Commit Graph

58 Commits

Author SHA1 Message Date
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00
Eric Paris f44aebcc56 inotify: use GFP_NOFS under potential memory pressure
inotify can have a watchs removed under filesystem reclaim.

=================================
[ INFO: inconsistent lock state ]
2.6.31-rc2 #16
---------------------------------
inconsistent {IN-RECLAIM_FS-W} -> {RECLAIM_FS-ON-W} usage.
khubd/217 [HC0[0]:SC0[0]:HE1:SE1] takes:
 (iprune_mutex){+.+.?.}, at: [<c10ba899>] invalidate_inodes+0x20/0xe3
{IN-RECLAIM_FS-W} state was registered at:
  [<c10536ab>] __lock_acquire+0x2c9/0xac4
  [<c1053f45>] lock_acquire+0x9f/0xc2
  [<c1308872>] __mutex_lock_common+0x2d/0x323
  [<c1308c00>] mutex_lock_nested+0x2e/0x36
  [<c10ba6ff>] shrink_icache_memory+0x38/0x1b2
  [<c108bfb6>] shrink_slab+0xe2/0x13c
  [<c108c3e1>] kswapd+0x3d1/0x55d
  [<c10449b5>] kthread+0x66/0x6b
  [<c1003fdf>] kernel_thread_helper+0x7/0x10
  [<ffffffff>] 0xffffffff

Two things are needed to fix this.  First we need a method to tell
fsnotify_create_event() to use GFP_NOFS and second we need to stop using
one global IN_IGNORED event and allocate them one at a time.  This solves
current issues with multiple IN_IGNORED on a queue having tail drop
problems and simplifies the allocations since we don't have to worry about
two tasks opperating on the IGNORED event concurrently.

Signed-off-by: Eric Paris <eparis@redhat.com>
2009-07-21 15:26:27 -04:00
Eric Paris e42e27736d inotify/dnotify: should_send_event shouldn't match on FS_EVENT_ON_CHILD
inotify and dnotify will both indicate that they want any event which came
from a child inode.  The fix is to mask off FS_EVENT_ON_CHILD when deciding
if inotify or dnotify is interested in a given event.

Signed-off-by: Eric Paris <eparis@redhat.com>
2009-06-11 14:57:54 -04:00
Eric Paris 47882c6f51 fsnotify: add correlations between events
As part of the standard inotify events it includes a correlation cookie
between two dentry move operations.  This patch includes the same behaviour
in fsnotify events.  It is needed so that inotify userspace can be
implemented on top of fsnotify.

Signed-off-by: Eric Paris <eparis@redhat.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@lst.de>
2009-06-11 14:57:54 -04:00
Eric Paris 62ffe5dfba fsnotify: include pathnames with entries when possible
When inotify wants to send events to a directory about a child it includes
the name of the original file.  This patch collects that filename and makes
it available for notification.

Signed-off-by: Eric Paris <eparis@redhat.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@lst.de>
2009-06-11 14:57:53 -04:00
Eric Paris c28f7e56e9 fsnotify: parent event notification
inotify and dnotify both use a similar parent notification mechanism.  We
add a generic parent notification mechanism to fsnotify for both of these
to use.  This new machanism also adds the dentry flag optimization which
exists for inotify to dnotify.

Signed-off-by: Eric Paris <eparis@redhat.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@lst.de>
2009-06-11 14:57:53 -04:00
Eric Paris 3be25f49b9 fsnotify: add marks to inodes so groups can interpret how to handle those inodes
This patch creates a way for fsnotify groups to attach marks to inodes.
These marks have little meaning to the generic fsnotify infrastructure
and thus their meaning should be interpreted by the group that attached
them to the inode's list.

dnotify and inotify  will make use of these markings to indicate which
inodes are of interest to their respective groups.  But this implementation
has the useful property that in the future other listeners could actually
use the marks for the exact opposite reason, aka to indicate which inodes
it had NO interest in.

Signed-off-by: Eric Paris <eparis@redhat.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@lst.de>
2009-06-11 14:57:53 -04:00
Eric Paris 90586523eb fsnotify: unified filesystem notification backend
fsnotify is a backend for filesystem notification.  fsnotify does
not provide any userspace interface but does provide the basis
needed for other notification schemes such as dnotify.  fsnotify
can be extended to be the backend for inotify or the upcoming
fanotify.  fsnotify provides a mechanism for "groups" to register for
some set of filesystem events and to then deliver those events to
those groups for processing.

fsnotify has a number of benefits, the first being actually shrinking the size
of an inode.  Before fsnotify to support both dnotify and inotify an inode had

        unsigned long           i_dnotify_mask; /* Directory notify events */
        struct dnotify_struct   *i_dnotify; /* for directory notifications */
        struct list_head        inotify_watches; /* watches on this inode */
        struct mutex            inotify_mutex;  /* protects the watches list

But with fsnotify this same functionallity (and more) is done with just

        __u32                   i_fsnotify_mask; /* all events for this inode */
        struct hlist_head       i_fsnotify_mark_entries; /* marks on this inode */

That's right, inotify, dnotify, and fanotify all in 64 bits.  We used that
much space just in inotify_watches alone, before this patch set.

fsnotify object lifetime and locking is MUCH better than what we have today.
inotify locking is incredibly complex.  See 8f7b0ba1c8 as an example of
what's been busted since inception.  inotify needs to know internal semantics
of superblock destruction and unmounting to function.  The inode pinning and
vfs contortions are horrible.

no fsnotify implementers do allocation under locks.  This means things like
f04b30de3 which (due to an overabundance of caution) changes GFP_KERNEL to
GFP_NOFS can be reverted.  There are no longer any allocation rules when using
or implementing your own fsnotify listener.

fsnotify paves the way for fanotify.  In brief fanotify is a notification
mechanism that delivers the lisener both an 'event' and an open file descriptor
to the object in question.  This means that fanotify is pathname agnostic.
Some on lkml may not care for the original companies or users that pushed for
TALPA, but fanotify was designed with flexibility and input for other users in
mind.  The readahead group expressed interest in fanotify as it could be used
to profile disk access on boot without breaking the audit system.  The desktop
search groups have also expressed interest in fanotify as it solves a number
of the race conditions and problems present with managing inotify when more
than a limited number of specific files are of interest.  fanotify can provide
for a userspace access control system which makes it a clean interface for AV
vendors to hook without trying to do binary patching on the syscall table,
LSM, and everywhere else they do their things today.  With this patch series
fanotify can be implemented in less than 1200 lines of easy to review code.
Almost all of which is the socket based user interface.

This patch series builds fsnotify to the point that it can implement
dnotify and inotify_user.  Patches exist and will be sent soon after
acceptance to finish the in kernel inotify conversion (audit) and implement
fanotify.

Signed-off-by: Eric Paris <eparis@redhat.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@lst.de>
2009-06-11 14:57:52 -04:00