Enable programming of the interrupt coalescing registers
and allow manual configuration of the coalescing time
thresholds via ethtool. Packet thresholds have been fixed
to predetermined values as there's no point in making them
run-time configurable, also anticipating the dynamic interrupt
moderation (DIM) algorithm which uses fixed packet thresholds
as well. If the interface is up when the operation mode of
traffic interrupt events is changed by the user (i.e. switching
from default per-packet interrupts to coalesced interrupts),
the traffic needs to be paused in the process.
This patch also prepares the ground for introducing DIM on Rx.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Interrupt coalescing registers naming in the current revision
of the Ref Man (RM) is ICR, deprecating the ICIR name used
in earlier (draft) versions of the RM.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
ENETC has ethernet MACs capable of SGMII, 2500BaseX and USXGMII. But in
order to use these protocols some SerDes configurations need to be
performed. The SerDes is configurable via an internal PCS PHY which is
connected to an internal MDIO bus at address 0.
This patch basically removes the dependency on bootloader regarding
SerDes initialization.
Signed-off-by: Michael Walle <michael@walle.cc>
Reviewed-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Tested-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Minor overlapping changes in xfrm_device.c, between the double
ESP trailing bug fix setting the XFRM_INIT flag and the changes
in net-next preparing for bonding encryption support.
Signed-off-by: David S. Miller <davem@davemloft.net>
Flow metering entries in IEEE 802.1Qci is an optional function for a
flow filtering module. Flow metering is two rates two buckets and three
color marker to policing the frames. This patch only enable one rate one
bucket and in color blind mode. Flow metering instance are as
specified in the algorithm in MEF 10.3 and in Bandwidth Profile
Parameters. They are:
a) Flow meter instance identifier. An integer value identifying the flow
meter instance. The patch use the police 'index' as thin value.
b) Committed Information Rate (CIR), in bits per second. This patch use
the 'rate_bytes_ps' represent this value.
c) Committed Burst Size (CBS), in octets. This patch use the 'burst'
represent this value.
d) Excess Information Rate (EIR), in bits per second.
e) Excess Burst Size per Bandwidth Profile Flow (EBS), in octets.
And plus some other parameters. This patch set EIR/EBS default disable
and color blind mode.
v1->v2 changes:
- Use div_u64() as division replace the '/' report:
All errors (new ones prefixed by >>):
ld: drivers/net/ethernet/freescale/enetc/enetc_qos.o: in function `enetc_flowmeter_hw_set':
>> enetc_qos.c:(.text+0x66): undefined reference to `__udivdi3'
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Po Liu <Po.Liu@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
VLAN tag insertion/extraction offload is correctly
activated at probe time but deactivation of this feature
(i.e. via ethtool) is broken. Toggling works only for
Tx/Rx ring 0 of a PF, and is ignored for the other rings,
including the VF rings.
To fix this, the existing VLAN offload toggling code
was extended to all the rings assigned to a netdevice,
instead of the default ring 0 (likely a leftover from the
early validation days of this feature). And the code was
moved to the common set_features() function to fix toggling
for the VF driver too.
Fixes: d4fd0404c1 ("enetc: Introduce basic PF and VF ENETC ethernet drivers")
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch is to add tc flower offload for the enetc IEEE 802.1Qci(PSFP)
function. There are four main feature parts to implement the flow
policing and filtering for ingress flow with IEEE 802.1Qci features.
They are stream identify(this is defined in the P802.1cb exactly but
needed for 802.1Qci), stream filtering, stream gate and flow metering.
Each function block includes many entries by index to assign parameters.
So for one frame would be filtered by stream identify first, then
flow into stream filter block by the same handle between stream identify
and stream filtering. Then flow into stream gate control which assigned
by the stream filtering entry. And then policing by the gate and limited
by the max sdu in the filter block(optional). At last, policing by the
flow metering block, index choosing at the fitering block.
So you can see that each entry of block may link to many upper entries
since they can be assigned same index means more streams want to share
the same feature in the stream filtering or stream gate or flow
metering.
To implement such features, each stream filtered by source/destination
mac address, some stream maybe also plus the vlan id value would be
treated as one flow chain. This would be identified by the chain_index
which already in the tc filter concept. Driver would maintain this chain
and also with gate modules. The stream filter entry create by the gate
index and flow meter(optional) entry id and also one priority value.
Offloading only transfer the gate action and flow filtering parameters.
Driver would create (or search same gate id and flow meter id and
priority) one stream filter entry to set to the hardware. So stream
filtering do not need transfer by the action offloading.
This architecture is same with tc filter and actions relationship. tc
filter maintain the list for each flow feature by keys. And actions
maintain by the action list.
Below showing a example commands by tc:
> tc qdisc add dev eth0 ingress
> ip link set eth0 address 10:00:80:00:00:00
> tc filter add dev eth0 parent ffff: protocol ip chain 11 \
flower skip_sw dst_mac 10:00:80:00:00:00 \
action gate index 10 \
sched-entry open 200000000 1 8000000 \
sched-entry close 100000000 -1 -1
Command means to set the dst_mac 10:00:80:00:00:00 to index 11 of stream
identify module. Then setting the gate index 10 of stream gate module.
Keep the gate open for 200ms and limit the traffic volume to 8MB in this
sched-entry. Then direct the frames to the ingress queue 1.
Signed-off-by: Po Liu <Po.Liu@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch is to let ethtool enable/disable the tc flower offload
features. Hardware ENETC has the feature of PSFP which is for per-stream
policing. When enable the tc hw offloading feature, driver would enable
the IEEE 802.1Qci feature. It is only set the register enable bit for
this feature not enable for any entry of per stream filtering and stream
gate or stream identify but get how much capabilities for each feature.
Signed-off-by: Po Liu <Po.Liu@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Hardware timestamping support (PTP) on Rx requires extended
buffer descriptors, double the size of normal Rx descriptors.
On the current controller revision only the timestamping offload
requires extended Rx descriptors.
Since Rx timestamping can be turned on/off at runtime, make Rx ring
allocation configurable at runtime too. As a result, the static
config option FSL_ENETC_HW_TIMESTAMPING can be dropped and the
extended descriptors can be used only when Rx timestamping gets
activated.
The extension has the same size as the base descriptor, making
the descriptor iterators easy to update for the extended case.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Within the LS1028A SoC, the register map for the ENETC MDIO controller
is instantiated a few times: for the central (external) MDIO controller,
for the internal bus of each standalone ENETC port, and for the internal
bus of the Felix switch.
Refactoring is needed to support multiple MDIO buses from multiple
drivers. The enetc_hw structure is made an opaque type and a smaller
enetc_mdio_priv is created.
'mdio_base' - MDIO registers base address - is being parameterized, to
be able to work with different MDIO register bases.
The ENETC MDIO bus operations are exported from the fsl-enetc-mdio
kernel object, the same that registers the central MDIO controller (the
dedicated PF). The ENETC main driver has been changed to select it, and
use its exported helpers to further register its private MDIO bus. The
DSA Felix driver will do the same.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
ENETC implement time specific departure capability, which enables
the user to specify when a frame can be transmitted. When this
capability is enabled, the device will delay the transmission of
the frame so that it can be transmitted at the precisely specified time.
The delay departure time up to 0.5 seconds in the future. If the
departure time in the transmit BD has not yet been reached, based
on the current time, the packet will not be transmitted.
This driver was loaded by Qos driver ETF. User could load it by tc
commands. Here are the example commands:
tc qdisc add dev eth0 root handle 1: mqprio \
num_tc 8 map 0 1 2 3 4 5 6 7 hw 1
tc qdisc replace dev eth0 parent 1:8 etf \
clockid CLOCK_TAI delta 30000 offload
These example try to set queue mapping first and then set queue 7
with 30us ahead dequeue time.
Then user send test frame should set SO_TXTIME feature for socket.
There are also some limitations for this feature in hardware:
- Transmit checksum offloads and time specific departure operation
are mutually exclusive.
- Time Aware Shaper feature (Qbv) offload and time specific departure
operation are mutually exclusive.
Signed-off-by: Po Liu <Po.Liu@nxp.com>
Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The ENETC hardware support the Credit Based Shaper(CBS) which part
of the IEEE-802.1Qav. The CBS driver was loaded by the sch_cbs
interface when set in the QOS in the kernel.
Here is an example command to set 20Mbits bandwidth in 1Gbits port
for taffic class 7:
tc qdisc add dev eth0 root handle 1: mqprio \
num_tc 8 map 0 1 2 3 4 5 6 7 hw 1
tc qdisc replace dev eth0 parent 1:8 cbs \
locredit -1470 hicredit 30 \
sendslope -980000 idleslope 20000 offload 1
Signed-off-by: Po Liu <Po.Liu@nxp.com>
Reviewed-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
ENETC has a register PSPEED to indicate the link speed of hardware.
It is need to update accordingly. PSPEED field needs to be updated
with the port speed for QBV scheduling purposes. Or else there is
chance for gate slot not free by frame taking the MAC if PSPEED and
phy speed not match. So update PSPEED when link adjust. This is
implement by the adjust_link.
Signed-off-by: Po Liu <Po.Liu@nxp.com>
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
ENETC supports in hardware for time-based egress shaping according
to IEEE 802.1Qbv. This patch implement the Qbv enablement by the
hardware offload method qdisc tc-taprio method.
Also update cbdr writeback to up level since control bd ring may
writeback data to control bd ring.
Signed-off-by: Po Liu <Po.Liu@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add support to configure multiple prioritized TX traffic
classes with mqprio.
Configure one BD ring per TC for the moment, one netdev
queue per TC.
Signed-off-by: Camelia Groza <camelia.groza@nxp.com>
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch is to add hardware timestamping support
for ENETC. On Rx, timestamping is enabled for all
frames. On Tx, we only instruct the hardware to
timestamp the frames marked accordingly by the stack.
Because the RX BD ring dynamic allocation has not been
supported and it is too expensive to use extended RX BDs
if timestamping is not used, a Kconfig option is used to
enable extended RX BDs in order to support hardware
timestamping. This option will be removed once RX BD
ring dynamic allocation is implemented.
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch is to add PTP clock driver for ENETC.
The driver reused QorIQ PTP clock driver.
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
A ternary match table is used for RFS. If multiple entries in the table
match, the entry with the lowest numerical values index is chosen as the
matching entry. Entries in the table are identified using an index
which takes a value from 0 to PRFSCAPR[NUM_RFS]-1 when accessed by the
PSI (PF).
Portions of the RFS table can be assigned to each SI by the PSI (PF)
driver in PSIaRFSCFGR. Assignments are cumulative, the entries assigned
to SIn start after those assigned to SIn-1. The total assignments to
all SIs must be equal to or less than the number available to the port
as found in PRFSCAPR.
For RSS, the Toeplitz hash function used requires two inputs, a 40B
random secret key that is supplied through the PRSSKR0-9 registers as well
as the relevant pieces of the packet header (n-tuple). The 6 LSB bits of
the hash function result will then be used as a pointer to obtain the tag
referenced in the 64 entry indirection table. The result will provide a
winning group which will be used to help route the received packet.
Signed-off-by: Alex Marginean <alexandru.marginean@nxp.com>
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
VSIs (VFs) may send a message to the PSI (PF) for general notification
or to gain access to hardware resources which requires host inspection.
These messages may vary in size and are handled as a partition copy
between two memory regions owned by the respective participants.
The PSI will respond with fail or success and a 16-bit message code.
The patch implements the vf to pf messaging mechanism above and, as the
first application making use of this support, it enables the VF to
configure its own primary MAC address.
Signed-off-by: Catalin Horghidan <catalin.horghidan@nxp.com>
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This adds most h/w statistics counters: non-privileged SI conters, as
well as privileged Port and MAC counters available only to the PF.
Per ring software stats are also included.
Signed-off-by: Alex Marginean <alexandru.marginean@nxp.com>
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
ENETC is a multi-port virtualized Ethernet controller supporting GbE
designs and Time-Sensitive Networking (TSN) functionality.
ENETC is operating as an SR-IOV multi-PF capable Root Complex Integrated
Endpoint (RCIE). As such, it contains multiple physical (PF) and
virtual (VF) PCIe functions, discoverable by standard PCI Express.
Introduce basic PF and VF ENETC ethernet drivers. The PF has access to
the ENETC Port registers and resources and makes the required privileged
configurations for the underlying VF devices. Common functionality is
controlled through so called System Interface (SI) register blocks, PFs
and VFs own a SI each. Though SI register blocks are almost identical,
there are a few privileged SI level controls that are accessible only to
PFs, and so the distinction is made between PF SIs (PSI) and VF SIs (VSI).
As such, the bulk of the code, including datapath processing, basic h/w
offload support and generic pci related configuration, is shared between
the 2 drivers and is factored out in common source files (i.e. enetc.c).
Major functionalities included (for both drivers):
MSI-X support for Rx and Tx processing, assignment of Rx/Tx BD ring pairs
to MSI-X entries, multi-queue support, Rx S/G (Rx frame fragmentation) and
jumbo frame (up to 9600B) support, Rx paged allocation and reuse, Tx S/G
support (NETIF_F_SG), Rx and Tx checksum offload, PF MAC filtering and
initial control ring support, VLAN extraction/ insertion, PF Rx VLAN
CTAG filtering, VF mac address config support, VF VLAN isolation support,
etc.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>