When parsing a payload for an rxrpc-type key, ignore any tokens that are
not of a known type and don't give an error for them - unless there are no
tokens of a known type.
Signed-off-by: David Howells <dhowells@redhat.com>
Make the parsing of xdr-encoded payloads, as passed to add_key, more
coherent. Shuttling back and forth between various variables was a bit
hard to follow.
Signed-off-by: David Howells <dhowells@redhat.com>
Don't let someone reading a service-side rxrpc-type key get access to the
session key that was exchanged with the client. The server application
will, at some point, need to be able to read the information in the ticket,
but this probably shouldn't include the key material.
Signed-off-by: David Howells <dhowells@redhat.com>
Split the server private key type (rxrpc_s) out into its own file rather
than mingling it with the authentication/client key type (rxrpc) since they
don't really bear any relation.
Signed-off-by: David Howells <dhowells@redhat.com>
If someone calls setsockopt() twice to set a server key keyring, the first
keyring is leaked.
Fix it to return an error instead if the server key keyring is already set.
Fixes: 17926a7932 ("[AF_RXRPC]: Provide secure RxRPC sockets for use by userspace and kernel both")
Signed-off-by: David Howells <dhowells@redhat.com>
The keyring containing the server's tokens isn't network-namespaced, so it
shouldn't be looked up with a network namespace. It is expected to be
owned specifically by the server, so namespacing is unnecessary.
Fixes: a58946c158 ("keys: Pass the network namespace into request_key mechanism")
Signed-off-by: David Howells <dhowells@redhat.com>
If rxrpc_read() (which allows KEYCTL_READ to read a key), sees a token of a
type it doesn't recognise, it can BUG in a couple of places, which is
unnecessary as it can easily get back to userspace.
Fix this to print an error message instead.
Fixes: 99455153d0 ("RxRPC: Parse security index 5 keys (Kerberos 5)")
Signed-off-by: David Howells <dhowells@redhat.com>
The session key should be encoded with just the 8 data bytes and
no length; ENCODE_DATA precedes it with a 4 byte length, which
confuses some existing tools that try to parse this format.
Add an ENCODE_BYTES macro that does not include a length, and use
it for the key. Also adjust the expected length.
Note that commit 774521f353 ("rxrpc: Fix an assertion in
rxrpc_read()") had fixed a BUG by changing the length rather than
fixing the encoding. The original length was correct.
Fixes: 99455153d0 ("RxRPC: Parse security index 5 keys (Kerberos 5)")
Signed-off-by: Marc Dionne <marc.dionne@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Rework the remaining setsockopt code to pass a sockptr_t instead of a
plain user pointer. This removes the last remaining set_fs(KERNEL_DS)
outside of architecture specific code.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Stefan Schmidt <stefan@datenfreihafen.org> [ieee802154]
Acked-by: Matthieu Baerts <matthieu.baerts@tessares.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
-----BEGIN PGP SIGNATURE-----
iQIVAwUAXRyyVvu3V2unywtrAQL3xQ//eifjlELkRAPm2EReWwwahdM+9QL/0bAy
e8eAzP9EaphQGUhpIzM9Y7Cx+a8XW2xACljY8hEFGyxXhDMoLa35oSoJOeay6vQt
QcgWnDYsET8Z7HOsFCP3ZQqlbbqfsB6CbIKtZoEkZ8ib7eXpYcy1qTydu7wqrl4A
AaJalAhlUKKUx9hkGGJTh2xvgmxgSJkxx3cNEWJQ2uGgY/ustBpqqT4iwFDsgA/q
fcYTQFfNQBsC8/SmvQgxJSc+reUdQdp0z1vd8qjpSdFFcTq1qOtK0qDdz1Bbyl24
hAxvNM1KKav83C8aF7oHhEwLrkD+XiYKixdEiCJJp+A2i+vy2v8JnfgtFTpTgLNK
5xu2VmaiWmee9SLCiDIBKE4Ghtkr8DQ/5cKFCwthT8GXgQUtdsdwAaT3bWdCNfRm
DqgU/AyyXhoHXrUM25tPeF3hZuDn2yy6b1TbKA9GCpu5TtznZIHju40Px/XMIpQH
8d6s/pg+u/SnkhjYWaTvTcvsQ2FB/vZY/UzAVyosnoMBkVfL4UtAHGbb8FBVj1nf
Dv5VjSjl4vFjgOr3jygEAeD2cJ7L6jyKbtC/jo4dnOmPrSRShIjvfSU04L3z7FZS
XFjMmGb2Jj8a7vAGFmsJdwmIXZ1uoTwX56DbpNL88eCgZWFPGKU7TisdIWAmJj8U
N9wholjHJgw=
=E3bF
-----END PGP SIGNATURE-----
Merge tag 'keys-acl-20190703' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs
Pull keyring ACL support from David Howells:
"This changes the permissions model used by keys and keyrings to be
based on an internal ACL by the following means:
- Replace the permissions mask internally with an ACL that contains a
list of ACEs, each with a specific subject with a permissions mask.
Potted default ACLs are available for new keys and keyrings.
ACE subjects can be macroised to indicate the UID and GID specified
on the key (which remain). Future commits will be able to add
additional subject types, such as specific UIDs or domain
tags/namespaces.
Also split a number of permissions to give finer control. Examples
include splitting the revocation permit from the change-attributes
permit, thereby allowing someone to be granted permission to revoke
a key without allowing them to change the owner; also the ability
to join a keyring is split from the ability to link to it, thereby
stopping a process accessing a keyring by joining it and thus
acquiring use of possessor permits.
- Provide a keyctl to allow the granting or denial of one or more
permits to a specific subject. Direct access to the ACL is not
granted, and the ACL cannot be viewed"
* tag 'keys-acl-20190703' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs:
keys: Provide KEYCTL_GRANT_PERMISSION
keys: Replace uid/gid/perm permissions checking with an ACL
-----BEGIN PGP SIGNATURE-----
iQIVAwUAXRU89Pu3V2unywtrAQIdBBAAmMBsrfv+LUN4Vru/D6KdUO4zdYGcNK6m
S56bcNfP6oIDEj6HrNNnzKkWIZpdZ61Odv1zle96+v4WZ/6rnLCTpcsdaFNTzaoO
YT2jk7jplss0ImrMv1DSoykGqO3f0ThMIpGCxHKZADGSu0HMbjSEh+zLPV4BaMtT
BVuF7P3eZtDRLdDtMtYcgvf5UlbdoBEY8w1FUjReQx8hKGxVopGmCo5vAeiY8W9S
ybFSZhPS5ka33ynVrLJH2dqDo5A8pDhY8I4bdlcxmNtRhnPCYZnuvTqeAzyUKKdI
YN9zJeDu1yHs9mi8dp45NPJiKy6xLzWmUwqH8AvR8MWEkrwzqbzNZCEHZ41j74hO
YZWI0JXi72cboszFvOwqJERvITKxrQQyVQLPRQE2vVbG0bIZPl8i7oslFVhitsl+
evWqHb4lXY91rI9cC6JIXR1OiUjp68zXPv7DAnxv08O+PGcioU1IeOvPivx8QSx4
5aUeCkYIIAti/GISzv7xvcYh8mfO76kBjZSB35fX+R9DkeQpxsHmmpWe+UCykzWn
EwhHQn86+VeBFP6RAXp8CgNCLbrwkEhjzXQl/70s1eYbwvK81VcpDAQ6+cjpf4Hb
QUmrUJ9iE0wCNl7oqvJZoJvWVGlArvPmzpkTJk3N070X2R0T7x1WCsMlPDMJGhQ2
fVHvA3QdgWs=
=Push
-----END PGP SIGNATURE-----
Merge tag 'keys-namespace-20190627' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs
Pull keyring namespacing from David Howells:
"These patches help make keys and keyrings more namespace aware.
Firstly some miscellaneous patches to make the process easier:
- Simplify key index_key handling so that the word-sized chunks
assoc_array requires don't have to be shifted about, making it
easier to add more bits into the key.
- Cache the hash value in the key so that we don't have to calculate
on every key we examine during a search (it involves a bunch of
multiplications).
- Allow keying_search() to search non-recursively.
Then the main patches:
- Make it so that keyring names are per-user_namespace from the point
of view of KEYCTL_JOIN_SESSION_KEYRING so that they're not
accessible cross-user_namespace.
keyctl_capabilities() shows KEYCTL_CAPS1_NS_KEYRING_NAME for this.
- Move the user and user-session keyrings to the user_namespace
rather than the user_struct. This prevents them propagating
directly across user_namespaces boundaries (ie. the KEY_SPEC_*
flags will only pick from the current user_namespace).
- Make it possible to include the target namespace in which the key
shall operate in the index_key. This will allow the possibility of
multiple keys with the same description, but different target
domains to be held in the same keyring.
keyctl_capabilities() shows KEYCTL_CAPS1_NS_KEY_TAG for this.
- Make it so that keys are implicitly invalidated by removal of a
domain tag, causing them to be garbage collected.
- Institute a network namespace domain tag that allows keys to be
differentiated by the network namespace in which they operate. New
keys that are of a type marked 'KEY_TYPE_NET_DOMAIN' are assigned
the network domain in force when they are created.
- Make it so that the desired network namespace can be handed down
into the request_key() mechanism. This allows AFS, NFS, etc. to
request keys specific to the network namespace of the superblock.
This also means that the keys in the DNS record cache are
thenceforth namespaced, provided network filesystems pass the
appropriate network namespace down into dns_query().
For DNS, AFS and NFS are good, whilst CIFS and Ceph are not. Other
cache keyrings, such as idmapper keyrings, also need to set the
domain tag - for which they need access to the network namespace of
the superblock"
* tag 'keys-namespace-20190627' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs:
keys: Pass the network namespace into request_key mechanism
keys: Network namespace domain tag
keys: Garbage collect keys for which the domain has been removed
keys: Include target namespace in match criteria
keys: Move the user and user-session keyrings to the user_namespace
keys: Namespace keyring names
keys: Add a 'recurse' flag for keyring searches
keys: Cache the hash value to avoid lots of recalculation
keys: Simplify key description management
Replace the uid/gid/perm permissions checking on a key with an ACL to allow
the SETATTR and SEARCH permissions to be split. This will also allow a
greater range of subjects to represented.
============
WHY DO THIS?
============
The problem is that SETATTR and SEARCH cover a slew of actions, not all of
which should be grouped together.
For SETATTR, this includes actions that are about controlling access to a
key:
(1) Changing a key's ownership.
(2) Changing a key's security information.
(3) Setting a keyring's restriction.
And actions that are about managing a key's lifetime:
(4) Setting an expiry time.
(5) Revoking a key.
and (proposed) managing a key as part of a cache:
(6) Invalidating a key.
Managing a key's lifetime doesn't really have anything to do with
controlling access to that key.
Expiry time is awkward since it's more about the lifetime of the content
and so, in some ways goes better with WRITE permission. It can, however,
be set unconditionally by a process with an appropriate authorisation token
for instantiating a key, and can also be set by the key type driver when a
key is instantiated, so lumping it with the access-controlling actions is
probably okay.
As for SEARCH permission, that currently covers:
(1) Finding keys in a keyring tree during a search.
(2) Permitting keyrings to be joined.
(3) Invalidation.
But these don't really belong together either, since these actions really
need to be controlled separately.
Finally, there are number of special cases to do with granting the
administrator special rights to invalidate or clear keys that I would like
to handle with the ACL rather than key flags and special checks.
===============
WHAT IS CHANGED
===============
The SETATTR permission is split to create two new permissions:
(1) SET_SECURITY - which allows the key's owner, group and ACL to be
changed and a restriction to be placed on a keyring.
(2) REVOKE - which allows a key to be revoked.
The SEARCH permission is split to create:
(1) SEARCH - which allows a keyring to be search and a key to be found.
(2) JOIN - which allows a keyring to be joined as a session keyring.
(3) INVAL - which allows a key to be invalidated.
The WRITE permission is also split to create:
(1) WRITE - which allows a key's content to be altered and links to be
added, removed and replaced in a keyring.
(2) CLEAR - which allows a keyring to be cleared completely. This is
split out to make it possible to give just this to an administrator.
(3) REVOKE - see above.
Keys acquire ACLs which consist of a series of ACEs, and all that apply are
unioned together. An ACE specifies a subject, such as:
(*) Possessor - permitted to anyone who 'possesses' a key
(*) Owner - permitted to the key owner
(*) Group - permitted to the key group
(*) Everyone - permitted to everyone
Note that 'Other' has been replaced with 'Everyone' on the assumption that
you wouldn't grant a permit to 'Other' that you wouldn't also grant to
everyone else.
Further subjects may be made available by later patches.
The ACE also specifies a permissions mask. The set of permissions is now:
VIEW Can view the key metadata
READ Can read the key content
WRITE Can update/modify the key content
SEARCH Can find the key by searching/requesting
LINK Can make a link to the key
SET_SECURITY Can change owner, ACL, expiry
INVAL Can invalidate
REVOKE Can revoke
JOIN Can join this keyring
CLEAR Can clear this keyring
The KEYCTL_SETPERM function is then deprecated.
The KEYCTL_SET_TIMEOUT function then is permitted if SET_SECURITY is set,
or if the caller has a valid instantiation auth token.
The KEYCTL_INVALIDATE function then requires INVAL.
The KEYCTL_REVOKE function then requires REVOKE.
The KEYCTL_JOIN_SESSION_KEYRING function then requires JOIN to join an
existing keyring.
The JOIN permission is enabled by default for session keyrings and manually
created keyrings only.
======================
BACKWARD COMPATIBILITY
======================
To maintain backward compatibility, KEYCTL_SETPERM will translate the
permissions mask it is given into a new ACL for a key - unless
KEYCTL_SET_ACL has been called on that key, in which case an error will be
returned.
It will convert possessor, owner, group and other permissions into separate
ACEs, if each portion of the mask is non-zero.
SETATTR permission turns on all of INVAL, REVOKE and SET_SECURITY. WRITE
permission turns on WRITE, REVOKE and, if a keyring, CLEAR. JOIN is turned
on if a keyring is being altered.
The KEYCTL_DESCRIBE function translates the ACL back into a permissions
mask to return depending on possessor, owner, group and everyone ACEs.
It will make the following mappings:
(1) INVAL, JOIN -> SEARCH
(2) SET_SECURITY -> SETATTR
(3) REVOKE -> WRITE if SETATTR isn't already set
(4) CLEAR -> WRITE
Note that the value subsequently returned by KEYCTL_DESCRIBE may not match
the value set with KEYCTL_SETATTR.
=======
TESTING
=======
This passes the keyutils testsuite for all but a couple of tests:
(1) tests/keyctl/dh_compute/badargs: The first wrong-key-type test now
returns EOPNOTSUPP rather than ENOKEY as READ permission isn't removed
if the type doesn't have ->read(). You still can't actually read the
key.
(2) tests/keyctl/permitting/valid: The view-other-permissions test doesn't
work as Other has been replaced with Everyone in the ACL.
Signed-off-by: David Howells <dhowells@redhat.com>
Create key domain tags for network namespaces and make it possible to
automatically tag keys that are used by networked services (e.g. AF_RXRPC,
AFS, DNS) with the default network namespace if not set by the caller.
This allows keys with the same description but in different namespaces to
coexist within a keyring.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: netdev@vger.kernel.org
cc: linux-nfs@vger.kernel.org
cc: linux-cifs@vger.kernel.org
cc: linux-afs@lists.infradead.org
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-or-later
has been chosen to replace the boilerplate/reference in 3029 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070032.746973796@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
When an XDR-encoded Kerberos 5 ticket is added as an rxrpc-type key, the
expiry time should be drawn from the k5 part of the token union (which was
what was filled in), rather than the kad part of the union.
Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: David Howells <dhowells@redhat.com>
Since the 'expiry' variable of 'struct key_preparsed_payload' has been
changed to 'time64_t' type, which is year 2038 safe on 32bits system.
In net/rxrpc subsystem, we need convert 'u32' type to 'time64_t' type
when copying ticket expires time to 'prep->expiry', then this patch
introduces two helper functions to help convert 'u32' to 'time64_t'
type.
This patch also uses ktime_get_real_seconds() to get current time instead
of get_seconds() which is not year 2038 safe on 32bits system.
Signed-off-by: Baolin Wang <baolin.wang@linaro.org>
Signed-off-by: David Howells <dhowells@redhat.com>
This fixes CVE-2017-7482.
When a kerberos 5 ticket is being decoded so that it can be loaded into an
rxrpc-type key, there are several places in which the length of a
variable-length field is checked to make sure that it's not going to
overrun the available data - but the data is padded to the nearest
four-byte boundary and the code doesn't check for this extra. This could
lead to the size-remaining variable wrapping and the data pointer going
over the end of the buffer.
Fix this by making the various variable-length data checks use the padded
length.
Reported-by: 石磊 <shilei-c@360.cn>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Marc Dionne <marc.c.dionne@auristor.com>
Reviewed-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In the rxrpc_read() function, which allows a user to read the contents of a
key, we miscalculate the expected length of an encoded rxkad token by not
taking into account the key length. However, the data is stored later
anyway with an ENCODE_DATA() call - and an assertion failure then ensues
when the lengths are checked at the end.
Fix this by including the key length in the token size estimation.
The following assertion is produced:
Assertion failed - 384(0x180) == 380(0x17c) is false
------------[ cut here ]------------
kernel BUG at ../net/rxrpc/key.c:1221!
invalid opcode: 0000 [#1] SMP
Modules linked in:
CPU: 2 PID: 2957 Comm: keyctl Not tainted 4.10.0-fscache+ #483
Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014
task: ffff8804013a8500 task.stack: ffff8804013ac000
RIP: 0010:rxrpc_read+0x10de/0x11b6
RSP: 0018:ffff8804013afe48 EFLAGS: 00010296
RAX: 000000000000003b RBX: 0000000000000003 RCX: 0000000000000000
RDX: 0000000000040001 RSI: 00000000000000f6 RDI: 0000000000000300
RBP: ffff8804013afed8 R08: 0000000000000001 R09: 0000000000000001
R10: ffff8804013afd90 R11: 0000000000000002 R12: 00005575f7c911b4
R13: 00005575f7c911b3 R14: 0000000000000157 R15: ffff880408a5d640
FS: 00007f8dfbc73700(0000) GS:ffff88041fb00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00005575f7c91008 CR3: 000000040120a000 CR4: 00000000001406e0
Call Trace:
keyctl_read_key+0xb6/0xd7
SyS_keyctl+0x83/0xe7
do_syscall_64+0x80/0x191
entry_SYSCALL64_slow_path+0x25/0x25
Signed-off-by: Marc Dionne <marc.dionne@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Define and use a structure to hold connection parameters. This makes it
easier to pass multiple connection parameters around.
Define and use a structure to hold protocol information used to hash a
connection for lookup on incoming packet. Most of these fields will be
disposed of eventually, including the duplicate local pointer.
Whilst we're at it rename "proto" to "family" when referring to a protocol
family.
Signed-off-by: David Howells <dhowells@redhat.com>
Rename files matching net/rxrpc/ar-*.c to get rid of the "ar-" prefix.
This will aid splitting those files by making easier to come up with new
names.
Note that the not all files are simply renamed from ar-X.c to X.c. The
following exceptions are made:
(*) ar-call.c -> call_object.c
ar-ack.c -> call_event.c
call_object.c is going to contain the core of the call object
handling. Call event handling is all going to be in call_event.c.
(*) ar-accept.c -> call_accept.c
Incoming call handling is going to be here.
(*) ar-connection.c -> conn_object.c
ar-connevent.c -> conn_event.c
The former file is going to have the basic connection object handling,
but there will likely be some differentiation between client
connections and service connections in additional files later. The
latter file will have all the connection-level event handling.
(*) ar-local.c -> local_object.c
This will have the local endpoint object handling code. The local
endpoint event handling code will later be split out into
local_event.c.
(*) ar-peer.c -> peer_object.c
This will have the peer endpoint object handling code. Peer event
handling code will be placed in peer_event.c (for the moment, there is
none).
(*) ar-error.c -> peer_event.c
This will become the peer event handling code, though for the moment
it's actually driven from the local endpoint's perspective.
Note that I haven't renamed ar-transport.c to transport_object.c as the
intention is to delete it when the rxrpc_transport struct is excised.
The only file that actually has its contents changed is net/rxrpc/Makefile.
net/rxrpc/ar-internal.h will need its section marker comments updating, but
I'll do that in a separate patch to make it easier for git to follow the
history across the rename. I may also want to rename ar-internal.h at some
point - but that would mean updating all the #includes and I'd rather do
that in a separate step.
Signed-off-by: David Howells <dhowells@redhat.com.