Commit Graph

211 Commits

Author SHA1 Message Date
Coly Li ae3cd29991 bcache: fix use-after-free in register_bcache()
The patch "bcache: rework error unwinding in register_bcache" introduces
a use-after-free regression in register_bcache(). Here are current code,
	2510 out_free_path:
	2511         kfree(path);
	2512 out_module_put:
	2513         module_put(THIS_MODULE);
	2514 out:
	2515         pr_info("error %s: %s", path, err);
	2516         return ret;
If some error happens and the above code path is executed, at line 2511
path is released, but referenced at line 2515. Then KASAN reports a use-
after-free error message.

This patch changes line 2515 in the following way to fix the problem,
	2515         pr_info("error %s: %s", path?path:"", err);

Signed-off-by: Coly Li <colyli@suse.de>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-01-23 11:40:01 -07:00
Coly Li 29cda393bc bcache: properly initialize 'path' and 'err' in register_bcache()
Patch "bcache: rework error unwinding in register_bcache" from
Christoph Hellwig changes the local variables 'path' and 'err'
in undefined initial state. If the code in register_bcache() jumps
to label 'out:' or 'out_module_put:' by goto, these two variables
might be reference with undefined value by the following line,

	out_module_put:
	        module_put(THIS_MODULE);
	out:
	        pr_info("error %s: %s", path, err);
	        return ret;

Therefore this patch initializes these two local variables properly
in register_bcache() to avoid such issue.

Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-01-23 11:40:01 -07:00
Christoph Hellwig 50246693f8 bcache: rework error unwinding in register_bcache
Split the successful and error return path, and use one goto label for each
resource to unwind.  This also fixes some small errors like leaking the
module reference count in the reboot case (which seems entirely harmless)
or printing the wrong warning messages for early failures.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-01-23 11:40:01 -07:00
Christoph Hellwig a702a692cd bcache: use a separate data structure for the on-disk super block
Split out an on-disk version struct cache_sb with the proper endianness
annotations.  This fixes a fair chunk of sparse warnings, but there are
some left due to the way the checksum is defined.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-01-23 11:40:00 -07:00
Liang Chen e8547d4209 bcache: cached_dev_free needs to put the sb page
Same as cache device, the buffer page needs to be put while
freeing cached_dev.  Otherwise a page would be leaked every
time a cached_dev is stopped.

Signed-off-by: Liang Chen <liangchen.linux@gmail.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-01-23 11:40:00 -07:00
Coly Li c5fcdedcee bcache: add idle_max_writeback_rate sysfs interface
For writeback mode, if there is no regular I/O request for a while,
the writeback rate will be set to the maximum value (1TB/s for now).
This is good for most of the storage workload, but there are still
people don't what the maximum writeback rate in I/O idle time.

This patch adds a sysfs interface file idle_max_writeback_rate to
permit people to disable maximum writeback rate. Then the minimum
writeback rate can be advised by writeback_rate_minimum in the
bcache device's sysfs interface.

Reported-by: Christian Balzer <chibi@gol.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-11-13 15:42:50 -07:00
Andrea Righi 84c529aea1 bcache: fix deadlock in bcache_allocator
bcache_allocator can call the following:

 bch_allocator_thread()
  -> bch_prio_write()
     -> bch_bucket_alloc()
        -> wait on &ca->set->bucket_wait

But the wake up event on bucket_wait is supposed to come from
bch_allocator_thread() itself => deadlock:

[ 1158.490744] INFO: task bcache_allocato:15861 blocked for more than 10 seconds.
[ 1158.495929]       Not tainted 5.3.0-050300rc3-generic #201908042232
[ 1158.500653] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[ 1158.504413] bcache_allocato D    0 15861      2 0x80004000
[ 1158.504419] Call Trace:
[ 1158.504429]  __schedule+0x2a8/0x670
[ 1158.504432]  schedule+0x2d/0x90
[ 1158.504448]  bch_bucket_alloc+0xe5/0x370 [bcache]
[ 1158.504453]  ? wait_woken+0x80/0x80
[ 1158.504466]  bch_prio_write+0x1dc/0x390 [bcache]
[ 1158.504476]  bch_allocator_thread+0x233/0x490 [bcache]
[ 1158.504491]  kthread+0x121/0x140
[ 1158.504503]  ? invalidate_buckets+0x890/0x890 [bcache]
[ 1158.504506]  ? kthread_park+0xb0/0xb0
[ 1158.504510]  ret_from_fork+0x35/0x40

Fix by making the call to bch_prio_write() non-blocking, so that
bch_allocator_thread() never waits on itself.

Moreover, make sure to wake up the garbage collector thread when
bch_prio_write() is failing to allocate buckets.

BugLink: https://bugs.launchpad.net/bugs/1784665
BugLink: https://bugs.launchpad.net/bugs/1796292
Signed-off-by: Andrea Righi <andrea.righi@canonical.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-11-13 15:42:50 -07:00
Coly Li aaf8dbeab5 bcache: add more accurate error messages in read_super()
Previous code only returns "Not a bcache superblock" for both bcache
super block offset and magic error. This patch addss more accurate error
messages,
- for super block unmatched offset:
  "Not a bcache superblock (bad offset)"
- for super block unmatched magic number:
  "Not a bcache superblock (bad magic)"

Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-11-13 15:42:50 -07:00
Coly Li 2d8869518a bcache: fix static checker warning in bcache_device_free()
Commit cafe563591 ("bcache: A block layer cache") leads to the
following static checker warning:

    ./drivers/md/bcache/super.c:770 bcache_device_free()
    warn: variable dereferenced before check 'd->disk' (see line 766)

drivers/md/bcache/super.c
   762  static void bcache_device_free(struct bcache_device *d)
   763  {
   764          lockdep_assert_held(&bch_register_lock);
   765
   766          pr_info("%s stopped", d->disk->disk_name);
                                      ^^^^^^^^^
Unchecked dereference.

   767
   768          if (d->c)
   769                  bcache_device_detach(d);
   770          if (d->disk && d->disk->flags & GENHD_FL_UP)
                    ^^^^^^^
Check too late.

   771                  del_gendisk(d->disk);
   772          if (d->disk && d->disk->queue)
   773                  blk_cleanup_queue(d->disk->queue);
   774          if (d->disk) {
   775                  ida_simple_remove(&bcache_device_idx,
   776                                    first_minor_to_idx(d->disk->first_minor));
   777                  put_disk(d->disk);
   778          }
   779

It is not 100% sure that the gendisk struct of bcache device will always
be there, the warning makes sense when there is problem in block core.

This patch tries to remove the static checking warning by checking
d->disk to avoid NULL pointer deferences.

Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-11-13 15:42:50 -07:00
Guoju Fang 34cf78bf34 bcache: fix a lost wake-up problem caused by mca_cannibalize_lock
This patch fix a lost wake-up problem caused by the race between
mca_cannibalize_lock and bch_cannibalize_unlock.

Consider two processes, A and B. Process A is executing
mca_cannibalize_lock, while process B takes c->btree_cache_alloc_lock
and is executing bch_cannibalize_unlock. The problem happens that after
process A executes cmpxchg and will execute prepare_to_wait. In this
timeslice process B executes wake_up, but after that process A executes
prepare_to_wait and set the state to TASK_INTERRUPTIBLE. Then process A
goes to sleep but no one will wake up it. This problem may cause bcache
device to dead.

Signed-off-by: Guoju Fang <fangguoju@gmail.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-11-13 15:42:50 -07:00
Wei Yongjun 5d9e06d60e bcache: fix possible memory leak in bch_cached_dev_run()
memory malloced in bch_cached_dev_run() and should be freed before
leaving from the error handling cases, otherwise it will cause
memory leak.

Fixes: 0b13efecf5 ("bcache: add return value check to bch_cached_dev_run()")
Signed-off-by: Wei Yongjun <weiyongjun1@huawei.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-07-22 08:15:17 -06:00
Coly Li 1df3877ff6 bcache: shrink btree node cache after bch_btree_check()
When cache set starts, bch_btree_check() will check all bkeys on cache
device by calculating the checksum. This operation will consume a huge
number of system memory if there are a lot of data cached. Since bcache
uses its own mca cache to maintain all its read-in btree nodes, and only
releases the cache space when system memory manage code starts to shrink
caches. Then before memory manager code to call the mca cache shrinker
callback, bcache mca cache will compete memory resource with user space
application, which may have nagive effect to performance of user space
workloads (e.g. data base, or I/O service of distributed storage node).

This patch tries to call bcache mca shrinker routine to proactively
release mca cache memory, to decrease the memory pressure of system and
avoid negative effort of the overall system I/O performance.

Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28 07:39:17 -06:00
Coly Li 7e865eba00 bcache: fix potential deadlock in cached_def_free()
When enable lockdep and reboot system with a writeback mode bcache
device, the following potential deadlock warning is reported by lockdep
engine.

[  101.536569][  T401] kworker/2:2/401 is trying to acquire lock:
[  101.538575][  T401] 00000000bbf6e6c7 ((wq_completion)bcache_writeback_wq){+.+.}, at: flush_workqueue+0x87/0x4c0
[  101.542054][  T401]
[  101.542054][  T401] but task is already holding lock:
[  101.544587][  T401] 00000000f5f305b3 ((work_completion)(&cl->work)#2){+.+.}, at: process_one_work+0x21e/0x640
[  101.548386][  T401]
[  101.548386][  T401] which lock already depends on the new lock.
[  101.548386][  T401]
[  101.551874][  T401]
[  101.551874][  T401] the existing dependency chain (in reverse order) is:
[  101.555000][  T401]
[  101.555000][  T401] -> #1 ((work_completion)(&cl->work)#2){+.+.}:
[  101.557860][  T401]        process_one_work+0x277/0x640
[  101.559661][  T401]        worker_thread+0x39/0x3f0
[  101.561340][  T401]        kthread+0x125/0x140
[  101.562963][  T401]        ret_from_fork+0x3a/0x50
[  101.564718][  T401]
[  101.564718][  T401] -> #0 ((wq_completion)bcache_writeback_wq){+.+.}:
[  101.567701][  T401]        lock_acquire+0xb4/0x1c0
[  101.569651][  T401]        flush_workqueue+0xae/0x4c0
[  101.571494][  T401]        drain_workqueue+0xa9/0x180
[  101.573234][  T401]        destroy_workqueue+0x17/0x250
[  101.575109][  T401]        cached_dev_free+0x44/0x120 [bcache]
[  101.577304][  T401]        process_one_work+0x2a4/0x640
[  101.579357][  T401]        worker_thread+0x39/0x3f0
[  101.581055][  T401]        kthread+0x125/0x140
[  101.582709][  T401]        ret_from_fork+0x3a/0x50
[  101.584592][  T401]
[  101.584592][  T401] other info that might help us debug this:
[  101.584592][  T401]
[  101.588355][  T401]  Possible unsafe locking scenario:
[  101.588355][  T401]
[  101.590974][  T401]        CPU0                    CPU1
[  101.592889][  T401]        ----                    ----
[  101.594743][  T401]   lock((work_completion)(&cl->work)#2);
[  101.596785][  T401]                                lock((wq_completion)bcache_writeback_wq);
[  101.600072][  T401]                                lock((work_completion)(&cl->work)#2);
[  101.602971][  T401]   lock((wq_completion)bcache_writeback_wq);
[  101.605255][  T401]
[  101.605255][  T401]  *** DEADLOCK ***
[  101.605255][  T401]
[  101.608310][  T401] 2 locks held by kworker/2:2/401:
[  101.610208][  T401]  #0: 00000000cf2c7d17 ((wq_completion)events){+.+.}, at: process_one_work+0x21e/0x640
[  101.613709][  T401]  #1: 00000000f5f305b3 ((work_completion)(&cl->work)#2){+.+.}, at: process_one_work+0x21e/0x640
[  101.617480][  T401]
[  101.617480][  T401] stack backtrace:
[  101.619539][  T401] CPU: 2 PID: 401 Comm: kworker/2:2 Tainted: G        W         5.2.0-rc4-lp151.20-default+ #1
[  101.623225][  T401] Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 04/13/2018
[  101.627210][  T401] Workqueue: events cached_dev_free [bcache]
[  101.629239][  T401] Call Trace:
[  101.630360][  T401]  dump_stack+0x85/0xcb
[  101.631777][  T401]  print_circular_bug+0x19a/0x1f0
[  101.633485][  T401]  __lock_acquire+0x16cd/0x1850
[  101.635184][  T401]  ? __lock_acquire+0x6a8/0x1850
[  101.636863][  T401]  ? lock_acquire+0xb4/0x1c0
[  101.638421][  T401]  ? find_held_lock+0x34/0xa0
[  101.640015][  T401]  lock_acquire+0xb4/0x1c0
[  101.641513][  T401]  ? flush_workqueue+0x87/0x4c0
[  101.643248][  T401]  flush_workqueue+0xae/0x4c0
[  101.644832][  T401]  ? flush_workqueue+0x87/0x4c0
[  101.646476][  T401]  ? drain_workqueue+0xa9/0x180
[  101.648303][  T401]  drain_workqueue+0xa9/0x180
[  101.649867][  T401]  destroy_workqueue+0x17/0x250
[  101.651503][  T401]  cached_dev_free+0x44/0x120 [bcache]
[  101.653328][  T401]  process_one_work+0x2a4/0x640
[  101.655029][  T401]  worker_thread+0x39/0x3f0
[  101.656693][  T401]  ? process_one_work+0x640/0x640
[  101.658501][  T401]  kthread+0x125/0x140
[  101.660012][  T401]  ? kthread_create_worker_on_cpu+0x70/0x70
[  101.661985][  T401]  ret_from_fork+0x3a/0x50
[  101.691318][  T401] bcache: bcache_device_free() bcache0 stopped

Here is how the above potential deadlock may happen in reboot/shutdown
code path,
1) bcache_reboot() is called firstly in the reboot/shutdown code path,
   then in bcache_reboot(), bcache_device_stop() is called.
2) bcache_device_stop() sets BCACHE_DEV_CLOSING on d->falgs, then call
   closure_queue(&d->cl) to invoke cached_dev_flush(). And in turn
   cached_dev_flush() calls cached_dev_free() via closure_at()
3) In cached_dev_free(), after stopped writebach kthread
   dc->writeback_thread, the kwork dc->writeback_write_wq is stopping by
   destroy_workqueue().
4) Inside destroy_workqueue(), drain_workqueue() is called. Inside
   drain_workqueue(), flush_workqueue() is called. Then wq->lockdep_map
   is acquired by lock_map_acquire() in flush_workqueue(). After the
   lock acquired the rest part of flush_workqueue() just wait for the
   workqueue to complete.
5) Now we look back at writeback thread routine bch_writeback_thread(),
   in the main while-loop, write_dirty() is called via continue_at() in
   read_dirty_submit(), which is called via continue_at() in while-loop
   level called function read_dirty(). Inside write_dirty() it may be
   re-called on workqueeu dc->writeback_write_wq via continue_at().
   It means when the writeback kthread is stopped in cached_dev_free()
   there might be still one kworker queued on dc->writeback_write_wq
   to execute write_dirty() again.
6) Now this kworker is scheduled on dc->writeback_write_wq to run by
   process_one_work() (which is called by worker_thread()). Before
   calling the kwork routine, wq->lockdep_map is acquired.
7) But wq->lockdep_map is acquired already in step 4), so a A-A lock
   (lockdep terminology) scenario happens.

Indeed on multiple cores syatem, the above deadlock is very rare to
happen, just as the code comments in process_one_work() says,
2263     * AFAICT there is no possible deadlock scenario between the
2264     * flush_work() and complete() primitives (except for
	   single-threaded
2265     * workqueues), so hiding them isn't a problem.

But it is still good to fix such lockdep warning, even no one running
bcache on single core system.

The fix is simple. This patch solves the above potential deadlock by,
- Do not destroy workqueue dc->writeback_write_wq in cached_dev_free().
- Flush and destroy dc->writeback_write_wq in writebach kthread routine
  bch_writeback_thread(), where after quit the thread main while-loop
  and before cached_dev_put() is called.

By this fix, dc->writeback_write_wq will be stopped and destroy before
the writeback kthread stopped, so the chance for a A-A locking on
wq->lockdep_map is disappeared, such A-A deadlock won't happen
any more.

Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28 07:39:16 -06:00
Coly Li 80265d8dfd bcache: acquire bch_register_lock later in cached_dev_free()
When enable lockdep engine, a lockdep warning can be observed when
reboot or shutdown system,

[ 3142.764557][    T1] bcache: bcache_reboot() Stopping all devices:
[ 3142.776265][ T2649]
[ 3142.777159][ T2649] ======================================================
[ 3142.780039][ T2649] WARNING: possible circular locking dependency detected
[ 3142.782869][ T2649] 5.2.0-rc4-lp151.20-default+ #1 Tainted: G        W
[ 3142.785684][ T2649] ------------------------------------------------------
[ 3142.788479][ T2649] kworker/3:67/2649 is trying to acquire lock:
[ 3142.790738][ T2649] 00000000aaf02291 ((wq_completion)bcache_writeback_wq){+.+.}, at: flush_workqueue+0x87/0x4c0
[ 3142.794678][ T2649]
[ 3142.794678][ T2649] but task is already holding lock:
[ 3142.797402][ T2649] 000000004fcf89c5 (&bch_register_lock){+.+.}, at: cached_dev_free+0x17/0x120 [bcache]
[ 3142.801462][ T2649]
[ 3142.801462][ T2649] which lock already depends on the new lock.
[ 3142.801462][ T2649]
[ 3142.805277][ T2649]
[ 3142.805277][ T2649] the existing dependency chain (in reverse order) is:
[ 3142.808902][ T2649]
[ 3142.808902][ T2649] -> #2 (&bch_register_lock){+.+.}:
[ 3142.812396][ T2649]        __mutex_lock+0x7a/0x9d0
[ 3142.814184][ T2649]        cached_dev_free+0x17/0x120 [bcache]
[ 3142.816415][ T2649]        process_one_work+0x2a4/0x640
[ 3142.818413][ T2649]        worker_thread+0x39/0x3f0
[ 3142.820276][ T2649]        kthread+0x125/0x140
[ 3142.822061][ T2649]        ret_from_fork+0x3a/0x50
[ 3142.823965][ T2649]
[ 3142.823965][ T2649] -> #1 ((work_completion)(&cl->work)#2){+.+.}:
[ 3142.827244][ T2649]        process_one_work+0x277/0x640
[ 3142.829160][ T2649]        worker_thread+0x39/0x3f0
[ 3142.830958][ T2649]        kthread+0x125/0x140
[ 3142.832674][ T2649]        ret_from_fork+0x3a/0x50
[ 3142.834915][ T2649]
[ 3142.834915][ T2649] -> #0 ((wq_completion)bcache_writeback_wq){+.+.}:
[ 3142.838121][ T2649]        lock_acquire+0xb4/0x1c0
[ 3142.840025][ T2649]        flush_workqueue+0xae/0x4c0
[ 3142.842035][ T2649]        drain_workqueue+0xa9/0x180
[ 3142.844042][ T2649]        destroy_workqueue+0x17/0x250
[ 3142.846142][ T2649]        cached_dev_free+0x52/0x120 [bcache]
[ 3142.848530][ T2649]        process_one_work+0x2a4/0x640
[ 3142.850663][ T2649]        worker_thread+0x39/0x3f0
[ 3142.852464][ T2649]        kthread+0x125/0x140
[ 3142.854106][ T2649]        ret_from_fork+0x3a/0x50
[ 3142.855880][ T2649]
[ 3142.855880][ T2649] other info that might help us debug this:
[ 3142.855880][ T2649]
[ 3142.859663][ T2649] Chain exists of:
[ 3142.859663][ T2649]   (wq_completion)bcache_writeback_wq --> (work_completion)(&cl->work)#2 --> &bch_register_lock
[ 3142.859663][ T2649]
[ 3142.865424][ T2649]  Possible unsafe locking scenario:
[ 3142.865424][ T2649]
[ 3142.868022][ T2649]        CPU0                    CPU1
[ 3142.869885][ T2649]        ----                    ----
[ 3142.871751][ T2649]   lock(&bch_register_lock);
[ 3142.873379][ T2649]                                lock((work_completion)(&cl->work)#2);
[ 3142.876399][ T2649]                                lock(&bch_register_lock);
[ 3142.879727][ T2649]   lock((wq_completion)bcache_writeback_wq);
[ 3142.882064][ T2649]
[ 3142.882064][ T2649]  *** DEADLOCK ***
[ 3142.882064][ T2649]
[ 3142.885060][ T2649] 3 locks held by kworker/3:67/2649:
[ 3142.887245][ T2649]  #0: 00000000e774cdd0 ((wq_completion)events){+.+.}, at: process_one_work+0x21e/0x640
[ 3142.890815][ T2649]  #1: 00000000f7df89da ((work_completion)(&cl->work)#2){+.+.}, at: process_one_work+0x21e/0x640
[ 3142.894884][ T2649]  #2: 000000004fcf89c5 (&bch_register_lock){+.+.}, at: cached_dev_free+0x17/0x120 [bcache]
[ 3142.898797][ T2649]
[ 3142.898797][ T2649] stack backtrace:
[ 3142.900961][ T2649] CPU: 3 PID: 2649 Comm: kworker/3:67 Tainted: G        W         5.2.0-rc4-lp151.20-default+ #1
[ 3142.904789][ T2649] Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 04/13/2018
[ 3142.909168][ T2649] Workqueue: events cached_dev_free [bcache]
[ 3142.911422][ T2649] Call Trace:
[ 3142.912656][ T2649]  dump_stack+0x85/0xcb
[ 3142.914181][ T2649]  print_circular_bug+0x19a/0x1f0
[ 3142.916193][ T2649]  __lock_acquire+0x16cd/0x1850
[ 3142.917936][ T2649]  ? __lock_acquire+0x6a8/0x1850
[ 3142.919704][ T2649]  ? lock_acquire+0xb4/0x1c0
[ 3142.921335][ T2649]  ? find_held_lock+0x34/0xa0
[ 3142.923052][ T2649]  lock_acquire+0xb4/0x1c0
[ 3142.924635][ T2649]  ? flush_workqueue+0x87/0x4c0
[ 3142.926375][ T2649]  flush_workqueue+0xae/0x4c0
[ 3142.928047][ T2649]  ? flush_workqueue+0x87/0x4c0
[ 3142.929824][ T2649]  ? drain_workqueue+0xa9/0x180
[ 3142.931686][ T2649]  drain_workqueue+0xa9/0x180
[ 3142.933534][ T2649]  destroy_workqueue+0x17/0x250
[ 3142.935787][ T2649]  cached_dev_free+0x52/0x120 [bcache]
[ 3142.937795][ T2649]  process_one_work+0x2a4/0x640
[ 3142.939803][ T2649]  worker_thread+0x39/0x3f0
[ 3142.941487][ T2649]  ? process_one_work+0x640/0x640
[ 3142.943389][ T2649]  kthread+0x125/0x140
[ 3142.944894][ T2649]  ? kthread_create_worker_on_cpu+0x70/0x70
[ 3142.947744][ T2649]  ret_from_fork+0x3a/0x50
[ 3142.970358][ T2649] bcache: bcache_device_free() bcache0 stopped

Here is how the deadlock happens.
1) bcache_reboot() calls bcache_device_stop(), then inside
   bcache_device_stop() BCACHE_DEV_CLOSING bit is set on d->flags.
   Then closure_queue(&d->cl) is called to invoke cached_dev_flush().
2) In cached_dev_flush(), cached_dev_free() is called by continu_at().
3) In cached_dev_free(), when stopping the writeback kthread of the
   cached device by kthread_stop(), dc->writeback_thread will be waken
   up to quite the kthread while-loop, then cached_dev_put() is called
   in bch_writeback_thread().
4) Calling cached_dev_put() in writeback kthread may drop dc->count to
   0, then dc->detach kworker is scheduled, which is initialized as
   cached_dev_detach_finish().
5) Inside cached_dev_detach_finish(), the last line of code is to call
   closure_put(&dc->disk.cl), which drops the last reference counter of
   closrure dc->disk.cl, then the callback cached_dev_flush() gets
   called.
Now cached_dev_flush() is called for second time in the code path, the
first time is in step 2). And again bch_register_lock will be acquired
again, and a A-A lock (lockdep terminology) is happening.

The root cause of the above A-A lock is in cached_dev_free(), mutex
bch_register_lock is held before stopping writeback kthread and other
kworkers. Fortunately now we have variable 'bcache_is_reboot', which may
prevent device registration or unregistration during reboot/shutdown
time, so it is unncessary to hold bch_register_lock such early now.

This is how this patch fixes the reboot/shutdown time A-A lock issue:
After moving mutex_lock(&bch_register_lock) to a later location where
before atomic_read(&dc->running) in cached_dev_free(), such A-A lock
problem can be solved without any reboot time registration race.

Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28 07:39:16 -06:00
Coly Li 97ba3b816e bcache: acquire bch_register_lock later in cached_dev_detach_finish()
Now there is variable bcache_is_reboot to prevent device register or
unregister during reboot, it is unncessary to still hold mutex lock
bch_register_lock before stopping writeback_rate_update kworker and
writeback kthread. And if the stopping kworker or kthread holding
bch_register_lock inside their routine (we used to have such problem
in writeback thread, thanks to Junhui Wang fixed it), it is very easy
to introduce deadlock during reboot/shutdown procedure.

Therefore in this patch, the location to acquire bch_register_lock is
moved to the location before calling calc_cached_dev_sectors(). Which
is later then original location in cached_dev_detach_finish().

Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28 07:39:16 -06:00
Coly Li a59ff6ccc2 bcache: avoid a deadlock in bcache_reboot()
It is quite frequently to observe deadlock in bcache_reboot() happens
and hang the system reboot process. The reason is, in bcache_reboot()
when calling bch_cache_set_stop() and bcache_device_stop() the mutex
bch_register_lock is held. But in the process to stop cache set and
bcache device, bch_register_lock will be acquired again. If this mutex
is held here, deadlock will happen inside the stopping process. The
aftermath of the deadlock is, whole system reboot gets hung.

The fix is to avoid holding bch_register_lock for the following loops
in bcache_reboot(),
       list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
                bch_cache_set_stop(c);

        list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
                bcache_device_stop(&dc->disk);

A module range variable 'bcache_is_reboot' is added, it sets to true
in bcache_reboot(). In register_bcache(), if bcache_is_reboot is checked
to be true, reject the registration by returning -EBUSY immediately.

Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28 07:39:16 -06:00
Coly Li 5c2a634cbf bcache: stop writeback kthread and kworker when bch_cached_dev_run() failed
In bch_cached_dev_attach() after bch_cached_dev_writeback_start()
called, the wrireback kthread and writeback rate update kworker of the
cached device are created, if the following bch_cached_dev_run()
failed, bch_cached_dev_attach() will return with -ENOMEM without
stopping the writeback related kthread and kworker.

This patch stops writeback kthread and writeback rate update kworker
before returning -ENOMEM if bch_cached_dev_run() returns error.

Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28 07:39:16 -06:00
Coly Li 0c277e211a bcache: add pendings_cleanup to stop pending bcache device
If a bcache device is in dirty state and its cache set is not
registered, this bcache device will not appear in /dev/bcache<N>,
and there is no way to stop it or remove the bcache kernel module.

This is an as-designed behavior, but sometimes people has to reboot
whole system to release or stop the pending backing device.

This sysfs interface may remove such pending bcache devices when
write anything into the sysfs file manually.

Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28 07:39:16 -06:00
Coly Li 68a53c95a0 bcache: remove "XXX:" comment line from run_cache_set()
In previous bcache patches for Linux v5.2, the failure code path of
run_cache_set() is tested and fixed. So now the following comment
line can be removed from run_cache_set(),
	/* XXX: test this, it's broken */

Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28 07:39:15 -06:00
Coly Li e0faa3d7f7 bcache: improve error message in bch_cached_dev_run()
This patch adds more error message in bch_cached_dev_run() to indicate
the exact reason why an error value is returned. Please notice when
printing out the "is running already" message, pr_info() is used here,
because in this case also -EBUSY is returned, the bcache device can
continue to attach to the cache devince and run, so it won't be an
error level message in kernel message.

Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28 07:39:15 -06:00
Coly Li 633bb2ce60 bcache: add more error message in bch_cached_dev_attach()
This patch adds more error message for attaching cached device, this is
helpful to debug code failure during bache device start up.

Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28 07:39:15 -06:00
Coly Li 4b6efb4bdb bcache: more detailed error message to bcache_device_link()
This patch adds more accurate error message for specific
ssyfs_create_link() call, to help debugging failure during
bcache device start tup.

Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28 07:39:15 -06:00
Coly Li 0b13efecf5 bcache: add return value check to bch_cached_dev_run()
This patch adds return value check to bch_cached_dev_run(), now if there
is error happens inside bch_cached_dev_run(), it can be catched.

Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28 07:39:14 -06:00
Coly Li 08ec1e6282 bcache: add io error counting in write_bdev_super_endio()
When backing device super block is written by bch_write_bdev_super(),
the bio complete callback write_bdev_super_endio() simply ignores I/O
status. Indeed such write request also contribute to backing device
health status if the request failed.

This patch checkes bio->bi_status in write_bdev_super_endio(), if there
is error, bch_count_backing_io_errors() will be called to count an I/O
error to dc->io_errors.

Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28 07:39:14 -06:00
Coly Li e6dcbd3e6c bcache: avoid flushing btree node in cache_set_flush() if io disabled
When cache_set_flush() is called for too many I/O errors detected on
cache device and the cache set is retiring, inside the function it
doesn't make sense to flushing cached btree nodes from c->btree_cache
because CACHE_SET_IO_DISABLE is set on c->flags already and all I/Os
onto cache device will be rejected.

This patch checks in cache_set_flush() that whether CACHE_SET_IO_DISABLE
is set. If yes, then avoids to flush the cached btree nodes to reduce
more time and make cache set retiring more faster.

Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28 07:39:14 -06:00
Coly Li 695277f16b Revert "bcache: set CACHE_SET_IO_DISABLE in bch_cached_dev_error()"
This reverts commit 6147305c73.

Although this patch helps the failed bcache device to stop faster when
too many I/O errors detected on corresponding cached device, setting
CACHE_SET_IO_DISABLE bit to cache set c->flags was not a good idea. This
operation will disable all I/Os on cache set, which means other attached
bcache devices won't work neither.

Without this patch, the failed bcache device can also be stopped
eventually if internal I/O accomplished (e.g. writeback). Therefore here
I revert it.

Fixes: 6147305c73 ("bcache: set CACHE_SET_IO_DISABLE in bch_cached_dev_error()")
Reported-by: Yong Li <mr.liyong@qq.com>
Signed-off-by: Coly Li <colyli@suse.de>
Cc: stable@vger.kernel.org
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28 07:39:14 -06:00
Coly Li b387e9b586 bcache: check c->gc_thread by IS_ERR_OR_NULL in cache_set_flush()
When system memory is in heavy pressure, bch_gc_thread_start() from
run_cache_set() may fail due to out of memory. In such condition,
c->gc_thread is assigned to -ENOMEM, not NULL pointer. Then in following
failure code path bch_cache_set_error(), when cache_set_flush() gets
called, the code piece to stop c->gc_thread is broken,
         if (!IS_ERR_OR_NULL(c->gc_thread))
                 kthread_stop(c->gc_thread);

And KASAN catches such NULL pointer deference problem, with the warning
information:

[  561.207881] ==================================================================
[  561.207900] BUG: KASAN: null-ptr-deref in kthread_stop+0x3b/0x440
[  561.207904] Write of size 4 at addr 000000000000001c by task kworker/15:1/313

[  561.207913] CPU: 15 PID: 313 Comm: kworker/15:1 Tainted: G        W         5.0.0-vanilla+ #3
[  561.207916] Hardware name: Lenovo ThinkSystem SR650 -[7X05CTO1WW]-/-[7X05CTO1WW]-, BIOS -[IVE136T-2.10]- 03/22/2019
[  561.207935] Workqueue: events cache_set_flush [bcache]
[  561.207940] Call Trace:
[  561.207948]  dump_stack+0x9a/0xeb
[  561.207955]  ? kthread_stop+0x3b/0x440
[  561.207960]  ? kthread_stop+0x3b/0x440
[  561.207965]  kasan_report+0x176/0x192
[  561.207973]  ? kthread_stop+0x3b/0x440
[  561.207981]  kthread_stop+0x3b/0x440
[  561.207995]  cache_set_flush+0xd4/0x6d0 [bcache]
[  561.208008]  process_one_work+0x856/0x1620
[  561.208015]  ? find_held_lock+0x39/0x1d0
[  561.208028]  ? drain_workqueue+0x380/0x380
[  561.208048]  worker_thread+0x87/0xb80
[  561.208058]  ? __kthread_parkme+0xb6/0x180
[  561.208067]  ? process_one_work+0x1620/0x1620
[  561.208072]  kthread+0x326/0x3e0
[  561.208079]  ? kthread_create_worker_on_cpu+0xc0/0xc0
[  561.208090]  ret_from_fork+0x3a/0x50
[  561.208110] ==================================================================
[  561.208113] Disabling lock debugging due to kernel taint
[  561.208115] irq event stamp: 11800231
[  561.208126] hardirqs last  enabled at (11800231): [<ffffffff83008538>] do_syscall_64+0x18/0x410
[  561.208127] BUG: unable to handle kernel NULL pointer dereference at 000000000000001c
[  561.208129] #PF error: [WRITE]
[  561.312253] hardirqs last disabled at (11800230): [<ffffffff830052ff>] trace_hardirqs_off_thunk+0x1a/0x1c
[  561.312259] softirqs last  enabled at (11799832): [<ffffffff850005c7>] __do_softirq+0x5c7/0x8c3
[  561.405975] PGD 0 P4D 0
[  561.442494] softirqs last disabled at (11799821): [<ffffffff831add2c>] irq_exit+0x1ac/0x1e0
[  561.791359] Oops: 0002 [#1] SMP KASAN NOPTI
[  561.791362] CPU: 15 PID: 313 Comm: kworker/15:1 Tainted: G    B   W         5.0.0-vanilla+ #3
[  561.791363] Hardware name: Lenovo ThinkSystem SR650 -[7X05CTO1WW]-/-[7X05CTO1WW]-, BIOS -[IVE136T-2.10]- 03/22/2019
[  561.791371] Workqueue: events cache_set_flush [bcache]
[  561.791374] RIP: 0010:kthread_stop+0x3b/0x440
[  561.791376] Code: 00 00 65 8b 05 26 d5 e0 7c 89 c0 48 0f a3 05 ec aa df 02 0f 82 dc 02 00 00 4c 8d 63 20 be 04 00 00 00 4c 89 e7 e8 65 c5 53 00 <f0> ff 43 20 48 8d 7b 24 48 b8 00 00 00 00 00 fc ff df 48 89 fa 48
[  561.791377] RSP: 0018:ffff88872fc8fd10 EFLAGS: 00010286
[  561.838895] bcache: bch_count_io_errors() nvme0n1: IO error on writing btree.
[  561.838916] bcache: bch_count_io_errors() nvme0n1: IO error on writing btree.
[  561.838934] bcache: bch_count_io_errors() nvme0n1: IO error on writing btree.
[  561.838948] bcache: bch_count_io_errors() nvme0n1: IO error on writing btree.
[  561.838966] bcache: bch_count_io_errors() nvme0n1: IO error on writing btree.
[  561.838979] bcache: bch_count_io_errors() nvme0n1: IO error on writing btree.
[  561.838996] bcache: bch_count_io_errors() nvme0n1: IO error on writing btree.
[  563.067028] RAX: 0000000000000000 RBX: fffffffffffffffc RCX: ffffffff832dd314
[  563.067030] RDX: 0000000000000000 RSI: 0000000000000004 RDI: 0000000000000297
[  563.067032] RBP: ffff88872fc8fe88 R08: fffffbfff0b8213d R09: fffffbfff0b8213d
[  563.067034] R10: 0000000000000001 R11: fffffbfff0b8213c R12: 000000000000001c
[  563.408618] R13: ffff88dc61cc0f68 R14: ffff888102b94900 R15: ffff88dc61cc0f68
[  563.408620] FS:  0000000000000000(0000) GS:ffff888f7dc00000(0000) knlGS:0000000000000000
[  563.408622] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[  563.408623] CR2: 000000000000001c CR3: 0000000f48a1a004 CR4: 00000000007606e0
[  563.408625] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[  563.408627] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[  563.904795] bcache: bch_count_io_errors() nvme0n1: IO error on writing btree.
[  563.915796] PKRU: 55555554
[  563.915797] Call Trace:
[  563.915807]  cache_set_flush+0xd4/0x6d0 [bcache]
[  563.915812]  process_one_work+0x856/0x1620
[  564.001226] bcache: bch_count_io_errors() nvme0n1: IO error on writing btree.
[  564.033563]  ? find_held_lock+0x39/0x1d0
[  564.033567]  ? drain_workqueue+0x380/0x380
[  564.033574]  worker_thread+0x87/0xb80
[  564.062823] bcache: bch_count_io_errors() nvme0n1: IO error on writing btree.
[  564.118042]  ? __kthread_parkme+0xb6/0x180
[  564.118046]  ? process_one_work+0x1620/0x1620
[  564.118048]  kthread+0x326/0x3e0
[  564.118050]  ? kthread_create_worker_on_cpu+0xc0/0xc0
[  564.167066] bcache: bch_count_io_errors() nvme0n1: IO error on writing btree.
[  564.252441]  ret_from_fork+0x3a/0x50
[  564.252447] Modules linked in: msr rpcrdma sunrpc rdma_ucm ib_iser ib_umad rdma_cm ib_ipoib i40iw configfs iw_cm ib_cm libiscsi scsi_transport_iscsi mlx4_ib ib_uverbs mlx4_en ib_core nls_iso8859_1 nls_cp437 vfat fat intel_rapl skx_edac x86_pkg_temp_thermal coretemp iTCO_wdt iTCO_vendor_support crct10dif_pclmul crc32_pclmul crc32c_intel ghash_clmulni_intel ses raid0 aesni_intel cdc_ether enclosure usbnet ipmi_ssif joydev aes_x86_64 i40e scsi_transport_sas mii bcache md_mod crypto_simd mei_me ioatdma crc64 ptp cryptd pcspkr i2c_i801 mlx4_core glue_helper pps_core mei lpc_ich dca wmi ipmi_si ipmi_devintf nd_pmem dax_pmem nd_btt ipmi_msghandler device_dax pcc_cpufreq button hid_generic usbhid mgag200 i2c_algo_bit drm_kms_helper syscopyarea sysfillrect xhci_pci sysimgblt fb_sys_fops xhci_hcd ttm megaraid_sas drm usbcore nfit libnvdimm sg dm_multipath dm_mod scsi_dh_rdac scsi_dh_emc scsi_dh_alua efivarfs
[  564.299390] bcache: bch_count_io_errors() nvme0n1: IO error on writing btree.
[  564.348360] CR2: 000000000000001c
[  564.348362] ---[ end trace b7f0e5cc7b2103b0 ]---

Therefore, it is not enough to only check whether c->gc_thread is NULL,
we should use IS_ERR_OR_NULL() to check both NULL pointer and error
value.

This patch changes the above buggy code piece in this way,
         if (!IS_ERR_OR_NULL(c->gc_thread))
                 kthread_stop(c->gc_thread);

Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28 07:39:13 -06:00
Coly Li cdca22bcbc bcache: remove redundant LIST_HEAD(journal) from run_cache_set()
Commit 95f18c9d13 ("bcache: avoid potential memleak of list of
journal_replay(s) in the CACHE_SYNC branch of run_cache_set") forgets
to remove the original define of LIST_HEAD(journal), which makes
the change no take effect. This patch removes redundant variable
LIST_HEAD(journal) from run_cache_set(), to make Shenghui's fix
working.

Fixes: 95f18c9d13 ("bcache: avoid potential memleak of list of journal_replay(s) in the CACHE_SYNC branch of run_cache_set")
Reported-by: Juha Aatrokoski <juha.aatrokoski@aalto.fi>
Cc: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-04-30 08:20:46 -06:00
Shenghui Wang 95f18c9d13 bcache: avoid potential memleak of list of journal_replay(s) in the CACHE_SYNC branch of run_cache_set
In the CACHE_SYNC branch of run_cache_set(), LIST_HEAD(journal) is used
to collect journal_replay(s) and filled by bch_journal_read().

If all goes well, bch_journal_replay() will release the list of
jounal_replay(s) at the end of the branch.

If something goes wrong, code flow will jump to the label "err:" and leave
the list unreleased.

This patch will release the list of journal_replay(s) in the case of
error detected.

v1 -> v2:
* Move the release code to the location after label 'err:' to
  simply the change.

Signed-off-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-04-24 10:56:29 -06:00
Coly Li eb8cbb6df3 bcache: improve bcache_reboot()
This patch tries to release mutex bch_register_lock early, to give
chance to stop cache set and bcache device early.

This patch also expends time out of stopping all bcache device from
2 seconds to 10 seconds, because stopping writeback rate update worker
may delay for 5 seconds, 2 seconds is not enough.

After this patch applied, stopping bcache devices during system reboot
or shutdown is very hard to be observed any more.

Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-04-24 10:56:28 -06:00
Coly Li 63d63b51d7 bcache: add comments for closure_fn to be called in closure_queue()
Add code comments to explain which call back function might be called
for the closure_queue(). This is an effort to make code to be more
understandable for readers.

Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-04-24 10:56:28 -06:00
Coly Li bb6d355c2a bcache: Add comments for blkdev_put() in registration code path
Add comments to explain why in register_bcache() blkdev_put() won't
be called in two location. Add comments to explain why blkdev_put()
must be called in register_cache() when cache_alloc() failed.

Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-04-24 10:56:28 -06:00
Coly Li 88c12d42d2 bcache: add error check for calling register_bdev()
This patch adds return value to register_bdev(). Then if failure happens
inside register_bdev(), its caller register_bcache() may detect and
handle the failure more properly.

Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-04-24 10:56:28 -06:00
Coly Li 2d17456eb1 bcache: add comments for kobj release callback routine
Bcache has several routines to release resources in implicit way, they
are called when the associated kobj released. This patch adds code
comments to notice when and which release callback will be called,
- When dc->disk.kobj released:
  void bch_cached_dev_release(struct kobject *kobj)
- When d->kobj released:
  void bch_flash_dev_release(struct kobject *kobj)
- When c->kobj released:
  void bch_cache_set_release(struct kobject *kobj)
- When ca->kobj released
  void bch_cache_release(struct kobject *kobj)

Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-04-24 10:56:28 -06:00
Coly Li ce3e4cfb59 bcache: add failure check to run_cache_set() for journal replay
Currently run_cache_set() has no return value, if there is failure in
bch_journal_replay(), the caller of run_cache_set() has no idea about
such failure and just continue to execute following code after
run_cache_set().  The internal failure is triggered inside
bch_journal_replay() and being handled in async way. This behavior is
inefficient, while failure handling inside bch_journal_replay(), cache
register code is still running to start the cache set. Registering and
unregistering code running as same time may introduce some rare race
condition, and make the code to be more hard to be understood.

This patch adds return value to run_cache_set(), and returns -EIO if
bch_journal_rreplay() fails. Then caller of run_cache_set() may detect
such failure and stop registering code flow immedidately inside
register_cache_set().

If journal replay fails, run_cache_set() can report error immediately
to register_cache_set(). This patch makes the failure handling for
bch_journal_replay() be in synchronized way, easier to understand and
debug, and avoid poetential race condition for register-and-unregister
in same time.

Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-04-24 10:56:28 -06:00
Liang Chen a4b732a248 bcache: fix a race between cache register and cacheset unregister
There is a race between cache device register and cache set unregister.
For an already registered cache device, register_bcache will call
bch_is_open to iterate through all cachesets and check every cache
there. The race occurs if cache_set_free executes at the same time and
clears the caches right before ca is dereferenced in bch_is_open_cache.
To close the race, let's make sure the clean up work is protected by
the bch_register_lock as well.

This issue can be reproduced as follows,
while true; do echo /dev/XXX> /sys/fs/bcache/register ; done&
while true; do echo 1> /sys/block/XXX/bcache/set/unregister ; done &

and results in the following oops,

[  +0.000053] BUG: unable to handle kernel NULL pointer dereference at 0000000000000998
[  +0.000457] #PF error: [normal kernel read fault]
[  +0.000464] PGD 800000003ca9d067 P4D 800000003ca9d067 PUD 3ca9c067 PMD 0
[  +0.000388] Oops: 0000 [#1] SMP PTI
[  +0.000269] CPU: 1 PID: 3266 Comm: bash Not tainted 5.0.0+ #6
[  +0.000346] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.11.0-2.fc28 04/01/2014
[  +0.000472] RIP: 0010:register_bcache+0x1829/0x1990 [bcache]
[  +0.000344] Code: b0 48 83 e8 50 48 81 fa e0 e1 10 c0 0f 84 a9 00 00 00 48 89 c6 48 89 ca 0f b7 ba 54 04 00 00 4c 8b 82 60 0c 00 00 85 ff 74 2f <49> 3b a8 98 09 00 00 74 4e 44 8d 47 ff 31 ff 49 c1 e0 03 eb 0d
[  +0.000839] RSP: 0018:ffff92ee804cbd88 EFLAGS: 00010202
[  +0.000328] RAX: ffffffffc010e190 RBX: ffff918b5c6b5000 RCX: ffff918b7d8e0000
[  +0.000399] RDX: ffff918b7d8e0000 RSI: ffffffffc010e190 RDI: 0000000000000001
[  +0.000398] RBP: ffff918b7d318340 R08: 0000000000000000 R09: ffffffffb9bd2d7a
[  +0.000385] R10: ffff918b7eb253c0 R11: ffffb95980f51200 R12: ffffffffc010e1a0
[  +0.000411] R13: fffffffffffffff2 R14: 000000000000000b R15: ffff918b7e232620
[  +0.000384] FS:  00007f955bec2740(0000) GS:ffff918b7eb00000(0000) knlGS:0000000000000000
[  +0.000420] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[  +0.000801] CR2: 0000000000000998 CR3: 000000003cad6000 CR4: 00000000001406e0
[  +0.000837] Call Trace:
[  +0.000682]  ? _cond_resched+0x10/0x20
[  +0.000691]  ? __kmalloc+0x131/0x1b0
[  +0.000710]  kernfs_fop_write+0xfa/0x170
[  +0.000733]  __vfs_write+0x2e/0x190
[  +0.000688]  ? inode_security+0x10/0x30
[  +0.000698]  ? selinux_file_permission+0xd2/0x120
[  +0.000752]  ? security_file_permission+0x2b/0x100
[  +0.000753]  vfs_write+0xa8/0x1a0
[  +0.000676]  ksys_write+0x4d/0xb0
[  +0.000699]  do_syscall_64+0x3a/0xf0
[  +0.000692]  entry_SYSCALL_64_after_hwframe+0x44/0xa9

Signed-off-by: Liang Chen <liangchen.linux@gmail.com>
Cc: stable@vger.kernel.org
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-04-24 10:56:27 -06:00
Geliang Tang 792732d985 bcache: use kmemdup_nul for CACHED_LABEL buffer
This patch uses kmemdup_nul to create a NUL-terminated string from
dc->sb.label. This is better than open coding it.

With this, we can move env[2] initialization into env[] array to make
code more elegant.

Signed-off-by: Geliang Tang <geliangtang@gmail.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-04-24 10:56:27 -06:00
Colin Ian King e8cf978dff bcache: fix indentation issue, remove tabs on a hunk of code
There is a hunk of code that is indented one level too deep, fix this
by removing the extra tabs.

Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-02-09 07:18:31 -07:00
Coly Li 9aaf516546 bcache: make cutoff_writeback and cutoff_writeback_sync tunable
Currently the cutoff writeback and cutoff writeback sync thresholds are
defined by CUTOFF_WRITEBACK (40) and CUTOFF_WRITEBACK_SYNC (70) as
static values. Most of time these they work fine, but when people want
to do research on bcache writeback mode performance tuning, there is no
chance to modify the soft and hard cutoff writeback values.

This patch introduces two module parameters bch_cutoff_writeback_sync
and bch_cutoff_writeback which permit people to tune the values when
loading bcache.ko. If they are not specified by module loading, current
values CUTOFF_WRITEBACK_SYNC and CUTOFF_WRITEBACK will be used as
default and nothing changes.

When people want to tune this two values,
- cutoff_writeback can be set in range [1, 70]
- cutoff_writeback_sync can be set in range [1, 90]
- cutoff_writeback always <= cutoff_writeback_sync

The default values are strongly recommended to most of users for most of
workloads. Anyway, if people wants to take their own risk to do research
on new writeback cutoff tuning for their own workload, now they can make
it.

Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-12-13 08:15:54 -07:00
Coly Li 009673d02f bcache: add MODULE_DESCRIPTION information
This patch moves MODULE_AUTHOR and MODULE_LICENSE to end of super.c, and
add MODULE_DESCRIPTION("Bcache: a Linux block layer cache").

This is preparation for adding module parameters.

Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-12-13 08:15:54 -07:00
Shenghui Wang ae17102316 bcache: do not check if debug dentry is ERR or NULL explicitly on remove
debugfs_remove and debugfs_remove_recursive will check if the dentry
pointer is NULL or ERR, and will do nothing in that case.

Remove the check in cache_set_free and bch_debug_init.

Signed-off-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-12-13 08:15:54 -07:00
Dongbo Cao 3a646fd776 bcache: panic fix for making cache device
when the nbuckets of cache device is smaller than 1024, making cache
device will trigger BUG_ON in kernel, add a condition to avoid this.

Reported-by: nitroxis <n@nxs.re>
Signed-off-by: Dongbo Cao <cdbdyx@163.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-10-08 08:19:59 -06:00
Dongbo Cao f6027bca9e bcache: split combined if-condition code into separate ones
Split the combined '||' statements in if() check, to make the code easier
for debug.

Signed-off-by: Dongbo Cao <cdbdyx@163.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-10-08 08:19:57 -06:00
Dongbo Cao 91bafdf081 bcache: remove useless parameter of bch_debug_init()
Parameter "struct kobject *kobj" in bch_debug_init() is useless,
remove it in this patch.

Signed-off-by: Dongbo Cao <cdbdyx@163.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-10-08 08:19:53 -06:00
Shenghui Wang 46010141da bcache: recal cached_dev_sectors on detach
Recal cached_dev_sectors on cached_dev detached, as recal done on
cached_dev attached.

Update the cached_dev_sectors before bcache_device_detach called
as bcache_device_detach will set bcache_device->c to NULL.

Signed-off-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-10-08 08:19:50 -06:00
Tang Junhui 2e17a262a2 bcache: correct dirty data statistics
When bcache device is clean, dirty keys may still exist after
journal replay, so we need to count these dirty keys even
device in clean status, otherwise after writeback, the amount
of dirty data would be incorrect.

Signed-off-by: Tang Junhui <tang.junhui.linux@gmail.com>
Cc: stable@vger.kernel.org
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-10-08 08:19:45 -06:00
Tang Junhui dd0c91793b bcache: fix ioctl in flash device
When doing ioctl in flash device, it will call ioctl_dev() in super.c,
then we should not to get cached device since flash only device has
no backend device. This patch just move the jugement dc->io_disable
to cached_dev_ioctl() to make ioctl in flash device correctly.

Fixes: 0f0709e6bf ("bcache: stop bcache device when backing device is offline")
Signed-off-by: Tang Junhui <tang.junhui.linux@gmail.com>
Cc: stable@vger.kernel.org
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-10-08 08:19:42 -06:00
Shenghui Wang 7a55948d38 bcache: account size of buckets used in uuid write to ca->meta_sectors_written
UUIDs are considered as metadata. __uuid_write should add the number
of buckets (in sectors) written to disk to ca->meta_sectors_written.
Currently only 1 bucket is used in uuid write.

Steps to test:
1) create a fresh backing device and a fresh cache device separately.
   The backing device didn't attach to any cache set.
2) cd /sys/block/<cache device>/bcache
   cat metadata_written      // record the output value
   cat bucket_size
3) attach the backing device to cache set
4) cat metadata_written
   The output value is almost the same as the value in step 2
   before the change.
   After the change, the value is bigger about 1 bucket size.

Signed-off-by: Shenghui Wang <shhuiw@foxmail.com>
Reviewed-by: Tang Junhui <tang.junhui.linux@gmail.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-10-08 08:19:37 -06:00
Guoju Fang 0f843e65d9 bcache: add separate workqueue for journal_write to avoid deadlock
After write SSD completed, bcache schedules journal_write work to
system_wq, which is a public workqueue in system, without WQ_MEM_RECLAIM
flag. system_wq is also a bound wq, and there may be no idle kworker on
current processor. Creating a new kworker may unfortunately need to
reclaim memory first, by shrinking cache and slab used by vfs, which
depends on bcache device. That's a deadlock.

This patch create a new workqueue for journal_write with WQ_MEM_RECLAIM
flag. It's rescuer thread will work to avoid the deadlock.

Signed-off-by: Guoju Fang <fangguoju@gmail.com>
Cc: stable@vger.kernel.org
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-09-27 09:47:01 -06:00
Coly Li eb2b3d0345 bcache: add the missing comments for smp_mb()/smp_wmb()
Checkpatch.pl warns there are 2 locations of smp_mb() and smp_wmb()
without code comment. This patch adds the missing code comments for
these memory barrier calls.

Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-08-11 15:46:42 -06:00