Instead of setting up the GPIO configuration for the whole controller,
do it at CS level. It will allow to mix internal CS and GPIO CS, which
is not possible with the current implementation.
Signed-off-by: Gregory CLEMENT <gregory.clement@bootlin.com>
Link: https://lore.kernel.org/r/20191017141846.7523-4-gregory.clement@bootlin.com
Signed-off-by: Mark Brown <broonie@kernel.org>
Until a few years ago, this driver was only used with CS GPIO. The
only exception is CS0 on AT91RM9200 which has to use internal CS. A
limitation of the internal CS is that they don't support CS High.
So by using the CS GPIO the CS high configuration was available except
for the particular case CS0 on RM9200.
When the support for the internal chip-select was added, the check of
the CS high support was not updated. Due to this the driver accepts
this configuration for all the SPI controller v2 (used by all SoCs
excepting the AT91RM9200) whereas the hardware doesn't support it for
infernal CS.
This patch fixes the test to match the hardware capabilities.
Fixes: 4820303480 ("spi: atmel: add support for the internal chip-select of the spi controller")
Cc: <stable@vger.kernel.org>
Signed-off-by: Gregory CLEMENT <gregory.clement@bootlin.com>
Link: https://lore.kernel.org/r/20191017141846.7523-3-gregory.clement@bootlin.com
Signed-off-by: Mark Brown <broonie@kernel.org>
Since CSAAT functionality support has been added. Some comments become
wrong. Fix them to match the current driver behavior.
Signed-off-by: Gregory CLEMENT <gregory.clement@bootlin.com>
Link: https://lore.kernel.org/r/20191017141846.7523-2-gregory.clement@bootlin.com
Signed-off-by: Mark Brown <broonie@kernel.org>
Convert to use device_get_match_data() instead of open coded variant.
While here, switch of_property_read_bool() to device_property_read_bool().
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Link: https://lore.kernel.org/r/20191018105429.82782-4-andriy.shevchenko@linux.intel.com
Signed-off-by: Mark Brown <broonie@kernel.org>
There is no need to keep a pointer to the platform device. Currently there are
no users of it directly, and if there will be in the future we may restore it
from pointer to the struct device.
Convert all users at the same time.
Cc: Russell King <linux@armlinux.org.uk>
Cc: Jaroslav Kysela <perex@perex.cz>
Cc: Takashi Iwai <tiwai@suse.com>
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Link: https://lore.kernel.org/r/20191018105429.82782-1-andriy.shevchenko@linux.intel.com
Signed-off-by: Mark Brown <broonie@kernel.org>
For many places in the spi drivers, using the new `spi_transfer_delay`
helper is straightforward.
It's just replacing:
```
if (t->delay_usecs)
udelay(t->delay_usecs);
```
with `spi_transfer_delay(t)` which handles both `delay_usecs` and the new
`delay` field.
This change replaces in all places (in the spi drivers) where this change
is simple.
Signed-off-by: Alexandru Ardelean <alexandru.ardelean@analog.com>
Link: https://lore.kernel.org/r/20190926105147.7839-10-alexandru.ardelean@analog.com
Signed-off-by: Mark Brown <broonie@kernel.org>
The AXI SPI engine driver uses the `delay_usecs` field from `spi_transfer`
to configure delays, which the controller will execute.
This change extends the logic to also include the `delay` value, in case it
is used (instead if `delay_usecs`).
Signed-off-by: Alexandru Ardelean <alexandru.ardelean@analog.com>
Link: https://lore.kernel.org/r/20190926105147.7839-20-alexandru.ardelean@analog.com
Signed-off-by: Mark Brown <broonie@kernel.org>
The driver errors out if `delay_usecs` is non-zero. This error condition
should be extended to the new `delay` field, to account for when it will be
used.
Signed-off-by: Alexandru Ardelean <alexandru.ardelean@analog.com>
Link: https://lore.kernel.org/r/20190926105147.7839-19-alexandru.ardelean@analog.com
Signed-off-by: Mark Brown <broonie@kernel.org>
The WARN_ON macro prints a warning in syslog if `delay_usecs` is non-zero.
However, with the new intermediate `delay`, the warning should also be
printed.
Signed-off-by: Alexandru Ardelean <alexandru.ardelean@analog.com>
Link: https://lore.kernel.org/r/20190926105147.7839-18-alexandru.ardelean@analog.com
Signed-off-by: Mark Brown <broonie@kernel.org>
The way the max delay is computed for this controller, it looks like it is
searching for the max delay from an SPI message a using that.
No idea if this is valid. But this change should support both `delay_usecs`
and the new `delay` data which is of `spi_delay` type.
Signed-off-by: Alexandru Ardelean <alexandru.ardelean@analog.com>
Link: https://lore.kernel.org/r/20190926105147.7839-17-alexandru.ardelean@analog.com
Signed-off-by: Mark Brown <broonie@kernel.org>
This change implements CS control for setup, hold & inactive delays.
The `cs_setup` delay is completely new, and can help with cases where
asserting the CS, also brings the device out of power-sleep, where there
needs to be a longer (than usual), before transferring data.
The `cs_hold` time can overlap with the `delay` (or `delay_usecs`) from an
SPI transfer. The main difference is that `cs_hold` implies that CS will be
de-asserted.
The `cs_inactive` delay does not have a clear use-case yet. It has been
implemented mostly because the `spi_set_cs_timing()` function implements
it. To some degree, this could overlap or replace `cs_change_delay`, but
this will require more consideration/investigation in the future.
All these delays have been added to the `spi_controller` struct, as they
would typically be configured by calling `spi_set_cs_timing()` after an
`spi_setup()` call.
Software-mode for CS control, implies that the `set_cs_timing()` hook has
not been provided for the `spi_controller` object.
Signed-off-by: Alexandru Ardelean <alexandru.ardelean@analog.com>
Link: https://lore.kernel.org/r/20190926105147.7839-16-alexandru.ardelean@analog.com
Signed-off-by: Mark Brown <broonie@kernel.org>
The initial version of `spi_set_cs_timing()` was implemented with
consideration only for clock-cycles as delay.
For cases like `CS setup` time, it's sometimes needed that micro-seconds
(or nano-seconds) are required, or sometimes even longer delays, for cases
where the device needs a little longer to start transferring that after CS
is asserted.
Signed-off-by: Alexandru Ardelean <alexandru.ardelean@analog.com>
Link: https://lore.kernel.org/r/20190926105147.7839-15-alexandru.ardelean@analog.com
Signed-off-by: Mark Brown <broonie@kernel.org>
The `delay` field has type `struct spi_delay`.
This allows users to specify nano-second or clock-cycle delays (if needed).
Converting to use `delay` is straightforward: it's just assigning the
value to `delay.value` and hard-coding the `delay.unit` to
`SPI_DELAY_UNIT_USECS`.
This keeps the uapi for spidev un-changed. Changing it can be part of
another changeset and discussion.
Signed-off-by: Alexandru Ardelean <alexandru.ardelean@analog.com>
Link: https://lore.kernel.org/r/20190926105147.7839-14-alexandru.ardelean@analog.com
Signed-off-by: Mark Brown <broonie@kernel.org>
This change replaces the use of the `delay_usecs` field with the new
`delay` field. The code/test still uses micro-seconds, but they are now
configured and used via the `struct spi_delay` format of the `delay` field.
Signed-off-by: Alexandru Ardelean <alexandru.ardelean@analog.com>
Link: https://lore.kernel.org/r/20190926105147.7839-13-alexandru.ardelean@analog.com
Signed-off-by: Mark Brown <broonie@kernel.org>
This conversion to the spi_transfer_delay_exec() helper is not
straightforward, as it seems that when a delay is present, the controller
issues a command, and then a delay is followed.
This change adds support for the new `delay` field which is of type
`spi_delay` and keeps backwards compatibility with the old `delay_usecs`
field.
Signed-off-by: Alexandru Ardelean <alexandru.ardelean@analog.com>
Link: https://lore.kernel.org/r/20190926105147.7839-12-alexandru.ardelean@analog.com
Signed-off-by: Mark Brown <broonie@kernel.org>
The tegra114 driver has a weird/separate `tegra_spi_transfer_delay()`
function that does 2 delays: one mdelay() and one udelay().
This was introduced via commit f4fade12d5
("spi/tegra114: Correct support for cs_change").
There doesn't seem to be a mention in that commit message to suggest a
specific need/use-case for having the 2 delay calls.
For the most part, udelay() should be sufficient.
This change replaces it with the new `spi_transfer_delay_exec()`, which
should do the same thing.
Signed-off-by: Alexandru Ardelean <alexandru.ardelean@analog.com>
Link: https://lore.kernel.org/r/20190926105147.7839-11-alexandru.ardelean@analog.com
Signed-off-by: Mark Brown <broonie@kernel.org>
The change introduces the `delay` field to the `spi_transfer` struct as an
`struct spi_delay` type.
This intends to eventually replace `delay_usecs`.
But, since there are many users of `delay_usecs`, this needs some
intermediate work.
A helper called `spi_transfer_delay_exec()` is also added, which maintains
backwards compatibility with `delay_usecs`, by assigning the value to
`delay` if non-zero.
This should maintain backwards compatibility with current users of
`udelay_usecs`.
Signed-off-by: Alexandru Ardelean <alexandru.ardelean@analog.com>
Link: https://lore.kernel.org/r/20190926105147.7839-9-alexandru.ardelean@analog.com
Signed-off-by: Mark Brown <broonie@kernel.org>
This change does a conversion from the `word_delay_usecs` -> `word_delay`
for the `spi_device` struct.
This allows users to specify inter-word delays in other unit types
(nano-seconds or clock cycles), depending on how users want.
The Atmel SPI driver is the only current user of the `word_delay_usecs`
field (from the `spi_device` struct).
So, it needed a slight conversion to use the `word_delay` as an `spi_delay`
struct.
In SPI core, the only required mechanism is to update the `word_delay`
information per `spi_transfer`. This requires a bit more logic than before,
because it needs that both delays be converted to a common unit
(nano-seconds) for comparison.
Signed-off-by: Alexandru Ardelean <alexandru.ardelean@analog.com>
Link: https://lore.kernel.org/r/20190926105147.7839-8-alexandru.ardelean@analog.com
Signed-off-by: Mark Brown <broonie@kernel.org>
The `word_delay` field had it's type changed to `struct spi_delay`.
This allows users to specify nano-second or clock-cycle delays (if needed).
Converting to use `word_delay` is straightforward: it's just assigning the
value to `word_delay.value` and hard-coding the `word_delay.unit` to
`SPI_DELAY_UNIT_USECS`
This keeps the uapi for spidev un-changed. Changing it can be part of
another changeset and discussion.
Signed-off-by: Alexandru Ardelean <alexandru.ardelean@analog.com>
Link: https://lore.kernel.org/r/20190926105147.7839-7-alexandru.ardelean@analog.com
Signed-off-by: Mark Brown <broonie@kernel.org>
The `word_delay` field had it's type changed to `struct spi_delay`.
This allows users to specify nano-second or clock-cycle delays (if needed).
Converting to use `word_delay` is straightforward: it just uses the new
`spi_delay_exec()` routine, that handles the `unit` part.
Signed-off-by: Alexandru Ardelean <alexandru.ardelean@analog.com>
Link: https://lore.kernel.org/r/20190926105147.7839-6-alexandru.ardelean@analog.com
Signed-off-by: Mark Brown <broonie@kernel.org>
The Spreadtrum SPI driver is the only user of the `word_delay` field in
the `spi_transfer` struct.
This change converts the field to use the `spi_delay` struct. This also
enforces the users to specify the delay unit to be `SPI_DELAY_UNIT_SCK`.
Signed-off-by: Alexandru Ardelean <alexandru.ardelean@analog.com>
Link: https://lore.kernel.org/r/20190926105147.7839-5-alexandru.ardelean@analog.com
Signed-off-by: Mark Brown <broonie@kernel.org>
Since the logic for `spi_delay` struct + `spi_delay_exec()` has been copied
from the `cs_change_delay` logic, it's natural to make this delay, the
first user.
The `cs_change_delay` logic requires that the default remain 10 uS, in case
it is unspecified/unconfigured. So, there is some special handling needed
to do that.
The ADIS library is one of the few users of the new `cs_change_delay`
parameter for an spi_transfer.
The introduction of the `spi_delay` struct, requires that the users of of
`cs_change_delay` get an update. This change also updates the ADIS library.
Signed-off-by: Alexandru Ardelean <alexandru.ardelean@analog.com>
Link: https://lore.kernel.org/r/20190926105147.7839-4-alexandru.ardelean@analog.com
Signed-off-by: Mark Brown <broonie@kernel.org>
There are plenty of delays that have been introduced in SPI core. Most of
them are in micro-seconds, some need to be in nano-seconds, and some in
clock-cycles.
For some of these delays (related to transfers & CS timing) it may make
sense to have a `spi_delay` struct that abstracts these a bit.
The important element of these delays [for unification] seems to be the
`unit` of the delay.
It looks like micro-seconds is good enough for most people, but every-once
in a while, some delays seem to require other units of measurement.
This change adds the `spi_delay` struct & a `spi_delay_exec()` function
that processes a `spi_delay` object/struct to execute the delay.
It's a copy of the `cs_change_delay` mechanism, but without the default
for 10 uS.
The clock-cycle delay unit is a bit special, as it needs to be bound to an
`spi_transfer` object to execute.
Signed-off-by: Alexandru Ardelean <alexandru.ardelean@analog.com>
Link: https://lore.kernel.org/r/20190926105147.7839-3-alexandru.ardelean@analog.com
Signed-off-by: Mark Brown <broonie@kernel.org>
The `cs_change_delay` backwards compatibility value could be moved outside
of the switch statement.
The only reason to do it, is to make the next patches easier to diff.
Signed-off-by: Alexandru Ardelean <alexandru.ardelean@analog.com>
Link: https://lore.kernel.org/r/20190926105147.7839-2-alexandru.ardelean@analog.com
Signed-off-by: Mark Brown <broonie@kernel.org>
Convert Renesas HSPI bindings documentation to json-schema.
Also name bindings documentation file according to the compat string
being documented.
Signed-off-by: Simon Horman <horms+renesas@verge.net.au>
Reviewed-by: Rob Herring <robh@kernel.org>
Link: https://lore.kernel.org/r/20190926102533.17829-1-horms+renesas@verge.net.au
Signed-off-by: Mark Brown <broonie@kernel.org>
Fixes gcc '-Wunused-but-set-variable' warning:
drivers/spi/spi-npcm-pspi.c: In function npcm_pspi_handler:
drivers/spi/spi-npcm-pspi.c:296:6: warning: variable val set but not used [-Wunused-but-set-variable]
It is not used since commit 2a22f1b30c ("spi:
npcm: add NPCM PSPI controller driver")
Reported-by: Hulk Robot <hulkci@huawei.com>
Signed-off-by: zhengbin <zhengbin13@huawei.com>
Link: https://lore.kernel.org/r/1570581437-104549-3-git-send-email-zhengbin13@huawei.com
Signed-off-by: Mark Brown <broonie@kernel.org>
Fixes gcc '-Wunused-but-set-variable' warning:
drivers/spi/spi-omap-100k.c: In function spi100k_read_data:
drivers/spi/spi-omap-100k.c:140:6: warning: variable dataH set but not used [-Wunused-but-set-variable]
It is not used since commit 35c9049b27 ("Add OMAP spi100k driver")
Reported-by: Hulk Robot <hulkci@huawei.com>
Signed-off-by: zhengbin <zhengbin13@huawei.com>
Link: https://lore.kernel.org/r/1570581437-104549-2-git-send-email-zhengbin13@huawei.com
Signed-off-by: Mark Brown <broonie@kernel.org>
Later versions of the QSPI controller (e.g. in i.MX6UL/ULL and i.MX7)
seem to have an additional TDH setting in the FLSHCR register, that
needs to be set in accordance with the access mode that is used (DDR
or SDR).
Previous bootstages such as BootROM or bootloader might have used the
DDR mode to access the flash. As we currently only use SDR mode, we
need to make sure the TDH bits are cleared upon initialization.
Fixes: 84d043185d ("spi: Add a driver for the Freescale/NXP QuadSPI controller")
Cc: <stable@vger.kernel.org>
Signed-off-by: Frieder Schrempf <frieder.schrempf@kontron.de>
Acked-by: Han Xu <han.xu@nxp.com>
Link: https://lore.kernel.org/r/20191007071933.26786-1-frieder.schrempf@kontron.de
Signed-off-by: Mark Brown <broonie@kernel.org>
With this patch, the "interrupts" property from the device tree bindings
is ignored, even if present, if the driver runs in TCFQ mode.
Switching to using the DSPI in poll mode has several distinct
benefits:
- With interrupts, the DSPI driver in TCFQ mode raises an IRQ after each
transmitted word. There is more time wasted for the "waitq" event than
for actual I/O. And the DSPI IRQ count can easily get the largest in
/proc/interrupts on Freescale boards with attached SPI devices.
- The SPI I/O time is both lower, and more consistently so. Attached to
some Freescale devices are either PTP switches, or SPI RTCs. For
reading time off of a SPI slave device, it is important that all SPI
transfers take a deterministic time to complete.
- In poll mode there is much less time spent by the CPU in hardirq
context, which helps with the response latency of the system, and at
the same time there is more control over when interrupts must be
disabled (to get a precise timestamp measurement): win-win.
On the LS1021A-TSN board, where the SPI device is a SJA1105 PTP switch
(with a bits_per_word=8 driver), I created a "benchmark" where I read
its PTP time once per second, for 120 seconds. Each "read PTP time" is a
12-byte SPI transfer. I then recorded the time before putting the first
byte in the TX FIFO, and the time after reading the last byte from the
RX FIFO. That is the transfer delay in nanoseconds.
Interrupt mode:
delay: min 125120 max 168320 mean 150286 std dev 17675.3
Poll mode:
delay: min 69440 max 119040 mean 70312.9 std dev 8065.34
Both the mean latency and the standard deviation are more than 50% lower
in poll mode than in interrupt mode. This is with an 'ondemand' governor
on an otherwise idle system - therefore running mostly at 600 MHz out of
a max of 1200 MHz.
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Link: https://lore.kernel.org/r/20190905010114.26718-5-olteanv@gmail.com
Signed-off-by: Mark Brown <broonie@kernel.org>
In this mode, the DSPI controller uses PIO to transfer word by word. In
comparison, in EOQ mode the 4-word deep FIFO is being used, hence the
current logic will need some adaptation for which I do not have the
hardware (Coldfire) to test. It is not clear what is the timing of DMA
transfers and whether timestamping in the driver brings any overall
performance increase compared to regular timestamping done in the core.
Short phc2sys summary after 58 minutes of running on LS1021A-TSN with
interrupts disabled during the critical section:
offset: min -26251 max 16416 mean -21.8672 std dev 863.416
delay: min 4720 max 57280 mean 5182.49 std dev 1607.19
lost servo lock 3 times
Summary of the same phc2sys service running for 120 minutes with
interrupts disabled:
offset: min -378 max 381 mean -0.0083089 std dev 101.495
delay: min 4720 max 5920 mean 5129.38 std dev 154.899
lost servo lock 0 times
The minimum delay (pre to post time) in nanoseconds is the same, but the
maximum delay is quite a bit higher, due to interrupts getting sometimes
executed and interfering with the measurement. Hence set disable_irqs
whenever possible (aka when the driver runs in poll mode - otherwise it
would be a contradiction in terms).
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Link: https://lore.kernel.org/r/20190905010114.26718-4-olteanv@gmail.com
Signed-off-by: Mark Brown <broonie@kernel.org>
SPI is one of the interfaces used to access devices which have a POSIX
clock driver (real time clocks, 1588 timers etc). The fact that the SPI
bus is slow is not what the main problem is, but rather the fact that
drivers don't take a constant amount of time in transferring data over
SPI. When there is a high delay in the readout of time, there will be
uncertainty in the value that has been read out of the peripheral.
When that delay is constant, the uncertainty can at least be
approximated with a certain accuracy which is fine more often than not.
Timing jitter occurs all over in the kernel code, and is mainly caused
by having to let go of the CPU for various reasons such as preemption,
servicing interrupts, going to sleep, etc. Another major reason is CPU
dynamic frequency scaling.
It turns out that the problem of retrieving time from a SPI peripheral
with high accuracy can be solved by the use of "PTP system
timestamping" - a mechanism to correlate the time when the device has
snapshotted its internal time counter with the Linux system time at that
same moment. This is sufficient for having a precise time measurement -
it is not necessary for the whole SPI transfer to be transmitted "as
fast as possible", or "as low-jitter as possible". The system has to be
low-jitter for a very short amount of time to be effective.
This patch introduces a PTP system timestamping mechanism in struct
spi_transfer. This is to be used by SPI device drivers when they need to
know the exact time at which the underlying device's time was
snapshotted. More often than not, SPI peripherals have a very exact
timing for when their SPI-to-interconnect bridge issues a transaction
for snapshotting and reading the time register, and that will be
dependent on when the SPI-to-interconnect bridge figures out that this
is what it should do, aka as soon as it sees byte N of the SPI transfer.
Since spi_device drivers are the ones who'd know best how the peripheral
behaves in this regard, expose a mechanism in spi_transfer which allows
them to specify which word (or word range) from the transfer should be
timestamped.
Add a default implementation of the PTP system timestamping in the SPI
core. This is not going to be satisfactory performance-wise, but should
at least increase the likelihood that SPI device drivers will use PTP
system timestamping in the future.
There are 3 entry points from the core towards the SPI controller
drivers:
- transfer_one: The driver is passed individual spi_transfers to
execute. This is the easiest to timestamp.
- transfer_one_message: The core passes the driver an entire spi_message
(a potential batch of spi_transfers). The core puts the same pre and
post timestamp to all transfers within a message. This is not ideal,
but nothing better can be done by default anyway, since the core has
no insight into how the driver batches the transfers.
- transfer: Like transfer_one_message, but for unqueued drivers (i.e.
the driver implements its own queue scheduling).
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Link: https://lore.kernel.org/r/20190905010114.26718-3-olteanv@gmail.com
Signed-off-by: Mark Brown <broonie@kernel.org>
This driver doesn't do anything with the match for the device node. The
logic is the same as looking to see if a device node exists or not
because this driver wouldn't probe unless there is a device node match
when the device is created from DT. Just test for the presence of the
device node to simplify and avoid referencing a potentially undefined
match table when CONFIG_OF=n.
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Mark Brown <broonie@kernel.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Frank Rowand <frowand.list@gmail.com>
Cc: <linux-spi@vger.kernel.org>
Signed-off-by: Stephen Boyd <swboyd@chromium.org>
Link: https://lore.kernel.org/r/20191004214334.149976-9-swboyd@chromium.org
Signed-off-by: Mark Brown <broonie@kernel.org>
With this patch, the "interrupts" property from the device tree bindings
is ignored, even if present, if the driver runs in TCFQ mode.
Switching to using the DSPI in poll mode has several distinct
benefits:
- With interrupts, the DSPI driver in TCFQ mode raises an IRQ after each
transmitted word. There is more time wasted for the "waitq" event than
for actual I/O. And the DSPI IRQ count can easily get the largest in
/proc/interrupts on Freescale boards with attached SPI devices.
- The SPI I/O time is both lower, and more consistently so. Attached to
some Freescale devices are either PTP switches, or SPI RTCs. For
reading time off of a SPI slave device, it is important that all SPI
transfers take a deterministic time to complete.
- In poll mode there is much less time spent by the CPU in hardirq
context, which helps with the response latency of the system, and at
the same time there is more control over when interrupts must be
disabled (to get a precise timestamp measurement, which will come in a
future patch): win-win.
On the LS1021A-TSN board, where the SPI device is a SJA1105 PTP switch
(with a bits_per_word=8 driver), I created a "benchmark" where I
periodically transferred a 12-byte message once per second, for 120
seconds. I then recorded the time before putting the first byte in the
TX FIFO, and the time after reading the last byte from the RX FIFO. That
is the transfer delay in nanoseconds.
Interrupt mode:
delay: min 125120 max 168320 mean 150286 std dev 17675.3
Poll mode:
delay: min 69440 max 119040 mean 70312.9 std dev 8065.34
Both the mean latency and the standard deviation are more than 50% lower
in poll mode than in interrupt mode, and the 'max' in poll mode is lower
than the 'min' in interrupt mode. This is with an 'ondemand' governor on
an otherwise idle system - therefore running mostly at 600 MHz out of a
max of 1200 MHz.
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Link: https://lore.kernel.org/r/20191001205216.32115-1-olteanv@gmail.com
Signed-off-by: Mark Brown <broonie@kernel.org>
Different platforms have different Master with different SourceID on
AHB bus. The 0X0E Master ID is used by cluster 3 in case of LS2088A.
So, patch introduce an invalid master id variable to fix invalid
mastered on different platforms.
Signed-off-by: Suresh Gupta <suresh.gupta@nxp.com>
Signed-off-by: Kuldeep Singh <kuldeep.singh@nxp.com>
Link: https://lore.kernel.org/r/1569920356-8953-1-git-send-email-kuldeep.singh@nxp.com
Signed-off-by: Mark Brown <broonie@kernel.org>
In fsl_lpspi_probe an SPI controller is allocated either via
spi_alloc_slave or spi_alloc_master. In all but one error cases this
controller is put by going to error handling code. This commit fixes the
case when pm_runtime_get_sync fails and it should go to the error
handling path.
Fixes: 944c01a889 ("spi: lpspi: enable runtime pm for lpspi")
Signed-off-by: Navid Emamdoost <navid.emamdoost@gmail.com>
Link: https://lore.kernel.org/r/20190930034602.1467-1-navid.emamdoost@gmail.com
Signed-off-by: Mark Brown <broonie@kernel.org>
In spi_gpio_probe an SPI master is allocated via spi_alloc_master, but
this controller should be released if devm_add_action_or_reset fails,
otherwise memory leaks. In order to avoid leak spi_contriller_put must
be called in case of failure for devm_add_action_or_reset.
Fixes: 8b797490b4 ("spi: gpio: Make sure spi_master_put() is called in every error path")
Signed-off-by: Navid Emamdoost <navid.emamdoost@gmail.com>
Link: https://lore.kernel.org/r/20190930205241.5483-1-navid.emamdoost@gmail.com
Signed-off-by: Mark Brown <broonie@kernel.org>
This change provides the dspi_slave_abort() function, which is a callback
for slave_abort() method of SPI controller generic driver.
As in the SPI slave mode the transmission is driven by master, any
distortion may cause the slave to enter undefined internal state.
To avoid this problem the dspi_slave_abort() terminates all pending and
ongoing DMA transactions (with sync) and clears internal FIFOs.
Signed-off-by: Lukasz Majewski <lukma@denx.de>
Link: https://lore.kernel.org/r/20190924110547.14770-3-lukma@denx.de
Signed-off-by: Mark Brown <broonie@kernel.org>
Simplify this function implementation by using a known wrapper function.
This issue was detected by using the Coccinelle software.
Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Link: https://lore.kernel.org/r/178bb78e-714f-645f-d819-5732870c4272@web.de
Signed-off-by: Mark Brown <broonie@kernel.org>
Simplify this function implementation by using a known wrapper function.
This issue was detected by using the Coccinelle software.
Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Link: https://lore.kernel.org/r/225b76ca-a367-4bef-d8ce-42c7af9242a5@web.de
Signed-off-by: Mark Brown <broonie@kernel.org>
Simplify this function implementation by using a known wrapper function.
This issue was detected by using the Coccinelle software.
Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Link: https://lore.kernel.org/r/478e0df1-e800-8cf1-f9b3-d72f8e26aa0b@web.de
Signed-off-by: Mark Brown <broonie@kernel.org>
Simplify this function implementation by using a known wrapper function.
This issue was detected by using the Coccinelle software.
Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Link: https://lore.kernel.org/r/230495a7-b754-bc6a-05e0-059a6b6c643d@web.de
Signed-off-by: Mark Brown <broonie@kernel.org>
Make use of a core helper to ensure the desired width is respected
when calling spi-mem operators.
Suggested-by: Boris Brezillon <bbrezillon@kernel.org>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/r/20190919202504.9619-2-miquel.raynal@bootlin.com
Signed-off-by: Mark Brown <broonie@kernel.org>