
Signed-off-by: Xenia Ragiadakou <burzalodowa@gmail.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
This patch defines a new trace event, which is called xhci_dbg_context_change
and belongs in the event class xhci_log_msg, and adds tracepoints for tracing
the debug messages related to context updates performed with Configure Endpoint
and Evaluate Context commands.
Signed-off-by: Xenia Ragiadakou <burzalodowa@gmail.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
This patch declares an event class for trace events that
trace messages with variadic arguments, called xhci_log_msg,
and defines a trace event for tracing the debug messages in
xhci_address_device() function, called xhci_dbg_address.
In order to implement this type of trace events, a wrapper function,
called xhci_dbg_trace(), was created that records the format string
and variadic arguments into a va_format structure which is passed as
argument to the tracepoints of the class xhci_log_msg.
All the xhci_dbg() calls in xhci_address_device() are replaced
with calls to xhci_dbg_trace(). The functionality of xhci_dbg()
log messages was not removed though, but it is placed inside
xhci_dbg_trace().
This trace event aims to give the ability to the user or the
developper to isolate and trace the debug messages generated
when an Address Device Command is issued to xHC.
Signed-off-by: Xenia Ragiadakou <burzalodowa@gmail.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>