Add the sysfs reporting file for Processor MMIO Stale Data
vulnerability. It exposes the vulnerability and mitigation state similar
to the existing files for the other hardware vulnerabilities.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
GCC-8 isn't clever enough to figure out that cpu_start_entry() is a
noreturn while objtool is. This results in code after the call in
start_secondary(). Give GCC a hand so that they all agree on things.
vmlinux.o: warning: objtool: start_secondary()+0x10e: unreachable
Reported-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lore.kernel.org/r/20220408094718.383658532@infradead.org
279dcf693a ("virt: acrn: Introduce an interface for Service VM to
control vCPU") introduced {add,remove}_cpu() usage and it hit below
error with !CONFIG_SMP:
../drivers/virt/acrn/hsm.c: In function ‘remove_cpu_store’:
../drivers/virt/acrn/hsm.c:389:3: error: implicit declaration of function ‘remove_cpu’; [-Werror=implicit-function-declaration]
remove_cpu(cpu);
../drivers/virt/acrn/hsm.c:402:2: error: implicit declaration of function ‘add_cpu’; [-Werror=implicit-function-declaration]
add_cpu(cpu);
Add add_cpu() function prototypes with !CONFIG_SMP and remove_cpu() with
!CONFIG_HOTPLUG_CPU for such usage.
Fixes: 279dcf693a ("virt: acrn: Introduce an interface for Service VM to control vCPU")
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Qais Yousef <qais.yousef@arm.com>
Reported-by: Randy Dunlap <rdunlap@infradead.org>
Reviewed-by: Qais Yousef <qais.yousef@arm.com>
Acked-by: Randy Dunlap <rdunlap@infradead.org> # build-tested
Signed-off-by: Shuo Liu <shuo.a.liu@intel.com>
Link: https://lore.kernel.org/r/20210221134339.57851-1-shuo.a.liu@intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This commit adds a lockdep_is_cpus_held() function to verify that the
proper locks are held and that various operations are running in the
correct context.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Neeraj Upadhyay <neeraju@codeaurora.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Use a more generic form for __section that requires quotes to avoid
complications with clang and gcc differences.
Remove the quote operator # from compiler_attributes.h __section macro.
Convert all unquoted __section(foo) uses to quoted __section("foo").
Also convert __attribute__((section("foo"))) uses to __section("foo")
even if the __attribute__ has multiple list entry forms.
Conversion done using the script at:
https://lore.kernel.org/lkml/75393e5ddc272dc7403de74d645e6c6e0f4e70eb.camel@perches.com/2-convert_section.pl
Signed-off-by: Joe Perches <joe@perches.com>
Reviewed-by: Nick Desaulniers <ndesaulniers@gooogle.com>
Reviewed-by: Miguel Ojeda <ojeda@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
0-day is not happy that there is no prototype for cpu_show_srbds():
drivers/base/cpu.c:565:16: error: no previous prototype for 'cpu_show_srbds'
Fixes: 7e5b3c267d ("x86/speculation: Add Special Register Buffer Data Sampling (SRBDS) mitigation")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200617141410.93338-1-linux@roeck-us.net
The refactored function is no longer required as the codepaths that call
freeze_secondary_cpus() are all suspend/resume related now.
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Link: https://lkml.kernel.org/r/20200430114004.17477-2-qais.yousef@arm.com
The single user could have called freeze_secondary_cpus() directly.
Since this function was a source of confusion, remove it as it's
just a pointless wrapper.
While at it, rename enable_nonboot_cpus() to thaw_secondary_cpus() to
preserve the naming symmetry.
Done automatically via:
git grep -l enable_nonboot_cpus | xargs sed -i 's/enable_nonboot_cpus/thaw_secondary_cpus/g'
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Link: https://lkml.kernel.org/r/20200430114004.17477-1-qais.yousef@arm.com
A recent change to freeze_secondary_cpus() which added an early abort if a
wakeup is pending missed the fact that the function is also invoked for
shutdown, reboot and kexec via disable_nonboot_cpus().
In case of disable_nonboot_cpus() the wakeup event needs to be ignored as
the purpose is to terminate the currently running kernel.
Add a 'suspend' argument which is only set when the freeze is in context of
a suspend operation. If not set then an eventually pending wakeup event is
ignored.
Fixes: a66d955e91 ("cpu/hotplug: Abort disabling secondary CPUs if wakeup is pending")
Reported-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Pavankumar Kondeti <pkondeti@codeaurora.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/874kuaxdiz.fsf@nanos.tec.linutronix.de
Use separate functions for the device core to bring a CPU up and down.
Users outside the device core must use add/remove_cpu() which will take
care of extra housekeeping work like keeping sysfs in sync.
Make cpu_up/down() static and replace the extra layer of indirection.
[ tglx: Removed the extra wrapper functions and adjusted function names ]
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200323135110.30522-18-qais.yousef@arm.com
This is the last direct user of cpu_up() before it can become an internal
implementation detail of the cpu subsystem.
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200323135110.30522-17-qais.yousef@arm.com
arm64 uses cpu_up() in the resume from hibernation code to ensure that the
CPU on which the system hibernated is online. Provide a core function for
this.
[ tglx: Split out from the combo arm64 patch ]
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lkml.kernel.org/r/20200323135110.30522-9-qais.yousef@arm.com
This function will be used later in machine_shutdown() for some
architectures.
disable_nonboot_cpus() is not safe to use when doing machine_down(),
because it relies on freeze_secondary_cpus() which in turn is a
suspend/resume related freeze and could abort if the logic detects any
pending activities that can prevent finishing the offlining process.
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200323135110.30522-3-qais.yousef@arm.com
The new functions use device_{online,offline}() which are userspace safe.
This is in preparation to move cpu_{up, down} kernel users to use a safer
interface that is not racy with userspace.
Suggested-by: "Paul E. McKenney" <paulmck@kernel.org>
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Paul E. McKenney <paulmck@kernel.org>
Link: https://lkml.kernel.org/r/20200323135110.30522-2-qais.yousef@arm.com
* pm-cpuidle:
cpuidle: Pass exit latency limit to cpuidle_use_deepest_state()
cpuidle: Allow idle injection to apply exit latency limit
cpuidle: Introduce cpuidle_driver_state_disabled() for driver quirks
cpuidle: teo: Avoid code duplication in conditionals
cpuidle: teo: Avoid using "early hits" incorrectly
cpuidle: teo: Exclude cpuidle overhead from computations
cpuidle: Use nanoseconds as the unit of time
cpuidle: Consolidate disabled state checks
ACPI: processor_idle: Skip dummy wait if kernel is in guest
cpuidle: Do not unset the driver if it is there already
cpuidle: teo: Fix "early hits" handling for disabled idle states
cpuidle: teo: Consider hits and misses metrics of disabled states
cpuidle: teo: Rename local variable in teo_select()
cpuidle: teo: Ignore disabled idle states that are too deep
In some cases it may be useful to specify an exit latency limit for
the idle state to be used during CPU idle time injection.
Instead of duplicating the information in struct cpuidle_device
or propagating the latency limit in the call stack, replace the
use_deepest_state field with forced_latency_limit_ns to represent
that limit, so that the deepest idle state with exit latency within
that limit is forced (i.e. no governors) when it is set.
A zero exit latency limit for forced idle means to use governors in
the usual way (analogous to use_deepest_state equal to "false" before
this change).
Additionally, add play_idle_precise() taking two arguments, the
duration of forced idle and the idle state exit latency limit, both
in nanoseconds, and redefine play_idle() as a wrapper around that
new function.
This change is preparatory, no functional impact is expected.
Suggested-by: Rafael J. Wysocki <rafael@kernel.org>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
[ rjw: Subject, changelog, cpuidle_use_deepest_state() kerneldoc, whitespace ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
A kernel module may need to check the value of the "mitigations=" kernel
command line parameter as part of its setup when the module needs
to perform software mitigations for a CPU flaw.
Uninline and export the helper functions surrounding the cpu_mitigations
enum to allow for their usage from a module.
Lastly, privatize the enum and cpu_mitigations variable since the value of
cpu_mitigations can be checked with the exported helper functions.
Signed-off-by: Tyler Hicks <tyhicks@canonical.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Some processors may incur a machine check error possibly resulting in an
unrecoverable CPU lockup when an instruction fetch encounters a TLB
multi-hit in the instruction TLB. This can occur when the page size is
changed along with either the physical address or cache type. The relevant
erratum can be found here:
https://bugzilla.kernel.org/show_bug.cgi?id=205195
There are other processors affected for which the erratum does not fully
disclose the impact.
This issue affects both bare-metal x86 page tables and EPT.
It can be mitigated by either eliminating the use of large pages or by
using careful TLB invalidations when changing the page size in the page
tables.
Just like Spectre, Meltdown, L1TF and MDS, a new bit has been allocated in
MSR_IA32_ARCH_CAPABILITIES (PSCHANGE_MC_NO) and will be set on CPUs which
are mitigated against this issue.
Signed-off-by: Vineela Tummalapalli <vineela.tummalapalli@intel.com>
Co-developed-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Add the sysfs reporting file for TSX Async Abort. It exposes the
vulnerability and the mitigation state similar to the existing files for
the other hardware vulnerabilities.
Sysfs file path is:
/sys/devices/system/cpu/vulnerabilities/tsx_async_abort
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Neelima Krishnan <neelima.krishnan@intel.com>
Reviewed-by: Mark Gross <mgross@linux.intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
KVM needs to know if SMT is theoretically possible, this means it is
supported and not forcefully disabled ('nosmt=force'). Create and
export cpu_smt_possible() answering this question.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The play_idle resolution is 1ms. The intel_powerclamp bases the idle
duration on jiffies. The idle injection API is also using msec based
duration but has no user yet.
Unfortunately, msec based time does not fit well when we want to
inject idle cycle precisely with shallow idle state.
In order to set the scene for the incoming idle injection user, move
the precision up to usec when calling play_idle.
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
As explained in
0cc3cd2165 ("cpu/hotplug: Boot HT siblings at least once")
we always, no matter what, have to bring up x86 HT siblings during boot at
least once in order to avoid first MCE bringing the system to its knees.
That means that whenever 'nosmt' is supplied on the kernel command-line,
all the HT siblings are as a result sitting in mwait or cpudile after
going through the online-offline cycle at least once.
This causes a serious issue though when a kernel, which saw 'nosmt' on its
commandline, is going to perform resume from hibernation: if the resume
from the hibernated image is successful, cr3 is flipped in order to point
to the address space of the kernel that is being resumed, which in turn
means that all the HT siblings are all of a sudden mwaiting on address
which is no longer valid.
That results in triple fault shortly after cr3 is switched, and machine
reboots.
Fix this by always waking up all the SMT siblings before initiating the
'restore from hibernation' process; this guarantees that all the HT
siblings will be properly carried over to the resumed kernel waiting in
resume_play_dead(), and acted upon accordingly afterwards, based on the
target kernel configuration.
Symmetricaly, the resumed kernel has to push the SMT siblings to mwait
again in case it has SMT disabled; this means it has to online all
the siblings when resuming (so that they come out of hlt) and offline
them again to let them reach mwait.
Cc: 4.19+ <stable@vger.kernel.org> # v4.19+
Debugged-by: Thomas Gleixner <tglx@linutronix.de>
Fixes: 0cc3cd2165 ("cpu/hotplug: Boot HT siblings at least once")
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Acked-by: Pavel Machek <pavel@ucw.cz>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Pull x86 MDS mitigations from Thomas Gleixner:
"Microarchitectural Data Sampling (MDS) is a hardware vulnerability
which allows unprivileged speculative access to data which is
available in various CPU internal buffers. This new set of misfeatures
has the following CVEs assigned:
CVE-2018-12126 MSBDS Microarchitectural Store Buffer Data Sampling
CVE-2018-12130 MFBDS Microarchitectural Fill Buffer Data Sampling
CVE-2018-12127 MLPDS Microarchitectural Load Port Data Sampling
CVE-2019-11091 MDSUM Microarchitectural Data Sampling Uncacheable Memory
MDS attacks target microarchitectural buffers which speculatively
forward data under certain conditions. Disclosure gadgets can expose
this data via cache side channels.
Contrary to other speculation based vulnerabilities the MDS
vulnerability does not allow the attacker to control the memory target
address. As a consequence the attacks are purely sampling based, but
as demonstrated with the TLBleed attack samples can be postprocessed
successfully.
The mitigation is to flush the microarchitectural buffers on return to
user space and before entering a VM. It's bolted on the VERW
instruction and requires a microcode update. As some of the attacks
exploit data structures shared between hyperthreads, full protection
requires to disable hyperthreading. The kernel does not do that by
default to avoid breaking unattended updates.
The mitigation set comes with documentation for administrators and a
deeper technical view"
* 'x86-mds-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits)
x86/speculation/mds: Fix documentation typo
Documentation: Correct the possible MDS sysfs values
x86/mds: Add MDSUM variant to the MDS documentation
x86/speculation/mds: Add 'mitigations=' support for MDS
x86/speculation/mds: Print SMT vulnerable on MSBDS with mitigations off
x86/speculation/mds: Fix comment
x86/speculation/mds: Add SMT warning message
x86/speculation: Move arch_smt_update() call to after mitigation decisions
x86/speculation/mds: Add mds=full,nosmt cmdline option
Documentation: Add MDS vulnerability documentation
Documentation: Move L1TF to separate directory
x86/speculation/mds: Add mitigation mode VMWERV
x86/speculation/mds: Add sysfs reporting for MDS
x86/speculation/mds: Add mitigation control for MDS
x86/speculation/mds: Conditionally clear CPU buffers on idle entry
x86/kvm/vmx: Add MDS protection when L1D Flush is not active
x86/speculation/mds: Clear CPU buffers on exit to user
x86/speculation/mds: Add mds_clear_cpu_buffers()
x86/kvm: Expose X86_FEATURE_MD_CLEAR to guests
x86/speculation/mds: Add BUG_MSBDS_ONLY
...
Pull CPU hotplug updates from Ingo Molnar:
"Two changes in this cycle:
- Make the /sys/devices/system/cpu/smt/* files available on all
arches, so user space has a consistent way to detect whether SMT is
enabled.
- Sparse annotation fix"
* 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
smpboot: Place the __percpu annotation correctly
cpu/hotplug: Create SMT sysfs interface for all arches
Pull scheduler updates from Ingo Molnar:
"The main changes in this cycle were:
- Make nohz housekeeping processing more permissive and less
intrusive to isolated CPUs
- Decouple CPU-bound workqueue acconting from the scheduler and move
it into the workqueue code.
- Optimize topology building
- Better handle quota and period overflows
- Add more RCU annotations
- Comment updates, misc cleanups"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (25 commits)
nohz_full: Allow the boot CPU to be nohz_full
sched/isolation: Require a present CPU in housekeeping mask
kernel/cpu: Allow non-zero CPU to be primary for suspend / kexec freeze
power/suspend: Add function to disable secondaries for suspend
sched/core: Allow the remote scheduler tick to be started on CPU0
sched/nohz: Run NOHZ idle load balancer on HK_FLAG_MISC CPUs
sched/debug: Fix spelling mistake "logaritmic" -> "logarithmic"
sched/topology: Update init_sched_domains() comment
cgroup/cpuset: Update stale generate_sched_domains() comments
sched/core: Check quota and period overflow at usec to nsec conversion
sched/core: Handle overflow in cpu_shares_write_u64
sched/rt: Check integer overflow at usec to nsec conversion
sched/core: Fix typo in comment
sched/core: Make some functions static
sched/core: Unify p->on_rq updates
sched/core: Remove ttwu_activate()
sched/core, workqueues: Distangle worker accounting from rq lock
sched/fair: Remove unneeded prototype of capacity_of()
sched/topology: Skip duplicate group rewrites in build_sched_groups()
sched/topology: Fix build_sched_groups() comment
...
This patch provides an arch option, ARCH_SUSPEND_NONZERO_CPU, to
opt-in to allowing suspend to occur on one of the housekeeping CPUs
rather than hardcoded CPU0.
This will allow CPU0 to be a nohz_full CPU with a later change.
It may be possible for platforms with hardware/firmware restrictions
on suspend/wake effectively support this by handing off the final
stage to CPU0 when kernel housekeeping is no longer required. Another
option is to make housekeeping / nohz_full mask dynamic at runtime,
but the complexity could not be justified at this time.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linuxppc-dev@lists.ozlabs.org
Link: https://lkml.kernel.org/r/20190411033448.20842-4-npiggin@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This adds a function to disable secondary CPUs for suspend that are
not necessarily non-zero / non-boot CPUs. Platforms will be able to
use this to suspend using non-zero CPUs.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linuxppc-dev@lists.ozlabs.org
Link: https://lkml.kernel.org/r/20190411033448.20842-3-npiggin@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Keeping track of the number of mitigations for all the CPU speculation
bugs has become overwhelming for many users. It's getting more and more
complicated to decide which mitigations are needed for a given
architecture. Complicating matters is the fact that each arch tends to
have its own custom way to mitigate the same vulnerability.
Most users fall into a few basic categories:
a) they want all mitigations off;
b) they want all reasonable mitigations on, with SMT enabled even if
it's vulnerable; or
c) they want all reasonable mitigations on, with SMT disabled if
vulnerable.
Define a set of curated, arch-independent options, each of which is an
aggregation of existing options:
- mitigations=off: Disable all mitigations.
- mitigations=auto: [default] Enable all the default mitigations, but
leave SMT enabled, even if it's vulnerable.
- mitigations=auto,nosmt: Enable all the default mitigations, disabling
SMT if needed by a mitigation.
Currently, these options are placeholders which don't actually do
anything. They will be fleshed out in upcoming patches.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Jiri Kosina <jkosina@suse.cz> (on x86)
Reviewed-by: Jiri Kosina <jkosina@suse.cz>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Waiman Long <longman@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Jon Masters <jcm@redhat.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: linuxppc-dev@lists.ozlabs.org
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: linux-s390@vger.kernel.org
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-arch@vger.kernel.org
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Tyler Hicks <tyhicks@canonical.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Steven Price <steven.price@arm.com>
Cc: Phil Auld <pauld@redhat.com>
Link: https://lkml.kernel.org/r/b07a8ef9b7c5055c3a4637c87d07c296d5016fe0.1555085500.git.jpoimboe@redhat.com
Make the /sys/devices/system/cpu/smt/* files available on all arches, so
user space has a consistent way to detect whether SMT is enabled.
The 'control' file now shows 'notimplemented' for architectures which
don't yet have CONFIG_HOTPLUG_SMT.
[ tglx: Make notimplemented a real state ]
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Waiman Long <longman@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Jiri Kosina <jikos@kernel.org>
Link: https://lkml.kernel.org/r/469c2b98055f2c41e75748e06447d592a64080c9.1553635520.git.jpoimboe@redhat.com
Add the sysfs reporting file for MDS. It exposes the vulnerability and
mitigation state similar to the existing files for the other speculative
hardware vulnerabilities.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Jon Masters <jcm@redhat.com>
Tested-by: Jon Masters <jcm@redhat.com>
With the following commit:
73d5e2b472 ("cpu/hotplug: detect SMT disabled by BIOS")
... the hotplug code attempted to detect when SMT was disabled by BIOS,
in which case it reported SMT as permanently disabled. However, that
code broke a virt hotplug scenario, where the guest is booted with only
primary CPU threads, and a sibling is brought online later.
The problem is that there doesn't seem to be a way to reliably
distinguish between the HW "SMT disabled by BIOS" case and the virt
"sibling not yet brought online" case. So the above-mentioned commit
was a bit misguided, as it permanently disabled SMT for both cases,
preventing future virt sibling hotplugs.
Going back and reviewing the original problems which were attempted to
be solved by that commit, when SMT was disabled in BIOS:
1) /sys/devices/system/cpu/smt/control showed "on" instead of
"notsupported"; and
2) vmx_vm_init() was incorrectly showing the L1TF_MSG_SMT warning.
I'd propose that we instead consider #1 above to not actually be a
problem. Because, at least in the virt case, it's possible that SMT
wasn't disabled by BIOS and a sibling thread could be brought online
later. So it makes sense to just always default the smt control to "on"
to allow for that possibility (assuming cpuid indicates that the CPU
supports SMT).
The real problem is #2, which has a simple fix: change vmx_vm_init() to
query the actual current SMT state -- i.e., whether any siblings are
currently online -- instead of looking at the SMT "control" sysfs value.
So fix it by:
a) reverting the original "fix" and its followup fix:
73d5e2b472 ("cpu/hotplug: detect SMT disabled by BIOS")
bc2d8d262c ("cpu/hotplug: Fix SMT supported evaluation")
and
b) changing vmx_vm_init() to query the actual current SMT state --
instead of the sysfs control value -- to determine whether the L1TF
warning is needed. This also requires the 'sched_smt_present'
variable to exported, instead of 'cpu_smt_control'.
Fixes: 73d5e2b472 ("cpu/hotplug: detect SMT disabled by BIOS")
Reported-by: Igor Mammedov <imammedo@redhat.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Joe Mario <jmario@redhat.com>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: kvm@vger.kernel.org
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/e3a85d585da28cc333ecbc1e78ee9216e6da9396.1548794349.git.jpoimboe@redhat.com
- Add a new framework for CPU idle time injection (Daniel Lezcano).
- Add AVS support to the armada-37xx cpufreq driver (Gregory CLEMENT).
- Add support for current CPU frequency reporting to the ACPI CPPC
cpufreq driver (George Cherian).
- Rework the cooling device registration in the imx6q/thermal
driver (Bastian Stender).
- Make the pcc-cpufreq driver refuse to work with dynamic
scaling governors on systems with many CPUs to avoid
scalability issues with it (Rafael Wysocki).
- Fix the intel_pstate driver to report different maximum CPU
frequencies on systems where they really are different and to
ignore the turbo active ratio if hardware-managend P-states (HWP)
are in use; make it use the match_string() helper (Xie Yisheng,
Srinivas Pandruvada).
- Fix a minor deferred probe issue in the qcom-kryo cpufreq
driver (Niklas Cassel).
- Add a tracepoint for the tracking of frequency limits changes
(from Andriod) to the cpufreq core (Ruchi Kandoi).
- Fix a circular lock dependency between CPU hotplug and sysfs
locking in the cpufreq core reported by lockdep (Waiman Long).
- Avoid excessive error reports on driver registration failures
in the ARM cpuidle driver (Sudeep Holla).
- Add a new device links flag to the driver core to make links go
away automatically on supplier driver removal (Vivek Gautam).
- Eliminate potential race condition between system-wide power
management transitions and system shutdown (Pingfan Liu).
- Add a quirk to save NVS memory on system suspend for the ASUS
1025C laptop (Willy Tarreau).
- Make more systems use suspend-to-idle (instead of ACPI S3) by
default (Tristian Celestin).
- Get rid of stack VLA usage in the low-level hibernation code on
64-bit x86 (Kees Cook).
- Fix error handling in the hibernation core and mark an expected
fall-through switch in it (Chengguang Xu, Gustavo Silva).
- Extend the generic power domains (genpd) framework to support
attaching a device to a power domain by name (Ulf Hansson).
- Fix device reference counting and user limits initialization in
the devfreq core (Arvind Yadav, Matthias Kaehlcke).
- Fix a few issues in the rk3399_dmc devfreq driver and improve its
documentation (Enric Balletbo i Serra, Lin Huang, Nick Milner).
- Drop a redundant error message from the exynos-ppmu devfreq driver
(Markus Elfring).
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABCAAGBQJbcqOqAAoJEILEb/54YlRxOxMP/2ZFvnXU0pey/VX/+TelLMS7
/ROVGQ+s75QP1c9P/3BjvnXc0dsMRLRFPog+7wyoG/2DbEIV25COyAYsmSE0TRni
XUaZO6YAx4/e3pm2AfamYbLCPvjw85eucHg5QJQ4b1mSVRNJOsNv+fUo6lmxwvnm
j9kHvfttFeIhoa/3wa7hbhPKLln46atnpVSxCIceY7L5EFNhkKBvQt6B5yx9geb9
QMY6ohgkyN+bnK9QySXX+trcWpzx1uGX0apI07NkX7n9QGFdU4lCW8lsAf8jMC3g
PPValTsUQsdRONUJJsrgqBioq4tvtgQWibyS2tfRrOGXYvHpJNpGmHVplfsrf/SE
cvlsciR47YbmrXZuqg/r8hql+qefNN16/rnZIZ9VnbcG806VBy2z8IzI5wcdWR7p
vzxhbCqVqOHcEdEwRwvuM2io67MWvkGtKsbCP+33DBh8SubpsECpKN4nIDboa3SE
CJ15RUqXnF6enmmfCKOoHZeu7iXWDz6Pi71XmRzaj9DqbITVV281IerqLgV3rbal
BVa53+202iD0IP+2b7KedGe/5ALlI97ffN0gB+L/eB832853DKSZQKzcvvpRhEN7
Iv2crnUwuQED9ns8P7hzp1Bk9CFCAOLW8UM43YwZRPWnmdeSsPJusJ5lzkAf7bss
wfsFoUE3RaY4msnuHyCh
=kv2M
-----END PGP SIGNATURE-----
Merge tag 'pm-4.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management updates from Rafael Wysocki:
"These add a new framework for CPU idle time injection, to be used by
all of the idle injection code in the kernel in the future, fix some
issues and add a number of relatively small extensions in multiple
places.
Specifics:
- Add a new framework for CPU idle time injection (Daniel Lezcano).
- Add AVS support to the armada-37xx cpufreq driver (Gregory
CLEMENT).
- Add support for current CPU frequency reporting to the ACPI CPPC
cpufreq driver (George Cherian).
- Rework the cooling device registration in the imx6q/thermal driver
(Bastian Stender).
- Make the pcc-cpufreq driver refuse to work with dynamic scaling
governors on systems with many CPUs to avoid scalability issues
with it (Rafael Wysocki).
- Fix the intel_pstate driver to report different maximum CPU
frequencies on systems where they really are different and to
ignore the turbo active ratio if hardware-managend P-states (HWP)
are in use; make it use the match_string() helper (Xie Yisheng,
Srinivas Pandruvada).
- Fix a minor deferred probe issue in the qcom-kryo cpufreq driver
(Niklas Cassel).
- Add a tracepoint for the tracking of frequency limits changes (from
Andriod) to the cpufreq core (Ruchi Kandoi).
- Fix a circular lock dependency between CPU hotplug and sysfs
locking in the cpufreq core reported by lockdep (Waiman Long).
- Avoid excessive error reports on driver registration failures in
the ARM cpuidle driver (Sudeep Holla).
- Add a new device links flag to the driver core to make links go
away automatically on supplier driver removal (Vivek Gautam).
- Eliminate potential race condition between system-wide power
management transitions and system shutdown (Pingfan Liu).
- Add a quirk to save NVS memory on system suspend for the ASUS 1025C
laptop (Willy Tarreau).
- Make more systems use suspend-to-idle (instead of ACPI S3) by
default (Tristian Celestin).
- Get rid of stack VLA usage in the low-level hibernation code on
64-bit x86 (Kees Cook).
- Fix error handling in the hibernation core and mark an expected
fall-through switch in it (Chengguang Xu, Gustavo Silva).
- Extend the generic power domains (genpd) framework to support
attaching a device to a power domain by name (Ulf Hansson).
- Fix device reference counting and user limits initialization in the
devfreq core (Arvind Yadav, Matthias Kaehlcke).
- Fix a few issues in the rk3399_dmc devfreq driver and improve its
documentation (Enric Balletbo i Serra, Lin Huang, Nick Milner).
- Drop a redundant error message from the exynos-ppmu devfreq driver
(Markus Elfring)"
* tag 'pm-4.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (35 commits)
PM / reboot: Eliminate race between reboot and suspend
PM / hibernate: Mark expected switch fall-through
cpufreq: intel_pstate: Ignore turbo active ratio in HWP
cpufreq: Fix a circular lock dependency problem
cpu/hotplug: Add a cpus_read_trylock() function
x86/power/hibernate_64: Remove VLA usage
cpufreq: trace frequency limits change
cpufreq: intel_pstate: Show different max frequency with turbo 3 and HWP
cpufreq: pcc-cpufreq: Disable dynamic scaling on many-CPU systems
cpufreq: qcom-kryo: Silently error out on EPROBE_DEFER
cpufreq / CPPC: Add cpuinfo_cur_freq support for CPPC
cpufreq: armada-37xx: Add AVS support
dt-bindings: marvell: Add documentation for the Armada 3700 AVS binding
PM / devfreq: rk3399_dmc: Fix duplicated opp table on reload.
PM / devfreq: Init user limits from OPP limits, not viceversa
PM / devfreq: rk3399_dmc: fix spelling mistakes.
PM / devfreq: rk3399_dmc: do not print error when get supply and clk defer.
dt-bindings: devfreq: rk3399_dmc: move interrupts to be optional.
PM / devfreq: rk3399_dmc: remove wait for dcf irq event.
dt-bindings: clock: add rk3399 DDR3 standard speed bins.
...
Merge L1 Terminal Fault fixes from Thomas Gleixner:
"L1TF, aka L1 Terminal Fault, is yet another speculative hardware
engineering trainwreck. It's a hardware vulnerability which allows
unprivileged speculative access to data which is available in the
Level 1 Data Cache when the page table entry controlling the virtual
address, which is used for the access, has the Present bit cleared or
other reserved bits set.
If an instruction accesses a virtual address for which the relevant
page table entry (PTE) has the Present bit cleared or other reserved
bits set, then speculative execution ignores the invalid PTE and loads
the referenced data if it is present in the Level 1 Data Cache, as if
the page referenced by the address bits in the PTE was still present
and accessible.
While this is a purely speculative mechanism and the instruction will
raise a page fault when it is retired eventually, the pure act of
loading the data and making it available to other speculative
instructions opens up the opportunity for side channel attacks to
unprivileged malicious code, similar to the Meltdown attack.
While Meltdown breaks the user space to kernel space protection, L1TF
allows to attack any physical memory address in the system and the
attack works across all protection domains. It allows an attack of SGX
and also works from inside virtual machines because the speculation
bypasses the extended page table (EPT) protection mechanism.
The assoicated CVEs are: CVE-2018-3615, CVE-2018-3620, CVE-2018-3646
The mitigations provided by this pull request include:
- Host side protection by inverting the upper address bits of a non
present page table entry so the entry points to uncacheable memory.
- Hypervisor protection by flushing L1 Data Cache on VMENTER.
- SMT (HyperThreading) control knobs, which allow to 'turn off' SMT
by offlining the sibling CPU threads. The knobs are available on
the kernel command line and at runtime via sysfs
- Control knobs for the hypervisor mitigation, related to L1D flush
and SMT control. The knobs are available on the kernel command line
and at runtime via sysfs
- Extensive documentation about L1TF including various degrees of
mitigations.
Thanks to all people who have contributed to this in various ways -
patches, review, testing, backporting - and the fruitful, sometimes
heated, but at the end constructive discussions.
There is work in progress to provide other forms of mitigations, which
might be less horrible performance wise for a particular kind of
workloads, but this is not yet ready for consumption due to their
complexity and limitations"
* 'l1tf-final' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (75 commits)
x86/microcode: Allow late microcode loading with SMT disabled
tools headers: Synchronise x86 cpufeatures.h for L1TF additions
x86/mm/kmmio: Make the tracer robust against L1TF
x86/mm/pat: Make set_memory_np() L1TF safe
x86/speculation/l1tf: Make pmd/pud_mknotpresent() invert
x86/speculation/l1tf: Invert all not present mappings
cpu/hotplug: Fix SMT supported evaluation
KVM: VMX: Tell the nested hypervisor to skip L1D flush on vmentry
x86/speculation: Use ARCH_CAPABILITIES to skip L1D flush on vmentry
x86/speculation: Simplify sysfs report of VMX L1TF vulnerability
Documentation/l1tf: Remove Yonah processors from not vulnerable list
x86/KVM/VMX: Don't set l1tf_flush_l1d from vmx_handle_external_intr()
x86/irq: Let interrupt handlers set kvm_cpu_l1tf_flush_l1d
x86: Don't include linux/irq.h from asm/hardirq.h
x86/KVM/VMX: Introduce per-host-cpu analogue of l1tf_flush_l1d
x86/irq: Demote irq_cpustat_t::__softirq_pending to u16
x86/KVM/VMX: Move the l1tf_flush_l1d test to vmx_l1d_flush()
x86/KVM/VMX: Replace 'vmx_l1d_flush_always' with 'vmx_l1d_flush_cond'
x86/KVM/VMX: Don't set l1tf_flush_l1d to true from vmx_l1d_flush()
cpu/hotplug: detect SMT disabled by BIOS
...
This is purely a preparatory patch for upcoming changes during the 4.19
merge window.
We have a function called "boot_cpu_state_init()" that isn't really
about the bootup cpu state: that is done much earlier by the similarly
named "boot_cpu_init()" (note lack of "state" in name).
This function initializes some hotplug CPU state, and needs to run after
the percpu data has been properly initialized. It even has a comment to
that effect.
Except it _doesn't_ actually run after the percpu data has been properly
initialized. On x86 it happens to do that, but on at least arm and
arm64, the percpu base pointers are initialized by the arch-specific
'smp_prepare_boot_cpu()' hook, which ran _after_ boot_cpu_state_init().
This had some unexpected results, and in particular we have a patch
pending for the merge window that did the obvious cleanup of using
'this_cpu_write()' in the cpu hotplug init code:
- per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
+ this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
which is obviously the right thing to do. Except because of the
ordering issue, it actually failed miserably and unexpectedly on arm64.
So this just fixes the ordering, and changes the name of the function to
be 'boot_cpu_hotplug_init()' to make it obvious that it's about cpu
hotplug state, because the core CPU state was supposed to have already
been done earlier.
Marked for stable, since the (not yet merged) patch that will show this
problem is marked for stable.
Reported-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Mian Yousaf Kaukab <yousaf.kaukab@suse.com>
Suggested-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Josh reported that the late SMT evaluation in cpu_smt_state_init() sets
cpu_smt_control to CPU_SMT_NOT_SUPPORTED in case that 'nosmt' was supplied
on the kernel command line as it cannot differentiate between SMT disabled
by BIOS and SMT soft disable via 'nosmt'. That wreckages the state and
makes the sysfs interface unusable.
Rework this so that during bringup of the non boot CPUs the availability of
SMT is determined in cpu_smt_allowed(). If a newly booted CPU is not a
'primary' thread then set the local cpu_smt_available marker and evaluate
this explicitely right after the initial SMP bringup has finished.
SMT evaulation on x86 is a trainwreck as the firmware has all the
information _before_ booting the kernel, but there is no interface to query
it.
Fixes: 73d5e2b472 ("cpu/hotplug: detect SMT disabled by BIOS")
Reported-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
There are use cases where it can be useful to have a cpus_read_trylock()
function to work around circular lock dependency problem involving
the cpu_hotplug_lock.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The CPU_SMT_NOT_SUPPORTED state is set (if the processor does not support
SMT) when the sysfs SMT control file is initialized.
That was fine so far as this was only required to make the output of the
control file correct and to prevent writes in that case.
With the upcoming l1tf command line parameter, this needs to be set up
before the L1TF mitigation selection and command line parsing happens.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Jiri Kosina <jkosina@suse.cz>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lkml.kernel.org/r/20180713142323.121795971@linutronix.de
The L1TF mitigation will gain a commend line parameter which allows to set
a combination of hypervisor mitigation and SMT control.
Expose cpu_smt_disable() so the command line parser can tweak SMT settings.
[ tglx: Split out of larger patch and made it preserve an already existing
force off state ]
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Jiri Kosina <jkosina@suse.cz>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lkml.kernel.org/r/20180713142323.039715135@linutronix.de
Provide a command line and a sysfs knob to control SMT.
The command line options are:
'nosmt': Enumerate secondary threads, but do not online them
'nosmt=force': Ignore secondary threads completely during enumeration
via MP table and ACPI/MADT.
The sysfs control file has the following states (read/write):
'on': SMT is enabled. Secondary threads can be freely onlined
'off': SMT is disabled. Secondary threads, even if enumerated
cannot be onlined
'forceoff': SMT is permanentely disabled. Writes to the control
file are rejected.
'notsupported': SMT is not supported by the CPU
The command line option 'nosmt' sets the sysfs control to 'off'. This
can be changed to 'on' to reenable SMT during runtime.
The command line option 'nosmt=force' sets the sysfs control to
'forceoff'. This cannot be changed during runtime.
When SMT is 'on' and the control file is changed to 'off' then all online
secondary threads are offlined and attempts to online a secondary thread
later on are rejected.
When SMT is 'off' and the control file is changed to 'on' then secondary
threads can be onlined again. The 'off' -> 'on' transition does not
automatically online the secondary threads.
When the control file is set to 'forceoff', the behaviour is the same as
setting it to 'off', but the operation is irreversible and later writes to
the control file are rejected.
When the control status is 'notsupported' then writes to the control file
are rejected.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
L1TF core kernel workarounds are cheap and normally always enabled, However
they still should be reported in sysfs if the system is vulnerable or
mitigated. Add the necessary CPU feature/bug bits.
- Extend the existing checks for Meltdowns to determine if the system is
vulnerable. All CPUs which are not vulnerable to Meltdown are also not
vulnerable to L1TF
- Check for 32bit non PAE and emit a warning as there is no practical way
for mitigation due to the limited physical address bits
- If the system has more than MAX_PA/2 physical memory the invert page
workarounds don't protect the system against the L1TF attack anymore,
because an inverted physical address will also point to valid
memory. Print a warning in this case and report that the system is
vulnerable.
Add a function which returns the PFN limit for the L1TF mitigation, which
will be used in follow up patches for sanity and range checks.
[ tglx: Renamed the CPU feature bit to L1TF_PTEINV ]
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Add the sysfs file for the new vulerability. It does not do much except
show the words 'Vulnerable' for recent x86 cores.
Intel cores prior to family 6 are known not to be vulnerable, and so are
some Atoms and some Xeon Phi.
It assumes that older Cyrix, Centaur, etc. cores are immune.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Pull x86 pti updates from Thomas Gleixner:
"This contains:
- a PTI bugfix to avoid setting reserved CR3 bits when PCID is
disabled. This seems to cause issues on a virtual machine at least
and is incorrect according to the AMD manual.
- a PTI bugfix which disables the perf BTS facility if PTI is
enabled. The BTS AUX buffer is not globally visible and causes the
CPU to fault when the mapping disappears on switching CR3 to user
space. A full fix which restores BTS on PTI is non trivial and will
be worked on.
- PTI bugfixes for EFI and trusted boot which make sure that the user
space visible page table entries have the NX bit cleared
- removal of dead code in the PTI pagetable setup functions
- add PTI documentation
- add a selftest for vsyscall to verify that the kernel actually
implements what it advertises.
- a sysfs interface to expose vulnerability and mitigation
information so there is a coherent way for users to retrieve the
status.
- the initial spectre_v2 mitigations, aka retpoline:
+ The necessary ASM thunk and compiler support
+ The ASM variants of retpoline and the conversion of affected ASM
code
+ Make LFENCE serializing on AMD so it can be used as speculation
trap
+ The RSB fill after vmexit
- initial objtool support for retpoline
As I said in the status mail this is the most of the set of patches
which should go into 4.15 except two straight forward patches still on
hold:
- the retpoline add on of LFENCE which waits for ACKs
- the RSB fill after context switch
Both should be ready to go early next week and with that we'll have
covered the major holes of spectre_v2 and go back to normality"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (28 commits)
x86,perf: Disable intel_bts when PTI
security/Kconfig: Correct the Documentation reference for PTI
x86/pti: Fix !PCID and sanitize defines
selftests/x86: Add test_vsyscall
x86/retpoline: Fill return stack buffer on vmexit
x86/retpoline/irq32: Convert assembler indirect jumps
x86/retpoline/checksum32: Convert assembler indirect jumps
x86/retpoline/xen: Convert Xen hypercall indirect jumps
x86/retpoline/hyperv: Convert assembler indirect jumps
x86/retpoline/ftrace: Convert ftrace assembler indirect jumps
x86/retpoline/entry: Convert entry assembler indirect jumps
x86/retpoline/crypto: Convert crypto assembler indirect jumps
x86/spectre: Add boot time option to select Spectre v2 mitigation
x86/retpoline: Add initial retpoline support
objtool: Allow alternatives to be ignored
objtool: Detect jumps to retpoline thunks
x86/pti: Make unpoison of pgd for trusted boot work for real
x86/alternatives: Fix optimize_nops() checking
sysfs/cpu: Fix typos in vulnerability documentation
x86/cpu/AMD: Use LFENCE_RDTSC in preference to MFENCE_RDTSC
...
As the meltdown/spectre problem affects several CPU architectures, it makes
sense to have common way to express whether a system is affected by a
particular vulnerability or not. If affected the way to express the
mitigation should be common as well.
Create /sys/devices/system/cpu/vulnerabilities folder and files for
meltdown, spectre_v1 and spectre_v2.
Allow architectures to override the show function.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linuxfoundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lkml.kernel.org/r/20180107214913.096657732@linutronix.de
Pull smp/hotplug updates from Thomas Gleixner:
"No functional changes, just removal of obsolete and outdated defines,
macros and documentation"
* 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
cpu/hotplug: Get rid of CPU hotplug notifier leftovers
cpu/hotplug: Remove obsolete notifier macros
The CPU hotplug notifiers are history. Remove the last reminders.
Reported-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 530e9b76ae ("cpu/hotplug: Remove obsolete cpu hotplug
register/unregister functions")' removed the below macros:
- #define CPU_UP_CANCELED 0x0004 /* CPU (unsigned)v NOT coming up */
- #define CPU_DOWN_PREPARE 0x0005 /* CPU (unsigned)v going down */
- #define CPU_DOWN_FAILED 0x0006 /* CPU (unsigned)v NOT going down */
But "CPU_UP_CANCELED_FROZEN, CPU_DOWN_PREPARE_FROZEN and
CPU_DOWN_FAILED_FROZEN" still refer to them, and nobody uses these "FROZEN"
macros now, so remove them too.
Signed-off-by: Yanjiang Jin <yanjiang.jin@windriver.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: peterz@infradead.org
Cc: bigeasy@linutronix.de
Cc: jinyanjiang@gmail.com
Link: https://lkml.kernel.org/r/20171024062341.179678-1-yanjiang.jin@windriver.com