- support multiple devices for multi-layer container images;
- support the secondary compression head;
- support readmore decompression strategy;
- support new LZMA algorithm (specifically called MicroLZMA);
- some bugfixes & cleanups.
-----BEGIN PGP SIGNATURE-----
iIcEABYIAC8WIQThPAmQN9sSA0DVxtI5NzHcH7XmBAUCYX8j7hEceGlhbmdAa2Vy
bmVsLm9yZwAKCRA5NzHcH7XmBE+SAQChAmAUav03OQujm8PvVNX7VUGusGNvww8E
qu5+zasC8wEArypW2Z75ZZ3IZNPCk6QWFlaC2I5Xnz7NNl0OGPKOCAg=
=DZQ4
-----END PGP SIGNATURE-----
Merge tag 'erofs-for-5.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/xiang/erofs
Pull erofs updates from Gao Xiang:
"There are some new features available for this cycle. Firstly, EROFS
LZMA algorithm support, specifically called MicroLZMA, is available as
an option for embedded devices, LiveCDs and/or as the secondary
auxiliary compression algorithm besides the primary algorithm in one
file.
In order to better support the LZMA fixed-sized output compression,
especially for 4KiB pcluster size (which has lowest memory pressure
thus useful for memory-sensitive scenarios), Lasse introduced a new
LZMA header/container format called MicroLZMA to minimize the original
LZMA1 header (for example, we don't need to waste 4-byte dictionary
size and another 8-byte uncompressed size, which can be calculated by
fs directly, for each pcluster) and enable EROFS fixed-sized output
compression.
Note that MicroLZMA can also be later used by other things in addition
to EROFS too where wasting minimal amount of space for headers is
important and it can be only compiled by enabling XZ_DEC_MICROLZMA.
MicroLZMA has been supported by the latest upstream XZ embedded [1] &
XZ utils [2], apply the latest related XZ embedded upstream patches by
the XZ author Lasse here.
Secondly, multiple device is also supported in this cycle, which is
designed for multi-layer container images. By working together with
inter-layer data deduplication and compression, we can achieve the
next high-performance container image solution. Our team will announce
the new Nydus container image service [3] implementation with new RAFS
v6 (EROFS-compatible) format in Open Source Summit 2021 China [4]
soon.
Besides, the secondary compression head support and readmore
decompression strategy are also included in this cycle. There are also
some minor bugfixes and cleanups, as always.
Summary:
- support multiple devices for multi-layer container images;
- support the secondary compression head;
- support readmore decompression strategy;
- support new LZMA algorithm (specifically called MicroLZMA);
- some bugfixes & cleanups"
* tag 'erofs-for-5.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/xiang/erofs:
erofs: don't trigger WARN() when decompression fails
erofs: get rid of ->lru usage
erofs: lzma compression support
erofs: rename some generic methods in decompressor
lib/xz, lib/decompress_unxz.c: Fix spelling in comments
lib/xz: Add MicroLZMA decoder
lib/xz: Move s->lzma.len = 0 initialization to lzma_reset()
lib/xz: Validate the value before assigning it to an enum variable
lib/xz: Avoid overlapping memcpy() with invalid input with in-place decompression
erofs: introduce readmore decompression strategy
erofs: introduce the secondary compression head
erofs: get compression algorithms directly on mapping
erofs: add multiple device support
erofs: decouple basic mount options from fs_context
erofs: remove the fast path of per-CPU buffer decompression
Some cleanups for fs/crypto/:
- Allow 256-bit master keys with AES-256-XTS
- Improve documentation and comments
- Remove unneeded field fscrypt_operations::max_namelen
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQSacvsUNc7UX4ntmEPzXCl4vpKOKwUCYX8U4hQcZWJpZ2dlcnNA
Z29vZ2xlLmNvbQAKCRDzXCl4vpKOKyXYAP0d7BNuKsMyw6qlzLMxbaO5wdTg2HaD
04ApVeHM6qp7IQEA/Ve2Mr+BcPOZ7E6io8haZtXs0MrRMYeessKWcWMCdQ0=
=2WNZ
-----END PGP SIGNATURE-----
Merge tag 'fscrypt-for-linus' of git://git.kernel.org/pub/scm/fs/fscrypt/fscrypt
Pull fscrypt updates from Eric Biggers:
"Some cleanups for fs/crypto/:
- Allow 256-bit master keys with AES-256-XTS
- Improve documentation and comments
- Remove unneeded field fscrypt_operations::max_namelen"
* tag 'fscrypt-for-linus' of git://git.kernel.org/pub/scm/fs/fscrypt/fscrypt:
fscrypt: improve a few comments
fscrypt: allow 256-bit master keys with AES-256-XTS
fscrypt: improve documentation for inline encryption
fscrypt: clean up comments in bio.c
fscrypt: remove fscrypt_operations::max_namelen
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmF8MOUQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpmeqEACrayLMDMdlb1FduTYw29QAL7XxS375r92T
bwLippmKQIFNi8p5ScHraelV5ixgxse2j68MexlQHpl9aHIn/oL7qHACIMgDP05m
KaSy8Hr2abqr+zz+rLMhkm21zAva6aWjQu7NoEjBE4dC5L4l9p885LaA+jmqQUno
1wvpaEcype8cITJ+sSCb3kD6nZx7y1Lt5zEefUfk6ruMm9x9FwvU6uc4rIHi+Zve
Hwo8yGbTvlU8rGSi9naC/U8pIZ4bqEuTAcV5VHNrWG+b4aA/aFPpSjpIiSBZSXo0
HXa+jmcr6gkejfPeOZkBbRub6Fm9Wq2pDAZskPWFX6zyX0pIV05GjJ2J/ba8rovn
QrcfxaBv8XitKgrjFZeR0ZBqD2iJjPA/Yq5/r1ZmZ0wSHI3W4UuTGhQYEPyDLceH
ZWq/wcfVFek4kAoCxCqy9kWiOujY90WWKQW3yD7b8FPZ0d+/R1Mn+drlYaSKN1Pk
/9/+z1DaLtBWbJ2G+BQ9oUkYmNSapAiYc2YXVss86hmhLX+prFtSj3zECZUvhyAz
b42A2DVsjU+65yT2zdPBXlMrbI91qNnvIXcz5szNdTfHTn9FiLQb4BffMV0FHT3g
vap8N3Rb8UkZ3v4NCVAtlfcGr0kvYHQH+Qgh6oAlXB4NQoKJCVadzpTFPMWjx788
oHBUjA0UTQ==
=4vl/
-----END PGP SIGNATURE-----
Merge tag 'for-5.16/ki_complete-2021-10-29' of git://git.kernel.dk/linux-block
Pull kiocb->ki_complete() cleanup from Jens Axboe:
"This removes the res2 argument from kiocb->ki_complete().
Only the USB gadget code used it, everybody else passes 0. The USB
guys checked the user gadget code they could find, and everybody just
uses res as expected for the async interface"
* tag 'for-5.16/ki_complete-2021-10-29' of git://git.kernel.dk/linux-block:
fs: get rid of the res2 iocb->ki_complete argument
usb: remove res2 argument from gadget code completions
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmF8MnsQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpuBpEACzrzbUfkTQ33bwF60mZQaqbR0ha7TrP/hp
oAqthmf1S2U+7mzXHQ+6MN7p4+TVPa/ITxQZtLTw7U/68+w68tTUZfZHJ5H6tSXu
92OHFDDP4ZeqATRTcJBij/5Si9BiKBHexMqeyVYPw0DWdEukAko9f7Z81GonFbTu
EIdIWivBc76bLiK/X3w7lhLcaNyUv9cKalwjbI4xtwcHtcIYj5d2jIc9PF2I9Xtl
3oqNT4GOSv7s3mW7syB1UEPrzbhVIzCSNbMSviCoK7GA5g8EN5KMEGQQoUJ942Zv
bHMjMpGrXsWebPto9maXycGY/9WsVcpNB7opyQRpyG8yDDZq0AFNJxD/NBMkQo4S
Sfp0fxpVXDRWu7zX0EktwGyOp4YNwfS6pDeAhqhnSl2uPWTsxGZ0kXvlMpR9Rt/t
TjEKZe6lmcC7s42rPVRBRw5HEzEsVovf0z4lyvC4M223CV3c5cuYkAAtCcqLdVWq
JkceHSb7EKu7QY6jf3sBud14HaAj+sub7kffOWhhAxObg3Ytsql61AGzbhandnxT
AtN3n9PBHNGmrSv4MiiuP+Dq5jeT5NspFkf1FvnRcfmZMJtH1VXHKr84JbAy4VHr
5cZoDJzL9Zm1d865f+VWkZeYd3b2kKP8C0dm6tAn4VweT6eb8bu6tgB7wFQwLIFK
aRxz5vQ1AQ==
=dLYJ
-----END PGP SIGNATURE-----
Merge tag 'for-5.16/passthrough-flag-2021-10-29' of git://git.kernel.dk/linux-block
Pull QUEUE_FLAG_SCSI_PASSTHROUGH removal from Jens Axboe:
"This contains a series leading to the removal of the
QUEUE_FLAG_SCSI_PASSTHROUGH queue flag"
* tag 'for-5.16/passthrough-flag-2021-10-29' of git://git.kernel.dk/linux-block:
block: remove blk_{get,put}_request
block: remove QUEUE_FLAG_SCSI_PASSTHROUGH
block: remove the initialize_rq_fn blk_mq_ops method
scsi: add a scsi_alloc_request helper
bsg-lib: initialize the bsg_job in bsg_transport_sg_io_fn
nfsd/blocklayout: use ->get_unique_id instead of sending SCSI commands
sd: implement ->get_unique_id
block: add a ->get_unique_id method
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmF8L70QHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpo9YEAC17yEJ0xwwtUUwZW8avzss4vdcIreFdiZu
gaS+9Oi1bLxj0d2SjaZXJxjT9K+W2LftEsLuQ4oM6VHiLQkcEDbjJdVm3goftTt5
aOvVormDdKbWNcGSbgxA/OcyUT39DH7y17NRVdqYzQSpnrhCod/1tb2ssck0OoYb
VEyBKogMwYeYR55Z3I8yL5pNcEhR8TihZv3rL1iQ7DNpvh5I0I9naSEtGNC84aLP
s4nwRIG+TYll+mg0sfSB29KF7xkoFQO7X7s1rnC/on+gsFEzbJcgkJPDIWeVLnLm
ma8F1i+vJliCGaztyXoleAdg5QDiFmwTQwXRPAk2u8njJhcKi/RwIk2QYMZBZmEJ
bB5EJnlnEaWxjgpCD7JDrtKgIgpbbQHc5QVHRZccsu43UqvDqOZIlvZNYY+h3ivz
jT1zKuKDaTf8YWbfdOJwqm9e+qyR0AFm3rLMdHO58QEh1DBvSLIIdRCNE8wX7nFM
Wx/GmQEkPqNTIZwJOQJMygK+sIuFUDybt3oAH2pjX1zyMx7kTJkrXvj0dhSS/B5u
+gfMs3otWqxQ4P1qfnaUd9mYl8JabV7le2NHzhjdARm4NKFJEtcJe5BJBwiMbo0n
vodqt7aUIAXwMrZXnWZL+w8CobhJBp8I5XHUgng147gDBuCjYQjBQT334auAXxgz
MUCgbjBDqw==
=Vadi
-----END PGP SIGNATURE-----
Merge tag 'for-5.16/bdev-size-2021-10-29' of git://git.kernel.dk/linux-block
Pull bdev size cleanups from Jens Axboe:
"Clean up the bdev size handling with new bdev_nr_bytes() helper"
* tag 'for-5.16/bdev-size-2021-10-29' of git://git.kernel.dk/linux-block: (34 commits)
partitions/ibm: use bdev_nr_sectors instead of open coding it
partitions/efi: use bdev_nr_bytes instead of open coding it
block/ioctl: use bdev_nr_sectors and bdev_nr_bytes
block: cache inode size in bdev
udf: use sb_bdev_nr_blocks
reiserfs: use sb_bdev_nr_blocks
ntfs: use sb_bdev_nr_blocks
jfs: use sb_bdev_nr_blocks
ext4: use sb_bdev_nr_blocks
block: add a sb_bdev_nr_blocks helper
block: use bdev_nr_bytes instead of open coding it in blkdev_fallocate
squashfs: use bdev_nr_bytes instead of open coding it
reiserfs: use bdev_nr_bytes instead of open coding it
pstore/blk: use bdev_nr_bytes instead of open coding it
ntfs3: use bdev_nr_bytes instead of open coding it
nilfs2: use bdev_nr_bytes instead of open coding it
nfs/blocklayout: use bdev_nr_bytes instead of open coding it
jfs: use bdev_nr_bytes instead of open coding it
hfsplus: use bdev_nr_sectors instead of open coding it
hfs: use bdev_nr_sectors instead of open coding it
...
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmF8KHcQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgphvVEADHMsZP3fOGyJNqnIibIrDL5ZdUGtr5iH3c
0UIi9It0jo9xOyPX/aY2n1pInXK4vvND9ULC+XGYttSJZXWuYEbMGYQ34du2EP0r
dypN4JPwO6X+mFkJND6x8IeDCzj/fy6LCFbWbRlDNsndTZ/gavVTOybMpOLdCJx9
IyXE1iHismaIaD7I3Q77zvN0ei87cEwBfg9R0vRAXKBKUh5raSiLWsOYOiXQkZH4
8iUeDmOLlaWghgXwweODxARXuWq+gWZgiBMd0tp0QCECXMv+NIpfJYauvLHJDa/u
QScr9uRMrJS3KgRgt61o+Z2fcpzJF/bL0e0s5Ul9CgflRWucARbgodUMl4rZCi9D
WOwxPxv8Oab8IT7Qc/ZHdY3ULJsULRgbtmc/9OqPL5Y/Ww9/9E63Is8O4q/QFc7T
xJ1p5yZKw3G+G7oG0YBYE0U+x3RUzi4b/Ob+ECeLcAAAcp+XFg6epK6Aj8HDWd8K
kGYlEBKEq1hILM44K59YTwAT/Cp+fkwe+x7pNQ3JjqtPpVpqGT7RoMUuCduofT1J
ROtB+S8/AwhdABL6KKUYSVF8zlfoXbQpQs3SUKjaBtPVjwXLZwXERy7ttD/4STtT
QjC+5/qAWnMR8CYADE0E3rlicUkHJm1+AHukYLz0REphDcNO8GuB9PCDzX4SX/ol
SGJ6hoprYQ==
=5U4u
-----END PGP SIGNATURE-----
Merge tag 'for-5.16/io_uring-2021-10-29' of git://git.kernel.dk/linux-block
Pull io_uring updates from Jens Axboe:
"Light on new features - basically just the hybrid mode support.
Outside of that it's just fixes, cleanups, and performance
improvements.
In detail:
- Add ring related information to the fdinfo output (Hao)
- Hybrid async mode (Hao)
- Support for batched issue on block (me)
- sqe error trace improvement (me)
- IOPOLL efficiency improvements (Pavel)
- submit state cleanups and improvements (Pavel)
- Completion side improvements (Pavel)
- Drain improvements (Pavel)
- Buffer selection cleanups (Pavel)
- Fixed file node improvements (Pavel)
- io-wq setup cancelation fix (Pavel)
- Various other performance improvements and cleanups (Pavel)
- Misc fixes (Arnd, Bixuan, Changcheng, Hao, me, Noah)"
* tag 'for-5.16/io_uring-2021-10-29' of git://git.kernel.dk/linux-block: (97 commits)
io-wq: remove worker to owner tw dependency
io_uring: harder fdinfo sq/cq ring iterating
io_uring: don't assign write hint in the read path
io_uring: clusterise ki_flags access in rw_prep
io_uring: kill unused param from io_file_supports_nowait
io_uring: clean up timeout async_data allocation
io_uring: don't try io-wq polling if not supported
io_uring: check if opcode needs poll first on arming
io_uring: clean iowq submit work cancellation
io_uring: clean io_wq_submit_work()'s main loop
io-wq: use helper for worker refcounting
io_uring: implement async hybrid mode for pollable requests
io_uring: Use ERR_CAST() instead of ERR_PTR(PTR_ERR())
io_uring: split logic of force_nonblock
io_uring: warning about unused-but-set parameter
io_uring: inform block layer of how many requests we are submitting
io_uring: simplify io_file_supports_nowait()
io_uring: combine REQ_F_NOWAIT_{READ,WRITE} flags
io_uring: arm poll for non-nowait files
fs/io_uring: Prioritise checking faster conditions first in io_write
...
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmF8KDgQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpmQ2D/wO0nH3U+3+OZChi3XUwYck9Dev3o6BANCF
ClATiK/kivZY0xY1r8J4ixirZo2gcjIMpWSC3JGYZ5LdspfmYGLUbMjfZsaeU23i
lAKaX1IqfArmHN76k3IU1bKCg7B0/LFwC0q9QTFWTSwNSs8RK/EZLJ61U1hEXUb3
OfIpaMmvPiMaU7yuPqhcZK14m1cg1srrLM4rFB/PqsWWStF07pHq32WeArGDAU0e
Fe0YSnYD7qqA5Qc37KwqjCTmmxKX5YZf7etIcA6p3DNmwcuQrVNzKoCH/ZEDijaD
E2bS/BWbN1x96+rtoEZfBYEaNIrkmJzmW6+fJ53OITbJF3KqP6V66erhqNcFYCzC
mhFlRe7voXb/8AP7zQqSIhK529BUBM36sQ6nF7EiQcDrfLc1z39mq6eblUxbknIA
DDPISD5Tseik9N9x0bc7vINseKyHI1E90VAU/XKADcuGbzLvehPx+2p+Iq5ch5Ah
oa1G3RdlWWQOZxphJHWJhu1qMfo5+FP9dFZj1aoo7b8Kbc/CedyoQe71cpIE5wNh
Jj/EpWJnuyKXwuTic2VYGC+6ezM9O5DSdqCfP3YuZky95VESyvRCKJYMMgBYRVdC
/LuxhnBXIY2G8An7ZTnX0kLCCvLbapIwa0NyA98/xeOngO843coJ6wn8ZmE9LJNH
kMmpCygUrA==
=QWC+
-----END PGP SIGNATURE-----
Merge tag 'for-5.16/block-2021-10-29' of git://git.kernel.dk/linux-block
Pull block updates from Jens Axboe:
- mq-deadline accounting improvements (Bart)
- blk-wbt timer fix (Andrea)
- Untangle the block layer includes (Christoph)
- Rework the poll support to be bio based, which will enable adding
support for polling for bio based drivers (Christoph)
- Block layer core support for multi-actuator drives (Damien)
- blk-crypto improvements (Eric)
- Batched tag allocation support (me)
- Request completion batching support (me)
- Plugging improvements (me)
- Shared tag set improvements (John)
- Concurrent queue quiesce support (Ming)
- Cache bdev in ->private_data for block devices (Pavel)
- bdev dio improvements (Pavel)
- Block device invalidation and block size improvements (Xie)
- Various cleanups, fixes, and improvements (Christoph, Jackie,
Masahira, Tejun, Yu, Pavel, Zheng, me)
* tag 'for-5.16/block-2021-10-29' of git://git.kernel.dk/linux-block: (174 commits)
blk-mq-debugfs: Show active requests per queue for shared tags
block: improve readability of blk_mq_end_request_batch()
virtio-blk: Use blk_validate_block_size() to validate block size
loop: Use blk_validate_block_size() to validate block size
nbd: Use blk_validate_block_size() to validate block size
block: Add a helper to validate the block size
block: re-flow blk_mq_rq_ctx_init()
block: prefetch request to be initialized
block: pass in blk_mq_tags to blk_mq_rq_ctx_init()
block: add rq_flags to struct blk_mq_alloc_data
block: add async version of bio_set_polled
block: kill DIO_MULTI_BIO
block: kill unused polling bits in __blkdev_direct_IO()
block: avoid extra iter advance with async iocb
block: Add independent access ranges support
blk-mq: don't issue request directly in case that current is to be blocked
sbitmap: silence data race warning
blk-cgroup: synchronize blkg creation against policy deactivation
block: refactor bio_iov_bvec_set()
block: add single bio async direct IO helper
...
-----BEGIN PGP SIGNATURE-----
iQJHBAABCAAxFiEES8DXskRxsqGE6vXTAA5oQRlWghUFAmF77NQTHGpsYXl0b25A
a2VybmVsLm9yZwAKCRAADmhBGVaCFfP9D/wN8rCAPA2J6SpBjdJXSpSQS4PoAOqC
Z002bOc7sq/zg2cWk+pX1aOR/+wUpk+PvaQdyvfO+o4TVCpsTOklRh/yfYuOkJdP
PoINUR7vb43/CGqd04YI45+pxOFMJk9JoLkNha0uIY4ukXdt9mA6u/+qBEDboyDQ
Jbn1JGitRc9WYaE7BV26ba0l+Deb5h2/4c1DiDlsgmLkDPhpowkOznovUCkBnH7H
bfwlssjZ5P0K5ttZDw6VlkC2xE+Yr56BsEco2bXO42LwUHOx6r6ZNp04rh9zh1Zp
hFPybgU+ur17EOOmBbCq8aHZqRRcjQQDH/rZ1heHSOfTrEWWth1xNjmeewSgRZHL
0oMi3yIJPwvuDBQPEQg0VD87k5Z8xbRPql6eM6GeGxDZvzXWqqYKW2OYXtNxG91m
bGvu2OOGkdF/4WGYBixdjUQb5KjcOqdIFkq3/oHfLQ+cS2uc6eOfnCdxa7cTnTdd
BcFDgZmWQDLFs6/DIbwUI0KWMAiLFMZnZACE937JvlE74EGiHu47JMzwcU15J6zO
VD0Oq0XsWQN+TgY2RnjuTFqm6DTpbrkgw88sNDr5g3jZbgJZiZ/r/3M55lcBVWvk
PFT4fjKhD1mT6/SscAAmOxUKUeDbN7EktiRsZmH9C2sUCERufDb/cmY/RYZ00C4t
01ovPjs7VukS/w==
=bcaq
-----END PGP SIGNATURE-----
Merge tag 'locks-v5.16' of git://git.kernel.org/pub/scm/linux/kernel/git/jlayton/linux
Pull file locking updates from Jeff Layton:
"Most of this is just follow-on cleanup work of documentation and
comments from the mandatory locking removal in v5.15.
The only real functional change is that LOCK_MAND flock() support is
also being removed, as it has basically been non-functional since the
v2.5 days"
* tag 'locks-v5.16' of git://git.kernel.org/pub/scm/linux/kernel/git/jlayton/linux:
fs: remove leftover comments from mandatory locking removal
locks: remove changelog comments
docs: fs: locks.rst: update comment about mandatory file locking
Documentation: remove reference to now removed mandatory-locking doc
locks: remove LOCK_MAND flock lock support
Add memory folios, a new type to represent either order-0 pages or
the head page of a compound page. This should be enough infrastructure
to support filesystems converting from pages to folios.
-----BEGIN PGP SIGNATURE-----
iQEzBAABCgAdFiEEejHryeLBw/spnjHrDpNsjXcpgj4FAmF9uI0ACgkQDpNsjXcp
gj7MUAf/R7LCZ+xFiIedw7SAgb/DGK0C9uVjuBEIZgAw21ZUw/GuPI6cuKBMFGGf
rRcdtlvMpwi7yZJcoNXxaqU/xPaaJMjf2XxscIvYJP1mjlZVuwmP9dOx0neNvWOc
T+8lqR6c1TLl82lpqIjGFLwvj2eVowq2d3J5jsaIJFd4odmmYVInrhJXOzC/LQ54
Niloj5ksehf+KUIRLDz7ycppvIHhlVsoAl0eM2dWBAtL0mvT7Nyn/3y+vnMfV2v3
Flb4opwJUgTJleYc16oxTn9svT2yS8q2uuUemRDLW8ABghoAtH3fUUk43RN+5Krd
LYCtbeawtkikPVXZMfWybsx5vn0c3Q==
=7SBe
-----END PGP SIGNATURE-----
Merge tag 'folio-5.16' of git://git.infradead.org/users/willy/pagecache
Pull memory folios from Matthew Wilcox:
"Add memory folios, a new type to represent either order-0 pages or the
head page of a compound page. This should be enough infrastructure to
support filesystems converting from pages to folios.
The point of all this churn is to allow filesystems and the page cache
to manage memory in larger chunks than PAGE_SIZE. The original plan
was to use compound pages like THP does, but I ran into problems with
some functions expecting only a head page while others expect the
precise page containing a particular byte.
The folio type allows a function to declare that it's expecting only a
head page. Almost incidentally, this allows us to remove various calls
to VM_BUG_ON(PageTail(page)) and compound_head().
This converts just parts of the core MM and the page cache. For 5.17,
we intend to convert various filesystems (XFS and AFS are ready; other
filesystems may make it) and also convert more of the MM and page
cache to folios. For 5.18, multi-page folios should be ready.
The multi-page folios offer some improvement to some workloads. The
80% win is real, but appears to be an artificial benchmark (postgres
startup, which isn't a serious workload). Real workloads (eg building
the kernel, running postgres in a steady state, etc) seem to benefit
between 0-10%. I haven't heard of any performance losses as a result
of this series. Nobody has done any serious performance tuning; I
imagine that tweaking the readahead algorithm could provide some more
interesting wins. There are also other places where we could choose to
create large folios and currently do not, such as writes that are
larger than PAGE_SIZE.
I'd like to thank all my reviewers who've offered review/ack tags:
Christoph Hellwig, David Howells, Jan Kara, Jeff Layton, Johannes
Weiner, Kirill A. Shutemov, Michal Hocko, Mike Rapoport, Vlastimil
Babka, William Kucharski, Yu Zhao and Zi Yan.
I'd also like to thank those who gave feedback I incorporated but
haven't offered up review tags for this part of the series: Nick
Piggin, Mel Gorman, Ming Lei, Darrick Wong, Ted Ts'o, John Hubbard,
Hugh Dickins, and probably a few others who I forget"
* tag 'folio-5.16' of git://git.infradead.org/users/willy/pagecache: (90 commits)
mm/writeback: Add folio_write_one
mm/filemap: Add FGP_STABLE
mm/filemap: Add filemap_get_folio
mm/filemap: Convert mapping_get_entry to return a folio
mm/filemap: Add filemap_add_folio()
mm/filemap: Add filemap_alloc_folio
mm/page_alloc: Add folio allocation functions
mm/lru: Add folio_add_lru()
mm/lru: Convert __pagevec_lru_add_fn to take a folio
mm: Add folio_evictable()
mm/workingset: Convert workingset_refault() to take a folio
mm/filemap: Add readahead_folio()
mm/filemap: Add folio_mkwrite_check_truncate()
mm/filemap: Add i_blocks_per_folio()
mm/writeback: Add folio_redirty_for_writepage()
mm/writeback: Add folio_account_redirty()
mm/writeback: Add folio_clear_dirty_for_io()
mm/writeback: Add folio_cancel_dirty()
mm/writeback: Add folio_account_cleaned()
mm/writeback: Add filemap_dirty_folio()
...
When calculating i_blocks, there was a mistake that was masked with a
32-bit variable. So i_blocks for files larger than 4 GiB had incorrect
values. Mask with a 64-bit variable instead of 32-bit one.
Fixes: 5f2aa07507 ("exfat: add inode operations")
Cc: stable@vger.kernel.org # v5.7+
Reported-by: Ganapathi Kamath <hgkamath@hotmail.com>
Signed-off-by: Sungjong Seo <sj1557.seo@samsung.com>
Signed-off-by: Namjae Jeon <linkinjeon@kernel.org>
Use swap() in order to make code cleaner. Issue found by coccinelle.
Reported-by: Zeal Robot <zealci@zte.com.cn>
Signed-off-by: Changcheng Deng <deng.changcheng@zte.com.cn>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Fix following checkincludes.pl warning:
./fs/xfs/xfs_super.c: xfs_btree.h is included more than once.
The include is in line 15. Remove the duplicated here.
Signed-off-by: Wan Jiabing <wanjiabing@vivo.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Now that force_fatal_sig exists it is unnecessary and a bit confusing
to use force_sigsegv in cases where the simpler force_fatal_sig is
wanted. So change every instance we can to make the code clearer.
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Link: https://lkml.kernel.org/r/877de7jrev.fsf@disp2133
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
In 2009 Oleg reworked[1] the kernel threads so that it is not
necessary to call do_exit if you are not using kthread_stop(). Remove
the explicit calls of do_exit and complete_and_exit (with a NULL
completion) that were previously necessary.
[1] 63706172f3 ("kthreads: rework kthread_stop()")
Link: https://lkml.kernel.org/r/20211020174406.17889-12-ebiederm@xmission.com
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmF72q0ACgkQxWXV+ddt
WDvFOxAAkcryx2FP5aqaoMzBKfoCtMFHO3uAvm+rsMcglWe5kaXhBnHa2HPzoyEh
YqEx2TeXMTuA2I15bU8KV1RMhQzzRjC4NhdRqY6uaKAcKgON6sJlK5qsq2BnB+V3
nrue1jppM2Vv8wNzjMNeVETQNC7pmg29yQP/fvWaB36Yar2tyfyWDF11e42HR7cU
yLQUedg30WEayz3Mp6MTBF36h09WXQrZSs7Iwk1JMQbpxWcpn2CjXrO+vIZOMdvH
XZZsxBTNB8GJIaJlXssgsq3OP2wspK1lrVHNfi5PYtcZEaFrhkPaVB6enDfd41YV
zXwj1dnemCni9fh88gZprel9bLyB37dSVfIqq2Ly3hQbSAN4dmHIpxGwPSRIr+Hl
Bn3UfClHpAftbpd/Y77U7GgcYnkuRo3Bd4mGTF3ZuPDLVrf/QX5BlfGa2dmJYoml
NfBit7Ha4UrxLW6C8RC6fyEbLQxpNYFY55Ra0Tj0BBO/uhWiqtQGZwC/qbyPKfzN
YZFcPR6iTILoCHXNan3iZIuLeASMT0djgAtunXXf/BuFnxGfnOuqL3bKt2vojh3+
rsqpeIxSP/VklKv4JcP3axeLmUK6cA8/9dV2ES0M0Fc0o341jfh+AoVw0GleFeus
gXlDFPRJeE8yyXmjKyW4shctOczqoeMIq3umebXPP9R4jd/LU/g=
=YWGa
-----END PGP SIGNATURE-----
Merge tag 'for-5.15-rc7-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"Last minute fixes for crash on 32bit architectures when compression is
in use. It's a regression introduced in 5.15-rc and I'd really like
not let this into the final release, fixes via stable trees would add
unnecessary delay.
The problem is on 32bit architectures with highmem enabled, the pages
for compression may need to be kmapped, while the patches removed that
as we don't use GFP_HIGHMEM allocations anymore. The pages that don't
come from local allocation still may be from highmem. Despite being on
32bit there's enough such ARM machines in use so it's not a marginal
issue.
I did full reverts of the patches one by one instead of a huge one.
There's one exception for the "lzo" revert as there was an
intermediate patch touching the same code to make it compatible with
subpage. I can't revert that one too, so the revert in lzo.c is
manual. Qu Wenruo has worked on that with me and verified the changes"
* tag 'for-5.15-rc7-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
Revert "btrfs: compression: drop kmap/kunmap from lzo"
Revert "btrfs: compression: drop kmap/kunmap from zlib"
Revert "btrfs: compression: drop kmap/kunmap from zstd"
Revert "btrfs: compression: drop kmap/kunmap from generic helpers"
INFO: task iou-wrk-6609:6612 blocked for more than 143 seconds.
Not tainted 5.15.0-rc5-syzkaller #0
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:iou-wrk-6609 state:D stack:27944 pid: 6612 ppid: 6526 flags:0x00004006
Call Trace:
context_switch kernel/sched/core.c:4940 [inline]
__schedule+0xb44/0x5960 kernel/sched/core.c:6287
schedule+0xd3/0x270 kernel/sched/core.c:6366
schedule_timeout+0x1db/0x2a0 kernel/time/timer.c:1857
do_wait_for_common kernel/sched/completion.c:85 [inline]
__wait_for_common kernel/sched/completion.c:106 [inline]
wait_for_common kernel/sched/completion.c:117 [inline]
wait_for_completion+0x176/0x280 kernel/sched/completion.c:138
io_worker_exit fs/io-wq.c:183 [inline]
io_wqe_worker+0x66d/0xc40 fs/io-wq.c:597
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295
io-wq worker may submit a task_work to the master task and upon
io_worker_exit() wait for the tw to get executed. The problem appears
when the master task is waiting in coredump.c:
468 freezer_do_not_count();
469 wait_for_completion(&core_state->startup);
470 freezer_count();
Apparently having some dependency on children threads getting everything
stuck. Workaround it by cancelling the taks_work callback that causes it
before going into io_worker_exit() waiting.
p.s. probably a better option is to not submit tw elevating the refcount
in the first place, but let's leave this excercise for the future.
Cc: stable@vger.kernel.org
Reported-and-tested-by: syzbot+27d62ee6f256b186883e@syzkaller.appspotmail.com
Signed-off-by: Pavel Begunkov <asml.silence@gmail.com>
Link: https://lore.kernel.org/r/142a716f4ed936feae868959059154362bfa8c19.1635509451.git.asml.silence@gmail.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The ring iteration is racy, which isn't necessarily a problem except it
can cause us to iterate the whole thing. That isn't desired or ideal,
and it can lead to excessive runtimes of reading fdinfo.
Cap the iteration at tail - head OR the ring size. While in there, clean
up the ring masking and just dump the raw values along with the masks.
That provides more useful debug info.
Fixes: 83f84356bc ("io_uring: add more uring info to fdinfo for debug")
Reported-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Example for triggering use after free in a overlay on ext4 setup:
aio_read
ovl_read_iter
vfs_iter_read
ext4_file_read_iter
ext4_dio_read_iter
iomap_dio_rw -> -EIOCBQUEUED
/*
* Here IO is completed in a separate thread,
* ovl_aio_cleanup_handler() frees aio_req which has iocb embedded
*/
file_accessed(iocb->ki_filp); /**BOOM**/
Fix by introducing a refcount in ovl_aio_req similarly to aio_kiocb. This
guarantees that iocb is only freed after vfs_read/write_iter() returns on
underlying fs.
Fixes: 2406a307ac ("ovl: implement async IO routines")
Signed-off-by: yangerkun <yangerkun@huawei.com>
Link: https://lore.kernel.org/r/20210930032228.3199690-3-yangerkun@huawei.com/
Cc: <stable@vger.kernel.org> # v5.6
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
This reverts commit 8c945d32e6.
The kmaps in compression code are still needed and cause crashes on
32bit machines (ARM, x86). Reproducible eg. by running fstest btrfs/004
with enabled LZO or ZSTD compression.
The revert does not apply cleanly due to changes in a6e66e6f8c
("btrfs: rework lzo_decompress_bio() to make it subpage compatible")
that reworked the page iteration so the revert is done to be equivalent
to the original code.
Link: https://lore.kernel.org/all/CAJCQCtT+OuemovPO7GZk8Y8=qtOObr0XTDp8jh4OHD6y84AFxw@mail.gmail.com/
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=214839
Tested-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This reverts commit bbaf9715f3.
The kmaps in compression code are still needed and cause crashes on
32bit machines (ARM, x86). Reproducible eg. by running fstest btrfs/004
with enabled LZO or ZSTD compression.
Example stacktrace with ZSTD on a 32bit ARM machine:
Unable to handle kernel NULL pointer dereference at virtual address 00000000
pgd = c4159ed3
[00000000] *pgd=00000000
Internal error: Oops: 5 [#1] PREEMPT SMP ARM
Modules linked in:
CPU: 0 PID: 210 Comm: kworker/u2:3 Not tainted 5.14.0-rc79+ #12
Hardware name: Allwinner sun4i/sun5i Families
Workqueue: btrfs-delalloc btrfs_work_helper
PC is at mmiocpy+0x48/0x330
LR is at ZSTD_compressStream_generic+0x15c/0x28c
(mmiocpy) from [<c0629648>] (ZSTD_compressStream_generic+0x15c/0x28c)
(ZSTD_compressStream_generic) from [<c06297dc>] (ZSTD_compressStream+0x64/0xa0)
(ZSTD_compressStream) from [<c049444c>] (zstd_compress_pages+0x170/0x488)
(zstd_compress_pages) from [<c0496798>] (btrfs_compress_pages+0x124/0x12c)
(btrfs_compress_pages) from [<c043c068>] (compress_file_range+0x3c0/0x834)
(compress_file_range) from [<c043c4ec>] (async_cow_start+0x10/0x28)
(async_cow_start) from [<c0475c3c>] (btrfs_work_helper+0x100/0x230)
(btrfs_work_helper) from [<c014ef68>] (process_one_work+0x1b4/0x418)
(process_one_work) from [<c014f210>] (worker_thread+0x44/0x524)
(worker_thread) from [<c0156aa4>] (kthread+0x180/0x1b0)
(kthread) from [<c0100150>]
Link: https://lore.kernel.org/all/CAJCQCtT+OuemovPO7GZk8Y8=qtOObr0XTDp8jh4OHD6y84AFxw@mail.gmail.com/
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=214839
Signed-off-by: David Sterba <dsterba@suse.com>
The root argument passed to check_item_in_log() always matches the root
of the given directory, so it can be eliminated.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The root argument for tree-log.c:add_link() always matches the root of the
given directory and the given inode, so it can eliminated.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The root argument passed to btrfs_unlink_inode() and its callee,
__btrfs_unlink_inode(), always matches the root of the given directory and
the given inode. So remove the argument and make __btrfs_unlink_inode()
use the root of the directory.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The root argument for drop_one_dir_item() always matches the root of the
given directory inode, since each log tree is associated to one and only
one subvolume/root, so remove the argument.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Reported bug: https://github.com/kdave/btrfs-progs/issues/389
There's a problem with scrub reporting aborted status but returning
error code 0, on a filesystem with missing and readded device.
Roughly these steps:
- mkfs -d raid1 dev1 dev2
- fill with data
- unmount
- make dev1 disappear
- mount -o degraded
- copy more data
- make dev1 appear again
Running scrub afterwards reports that the command was aborted, but the
system log message says the exit code was 0.
It seems that the cause of the error is decrementing
fs_devices->missing_devices but not clearing device->dev_state. Every
time we umount filesystem, it would call close_ctree, And it would
eventually involve btrfs_close_one_device to close the device, but it
only decrements fs_devices->missing_devices but does not clear the
device BTRFS_DEV_STATE_MISSING bit. Worse, this bug will cause Integer
Overflow, because every time umount, fs_devices->missing_devices will
decrease. If fs_devices->missing_devices value hit 0, it would overflow.
With added debugging:
loop1: detected capacity change from 0 to 20971520
BTRFS: device fsid 56ad51f1-5523-463b-8547-c19486c51ebb devid 1 transid 21 /dev/loop1 scanned by systemd-udevd (2311)
loop2: detected capacity change from 0 to 20971520
BTRFS: device fsid 56ad51f1-5523-463b-8547-c19486c51ebb devid 2 transid 17 /dev/loop2 scanned by systemd-udevd (2313)
BTRFS info (device loop1): flagging fs with big metadata feature
BTRFS info (device loop1): allowing degraded mounts
BTRFS info (device loop1): using free space tree
BTRFS info (device loop1): has skinny extents
BTRFS info (device loop1): before clear_missing.00000000f706684d /dev/loop1 0
BTRFS warning (device loop1): devid 2 uuid 6635ac31-56dd-4852-873b-c60f5e2d53d2 is missing
BTRFS info (device loop1): before clear_missing.0000000000000000 /dev/loop2 1
BTRFS info (device loop1): flagging fs with big metadata feature
BTRFS info (device loop1): allowing degraded mounts
BTRFS info (device loop1): using free space tree
BTRFS info (device loop1): has skinny extents
BTRFS info (device loop1): before clear_missing.00000000f706684d /dev/loop1 0
BTRFS warning (device loop1): devid 2 uuid 6635ac31-56dd-4852-873b-c60f5e2d53d2 is missing
BTRFS info (device loop1): before clear_missing.0000000000000000 /dev/loop2 0
BTRFS info (device loop1): flagging fs with big metadata feature
BTRFS info (device loop1): allowing degraded mounts
BTRFS info (device loop1): using free space tree
BTRFS info (device loop1): has skinny extents
BTRFS info (device loop1): before clear_missing.00000000f706684d /dev/loop1 18446744073709551615
BTRFS warning (device loop1): devid 2 uuid 6635ac31-56dd-4852-873b-c60f5e2d53d2 is missing
BTRFS info (device loop1): before clear_missing.0000000000000000 /dev/loop2 18446744073709551615
If fs_devices->missing_devices is 0, next time it would be 18446744073709551615
After apply this patch, the fs_devices->missing_devices seems to be
right:
$ truncate -s 10g test1
$ truncate -s 10g test2
$ losetup /dev/loop1 test1
$ losetup /dev/loop2 test2
$ mkfs.btrfs -draid1 -mraid1 /dev/loop1 /dev/loop2 -f
$ losetup -d /dev/loop2
$ mount -o degraded /dev/loop1 /mnt/1
$ umount /mnt/1
$ mount -o degraded /dev/loop1 /mnt/1
$ umount /mnt/1
$ mount -o degraded /dev/loop1 /mnt/1
$ umount /mnt/1
$ dmesg
loop1: detected capacity change from 0 to 20971520
loop2: detected capacity change from 0 to 20971520
BTRFS: device fsid 15aa1203-98d3-4a66-bcae-ca82f629c2cd devid 1 transid 5 /dev/loop1 scanned by mkfs.btrfs (1863)
BTRFS: device fsid 15aa1203-98d3-4a66-bcae-ca82f629c2cd devid 2 transid 5 /dev/loop2 scanned by mkfs.btrfs (1863)
BTRFS info (device loop1): flagging fs with big metadata feature
BTRFS info (device loop1): allowing degraded mounts
BTRFS info (device loop1): disk space caching is enabled
BTRFS info (device loop1): has skinny extents
BTRFS info (device loop1): before clear_missing.00000000975bd577 /dev/loop1 0
BTRFS warning (device loop1): devid 2 uuid 8b333791-0b3f-4f57-b449-1c1ab6b51f38 is missing
BTRFS info (device loop1): before clear_missing.0000000000000000 /dev/loop2 1
BTRFS info (device loop1): checking UUID tree
BTRFS info (device loop1): flagging fs with big metadata feature
BTRFS info (device loop1): allowing degraded mounts
BTRFS info (device loop1): disk space caching is enabled
BTRFS info (device loop1): has skinny extents
BTRFS info (device loop1): before clear_missing.00000000975bd577 /dev/loop1 0
BTRFS warning (device loop1): devid 2 uuid 8b333791-0b3f-4f57-b449-1c1ab6b51f38 is missing
BTRFS info (device loop1): before clear_missing.0000000000000000 /dev/loop2 1
BTRFS info (device loop1): flagging fs with big metadata feature
BTRFS info (device loop1): allowing degraded mounts
BTRFS info (device loop1): disk space caching is enabled
BTRFS info (device loop1): has skinny extents
BTRFS info (device loop1): before clear_missing.00000000975bd577 /dev/loop1 0
BTRFS warning (device loop1): devid 2 uuid 8b333791-0b3f-4f57-b449-1c1ab6b51f38 is missing
BTRFS info (device loop1): before clear_missing.0000000000000000 /dev/loop2 1
CC: stable@vger.kernel.org # 4.19+
Signed-off-by: Li Zhang <zhanglikernel@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In open_ctree() in btrfs_check_rw_degradable() [1], we check each block
group individually if at least the minimum number of devices is available
for that profile. If all the devices are available, then we don't have to
check degradable.
[1]
open_ctree()
::
3559 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
Also before calling btrfs_check_rw_degradable() in open_ctee() at the
line number shown below [2] we call btrfs_read_chunk_tree() and down to
add_missing_dev() to record number of missing devices.
[2]
open_ctree()
::
3454 ret = btrfs_read_chunk_tree(fs_info);
btrfs_read_chunk_tree()
read_one_chunk() / read_one_dev()
add_missing_dev()
So, check if there is any missing device before btrfs_check_rw_degradable()
in open_ctree().
Also, with this the mount command could save ~16ms.[3] in the most
common case, that is no device is missing.
[3]
1) * 16934.96 us | btrfs_check_rw_degradable [btrfs]();
CC: stable@vger.kernel.org # 4.19+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is preparatory work for send protocol update to version 2 and
higher.
We have many pending protocol update requests but still don't have the
basic protocol rev in place, the first thing that must happen is to do
the actual versioning support.
The protocol version is u32 and is a new member in the send ioctl
struct. Validity of the version field is backed by a new flag bit. Old
kernels would fail when a higher version is requested. Version protocol
0 will pick the highest supported version, BTRFS_SEND_STREAM_VERSION,
that's also exported in sysfs.
The version is still unchanged and will be increased once we have new
incompatible commands or stream updates.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Encountered a race between ocfs2_test_bg_bit_allocatable() and
jbd2_journal_put_journal_head() resulting in the below vmcore.
PID: 106879 TASK: ffff880244ba9c00 CPU: 2 COMMAND: "loop3"
Call trace:
panic
oops_end
no_context
__bad_area_nosemaphore
bad_area_nosemaphore
__do_page_fault
do_page_fault
page_fault
[exception RIP: ocfs2_block_group_find_clear_bits+316]
ocfs2_block_group_find_clear_bits [ocfs2]
ocfs2_cluster_group_search [ocfs2]
ocfs2_search_chain [ocfs2]
ocfs2_claim_suballoc_bits [ocfs2]
__ocfs2_claim_clusters [ocfs2]
ocfs2_claim_clusters [ocfs2]
ocfs2_local_alloc_slide_window [ocfs2]
ocfs2_reserve_local_alloc_bits [ocfs2]
ocfs2_reserve_clusters_with_limit [ocfs2]
ocfs2_reserve_clusters [ocfs2]
ocfs2_lock_refcount_allocators [ocfs2]
ocfs2_make_clusters_writable [ocfs2]
ocfs2_replace_cow [ocfs2]
ocfs2_refcount_cow [ocfs2]
ocfs2_file_write_iter [ocfs2]
lo_rw_aio
loop_queue_work
kthread_worker_fn
kthread
ret_from_fork
When ocfs2_test_bg_bit_allocatable() called bh2jh(bg_bh), the
bg_bh->b_private NULL as jbd2_journal_put_journal_head() raced and
released the jounal head from the buffer head. Needed to take bit lock
for the bit 'BH_JournalHead' to fix this race.
Link: https://lkml.kernel.org/r/1634820718-6043-1-git-send-email-gautham.ananthakrishna@oracle.com
Signed-off-by: Gautham Ananthakrishna <gautham.ananthakrishna@oracle.com>
Reviewed-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: <rajesh.sivaramasubramaniom@oracle.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Changwei Ge <gechangwei@live.cn>
Cc: Gang He <ghe@suse.com>
Cc: Jun Piao <piaojun@huawei.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add flag returned by FUSE_OPEN and FUSE_CREATE requests to avoid flushing
data cache on close.
Different filesystems implement ->flush() is different ways:
- Most disk filesystems do not implement ->flush() at all
- Some network filesystem (e.g. nfs) flush local write cache of
FMODE_WRITE file and send a "flush" command to server
- Some network filesystem (e.g. cifs) flush local write cache of
FMODE_WRITE file without sending an additional command to server
FUSE flushes local write cache of ANY file, even non FMODE_WRITE
and sends a "flush" command to server (if server implements it).
The FUSE implementation of ->flush() seems over agressive and
arbitrary and does not make a lot of sense when writeback caching is
disabled.
Instead of deciding on another arbitrary implementation that makes
sense, leave the choice of per-file flush behavior in the hands of
the server.
Link: https://lore.kernel.org/linux-fsdevel/CAJfpegspE8e6aKd47uZtSYX8Y-1e1FWS0VL0DH2Skb9gQP5RJQ@mail.gmail.com/
Suggested-by: Miklos Szeredi <mszeredi@redhat.com>
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
fuse_update_attributes() refreshes metadata for internal use.
Each use needs a particular set of attributes to be refreshed, but
currently that cannot be expressed and all but atime are refreshed.
Add a mask argument, which lets fuse_update_get_attr() to decide based on
the cache_mask and the inval_mask whether a GETATTR call is needed or not.
Reported-by: Yongji Xie <xieyongji@bytedance.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
When deciding to send a GETATTR request take into account the cache mask
(which attributes are always valid). The cache mask takes precedence over
the invalid mask.
This results in the GETATTR request not being sent unnecessarily.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
If writeback_cache is enabled, then the size, mtime and ctime attributes of
regular files are always valid in the kernel's cache. They are retrieved
from userspace only when the inode is freshly looked up.
Add a more generic "cache_mask", that indicates which attributes are
currently valid in cache.
This patch doesn't change behavior.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
In case of writeback_cache fuse_fillattr() would revert the queried
attributes to the cached version.
Move this to fuse_change_attributes() in order to manage the writeback
logic in a central helper. This will be necessary for patches that follow.
Only fuse_do_getattr() -> fuse_fillattr() uses the attributes after calling
fuse_change_attributes(), so this should not change behavior.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
There are two instances of "bool is_wb = fc->writeback_cache" where the
actual use mostly involves checking "is_wb && S_ISREG(inode->i_mode)".
Clean up these cases by storing the second condition in the local variable.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
It's safe to call file_update_time() if writeback cache is not enabled,
since S_NOCMTIME is set in this case. This part is purely a cleanup.
__fuse_copy_file_range() also calls fuse_write_update_attr() only in the
writeback cache case. This is inconsistent with other callers, where it's
called unconditionally.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
A READ request returning a short count is taken as indication of EOF, and
the cached file size is modified accordingly.
Fix the attribute version checking to allow for changes to fc->attr_version
on other inodes.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Extend the fuse_write_update_attr() helper to invalidate cached attributes
after a write.
This has already been done in all cases except in fuse_notify_store(), so
this is mostly a cleanup.
fuse_direct_write_iter() calls fuse_direct_IO() which already calls
fuse_write_update_attr(), so don't repeat that again in the former.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
This function already updates the attr_version in fuse_inode, regardless of
whether the size was changed or not.
Rename the helper to fuse_write_update_attr() to reflect the more generic
nature.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
The attribute version in fuse_inode should be updated whenever the
attributes might have changed on the server. In case of cached writes this
is not the case, so updating the attr_version is unnecessary and could
possibly affect performance.
Open code the remaining part of fuse_write_update_size().
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Only invalidate attributes that the operation might have changed.
Introduce two constants for common combinations of changed attributes:
FUSE_STATX_MODIFY: file contents are modified but not size
FUSE_STATX_MODSIZE: size and/or file contents modified
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
The fuse_iget() call in create_new_entry() already updated the inode with
all the new attributes and incremented the attribute version.
Incrementing the nlink will result in the wrong count. This wasn't noticed
because the attributes were invalidated right after this.
Updating ctime is still needed for the writeback case when the ctime is not
refreshed.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
If we already hold open state on the client, yet the server gives us a
completely different stateid to the one we already hold, then we
currently treat it as if it were an out-of-sequence update, and wait for
5 seconds for other updates to come in.
This commit fixes the behaviour so that we immediately start processing
of the new stateid, and then leave it to the call to
nfs4_test_and_free_stateid() to decide what to do with the old stateid.
Fixes: b4868b44c5 ("NFSv4: Wait for stateid updates after CLOSE/OPEN_DOWNGRADE")
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Since the commit c3d98ea082 ("VFS: Don't use save/replace_mount_options
if not using generic_show_options") eliminates replace_mount_options
in reiserfs_remount, but does not handle the allocated new_opts,
it will cause memory leak in the reiserfs_remount.
Because new_opts is useless in reiserfs_mount, so we fix this bug by
removing the useless new_opts in reiserfs_remount.
Fixes: c3d98ea082 ("VFS: Don't use save/replace_mount_options if not using generic_show_options")
Link: https://lore.kernel.org/r/20211027143445.4156459-1-mudongliangabcd@gmail.com
Signed-off-by: Dongliang Mu <mudongliangabcd@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Send a FS_ERROR message via fsnotify to a userspace monitoring tool
whenever a ext4 error condition is triggered. This follows the existing
error conditions in ext4, so it is hooked to the ext4_error* functions.
Link: https://lore.kernel.org/r/20211025192746.66445-30-krisman@collabora.com
Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.com>
Acked-by: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jan Kara <jack@suse.cz>
Wire up the FAN_FS_ERROR event in the fanotify_mark syscall, allowing
user space to request the monitoring of FAN_FS_ERROR events.
These events are limited to filesystem marks, so check it is the
case in the syscall handler.
Link: https://lore.kernel.org/r/20211025192746.66445-29-krisman@collabora.com
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.com>
Signed-off-by: Jan Kara <jack@suse.cz>
The error info is a record sent to users on FAN_FS_ERROR events
documenting the type of error. It also carries an error count,
documenting how many errors were observed since the last reporting.
Link: https://lore.kernel.org/r/20211025192746.66445-28-krisman@collabora.com
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Plumb the pieces to add a FID report to error records. Since all error
event memory must be pre-allocated, we pre-allocate the maximum file
handle size possible, such that it should always fit.
For errors that don't expose a file handle, report it with an invalid
FID. Internally we use zero-length FILEID_ROOT file handle for passing
the information (which we report as zero-length FILEID_INVALID file
handle to userspace) so we update the handle reporting code to deal with
this case correctly.
Link: https://lore.kernel.org/r/20211025192746.66445-27-krisman@collabora.com
Link: https://lore.kernel.org/r/20211025192746.66445-25-krisman@collabora.com
Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.com>
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Jan Kara <jack@suse.cz>
[Folded two patches into 2 to make series bisectable]
Signed-off-by: Jan Kara <jack@suse.cz>
struct fanotify_error_event, at least, is preallocated and isn't able to
to handle arbitrarily large file handles. Future-proof the code by
complaining loudly if a handle larger than MAX_HANDLE_SZ is ever found.
Link: https://lore.kernel.org/r/20211025192746.66445-26-krisman@collabora.com
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Now that there is an event that reports FID records even for a zeroed
file handle, wrap the logic that deides whether to issue the records
into helper functions. This shouldn't have any impact on the code, but
simplifies further patches.
Link: https://lore.kernel.org/r/20211025192746.66445-24-krisman@collabora.com
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.com>
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
fanotify_error_event would duplicate this sequence of declarations that
already exist elsewhere with a slight different size. Create a helper
macro to avoid code duplication.
Link: https://lore.kernel.org/r/20211025192746.66445-23-krisman@collabora.com
Suggested-by: Jan Kara <jack@suse.cz>
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Error events (FAN_FS_ERROR) against the same file system can be merged
by simply iterating the error count. The hash is taken from the fsid,
without considering the FH. This means that only the first error object
is reported.
Link: https://lore.kernel.org/r/20211025192746.66445-22-krisman@collabora.com
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Once an error event is triggered, enqueue it in the notification group,
similarly to what is done for other events. FAN_FS_ERROR is not
handled specially, since the memory is now handled by a preallocated
mempool.
For now, make the event unhashed. A future patch implements merging of
this kind of event.
Link: https://lore.kernel.org/r/20211025192746.66445-21-krisman@collabora.com
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Pre-allocate slots for file system errors to have greater chances of
succeeding, since error events can happen in GFP_NOFS context. This
patch introduces a group-wide mempool of error events, shared by all
FAN_FS_ERROR marks in this group.
Link: https://lore.kernel.org/r/20211025192746.66445-20-krisman@collabora.com
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.com>
Signed-off-by: Jan Kara <jack@suse.cz>
FAN_FS_ERROR allows reporting of event type FS_ERROR to userspace, which
is a mechanism to report file system wide problems via fanotify. This
commit preallocate userspace visible bits to match the FS_ERROR event.
Link: https://lore.kernel.org/r/20211025192746.66445-19-krisman@collabora.com
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Like inode events, FAN_FS_ERROR will require fid mode. Therefore,
convert the verification during fanotify_mark(2) to require fid for any
non-fd event. This means fid_mode will not only be required for inode
events, but for any event that doesn't provide a descriptor.
Link: https://lore.kernel.org/r/20211025192746.66445-17-krisman@collabora.com
Suggested-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Instead of failing, encode an invalid file handle in fanotify_encode_fh
if no inode is provided. This bogus file handle will be reported by
FAN_FS_ERROR for non-inode errors.
Link: https://lore.kernel.org/r/20211025192746.66445-16-krisman@collabora.com
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Allow passing a NULL hash to fanotify_encode_fh and avoid calculating
the hash if not needed.
Link: https://lore.kernel.org/r/20211025192746.66445-15-krisman@collabora.com
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.com>
Signed-off-by: Jan Kara <jack@suse.cz>
FAN_FS_ERROR doesn't support DFID, but this function is still called for
every event. The problem is that it is not capable of handling null
inodes, which now can happen in case of superblock error events. For
this case, just returning dir will be enough.
Link: https://lore.kernel.org/r/20211025192746.66445-14-krisman@collabora.com
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.com>
Signed-off-by: Jan Kara <jack@suse.cz>
For group-wide mempool backed events, like FS_ERROR, the free_event
callback will need to reference the group's mempool to free the memory.
Wire that argument into the current callers.
Link: https://lore.kernel.org/r/20211025192746.66445-13-krisman@collabora.com
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.com>
Signed-off-by: Jan Kara <jack@suse.cz>
FAN_FS_ERROR allows events without inodes - i.e. for file system-wide
errors. Even though fsnotify_handle_inode_event is not currently used
by fanotify, this patch protects other backends from cases where neither
inode or dir are provided. Also document the constraints of the
interface (inode and dir cannot be both NULL).
Link: https://lore.kernel.org/r/20211025192746.66445-12-krisman@collabora.com
Suggested-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.com>
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jan Kara <jack@suse.cz>
Some file system events (i.e. FS_ERROR) might not be associated with an
inode or directory. For these, we can retrieve the super block from the
data field. But, since the super_block is available in the data field
on every event type, simplify the code to always retrieve it from there,
through a new helper.
Link: https://lore.kernel.org/r/20211025192746.66445-11-krisman@collabora.com
Suggested-by: Jan Kara <jack@suse.cz>
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.com>
Signed-off-by: Jan Kara <jack@suse.cz>
fsnotify_add_event is growing in number of parameters, which in most
case are just passed a NULL pointer. So, split out a new
fsnotify_insert_event function to clean things up for users who don't
need an insert hook.
Link: https://lore.kernel.org/r/20211025192746.66445-10-krisman@collabora.com
Suggested-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Similarly to fanotify_is_perm_event and friends, provide a helper
predicate to say whether a mask is of an overflow event.
Link: https://lore.kernel.org/r/20211025192746.66445-9-krisman@collabora.com
Suggested-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.com>
Signed-off-by: Jan Kara <jack@suse.cz>
According to Amir:
"FS_IN_IGNORED is completely internal to inotify and there is no need
to set it in i_fsnotify_mask at all, so if we remove the bit from the
output of inotify_arg_to_mask() no functionality will change and we will
be able to overload the event bit for FS_ERROR."
This is done in preparation to overload FS_ERROR with the notification
mechanism in fanotify.
Link: https://lore.kernel.org/r/20211025192746.66445-8-krisman@collabora.com
Suggested-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.com>
Signed-off-by: Jan Kara <jack@suse.cz>
FAN_FS_ERROR will require fsid, but not necessarily require the
filesystem to expose a file handle. Split those checks into different
functions, so they can be used separately when setting up an event.
While there, update a comment about tmpfs having 0 fsid, which is no
longer true.
Link: https://lore.kernel.org/r/20211025192746.66445-7-krisman@collabora.com
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Every time this function is invoked, it is immediately added to
FAN_EVENT_METADATA_LEN, since there is no need to just calculate the
length of info records. This minor clean up folds the rest of the
calculation into the function, which now operates in terms of events,
returning the size of the entire event, including metadata.
Link: https://lore.kernel.org/r/20211025192746.66445-6-krisman@collabora.com
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Some events, like the overflow event, are not mergeable, so they are not
hashed. But, when failing inside fsnotify_add_event for lack of space,
fsnotify_add_event() still calls the insert hook, which adds the
overflow event to the merge list. Add a check to prevent any kind of
unmergeable event to be inserted in the hashtable.
Fixes: 94e00d28a6 ("fsnotify: use hash table for faster events merge")
Link: https://lore.kernel.org/r/20211025192746.66445-5-krisman@collabora.com
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Commit 95ea0486b2 ("btrfs: allow read-write for 4K sectorsize on 64K
page size systems") added write support for 4K sectorsize on a 64K
systems. Fix the now stale comments.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Christoph pointed out that I'm updating bdev->bd_inode for the device
time when we remove block devices from a btrfs file system, however this
isn't actually exposed to anything. The inode we want to update is the
one that's associated with the path to the device, usually on devtmpfs,
so that blkid notices the difference.
We still don't want to do the blkdev_open, so use kern_path() to get the
path to the given device and do the update time on that inode.
Fixes: 8f96a5bfa1 ("btrfs: update the bdev time directly when closing")
Reported-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If you already have an inode and need to update the time on the inode
there is no way to do this properly. Export this helper to allow file
systems to update time on the inode so the appropriate handler is
called, either ->update_time or generic_update_time.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Attempting to defragment a Btrfs file containing a transparent huge page
immediately deadlocks with the following stack trace:
#0 context_switch (kernel/sched/core.c:4940:2)
#1 __schedule (kernel/sched/core.c:6287:8)
#2 schedule (kernel/sched/core.c:6366:3)
#3 io_schedule (kernel/sched/core.c:8389:2)
#4 wait_on_page_bit_common (mm/filemap.c:1356:4)
#5 __lock_page (mm/filemap.c:1648:2)
#6 lock_page (./include/linux/pagemap.h:625:3)
#7 pagecache_get_page (mm/filemap.c:1910:4)
#8 find_or_create_page (./include/linux/pagemap.h:420:9)
#9 defrag_prepare_one_page (fs/btrfs/ioctl.c:1068:9)
#10 defrag_one_range (fs/btrfs/ioctl.c:1326:14)
#11 defrag_one_cluster (fs/btrfs/ioctl.c:1421:9)
#12 btrfs_defrag_file (fs/btrfs/ioctl.c:1523:9)
#13 btrfs_ioctl_defrag (fs/btrfs/ioctl.c:3117:9)
#14 btrfs_ioctl (fs/btrfs/ioctl.c:4872:10)
#15 vfs_ioctl (fs/ioctl.c:51:10)
#16 __do_sys_ioctl (fs/ioctl.c:874:11)
#17 __se_sys_ioctl (fs/ioctl.c:860:1)
#18 __x64_sys_ioctl (fs/ioctl.c:860:1)
#19 do_syscall_x64 (arch/x86/entry/common.c:50:14)
#20 do_syscall_64 (arch/x86/entry/common.c:80:7)
#21 entry_SYSCALL_64+0x7c/0x15b (arch/x86/entry/entry_64.S:113)
A huge page is represented by a compound page, which consists of a
struct page for each PAGE_SIZE page within the huge page. The first
struct page is the "head page", and the remaining are "tail pages".
Defragmentation attempts to lock each page in the range. However,
lock_page() on a tail page actually locks the corresponding head page.
So, if defragmentation tries to lock more than one struct page in a
compound page, it tries to lock the same head page twice and deadlocks
with itself.
Ideally, we should be able to defragment transparent huge pages.
However, THP for filesystems is currently read-only, so a lot of code is
not ready to use huge pages for I/O. For now, let's just return
ETXTBUSY.
This can be reproduced with the following on a kernel with
CONFIG_READ_ONLY_THP_FOR_FS=y:
$ cat create_thp_file.c
#include <fcntl.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/mman.h>
static const char zeroes[1024 * 1024];
static const size_t FILE_SIZE = 2 * 1024 * 1024;
int main(int argc, char **argv)
{
if (argc != 2) {
fprintf(stderr, "usage: %s PATH\n", argv[0]);
return EXIT_FAILURE;
}
int fd = creat(argv[1], 0777);
if (fd == -1) {
perror("creat");
return EXIT_FAILURE;
}
size_t written = 0;
while (written < FILE_SIZE) {
ssize_t ret = write(fd, zeroes,
sizeof(zeroes) < FILE_SIZE - written ?
sizeof(zeroes) : FILE_SIZE - written);
if (ret < 0) {
perror("write");
return EXIT_FAILURE;
}
written += ret;
}
close(fd);
fd = open(argv[1], O_RDONLY);
if (fd == -1) {
perror("open");
return EXIT_FAILURE;
}
/*
* Reserve some address space so that we can align the file mapping to
* the huge page size.
*/
void *placeholder_map = mmap(NULL, FILE_SIZE * 2, PROT_NONE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
if (placeholder_map == MAP_FAILED) {
perror("mmap (placeholder)");
return EXIT_FAILURE;
}
void *aligned_address =
(void *)(((uintptr_t)placeholder_map + FILE_SIZE - 1) & ~(FILE_SIZE - 1));
void *map = mmap(aligned_address, FILE_SIZE, PROT_READ | PROT_EXEC,
MAP_SHARED | MAP_FIXED, fd, 0);
if (map == MAP_FAILED) {
perror("mmap");
return EXIT_FAILURE;
}
if (madvise(map, FILE_SIZE, MADV_HUGEPAGE) < 0) {
perror("madvise");
return EXIT_FAILURE;
}
char *line = NULL;
size_t line_capacity = 0;
FILE *smaps_file = fopen("/proc/self/smaps", "r");
if (!smaps_file) {
perror("fopen");
return EXIT_FAILURE;
}
for (;;) {
for (size_t off = 0; off < FILE_SIZE; off += 4096)
((volatile char *)map)[off];
ssize_t ret;
bool this_mapping = false;
while ((ret = getline(&line, &line_capacity, smaps_file)) > 0) {
unsigned long start, end, huge;
if (sscanf(line, "%lx-%lx", &start, &end) == 2) {
this_mapping = (start <= (uintptr_t)map &&
(uintptr_t)map < end);
} else if (this_mapping &&
sscanf(line, "FilePmdMapped: %ld", &huge) == 1 &&
huge > 0) {
return EXIT_SUCCESS;
}
}
sleep(6);
rewind(smaps_file);
fflush(smaps_file);
}
}
$ ./create_thp_file huge
$ btrfs fi defrag -czstd ./huge
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit 2efc459d06 ("sysfs: Add sysfs_emit and sysfs_emit_at to format
sysfs out") merged in 5.10 introduced two new functions sysfs_emit() and
sysfs_emit_at() which are aware of the PAGE_SIZE limit of the output
buffer.
Use the above two new functions instead of scnprintf() and snprintf()
in various sysfs show().
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It's a common practice to avoid use sizeof(struct btrfs_super_block)
(3531), but to use BTRFS_SUPER_INFO_SIZE (4096).
The problem is that, sizeof(struct btrfs_super_block) doesn't match
BTRFS_SUPER_INFO_SIZE from the very beginning.
Furthermore, for all call sites except selftests, we always allocate
BTRFS_SUPER_INFO_SIZE space for super block, there isn't any real reason
to use the smaller value, and it doesn't really save any space.
So let's get rid of such confusing behavior, and unify those two values.
This modification also adds a new static_assert() to verify the size,
and moves the BTRFS_SUPER_INFO_* macros to the definition of
btrfs_super_block for the static_assert().
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Update the comments at btrfs_chunk_alloc() and do_chunk_alloc() that
describe which cases can lead to a failure to allocate metadata and system
space despite having previously reserved space. This adds one more reason
that I previously forgot to mention.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When a task is doing some modification to the chunk btree and it is not in
the context of a chunk allocation or a chunk removal, it can deadlock with
another task that is currently allocating a new data or metadata chunk.
These contexts are the following:
* When relocating a system chunk, when we need to COW the extent buffers
that belong to the chunk btree;
* When adding a new device (ioctl), where we need to add a new device item
to the chunk btree;
* When removing a device (ioctl), where we need to remove a device item
from the chunk btree;
* When resizing a device (ioctl), where we need to update a device item in
the chunk btree and may need to relocate a system chunk that lies beyond
the new device size when shrinking a device.
The problem happens due to a sequence of steps like the following:
1) Task A starts a data or metadata chunk allocation and it locks the
chunk mutex;
2) Task B is relocating a system chunk, and when it needs to COW an extent
buffer of the chunk btree, it has locked both that extent buffer as
well as its parent extent buffer;
3) Since there is not enough available system space, either because none
of the existing system block groups have enough free space or because
the only one with enough free space is in RO mode due to the relocation,
task B triggers a new system chunk allocation. It blocks when trying to
acquire the chunk mutex, currently held by task A;
4) Task A enters btrfs_chunk_alloc_add_chunk_item(), in order to insert
the new chunk item into the chunk btree and update the existing device
items there. But in order to do that, it has to lock the extent buffer
that task B locked at step 2, or its parent extent buffer, but task B
is waiting on the chunk mutex, which is currently locked by task A,
therefore resulting in a deadlock.
One example report when the deadlock happens with system chunk relocation:
INFO: task kworker/u9:5:546 blocked for more than 143 seconds.
Not tainted 5.15.0-rc3+ #1
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:kworker/u9:5 state:D stack:25936 pid: 546 ppid: 2 flags:0x00004000
Workqueue: events_unbound btrfs_async_reclaim_metadata_space
Call Trace:
context_switch kernel/sched/core.c:4940 [inline]
__schedule+0xcd9/0x2530 kernel/sched/core.c:6287
schedule+0xd3/0x270 kernel/sched/core.c:6366
rwsem_down_read_slowpath+0x4ee/0x9d0 kernel/locking/rwsem.c:993
__down_read_common kernel/locking/rwsem.c:1214 [inline]
__down_read kernel/locking/rwsem.c:1223 [inline]
down_read_nested+0xe6/0x440 kernel/locking/rwsem.c:1590
__btrfs_tree_read_lock+0x31/0x350 fs/btrfs/locking.c:47
btrfs_tree_read_lock fs/btrfs/locking.c:54 [inline]
btrfs_read_lock_root_node+0x8a/0x320 fs/btrfs/locking.c:191
btrfs_search_slot_get_root fs/btrfs/ctree.c:1623 [inline]
btrfs_search_slot+0x13b4/0x2140 fs/btrfs/ctree.c:1728
btrfs_update_device+0x11f/0x500 fs/btrfs/volumes.c:2794
btrfs_chunk_alloc_add_chunk_item+0x34d/0xea0 fs/btrfs/volumes.c:5504
do_chunk_alloc fs/btrfs/block-group.c:3408 [inline]
btrfs_chunk_alloc+0x84d/0xf50 fs/btrfs/block-group.c:3653
flush_space+0x54e/0xd80 fs/btrfs/space-info.c:670
btrfs_async_reclaim_metadata_space+0x396/0xa90 fs/btrfs/space-info.c:953
process_one_work+0x9df/0x16d0 kernel/workqueue.c:2297
worker_thread+0x90/0xed0 kernel/workqueue.c:2444
kthread+0x3e5/0x4d0 kernel/kthread.c:319
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295
INFO: task syz-executor:9107 blocked for more than 143 seconds.
Not tainted 5.15.0-rc3+ #1
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:syz-executor state:D stack:23200 pid: 9107 ppid: 7792 flags:0x00004004
Call Trace:
context_switch kernel/sched/core.c:4940 [inline]
__schedule+0xcd9/0x2530 kernel/sched/core.c:6287
schedule+0xd3/0x270 kernel/sched/core.c:6366
schedule_preempt_disabled+0xf/0x20 kernel/sched/core.c:6425
__mutex_lock_common kernel/locking/mutex.c:669 [inline]
__mutex_lock+0xc96/0x1680 kernel/locking/mutex.c:729
btrfs_chunk_alloc+0x31a/0xf50 fs/btrfs/block-group.c:3631
find_free_extent_update_loop fs/btrfs/extent-tree.c:3986 [inline]
find_free_extent+0x25cb/0x3a30 fs/btrfs/extent-tree.c:4335
btrfs_reserve_extent+0x1f1/0x500 fs/btrfs/extent-tree.c:4415
btrfs_alloc_tree_block+0x203/0x1120 fs/btrfs/extent-tree.c:4813
__btrfs_cow_block+0x412/0x1620 fs/btrfs/ctree.c:415
btrfs_cow_block+0x2f6/0x8c0 fs/btrfs/ctree.c:570
btrfs_search_slot+0x1094/0x2140 fs/btrfs/ctree.c:1768
relocate_tree_block fs/btrfs/relocation.c:2694 [inline]
relocate_tree_blocks+0xf73/0x1770 fs/btrfs/relocation.c:2757
relocate_block_group+0x47e/0xc70 fs/btrfs/relocation.c:3673
btrfs_relocate_block_group+0x48a/0xc60 fs/btrfs/relocation.c:4070
btrfs_relocate_chunk+0x96/0x280 fs/btrfs/volumes.c:3181
__btrfs_balance fs/btrfs/volumes.c:3911 [inline]
btrfs_balance+0x1f03/0x3cd0 fs/btrfs/volumes.c:4301
btrfs_ioctl_balance+0x61e/0x800 fs/btrfs/ioctl.c:4137
btrfs_ioctl+0x39ea/0x7b70 fs/btrfs/ioctl.c:4949
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:874 [inline]
__se_sys_ioctl fs/ioctl.c:860 [inline]
__x64_sys_ioctl+0x193/0x200 fs/ioctl.c:860
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae
So fix this by making sure that whenever we try to modify the chunk btree
and we are neither in a chunk allocation context nor in a chunk remove
context, we reserve system space before modifying the chunk btree.
Reported-by: Hao Sun <sunhao.th@gmail.com>
Link: https://lore.kernel.org/linux-btrfs/CACkBjsax51i4mu6C0C3vJqQN3NR_iVuucoeG3U1HXjrgzn5FFQ@mail.gmail.com/
Fixes: 79bd37120b ("btrfs: rework chunk allocation to avoid exhaustion of the system chunk array")
CC: stable@vger.kernel.org # 5.14+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently auto reclaim of unusable zones reclaims the block-groups in
the order they have been added to the reclaim list.
Change this to a greedy algorithm by sorting the list so we have the
block-groups with the least amount of valid bytes reclaimed first.
Note: we can't splice the block groups from reclaim_bgs to let the sort
happen outside of the lock. The block groups can be still in use by
other parts eg. via bg_list and we must hold unused_bgs_lock while
processing them.
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ write note and comment why we can't splice the list ]
Signed-off-by: David Sterba <dsterba@suse.com>
Just use the %pg format specifier in all the debug printks previously
using it. Note that both bdevname and the %pg specifier never print
a pathname, so the kbasename call wasn't needed to start with.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
[ adjust messages and indentation ]
Signed-off-by: David Sterba <dsterba@suse.com>
For device removal and replace we call btrfs_find_device_by_devspec,
which if we give it a device path and nothing else will call
btrfs_get_dev_args_from_path, which opens the block device and reads the
super block and then looks up our device based on that.
However at this point we're holding the sb write "lock", so reading the
block device pulls in the dependency of ->open_mutex, which produces the
following lockdep splat
======================================================
WARNING: possible circular locking dependency detected
5.14.0-rc2+ #405 Not tainted
------------------------------------------------------
losetup/11576 is trying to acquire lock:
ffff9bbe8cded938 ((wq_completion)loop0){+.+.}-{0:0}, at: flush_workqueue+0x67/0x5e0
but task is already holding lock:
ffff9bbe88e4fc68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop]
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #4 (&lo->lo_mutex){+.+.}-{3:3}:
__mutex_lock+0x7d/0x750
lo_open+0x28/0x60 [loop]
blkdev_get_whole+0x25/0xf0
blkdev_get_by_dev.part.0+0x168/0x3c0
blkdev_open+0xd2/0xe0
do_dentry_open+0x161/0x390
path_openat+0x3cc/0xa20
do_filp_open+0x96/0x120
do_sys_openat2+0x7b/0x130
__x64_sys_openat+0x46/0x70
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
-> #3 (&disk->open_mutex){+.+.}-{3:3}:
__mutex_lock+0x7d/0x750
blkdev_get_by_dev.part.0+0x56/0x3c0
blkdev_get_by_path+0x98/0xa0
btrfs_get_bdev_and_sb+0x1b/0xb0
btrfs_find_device_by_devspec+0x12b/0x1c0
btrfs_rm_device+0x127/0x610
btrfs_ioctl+0x2a31/0x2e70
__x64_sys_ioctl+0x80/0xb0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
-> #2 (sb_writers#12){.+.+}-{0:0}:
lo_write_bvec+0xc2/0x240 [loop]
loop_process_work+0x238/0xd00 [loop]
process_one_work+0x26b/0x560
worker_thread+0x55/0x3c0
kthread+0x140/0x160
ret_from_fork+0x1f/0x30
-> #1 ((work_completion)(&lo->rootcg_work)){+.+.}-{0:0}:
process_one_work+0x245/0x560
worker_thread+0x55/0x3c0
kthread+0x140/0x160
ret_from_fork+0x1f/0x30
-> #0 ((wq_completion)loop0){+.+.}-{0:0}:
__lock_acquire+0x10ea/0x1d90
lock_acquire+0xb5/0x2b0
flush_workqueue+0x91/0x5e0
drain_workqueue+0xa0/0x110
destroy_workqueue+0x36/0x250
__loop_clr_fd+0x9a/0x660 [loop]
block_ioctl+0x3f/0x50
__x64_sys_ioctl+0x80/0xb0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
other info that might help us debug this:
Chain exists of:
(wq_completion)loop0 --> &disk->open_mutex --> &lo->lo_mutex
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(&lo->lo_mutex);
lock(&disk->open_mutex);
lock(&lo->lo_mutex);
lock((wq_completion)loop0);
*** DEADLOCK ***
1 lock held by losetup/11576:
#0: ffff9bbe88e4fc68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop]
stack backtrace:
CPU: 0 PID: 11576 Comm: losetup Not tainted 5.14.0-rc2+ #405
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014
Call Trace:
dump_stack_lvl+0x57/0x72
check_noncircular+0xcf/0xf0
? stack_trace_save+0x3b/0x50
__lock_acquire+0x10ea/0x1d90
lock_acquire+0xb5/0x2b0
? flush_workqueue+0x67/0x5e0
? lockdep_init_map_type+0x47/0x220
flush_workqueue+0x91/0x5e0
? flush_workqueue+0x67/0x5e0
? verify_cpu+0xf0/0x100
drain_workqueue+0xa0/0x110
destroy_workqueue+0x36/0x250
__loop_clr_fd+0x9a/0x660 [loop]
? blkdev_ioctl+0x8d/0x2a0
block_ioctl+0x3f/0x50
__x64_sys_ioctl+0x80/0xb0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7f31b02404cb
Instead what we want to do is populate our device lookup args before we
grab any locks, and then pass these args into btrfs_rm_device(). From
there we can find the device and do the appropriate removal.
Suggested-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We are going to want to populate our device lookup args outside of any
locks and then do the actual device lookup later, so add a helper to do
this work and make btrfs_find_device_by_devspec() use this helper for
now.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have a lot of device lookup functions that all do something slightly
different. Clean this up by adding a struct to hold the different
lookup criteria, and then pass this around to btrfs_find_device() so it
can do the proper matching based on the lookup criteria.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There's a subtle case where if we're removing the seed device from a
file system we need to free its private copy of the fs_devices. However
we do not need to call close_fs_devices(), because at this point there
are no devices left to close as we've closed the last one. The only
thing that close_fs_devices() does is decrement ->opened, which should
be 1. We want to avoid calling close_fs_devices() here because it has a
lockdep_assert_held(&uuid_mutex), and we are going to stop holding the
uuid_mutex in this path.
So simply decrement the ->opened counter like we should, and then clean
up like normal. Also add a comment explaining what we're doing here as
I initially removed this code erroneously.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
A bug was was checking a wrong device count before we delete the struct
btrfs_fs_devices in btrfs_rm_device(). To avoid future confusion and
easy reference add a comment about the various device counts that we have
in the struct btrfs_fs_devices.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For both sprout and seed fsids,
btrfs_fs_devices::num_devices provides device count including missing
btrfs_fs_devices::open_devices provides device count excluding missing
We create a dummy struct btrfs_device for the missing device, so
num_devices != open_devices when there is a missing device.
In btrfs_rm_devices() we wrongly check for %cur_devices->open_devices
before freeing the seed fs_devices. Instead we should check for
%cur_devices->num_devices.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At replay_dir_deletes(), if find_dir_range() returns an error we break out
of the main while loop and then assign a value of 0 (success) to the 'ret'
variable, resulting in completely ignoring that an error happened. Fix
that by jumping to the 'out' label when find_dir_range() returns an error
(negative value).
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The member btrfs_bio::logical is only initialized by two call sites:
- btrfs_repair_one_sector()
No corresponding site to utilize it.
- btrfs_submit_direct()
The corresponding site to utilize it is btrfs_check_read_dio_bio().
However for btrfs_check_read_dio_bio(), we can grab the file_offset from
btrfs_dio_private::file_offset directly.
Thus it turns out we don't really need that btrfs_bio::logical member at
all.
For btrfs_bio, the logical bytenr can be fetched from its
bio->bi_iter.bi_sector directly.
So let's just remove the member to save 8 bytes for structure btrfs_bio.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The naming of "logical_offset" can be confused with logical bytenr of
the dio range.
In fact it's file offset, and the naming "file_offset" is already widely
used in all other sites.
Just do the rename to avoid confusion.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Using local kmaps slightly reduces the chances to stray writes, and
the bvec interface cleans up the code a little bit.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_update_block_group() accounts for the number of bytes allocated or
freed. Argument @alloc specifies whether the call is for alloc or free.
Convert the argument @alloc type from int to bool.
Reviewed-by: Su Yue <l@damenly.su>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that real_root is only used in ref-verify core gate it behind
CONFIG_BTRFS_FS_REF_VERIFY ifdef. This shrinks the size of pending
delayed refs by 8 bytes per ref, of which we can have many at any one
time depending on intensity of the workload. Also change the comment
about the member as it no longer deals with qgroups.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of checking whether qgroup processing for a dealyed ref has to
happen in the core of delayed ref, simply pull the check at init time of
respective delayed ref structures. This eliminates the final use of
real_root in delayed-ref core paving the way to making this member
optional.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In order to make 'real_root' used only in ref-verify it's required to
have the necessary context to perform the same checks that this member
is used for. So add 'mod_root' which will contain the root on behalf of
which a delayed ref was created and a 'skip_group' parameter which
will contain callsite-specific override of skip_qgroup.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The real_root field is going to be used only by ref-verify tool so limit
its use outside of it. Blocks belonging to the chunk root will always
have it as an owner so the check is equivalent.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Both data and metadata delayed ref structures have fields named
root/ref_root respectively. Those are somewhat cryptic and don't really
convey the real meaning. In fact those roots are really the original
owners of the respective block (i.e in case of a snapshot a data delayed
ref will contain the original root that owns the given block). Rename
those fields accordingly and adjust comments.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Error injection stressing uncovered a busy loop in our data reclaim
loop. There are two cases here, one where we loop creating block groups
until space_info->full is set, or in the main loop we will skip erroring
out any tickets if space_info->full == 0. Unfortunately if we aborted
the transaction then we will never allocate chunks or reclaim any space
and thus never get ->full, and you'll see stack traces like this:
watchdog: BUG: soft lockup - CPU#0 stuck for 26s! [kworker/u4:4:139]
CPU: 0 PID: 139 Comm: kworker/u4:4 Tainted: G W 5.13.0-rc1+ #328
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014
Workqueue: events_unbound btrfs_async_reclaim_data_space
RIP: 0010:btrfs_join_transaction+0x12/0x20
RSP: 0018:ffffb2b780b77de0 EFLAGS: 00000246
RAX: ffffb2b781863d58 RBX: 0000000000000000 RCX: 0000000000000000
RDX: 0000000000000801 RSI: ffff987952b57400 RDI: ffff987940aa3000
RBP: ffff987954d55000 R08: 0000000000000001 R09: ffff98795539e8f0
R10: 000000000000000f R11: 000000000000000f R12: ffffffffffffffff
R13: ffff987952b574c8 R14: ffff987952b57400 R15: 0000000000000008
FS: 0000000000000000(0000) GS:ffff9879bbc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f0703da4000 CR3: 0000000113398004 CR4: 0000000000370ef0
Call Trace:
flush_space+0x4a8/0x660
btrfs_async_reclaim_data_space+0x55/0x130
process_one_work+0x1e9/0x380
worker_thread+0x53/0x3e0
? process_one_work+0x380/0x380
kthread+0x118/0x140
? __kthread_bind_mask+0x60/0x60
ret_from_fork+0x1f/0x30
Fix this by checking to see if we have a btrfs fs error in either of the
reclaim loops, and if so fail the tickets and bail. In addition to
this, fix maybe_fail_all_tickets() to not try to grant tickets if we've
aborted, simply fail everything.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have a few flags that are inconsistently used to describe the fs in
different states of failure. As of 5963ffcaf3 ("btrfs: always abort
the transaction if we abort a trans handle") we will always set
BTRFS_FS_STATE_ERROR if we abort, so we don't have to check both ABORTED
and ERROR to see if things have gone wrong. Add a helper to check
BTRFS_FS_STATE_ERROR and then convert all checkers of FS_STATE_ERROR to
use the helper.
The TRANS_ABORTED bit check was added in af72273381 ("Btrfs: clean up
resources during umount after trans is aborted") but is not actually
specific.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently we will abort the transaction if we get a random error (like
-EIO) while trying to remove the directory entries from the root log
during rename.
However since these are simply log tree related errors, we can mark the
trans as needing a full commit. Then if the error was truly
catastrophic we'll hit it during the normal commit and abort as
appropriate.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
During inspection of the return path for replay I noticed that we don't
actually abort the transaction if we get a failure during replay. This
isn't a problem necessarily, as we properly return the error and will
fail to mount. However we still leave this dangling transaction that
could conceivably be committed without thinking there was an error.
We were using btrfs_handle_fs_error() here, but that pre-dates the
transaction abort code. Simply replace the btrfs_handle_fs_error()
calls with transaction aborts, so we still know where exactly things
went wrong, and add a few in some other un-handled error cases.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Fix memdup.cocci warning:
fs/btrfs/zoned.c:1198:23-30: WARNING opportunity for kmemdup
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Kai Song <songkai01@inspur.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For compressed write, we use a mechanism called async COW, which unlike
regular run_delalloc_cow() or cow_file_range() will also unlock the
first page.
This mechanism allows us to continue handling next ranges, without
waiting for the time consuming compression.
But this has a problem for subpage case, as we could have the following
delalloc range for a page:
0 32K 64K
| |///////| |///////|
\- A \- B
In the above case, if we pass both ranges to cow_file_range_async(),
both range A and range B will try to unlock the full page [0, 64K).
And which one finishes later than the other one will try to do other
page operations like end_page_writeback() on a unlocked page, triggering
VM layer BUG_ON().
To make subpage compression work at least partially, here we add another
restriction for it, only allow compression if the delalloc range is
fully page aligned.
By that, async extent is always ensured to unlock the first page
exclusively, just like it used to be for regular sectorsize.
In theory, we only need to make sure the delalloc range fully covers its
first page, but the tail page will be locked anyway, blocking later
writeback until the compression finishes.
Thus here we choose to make sure the range is fully page aligned before
doing the compression.
In the future, we could optimize the situation by properly increasing
subpage::writers number for the locked page, but that also means we need
to change how we run delalloc range of page.
(Instead of running each delalloc range we hit, we need to find and lock
all delalloc ranges covering the page, then run each of them).
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
With experimental subpage compression enabled, a simple fsstress can
lead to self deadlock on page 720896:
mkfs.btrfs -f -s 4k $dev > /dev/null
mount $dev -o compress $mnt
$fsstress -p 1 -n 100 -w -d $mnt -v -s 1625511156
[CAUSE]
If we have a file layout looks like below:
0 32K 64K 96K 128K
|//| |///////////////|
4K
Then we run delalloc range for the inode, it will:
- Call find_lock_delalloc_range() with @delalloc_start = 0
Then we got a delalloc range [0, 4K).
This range will be COWed.
- Call find_lock_delalloc_range() again with @delalloc_start = 4K
Since find_lock_delalloc_range() never cares whether the range
is still inside page range [0, 64K), it will return range [64K, 128K).
This range meets the condition for subpage compression, will go
through async COW path.
And async COW path will return @page_started.
But that @page_started is now for range [64K, 128K), not for range
[0, 64K).
- writepage_dellloc() returned 1 for page [0, 64K)
Thus page [0, 64K) will not be unlocked, nor its page dirty status
will be cleared.
Next time when we try to lock page [0, 64K) we will deadlock, as there
is no one to release page [0, 64K).
This problem will never happen for regular page size as one page only
contains one sector. After the first find_lock_delalloc_range() call,
the @delalloc_end will go beyond @page_end no matter if we found a
delalloc range or not
Thus this bug only happens for subpage, as now we need multiple runs to
exhaust the delalloc range of a page.
[FIX]
Fix the problem by ensuring the delalloc range we ran at least started
inside @locked_page.
So that we will never get incorrect @page_started.
And to prevent such problem from happening again:
- Make find_lock_delalloc_range() return false if the found range is
beyond @end value passed in.
Since @end will be utilized now, add an ASSERT() to ensure we pass
correct @end into find_lock_delalloc_range().
This also means, for selftests we needs to populate @end before calling
find_lock_delalloc_range().
- New ASSERT() in find_lock_delalloc_range()
Now we will make sure the @start/@end passed in at least covers part
of the page.
- New ASSERT() in run_delalloc_range()
To make sure the range at least starts inside @locked page.
- Use @delalloc_start as proper cursor, while @delalloc_end is always
reset to @page_end.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are several call sites of extent_clear_unlock_delalloc() which get
@locked_page = NULL.
So that extent_clear_unlock_delalloc() will try to call
process_one_page() to unlock every page even the first page is not
locked by btrfs_page_start_writer_lock().
This will trigger an ASSERT() in btrfs_subpage_end_and_test_writer() as
previously we require every page passed to
btrfs_subpage_end_and_test_writer() to be locked by
btrfs_page_start_writer_lock().
But compression path doesn't go that way.
Thankfully it's not hard to distinguish page locked by lock_page() and
btrfs_page_start_writer_lock().
So do the check in btrfs_subpage_end_and_test_writer() so now it can
handle both cases well.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Pages passed to __extent_writepage() are always locked, but they may be
locked by different functions.
There are two types of locked page for __extent_writepage():
- Page locked by plain lock_page()
It should not have any subpage::writers count.
Can be unlocked by unlock_page().
This is the most common locked page for __extent_writepage() called
inside extent_write_cache_pages() or extent_write_full_page().
Rarer cases include the @locked_page from extent_write_locked_range().
- Page locked by lock_delalloc_pages()
There is only one caller, all pages except @locked_page for
extent_write_locked_range().
In this case, we have to call subpage helper to handle the case.
So here we introduce a helper, btrfs_page_unlock_writer(), to allow
__extent_writepage() to unlock different locked pages.
And since for all other callers of __extent_writepage() their pages are
ensured to be locked by lock_page(), also add an extra check for
epd::extent_locked to unlock such pages directly.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are several problems in lzo_compress_pages() preventing it from
being subpage compatible:
- No page offset is calculated when reading from inode pages
For subpage case, we could have @start which is not aligned to
PAGE_SIZE.
Thus the destination where we read data from must take offset in page
into consideration.
- The padding for segment header is bound to PAGE_SIZE
This means, for subpage case we can skip several corners where on x86
machines we need to add padding zeros.
The rework will:
- Update the comment to replace "page" with "sector"
- Introduce a new helper, copy_compressed_data_to_page(), to do the copy
So that we don't need to bother page switching for both input and
output.
Now in lzo_compress_pages() we only care about page switching for
input, while in copy_compressed_data_to_page() we only care about the
page switching for output.
- Only one main cursor
For lzo_compress_pages() we use @cur_in as main cursor.
It will be the file offset we are currently at.
All other helper variables will be only declared inside the loop.
For copy_compressed_data_to_page() it's similar, we will have
@cur_out at the main cursor, which records how many bytes are in the
output.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Introduce a new helper, submit_uncompressed_range(), for async cow cases
where we fallback to COW.
There are some new updates introduced to the helper:
- Proper locked_page detection
It's possible that the async_extent range doesn't cover the locked
page. In that case we shouldn't unlock the locked page.
In the new helper, we will ensure that we only unlock the locked page
when:
* The locked page covers part of the async_extent range
* The locked page is not unlocked by cow_file_range() nor
extent_write_locked_range()
This also means extra comments are added focusing on the page locking.
- Add extra comment on some rare parameter used.
We use @unlock_page = 0 for cow_file_range(), where only two call
sites doing the same thing, including the new helper.
It's definitely worth some comments.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are two sites are not subpage compatible yet for
extent_write_locked_range():
- How @nr_pages are calculated
For subpage we can have the following range with 64K page size:
0 32K 64K 96K 128K
| |////|/////| |
In that case, although 96K - 32K == 64K, thus it looks like one page
is enough, but the range spans two pages, not one.
Fix it by doing proper round_up() and round_down() to calculate
@nr_pages.
Also add some extra ASSERT()s to ensure the range passed in is already
aligned.
- How the page end is calculated
Currently we just use cur + PAGE_SIZE - 1 to calculate the page end.
Which can't handle the above range layout, and will trigger ASSERT()
in btrfs_writepage_endio_finish_ordered(), as the range is no longer
covered by the page range.
Fix it by taking page end into consideration.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In end_compressed_writeback() we just clear the full page writeback.
For subpage case, if there are two delalloc ranges in the same page, the
2nd range will trigger a BUG_ON() as the page writeback is already
cleared by previous range.
Fix it by using btrfs_page_clamp_clear_writeback() helper.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There is a WARN_ON() checking if @start is aligned to PAGE_SIZE, not
sectorsize, which will cause false alert for subpage. Fix it to check
against sectorsize.
Furthermore:
- Use ASSERT() to do the check
So that in the future we may skip the check for production build
- Also check alignment for @len
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In function compress_file_range(), when the compression is finished, the
function just rounds up @total_in to PAGE_SIZE. This is fine for
regular sectorsize == PAGE_SIZE case, but not for subpage.
Just change the ALIGN(, PAGE_SIZE) to round_up(, sectorsize) so that
both regular sectorsize and subpage sectorsize will be happy.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are several cleanups for extent_write_locked_range(), most of them
are pure cleanups, but with some preparation for future subpage support.
- Add a proper comment for which call sites are suitable
Unlike regular synchronized extent write back, if async COW or zoned
COW happens, we have all pages in the range still locked.
Thus for those (only) two call sites, we need this function to submit
page content into bios and submit them.
- Remove @mode parameter
All the existing two call sites pass WB_SYNC_ALL. No need for @mode
parameter.
- Better error handling
Currently if we hit an error during the page iteration loop, we
overwrite @ret, causing only the last error can be recorded.
Here we add @found_error and @first_error variable to record if we hit
any error, and the first error we hit.
So the first error won't get lost.
- Don't reuse @start as the cursor
We reuse the parameter @start as the cursor to iterate the range, not
a big problem, but since we're here, introduce a proper @cur as the
cursor.
- Remove impossible branch
Since all pages are still locked after the ordered extent is inserted,
there is no way that pages can get its dirty bit cleared.
Remove the branch where page is not dirty and replace it with an
ASSERT().
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have a big chunk of code inside a while() loop, with tons of strange
jumps for error handling. It's definitely not to the code standard of
today. Move the code into a new function, submit_one_async_extent().
Since we're here, also do the following changes:
- Comment style change
To follow the current scheme
- Don't fallback to non-compressed write then hitting ENOSPC
If we hit ENOSPC for compressed write, how could we reserve more space
for non-compressed write?
Thus we go error path directly.
This removes the retry: label.
- Add more comment for super long parameter list
Explain which parameter is for, so we don't need to check the
prototype.
- Move the error handling to submit_one_async_extent()
Thus no strange code like:
out_free:
...
goto again;
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
As the last caller in compression.c has been removed, we don't need that
function anymore.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently btrfs_submit_compressed_write() will check
btrfs_bio_fits_in_stripe() each time a new page is going to be added.
Even if compressed extent is small, we don't really need to do that for
every page.
Align the behavior to extent_io.c, by determining the stripe boundary
when allocating a bio.
Unlike extent_io.c, in compressed.c we don't need to bother things like
different bio flags, thus no need to re-use bio_ctrl.
Here we just manually introduce new local variable, next_stripe_start,
and use that value returned from alloc_compressed_bio() to calculate
the stripe boundary.
Then each time we add some page range into the bio, we check if we
reached the boundary. And if reached, submit it.
Also, since we have @cur_disk_bytenr to determine whether we're the last
bio, we don't need a explicit last_bio: tag for error handling any more.
And since we use @cur_disk_bytenr to wait, there is no need for
pending_bios, also remove it to save some memory of compressed_bio.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently btrfs_submit_compressed_read() will check
btrfs_bio_fits_in_stripe() each time a new page is going to be added.
Even if compressed extent is small, we don't really need to do that for
every page.
This patch will align the behavior to extent_io.c, by determining the
stripe boundary when allocating a bio.
Unlike extent_io.c, in compressed.c we don't need to bother things like
different bio flags, thus no need to re-use bio_ctrl.
Here we just manually introduce new local variable, next_stripe_start,
and teach alloc_compressed_bio() to calculate the stripe boundary.
Then each time we add some page range into the bio, we check if we
reached the boundary. And if reached, submit it.
Also, since we have @cur_disk_byte to determine whether we're the last
bio, we don't need a explicit last_bio: tag for error handling any more.
And we can use @cur_disk_byte to track which range has been added to
bio, we can also use @cur_disk_byte to calculate the wait condition, no
need for @pending_bios.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Just aggregate the bio allocation code into one helper, so that we can
replace 4 call sites.
There is one special note for zoned write.
Currently btrfs_submit_compressed_write() will only allocate the first
bio using ZONE_APPEND. If we have to submit current bio due to stripe
boundary, the new bio allocated will not use ZONE_APPEND.
In theory this should be a bug, but considering zoned mode currently
only support SINGLE profile, which doesn't have any stripe boundary
limit, it should never be a problem and we have assertions in place.
This function will provide a good entrance for any work which needs to
be done at bio allocation time. Like determining the stripe boundary.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The new helper, submit_compressed_bio(), will aggregate the following
work:
- Increase compressed_bio::pending_bios
- Remap the endio function
- Map and submit the bio
This slightly reorders calls to btrfs_csum_one_bio or
btrfs_lookup_bio_sums but but none of them does anything regarding IO
submission so this is effectively no change. We mainly care about order
of
- atomic_inc
- btrfs_bio_wq_end_io
- btrfs_map_bio
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Just like btrfs_submit_compressed_read(), there are quite some BUG_ON()s
inside btrfs_submit_compressed_write() for the bio submission path.
Fix them using the same method:
- For last bio, just endio the bio
As in that case, one of the endio function of all these submitted bio
will be able to free the compressed_bio
- For half-submitted bio, wait and finish the compressed_bio manually
In this case, as long as all other bio finish, we're the only one
referring the compressed bio, and can manually finish it.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are quite some BUG_ON()s inside btrfs_submit_compressed_read(),
namely all errors inside the for() loop relies on BUG_ON() to handle
-ENOMEM.
Handle these errors properly by:
- Wait for submitted bios to finish first
Using wake_var_event() APIs to wait without introducing extra memory
overhead inside compressed_bio.
This allows us to wait for any submitted bio to finish, while still
keeps the compressed_bio from being freed.
- Introduce finish_compressed_bio_read() to finish the compressed_bio
- Properly end the bio and finish compressed_bio when error happens
Now in btrfs_submit_compressed_read() even when the bio submission
failed, we can properly handle the error without triggering BUG_ON().
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Although in btrfs we have very limited usage of PageChecked flag, it's
still some page flag not yet subpage compatible.
Fix it by introducing btrfs_subpage::checked_offset to do the convert.
For most call sites, especially for free-space cache, COW fixup and
btrfs_invalidatepage(), they all work in full page mode anyway.
For other call sites, they work as subpage compatible mode.
Some call sites need extra modification:
- btrfs_drop_pages()
Needs extra parameter to get the real range we need to clear checked
flag.
Also since btrfs_drop_pages() will accept pages beyond the dirtied
range, update btrfs_subpage_clamp_range() to handle such case
by setting @len to 0 if the page is beyond target range.
- btrfs_invalidatepage()
We need to call subpage helper before calling __btrfs_releasepage(),
or it will trigger ASSERT() as page->private will be cleared.
- btrfs_verify_data_csum()
In theory we don't need the io_bio->csum check anymore, but it's
won't hurt. Just change the comment.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For btrfs_submit_compressed_read() and btrfs_submit_compressed_write(),
we have a pretty weird dance around compressed_bio::pending_bios:
btrfs_submit_compressed_read/write()
{
cb = kmalloc()
refcount_set(&cb->pending_bios, 0);
bio = btrfs_alloc_bio();
/* NOTE here, we haven't yet submitted any bio */
refcount_set(&cb->pending_bios, 1);
for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
if (submit) {
/* Here we submit bio, but we always have one
* extra pending_bios */
refcount_inc(&cb->pending_bios);
ret = btrfs_map_bio();
}
}
/* Submit the last bio */
ret = btrfs_map_bio();
}
There are two reasons why we do this:
- compressed_bio::pending_bios is a refcount
Thus if it's reduced to 0, it can not be increased again.
- To ensure the compressed_bio is not freed by some submitted bios
If the submitted bio is finished before the next bio submitted,
we can free the compressed_bio completely.
But the above code is sometimes confusing, and we can do it better by
introducing a new member, compressed_bio::pending_sectors.
Now we use compressed_bio::pending_sectors to indicate whether we have
any pending sectors under IO or not yet submitted.
If pending_sectors == 0, we're definitely the last bio of compressed_bio,
and is OK to release the compressed bio.
Now the workflow looks like this:
btrfs_submit_compressed_read/write()
{
cb = kmalloc()
atomic_set(&cb->pending_bios, 0);
refcount_set(&cb->pending_sectors,
compressed_len >> sectorsize_bits);
bio = btrfs_alloc_bio();
for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
if (submit) {
refcount_inc(&cb->pending_bios);
ret = btrfs_map_bio();
}
}
/* Submit the last bio */
refcount_inc(&cb->pending_bios);
ret = btrfs_map_bio();
}
For now we still need pending_bios for later error handling, but will
remove pending_bios eventually after properly handling the errors.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
If we remove the subpage limitation in add_ra_bio_pages(), then read a
compressed extent which has part of its range in next page, like the
following inode layout:
0 32K 64K 96K 128K
|<--------------|-------------->|
Btrfs will trigger ASSERT() in endio function:
assertion failed: atomic_read(&subpage->readers) >= nbits
------------[ cut here ]------------
kernel BUG at fs/btrfs/ctree.h:3431!
Internal error: Oops - BUG: 0 [#1] SMP
Workqueue: btrfs-endio btrfs_work_helper [btrfs]
Call trace:
assertfail.constprop.0+0x28/0x2c [btrfs]
btrfs_subpage_end_reader+0x148/0x14c [btrfs]
end_page_read+0x8c/0x100 [btrfs]
end_bio_extent_readpage+0x320/0x6b0 [btrfs]
bio_endio+0x15c/0x1dc
end_workqueue_fn+0x44/0x64 [btrfs]
btrfs_work_helper+0x74/0x250 [btrfs]
process_one_work+0x1d4/0x47c
worker_thread+0x180/0x400
kthread+0x11c/0x120
ret_from_fork+0x10/0x30
---[ end trace c8b7b552d3bb408c ]---
[CAUSE]
When we read the page range [0, 64K), we find it's a compressed extent,
and we will try to add extra pages in add_ra_bio_pages() to avoid
reading the same compressed extent.
But when we add such page into the read bio, it doesn't follow the
behavior of btrfs_do_readpage() to properly set subpage::readers.
This means, for page [64K, 128K), its subpage::readers is still 0.
And when endio is executed on both pages, since page [64K, 128K) has 0
subpage::readers, it triggers above ASSERT()
[FIX]
Function add_ra_bio_pages() is far from subpage compatible, it always
assume PAGE_SIZE == sectorsize, thus when it skip to next range it
always just skip PAGE_SIZE.
Make it subpage compatible by:
- Skip to next page properly when needed
If we find there is already a page cache, we need to skip to next page.
For that case, we shouldn't just skip PAGE_SIZE bytes, but use
@pg_index to calculate the next bytenr and continue.
- Only add the page range covered by current extent map
We need to calculate which range is covered by current extent map and
only add that part into the read bio.
- Update subpage::readers before submitting the bio
- Use proper cursor other than confusing @last_offset
- Calculate the missed threshold based on sector size
It's no longer using missed pages, as for 64K page size, we have at
most 3 pages to skip. (If aligned only 2 pages)
- Add ASSERT() to make sure our bytenr is always aligned
- Add comment for the function
Add a special note for subpage case, as the function won't really
work well for subpage cases.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since async_extent holds the compressed page, it would trigger the new
ASSERT() in btrfs_mark_ordered_io_finished() which checks that the range
is inside the page.
Now btrfs_writepage_endio_finish_ordered() can accept @page == NULL,
just pass NULL to btrfs_writepage_endio_finish_ordered().
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For structure async_chunk, we use a very strange member layout to grab
structure async_cow who owns this async_chunk.
At initialization, it goes like this:
async_chunk[i].pending = &ctx->num_chunks;
Then at async_cow_free() we do a super weird freeing:
/*
* Since the pointer to 'pending' is at the beginning of the array of
* async_chunk's, freeing it ensures the whole array has been freed.
*/
if (atomic_dec_and_test(async_chunk->pending))
kvfree(async_chunk->pending);
This is absolutely an abuse of kvfree().
Replace async_chunk::pending with async_chunk::async_cow, so that we can
grab the async_cow structure directly, without this strange dancing.
And with this change, there is no requirement for any specific member
location.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In function __extent_writepage() we always pass page start to
@delalloc_start for writepage_delalloc().
Thus we don't really need @delalloc_start parameter as we can extract it
from @page.
Remove @delalloc_start parameter and make __extent_writepage() to
declare @page_start and @page_end as const.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Variable @nr_pages only gets increased but never used. Remove it.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When logging a directory and inserting a batch of directory items, we are
copying the data of each item from a leaf in the fs/subvolume tree to a
leaf in a log tree, separately. This is not really needed, since we are
copying from a contiguous memory area into another one, so we can use a
single copy operation to copy all items at once.
This patch is part of a small patchset that is comprised of the following
patches:
btrfs: loop only once over data sizes array when inserting an item batch
btrfs: unexport setup_items_for_insert()
btrfs: use single bulk copy operations when logging directories
This is patch 3/3.
The following test was used to compare performance of a branch without the
patchset versus one branch that has the whole patchset applied:
$ cat dir-fsync-test.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
NUM_NEW_FILES=1000000
NUM_FILE_DELETES=1000
LEAF_SIZE=16K
mkfs.btrfs -f -n $LEAF_SIZE $DEV
mount -o ssd $DEV $MNT
mkdir $MNT/testdir
for ((i = 1; i <= $NUM_NEW_FILES; i++)); do
echo -n > $MNT/testdir/file_$i
done
# Fsync the directory, this will log the new dir items and the inodes
# they point to, because these are new inodes.
start=$(date +%s%N)
xfs_io -c "fsync" $MNT/testdir
end=$(date +%s%N)
dur=$(( (end - start) / 1000000 ))
echo "dir fsync took $dur ms after adding $NUM_NEW_FILES files"
# sync to force transaction commit and wipeout the log.
sync
del_inc=$(( $NUM_NEW_FILES / $NUM_FILE_DELETES ))
for ((i = 1; i <= $NUM_NEW_FILES; i += $del_inc)); do
rm -f $MNT/testdir/file_$i
done
# Fsync the directory, this will only log dir items, there are no
# dentries pointing to new inodes.
start=$(date +%s%N)
xfs_io -c "fsync" $MNT/testdir
end=$(date +%s%N)
dur=$(( (end - start) / 1000000 ))
echo "dir fsync took $dur ms after deleting $NUM_FILE_DELETES files"
umount $MNT
The tests were run on a non-debug kernel (Debian's default kernel config)
and were the following:
*** with a leaf size of 16K, before patchset ***
dir fsync took 8482 ms after adding 1000000 files
dir fsync took 166 ms after deleting 1000 files
*** with a leaf size of 16K, after patchset ***
dir fsync took 8196 ms after adding 1000000 files (-3.4%)
dir fsync took 143 ms after deleting 1000 files (-14.9%)
*** with a leaf size of 64K, before patchset ***
dir fsync took 12851 ms after adding 1000000 files
dir fsync took 466 ms after deleting 1000 files
*** with a leaf size of 64K, after patchset ***
dir fsync took 12287 ms after adding 1000000 files (-4.5%)
dir fsync took 414 ms after deleting 1000 files (-11.8%)
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since setup_items_for_insert() is not used anymore outside of ctree.c,
make it static and remove its prototype from ctree.h. This also requires
to move the definition of setup_item_for_insert() from ctree.h to ctree.c
and move down btrfs_duplicate_item() so that it's defined after
setup_items_for_insert().
Further, since setup_item_for_insert() is used outside ctree.c, rename it
to btrfs_setup_item_for_insert().
This patch is part of a small patchset that is comprised of the following
patches:
btrfs: loop only once over data sizes array when inserting an item batch
btrfs: unexport setup_items_for_insert()
btrfs: use single bulk copy operations when logging directories
This is patch 2/3 and performance results, and the specific tests, are
included in the changelog of patch 3/3.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When inserting a batch of items into a btree, we end up looping over the
data sizes array 3 times:
1) Once in the caller of btrfs_insert_empty_items(), when it populates the
array with the data sizes for each item;
2) Once at btrfs_insert_empty_items() to sum the elements of the data
sizes array and compute the total data size;
3) And then once again at setup_items_for_insert(), where we do exactly
the same as what we do at btrfs_insert_empty_items(), to compute the
total data size.
That is not bad for small arrays, but when the arrays have hundreds of
elements, the time spent on looping is not negligible. For example when
doing batch inserts of delayed items for dir index items or when logging
a directory, it's common to have 200 to 260 dir index items in a single
batch when using a leaf size of 16K and using file names between 8 and 12
characters. For a 64K leaf size, multiply that by 4. Taking into account
that during directory logging or when flushing delayed dir index items we
can have many of those large batches, the time spent on the looping adds
up quickly.
It's also more important to avoid it at setup_items_for_insert(), since
we are holding a write lock on a leaf and, in some cases, on upper nodes
of the btree, which causes us to block other tasks that want to access
the leaf and nodes for longer than necessary.
So change the code so that setup_items_for_insert() and
btrfs_insert_empty_items() no longer compute the total data size, and
instead rely on the caller to supply it. This makes us loop over the
array only once, where we can both populate the data size array and
compute the total data size, taking advantage of spatial and temporal
locality. To make this more manageable, use a structure to contain
all the relevant details for a batch of items (keys array, data sizes
array, total data size, number of items), and use it as an argument
for btrfs_insert_empty_items() and setup_items_for_insert().
This patch is part of a small patchset that is comprised of the following
patches:
btrfs: loop only once over data sizes array when inserting an item batch
btrfs: unexport setup_items_for_insert()
btrfs: use single bulk copy operations when logging directories
This is patch 1/3 and performance results, and the specific tests, are
included in the changelog of patch 3/3.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We can grab fs_info reliably from btrfs_raid_bio::bioc, as the bioc is
always passed into alloc_rbio(), and only get released when the raid bio
is released.
Remove btrfs_raid_bio::fs_info member, and cleanup all the @fs_info
parameters for alloc_rbio() callers.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently btrfs_io_context::fs_info is only initialized in
btrfs_map_bio, but there are call sites like btrfs_map_sblock() which
calls __btrfs_map_block() directly, leaving bioc::fs_info uninitialized
(NULL).
Currently this is fine, but later cleanup will rely on bioc::fs_info to
grab fs_info, and this can be a hidden problem for such usage.
This patch will remove such hidden uninitialized member by always
assigning bioc::fs_info at alloc_btrfs_io_context().
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We currently use lockdep_assert_held() at btrfs_assert_tree_locked(), and
that checks that we hold a lock either in read mode or write mode.
However in all contexts we use btrfs_assert_tree_locked(), we actually
want to check if we are holding a write lock on the extent buffer's rw
semaphore - it would be a bug if in any of those contexts we were holding
a read lock instead.
So change btrfs_assert_tree_locked() to use lockdep_assert_held_write()
instead and, to make it more explicit, rename btrfs_assert_tree_locked()
to btrfs_assert_tree_write_locked(), so that it's clear we want to check
we are holding a write lock.
For now there are no contexts where we want to assert that we must have
a read lock, but in case that is needed in the future, we can add a new
helper function that just calls out lockdep_assert_held_read().
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We got the following lockdep splat while running fstests (specifically
btrfs/003 and btrfs/020 in a row) with the new rc. This was uncovered
by 87579e9b7d ("loop: use worker per cgroup instead of kworker") which
converted loop to using workqueues, which comes with lockdep
annotations that don't exist with kworkers. The lockdep splat is as
follows:
WARNING: possible circular locking dependency detected
5.14.0-rc2-custom+ #34 Not tainted
------------------------------------------------------
losetup/156417 is trying to acquire lock:
ffff9c7645b02d38 ((wq_completion)loop0){+.+.}-{0:0}, at: flush_workqueue+0x84/0x600
but task is already holding lock:
ffff9c7647395468 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x650 [loop]
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #5 (&lo->lo_mutex){+.+.}-{3:3}:
__mutex_lock+0xba/0x7c0
lo_open+0x28/0x60 [loop]
blkdev_get_whole+0x28/0xf0
blkdev_get_by_dev.part.0+0x168/0x3c0
blkdev_open+0xd2/0xe0
do_dentry_open+0x163/0x3a0
path_openat+0x74d/0xa40
do_filp_open+0x9c/0x140
do_sys_openat2+0xb1/0x170
__x64_sys_openat+0x54/0x90
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
-> #4 (&disk->open_mutex){+.+.}-{3:3}:
__mutex_lock+0xba/0x7c0
blkdev_get_by_dev.part.0+0xd1/0x3c0
blkdev_get_by_path+0xc0/0xd0
btrfs_scan_one_device+0x52/0x1f0 [btrfs]
btrfs_control_ioctl+0xac/0x170 [btrfs]
__x64_sys_ioctl+0x83/0xb0
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
-> #3 (uuid_mutex){+.+.}-{3:3}:
__mutex_lock+0xba/0x7c0
btrfs_rm_device+0x48/0x6a0 [btrfs]
btrfs_ioctl+0x2d1c/0x3110 [btrfs]
__x64_sys_ioctl+0x83/0xb0
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
-> #2 (sb_writers#11){.+.+}-{0:0}:
lo_write_bvec+0x112/0x290 [loop]
loop_process_work+0x25f/0xcb0 [loop]
process_one_work+0x28f/0x5d0
worker_thread+0x55/0x3c0
kthread+0x140/0x170
ret_from_fork+0x22/0x30
-> #1 ((work_completion)(&lo->rootcg_work)){+.+.}-{0:0}:
process_one_work+0x266/0x5d0
worker_thread+0x55/0x3c0
kthread+0x140/0x170
ret_from_fork+0x22/0x30
-> #0 ((wq_completion)loop0){+.+.}-{0:0}:
__lock_acquire+0x1130/0x1dc0
lock_acquire+0xf5/0x320
flush_workqueue+0xae/0x600
drain_workqueue+0xa0/0x110
destroy_workqueue+0x36/0x250
__loop_clr_fd+0x9a/0x650 [loop]
lo_ioctl+0x29d/0x780 [loop]
block_ioctl+0x3f/0x50
__x64_sys_ioctl+0x83/0xb0
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
other info that might help us debug this:
Chain exists of:
(wq_completion)loop0 --> &disk->open_mutex --> &lo->lo_mutex
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(&lo->lo_mutex);
lock(&disk->open_mutex);
lock(&lo->lo_mutex);
lock((wq_completion)loop0);
*** DEADLOCK ***
1 lock held by losetup/156417:
#0: ffff9c7647395468 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x650 [loop]
stack backtrace:
CPU: 8 PID: 156417 Comm: losetup Not tainted 5.14.0-rc2-custom+ #34
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
Call Trace:
dump_stack_lvl+0x57/0x72
check_noncircular+0x10a/0x120
__lock_acquire+0x1130/0x1dc0
lock_acquire+0xf5/0x320
? flush_workqueue+0x84/0x600
flush_workqueue+0xae/0x600
? flush_workqueue+0x84/0x600
drain_workqueue+0xa0/0x110
destroy_workqueue+0x36/0x250
__loop_clr_fd+0x9a/0x650 [loop]
lo_ioctl+0x29d/0x780 [loop]
? __lock_acquire+0x3a0/0x1dc0
? update_dl_rq_load_avg+0x152/0x360
? lock_is_held_type+0xa5/0x120
? find_held_lock.constprop.0+0x2b/0x80
block_ioctl+0x3f/0x50
__x64_sys_ioctl+0x83/0xb0
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7f645884de6b
Usually the uuid_mutex exists to protect the fs_devices that map
together all of the devices that match a specific uuid. In rm_device
we're messing with the uuid of a device, so it makes sense to protect
that here.
However in doing that it pulls in a whole host of lockdep dependencies,
as we call mnt_may_write() on the sb before we grab the uuid_mutex, thus
we end up with the dependency chain under the uuid_mutex being added
under the normal sb write dependency chain, which causes problems with
loop devices.
We don't need the uuid mutex here however. If we call
btrfs_scan_one_device() before we scratch the super block we will find
the fs_devices and not find the device itself and return EBUSY because
the fs_devices is open. If we call it after the scratch happens it will
not appear to be a valid btrfs file system.
We do not need to worry about other fs_devices modifying operations here
because we're protected by the exclusive operations locking.
So drop the uuid_mutex here in order to fix the lockdep splat.
A more detailed explanation from the discussion:
We are worried about rm and scan racing with each other, before this
change we'll zero the device out under the UUID mutex so when scan does
run it'll make sure that it can go through the whole device scan thing
without rm messing with us.
We aren't worried if the scratch happens first, because the result is we
don't think this is a btrfs device and we bail out.
The only case we are concerned with is we scratch _after_ scan is able
to read the superblock and gets a seemingly valid super block, so lets
consider this case.
Scan will call device_list_add() with the device we're removing. We'll
call find_fsid_with_metadata_uuid() and get our fs_devices for this
UUID. At this point we lock the fs_devices->device_list_mutex. This is
what protects us in this case, but we have two cases here.
1. We aren't to the device removal part of the RM. We found our device,
and device name matches our path, we go down and we set total_devices
to our super number of devices, which doesn't affect anything because
we haven't done the remove yet.
2. We are past the device removal part, which is protected by the
device_list_mutex. Scan doesn't find the device, it goes down and
does the
if (fs_devices->opened)
return -EBUSY;
check and we bail out.
Nothing about this situation is ideal, but the lockdep splat is real,
and the fix is safe, tho admittedly a bit scary looking.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ copy more from the discussion ]
Signed-off-by: David Sterba <dsterba@suse.com>
Previously we had "struct btrfs_bio", which records IO context for
mirrored IO and RAID56, and "strcut btrfs_io_bio", which records extra
btrfs specific info for logical bytenr bio.
With "btrfs_bio" renamed to "btrfs_io_context", we are safe to rename
"btrfs_io_bio" to "btrfs_bio" which is a more suitable name now.
The struct btrfs_bio changes meaning by this commit. There was a
suggested name like btrfs_logical_bio but it's a bit long and we'd
prefer to use a shorter name.
This could be a concern for backports to older kernels where the
different meaning could possibly cause confusion or bugs. Comparing the
new and old structures, there's no overlap among the struct members so a
build would break in case of incorrect backport.
We haven't had many backports to bio code anyway so this is more of a
theoretical cause of bugs and a matter of precaution but we'll need to
keep the semantic change in mind.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The helper btrfs_bio_alloc() is almost the same as btrfs_io_bio_alloc(),
except it's allocating using BIO_MAX_VECS as @nr_iovecs, and initializes
bio->bi_iter.bi_sector.
However the naming itself is not using "btrfs_io_bio" to indicate its
parameter is "strcut btrfs_io_bio" and can be easily confused with
"struct btrfs_bio".
Considering assigned bio->bi_iter.bi_sector is such a simple work and
there are already tons of call sites doing that manually, there is no
need to do that in a helper.
Remove btrfs_bio_alloc() helper, and enhance btrfs_io_bio_alloc()
function to provide a fail-safe value for its @nr_iovecs.
And then replace all btrfs_bio_alloc() callers with
btrfs_io_bio_alloc().
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The structure btrfs_bio is used by two different sites:
- bio->bi_private for mirror based profiles
For those profiles (SINGLE/DUP/RAID1*/RAID10), this structures records
how many mirrors are still pending, and save the original endio
function of the bio.
- RAID56 code
In that case, RAID56 only utilize the stripes info, and no long uses
that to trace the pending mirrors.
So btrfs_bio is not always bind to a bio, and contains more info for IO
context, thus renaming it will make the naming less confusing.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
After the first time we log a directory in the current transaction, for
each directory item in a changed leaf of the subvolume tree, we have to
check if we previously logged the item, in order to overwrite it in case
its data changed or skip it in case its data hasn't changed.
Checking if we have logged each item before not only wastes times, but it
also adds lock contention on the log tree. So in order to minimize the
number of times we do such checks, keep track of the offset of the last
key we logged for a directory and, on the next time we log the directory,
skip the checks for any new keys that have an offset greater than the
offset we have previously saved. This is specially effective for index
keys, because the offset for these keys comes from a monotonically
increasing counter.
This patch is part of a patchset comprised of the following 5 patches:
btrfs: remove root argument from btrfs_log_inode() and its callees
btrfs: remove redundant log root assignment from log_dir_items()
btrfs: factor out the copying loop of dir items from log_dir_items()
btrfs: insert items in batches when logging a directory when possible
btrfs: keep track of the last logged keys when logging a directory
This is patch 5/5.
The following test was used on a non-debug kernel to measure the impact
it has on a directory fsync:
$ cat test-dir-fsync.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
NUM_NEW_FILES=100000
NUM_FILE_DELETES=1000
mkfs.btrfs -f $DEV
mount -o ssd $DEV $MNT
mkdir $MNT/testdir
for ((i = 1; i <= $NUM_NEW_FILES; i++)); do
echo -n > $MNT/testdir/file_$i
done
# fsync the directory, this will log the new dir items and the inodes
# they point to, because these are new inodes.
start=$(date +%s%N)
xfs_io -c "fsync" $MNT/testdir
end=$(date +%s%N)
dur=$(( (end - start) / 1000000 ))
echo "dir fsync took $dur ms after adding $NUM_NEW_FILES files"
# sync to force transaction commit and wipeout the log.
sync
del_inc=$(( $NUM_NEW_FILES / $NUM_FILE_DELETES ))
for ((i = 1; i <= $NUM_NEW_FILES; i += $del_inc)); do
rm -f $MNT/testdir/file_$i
done
# fsync the directory, this will only log dir items, there are no
# dentries pointing to new inodes.
start=$(date +%s%N)
xfs_io -c "fsync" $MNT/testdir
end=$(date +%s%N)
dur=$(( (end - start) / 1000000 ))
echo "dir fsync took $dur ms after deleting $NUM_FILE_DELETES files"
umount $MNT
Test results with NUM_NEW_FILES set to 100 000 and 1 000 000:
**** before patchset, 100 000 files, 1000 deletes ****
dir fsync took 848 ms after adding 100000 files
dir fsync took 175 ms after deleting 1000 files
**** after patchset, 100 000 files, 1000 deletes ****
dir fsync took 758 ms after adding 100000 files (-11.2%)
dir fsync took 63 ms after deleting 1000 files (-94.1%)
**** before patchset, 1 000 000 files, 1000 deletes ****
dir fsync took 9945 ms after adding 1000000 files
dir fsync took 473 ms after deleting 1000 files
**** after patchset, 1 000 000 files, 1000 deletes ****
dir fsync took 8677 ms after adding 1000000 files (-13.6%)
dir fsync took 146 ms after deleting 1000 files (-105.6%)
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When logging a directory, we scan its directory items from the subvolume
tree and then copy one by one into the log tree. This is not efficient
since we generally are able to insert several items in a batch, using a
single btree operation for adding several items at once. The reason we
copy items one by one is that we must check if each item was previously
logged in the current transaction, and if it was we either overwrite it
or skip it in case its content did not change in the subvolume tree (this
can happen only for dir item keys, but not for dir index keys), and doing
such check makes it a bit cumbersome to attempt batch insertions.
However the chances for doing batch insertions are very frequent and
always happen when:
1) Logging the directory for the first time in the current transaction,
as none of the items exist in the log tree yet;
2) Logging new dir index keys, because the offset for new dir index keys
comes from a monotonically increasing counter. This means if we keep
adding dentries to a directory, through creation of new files and
sub-directories or by adding new links or renaming from some other
directory into the one we are logging, all the new dir index keys
have a new offset that is greater than the offset of any previously
logged index keys, so we can insert them in batches into the log tree.
For dir item keys, since their offset depends on the result of an hash
function against the dentry's name, unless the directory is being logged
for the first time in the current transaction, the chances being able to
insert the items in the log using batches is pretty much random and not
predictable, as it depends on the names of the dentries, but still happens
often enough.
So change directory logging to keep track of consecutive directory items
that don't exist yet in the log and batch insert them.
This patch is part of a patchset comprised of the following 5 patches:
btrfs: remove root argument from btrfs_log_inode() and its callees
btrfs: remove redundant log root assignment from log_dir_items()
btrfs: factor out the copying loop of dir items from log_dir_items()
btrfs: insert items in batches when logging a directory when possible
btrfs: keep track of the last logged keys when logging a directory
This is patch 4/5. The change log of the last patch (5/5) has performance
results.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In preparation for the next change, move the loop that processes a leaf
and copies its directory items to the log, into a separate helper
function. This makes the next change simpler and it also helps making
log_dir_items() a bit shorter (specially after the next change).
This patch is part of a patchset comprised of the following 5 patches:
btrfs: remove root argument from btrfs_log_inode() and its callees
btrfs: remove redundant log root assignment from log_dir_items()
btrfs: factor out the copying loop of dir items from log_dir_items()
btrfs: insert items in batches when logging a directory when possible
btrfs: keep track of the last logged keys when logging a directory
This is patch 3/5. The change log of the last patch (5/5) has performance
results.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At log_dir_items() we are assigning the exact same value to the local
variable 'log', once when it's declared and once again shortly after.
Remove the later assignment as it's pointless.
This patch is part of a patchset comprised of the following 5 patches:
btrfs: remove root argument from btrfs_log_inode() and its callees
btrfs: remove redundant log root assignment from log_dir_items()
btrfs: factor out the copying loop of dir items from log_dir_items()
btrfs: insert items in batches when logging a directory when possible
btrfs: keep track of the last logged keys when logging a directory
This is patch 2/5. The change log of the last patch (5/5) has performance
results.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The root argument passed to btrfs_log_inode() is unncessary, as it is
always the root of the inode we are going to log. This root also gets
unnecessarily propagated to several functions called by btrfs_log_inode(),
and all of them take the inode as an argument as well. So just remove
the root argument from these functions and have them get the root from
the inode where needed.
This patch is part of a patchset comprised of the following 5 patches:
btrfs: remove root argument from btrfs_log_inode() and its callees
btrfs: remove redundant log root assignment from log_dir_items()
btrfs: factor out the copying loop of dir items from log_dir_items()
btrfs: insert items in batches when logging a directory when possible
btrfs: keep track of the last logged keys when logging a directory
This is patch 1/5. The change log of the last patch (5/5) has performance
results.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The statement which decides if an extent allocation on a zoned device is
for the dedicated tree-log block group or not and if we can use the block
group we picked for this allocation is not easy to read but an important
part of the allocator.
Rewrite into an if condition instead of a plain boolean test to make it
stand out more, like the version which tests for the dedicated
data-relocation block group.
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In btrfs code we have two functions called setup_extent_mapping, one in
the extent_map code and one in the relocation code. While both are
private to their respective implementation, this can still be confusing
for the reader.
So rename the version in relocation.c to setup_relocation_extent_mapping.
No functional changes.
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we use a dedicated block group and regular writes for data
relocation, we can preallocate the space needed for a relocated inode,
just like we do in regular mode.
Essentially this reverts commit 32430c6148 ("btrfs: zoned: enable
relocation on a zoned filesystem") as it is not needed anymore.
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Prepare for allowing preallocation for relocation inodes.
Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we have a dedicated block group for relocation, we can use
REQ_OP_WRITE instead of REQ_OP_ZONE_APPEND for writing out the data on
relocation.
Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Don't allow more than one process to add pages to a relocation inode on
a zoned filesystem, otherwise we cannot guarantee the sequential write
rule once we're filling preallocated extents on a zoned filesystem.
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Relocation in a zoned filesystem can fail with a transaction abort with
error -22 (EINVAL). This happens because the relocation code assumes that
the extents we relocated the data to have the same size the source extents
had and ensures this by preallocating the extents.
But in a zoned filesystem we currently can't preallocate the extents as
this would break the sequential write required rule. Therefore it can
happen that the writeback process kicks in while we're still adding pages
to a delalloc range and starts writing out dirty pages.
This then creates destination extents that are smaller than the source
extents, triggering the following safety check in get_new_location():
1034 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1035 ret = -EINVAL;
1036 goto out;
1037 }
Temporarily create a dedicated block group for the relocation process, so
no non-relocation data writes can interfere with the relocation writes.
This is needed that we can switch the relocation process on a zoned
filesystem from the REQ_OP_ZONE_APPEND writing we use for data to a scheme
like in a non-zoned filesystem using REQ_OP_WRITE and preallocation.
Fixes: 32430c6148 ("btrfs: zoned: enable relocation on a zoned filesystem")
Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are several places in our codebase where we check if a root is the
root of the data reloc tree and subsequent patches will introduce more.
Factor out the check into a small helper function instead of open coding
it multiple times.
Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Function repair_io_failure() is no longer used out of extent_io.c since
commit 8b9b6f2554 ("btrfs: scrub: cleanup the remaining nodatasum
fixup code"), which removes the last external caller.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When logging a regular file in full sync mode, we are currently committing
its delayed inode item. This is to ensure that we never miss copying the
inode item, with its most up to date data, into the log tree.
However that is not necessary since commit e4545de5b0 ("Btrfs: fix fsync
data loss after append write"), because even if we don't find the leaf
with the inode item when looking for leaves that changed in the current
transaction, we end up logging the inode item later using the in-memory
content. In case we find the leaf containing the inode item, we already
end up using the in-memory inode for filling the inode item in the log
tree, and not the inode item that is in the fs/subvolume tree, as it
might be not up to date (copy_items() -> fill_inode_item()).
So don't commit the delayed inode item, which brings a couple of benefits:
1) Avoid writing the inode item to the fs/subvolume btree, saving time and
reducing lock contention on the btree;
2) In case no other item for the inode was changed, added or deleted in
the same leaf where the inode item is located, we ended up copying
all the items in that leaf to the log tree - it's harmless from a
functional point of view, but it wastes time and log tree space.
This patch is part of a patch set comprised of the following patches:
btrfs: check if a log tree exists at inode_logged()
btrfs: remove no longer needed checks for NULL log context
btrfs: do not log new dentries when logging that a new name exists
btrfs: always update the logged transaction when logging new names
btrfs: avoid expensive search when dropping inode items from log
btrfs: add helper to truncate inode items when logging inode
btrfs: avoid expensive search when truncating inode items from the log
btrfs: avoid search for logged i_size when logging inode if possible
btrfs: avoid attempt to drop extents when logging inode for the first time
btrfs: do not commit delayed inode when logging a file in full sync mode
This is patch 10/10 and the following test results compare a branch with
the whole patch set applied versus a branch without any of the patches
applied.
The following script was used to test dbench with 8 and 16 jobs on a
machine with 12 cores, 64G of RAM, a NVME device and using a non-debug
kernel config (Debian's default):
$ cat test.sh
#!/bin/bash
if [ $# -ne 1 ]; then
echo "Use $0 NUM_JOBS"
exit 1
fi
NUM_JOBS=$1
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
MOUNT_OPTIONS="-o ssd"
MKFS_OPTIONS="-m single -d single"
echo "performance" | \
tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
mkfs.btrfs -f $MKFS_OPTIONS $DEV
mount $MOUNT_OPTIONS $DEV $MNT
dbench -D $MNT -t 120 $NUM_JOBS
umount $MNT
The results were the following:
8 jobs, before patchset:
Operation Count AvgLat MaxLat
----------------------------------------
NTCreateX 4113896 0.009 238.665
Close 3021699 0.001 0.590
Rename 174215 0.082 238.733
Unlink 830977 0.049 238.642
Deltree 96 2.232 8.022
Mkdir 48 0.003 0.005
Qpathinfo 3729013 0.005 2.672
Qfileinfo 653206 0.001 0.152
Qfsinfo 683866 0.002 0.526
Sfileinfo 335055 0.004 1.571
Find 1441800 0.016 4.288
WriteX 2049644 0.010 3.982
ReadX 6449786 0.003 0.969
LockX 13400 0.002 0.043
UnlockX 13400 0.001 0.075
Flush 288349 2.521 245.516
Throughput 1075.73 MB/sec 8 clients 8 procs max_latency=245.520 ms
8 jobs, after patchset:
Operation Count AvgLat MaxLat
----------------------------------------
NTCreateX 4154282 0.009 156.675
Close 3051450 0.001 0.843
Rename 175912 0.072 4.444
Unlink 839067 0.048 66.050
Deltree 96 2.131 5.979
Mkdir 48 0.002 0.004
Qpathinfo 3765575 0.005 3.079
Qfileinfo 659582 0.001 0.099
Qfsinfo 690474 0.002 0.155
Sfileinfo 338366 0.004 1.419
Find 1455816 0.016 3.423
WriteX 2069538 0.010 4.328
ReadX 6512429 0.003 0.840
LockX 13530 0.002 0.078
UnlockX 13530 0.001 0.051
Flush 291158 2.500 163.468
Throughput 1105.45 MB/sec 8 clients 8 procs max_latency=163.474 ms
+2.7% throughput, -40.1% max latency
16 jobs, before patchset:
Operation Count AvgLat MaxLat
----------------------------------------
NTCreateX 5457602 0.033 337.098
Close 4008979 0.002 2.018
Rename 231051 0.323 254.054
Unlink 1102209 0.202 337.243
Deltree 160 6.521 31.720
Mkdir 80 0.003 0.007
Qpathinfo 4946147 0.014 6.988
Qfileinfo 867440 0.001 1.642
Qfsinfo 907081 0.003 1.821
Sfileinfo 444433 0.005 2.053
Find 1912506 0.067 7.854
WriteX 2724852 0.018 7.428
ReadX 8553883 0.003 2.059
LockX 17770 0.003 0.350
UnlockX 17770 0.002 0.627
Flush 382533 2.810 353.691
Throughput 1413.09 MB/sec 16 clients 16 procs max_latency=353.696 ms
16 jobs, after patchset:
Operation Count AvgLat MaxLat
----------------------------------------
NTCreateX 5393156 0.034 303.181
Close 3961986 0.002 1.502
Rename 228359 0.320 253.379
Unlink 1088920 0.206 303.409
Deltree 160 6.419 30.088
Mkdir 80 0.003 0.004
Qpathinfo 4887967 0.015 7.722
Qfileinfo 857408 0.001 1.651
Qfsinfo 896343 0.002 2.147
Sfileinfo 439317 0.005 4.298
Find 1890018 0.073 8.347
WriteX 2693356 0.018 6.373
ReadX 8453485 0.003 3.836
LockX 17562 0.003 0.486
UnlockX 17562 0.002 0.635
Flush 378023 2.802 315.904
Throughput 1454.46 MB/sec 16 clients 16 procs max_latency=315.910 ms
+2.9% throughput, -11.3% max latency
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When logging an extent, in the fast fsync path, we always attempt do drop
or trim any existing extents with a range that match or overlap the range
of the extent we are about to log. We do that through a call to
btrfs_drop_extents().
However this is not needed when we are logging the inode for the first
time in the current transaction, since we have no inode items of the
inode in the log tree. Calling btrfs_drop_extents() does a deletion search
on the log tree, which is expensive when we have concurrent tasks
accessing the log tree because a deletion search always acquires a write
lock on the extent buffers at levels 2, 1 and 0, adding significant lock
contention, specially taking into account the height of a log tree rarely
(if ever) goes beyond 2 or 3, due to its short life.
So skip the call to btrfs_drop_extents() when the inode was not previously
logged in the current transaction.
This patch is part of a patch set comprised of the following patches:
btrfs: check if a log tree exists at inode_logged()
btrfs: remove no longer needed checks for NULL log context
btrfs: do not log new dentries when logging that a new name exists
btrfs: always update the logged transaction when logging new names
btrfs: avoid expensive search when dropping inode items from log
btrfs: add helper to truncate inode items when logging inode
btrfs: avoid expensive search when truncating inode items from the log
btrfs: avoid search for logged i_size when logging inode if possible
btrfs: avoid attempt to drop extents when logging inode for the first time
btrfs: do not commit delayed inode when logging a file in full sync mode
This is patch 9/10 and test results are listed in the change log of the
last patch in the set.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we are logging that an inode exists and the inode was not logged
before, we can avoid searching in the log tree for the inode item since we
know it does not exists. That wastes time and adds more lock contention on
the extent buffers of the log tree when there are other tasks that are
logging other inodes.
This patch is part of a patch set comprised of the following patches:
btrfs: check if a log tree exists at inode_logged()
btrfs: remove no longer needed checks for NULL log context
btrfs: do not log new dentries when logging that a new name exists
btrfs: always update the logged transaction when logging new names
btrfs: avoid expensive search when dropping inode items from log
btrfs: add helper to truncate inode items when logging inode
btrfs: avoid expensive search when truncating inode items from the log
btrfs: avoid search for logged i_size when logging inode if possible
btrfs: avoid attempt to drop extents when logging inode for the first time
btrfs: do not commit delayed inode when logging a file in full sync mode
This is patch 8/10 and test results are listed in the change log of the
last patch in the set.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Whenever we are logging a file inode in full sync mode we call
btrfs_truncate_inode_items() to delete items of the inode we may have
previously logged.
That results in doing a btree search for deletion, which is expensive
because it always acquires write locks for extent buffers at levels 2, 1
and 0, and it balances any node that is less than half full. Acquiring
the write locks can block the task if the extent buffers are already
locked by another task or block other tasks attempting to lock them,
which is specially bad in case of log trees since they are small due to
their short life, with a root node at a level typically not greater than
level 2.
If we know that we are logging the inode for the first time in the current
transaction, we can skip the call to btrfs_truncate_inode_items(), avoiding
the deletion search. This change does that.
This patch is part of a patch set comprised of the following patches:
btrfs: check if a log tree exists at inode_logged()
btrfs: remove no longer needed checks for NULL log context
btrfs: do not log new dentries when logging that a new name exists
btrfs: always update the logged transaction when logging new names
btrfs: avoid expensive search when dropping inode items from log
btrfs: add helper to truncate inode items when logging inode
btrfs: avoid expensive search when truncating inode items from the log
btrfs: avoid search for logged i_size when logging inode if possible
btrfs: avoid attempt to drop extents when logging inode for the first time
btrfs: do not commit delayed inode when logging a file in full sync mode
This is patch 7/10 and test results are listed in the change log of the
last patch in the set.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Move the call to btrfs_truncate_inode_items(), and the surrounding retry
loop, into a local helper function. This avoids some repetition and avoids
making the next change a bit awkward due to a bit of too much indentation.
This patch is part of a patch set comprised of the following patches:
btrfs: check if a log tree exists at inode_logged()
btrfs: remove no longer needed checks for NULL log context
btrfs: do not log new dentries when logging that a new name exists
btrfs: always update the logged transaction when logging new names
btrfs: avoid expensive search when dropping inode items from log
btrfs: add helper to truncate inode items when logging inode
btrfs: avoid expensive search when truncating inode items from the log
btrfs: avoid search for logged i_size when logging inode if possible
btrfs: avoid attempt to drop extents when logging inode for the first time
btrfs: do not commit delayed inode when logging a file in full sync mode
This is patch 6/10 and test results are listed in the change log of the
last patch in the set.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Whenever we are logging a directory inode, logging that an inode exists or
logging an inode that has changes in its references or xattrs, we attempt
to delete items of this inode we may have previously logged (through calls
to drop_objectid_items()).
That attempt does a btree search for deletion, which is expensive because
it always acquires write locks for extent buffers at levels 2, 1 and 0,
and it balances any node that is less than half full. Acquiring the write
locks can block the task if the extent buffers are already locked or block
other tasks attempting to lock them, which is specially bad in case of log
trees since they are small due to their short life, with a root node at a
level typically not greater than level 2.
If we know that we are logging the inode for the first time in the current
transaction, we can skip the search. This change does that.
This patch is part of a patch set comprised of the following patches:
btrfs: check if a log tree exists at inode_logged()
btrfs: remove no longer needed checks for NULL log context
btrfs: do not log new dentries when logging that a new name exists
btrfs: always update the logged transaction when logging new names
btrfs: avoid expensive search when dropping inode items from log
btrfs: add helper to truncate inode items when logging inode
btrfs: avoid expensive search when truncating inode items from the log
btrfs: avoid search for logged i_size when logging inode if possible
btrfs: avoid attempt to drop extents when logging inode for the first time
btrfs: do not commit delayed inode when logging a file in full sync mode
This is patch 5/10 and test results are listed in the change log of the
last patch in the set.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When we are logging a new name for an inode, due to a link or rename
operation, if the inode has ancestor inodes that are new, created in the
current transaction, we need to log that these inodes exist. To ensure
that a subsequent explicit fsync on one of these ancestor inodes does
sync the log, we don't set the logged_trans field of these inodes.
This was done in commit 75b463d2b4 ("btrfs: do not commit logs and
transactions during link and rename operations"), to avoid syncing a
log after a rename or link operation.
In order to allow for future changes to do some optimizations, change
this behaviour to always update the logged_trans of any logged inode
and don't update the last_log_commit of the inode if we are logging
that it exists. This accomplishes that same objective with simpler
logic, allowing for some optimizations in the next patches.
So just do that simplification.
This patch is part of a patch set comprised of the following patches:
btrfs: check if a log tree exists at inode_logged()
btrfs: remove no longer needed checks for NULL log context
btrfs: do not log new dentries when logging that a new name exists
btrfs: always update the logged transaction when logging new names
btrfs: avoid expensive search when dropping inode items from log
btrfs: add helper to truncate inode items when logging inode
btrfs: avoid expensive search when truncating inode items from the log
btrfs: avoid search for logged i_size when logging inode if possible
btrfs: avoid attempt to drop extents when logging inode for the first time
btrfs: do not commit delayed inode when logging a file in full sync mode
This is patch 4/10 and test results are listed in the change log of the
last patch in the set.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When logging a new name for an inode, due to a link or rename operation,
we don't need to log all new dentries of the parent directories and their
subdirectories. We only want to log the names of the inode and that any
new parent directories exist. So in this case don't trigger logging of
the new dentries, that is only need when doing an explicit fsync on a
directory or on a file which requires logging its parent directories.
This avoids unnecessary work and reduces contention on the extent buffers
of a log tree.
This patch is part of a patch set comprised of the following patches:
btrfs: check if a log tree exists at inode_logged()
btrfs: remove no longer needed checks for NULL log context
btrfs: do not log new dentries when logging that a new name exists
btrfs: always update the logged transaction when logging new names
btrfs: avoid expensive search when dropping inode items from log
btrfs: add helper to truncate inode items when logging inode
btrfs: avoid expensive search when truncating inode items from the log
btrfs: avoid search for logged i_size when logging inode if possible
btrfs: avoid attempt to drop extents when logging inode for the first time
btrfs: do not commit delayed inode when logging a file in full sync mode
This is patch 3/10 and test results are listed in the change log of the
last patch in the set.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since commit 75b463d2b4 ("btrfs: do not commit logs and transactions
during link and rename operations"), we always pass a non-NULL log context
to btrfs_log_inode_parent() and therefore to all the functions that it
calls. So remove the checks we have all over the place that test for a
NULL log context, making the code shorter and easier to read, as well as
reducing the size of the generated code.
This patch is part of a patch set comprised of the following patches:
btrfs: check if a log tree exists at inode_logged()
btrfs: remove no longer needed checks for NULL log context
btrfs: do not log new dentries when logging that a new name exists
btrfs: always update the logged transaction when logging new names
btrfs: avoid expensive search when dropping inode items from log
btrfs: add helper to truncate inode items when logging inode
btrfs: avoid expensive search when truncating inode items from the log
btrfs: avoid search for logged i_size when logging inode if possible
btrfs: avoid attempt to drop extents when logging inode for the first time
btrfs: do not commit delayed inode when logging a file in full sync mode
This is patch 2/10 and test results are listed in the change log of the
last patch in the set.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In case an inode was never logged since it was loaded from disk and was
modified in the current transaction (its ->last_trans matches the ID of
the current transaction), inode_logged() returns true even if there's no
existing log tree. In this case we can simply check if a log tree exists
and return false if it does not. This avoids a caller of inode_logged()
doing some unnecessary, but harmless, work.
For btrfs_log_new_name() it avoids it logging an inode in case it was
never logged since it was loaded from disk and there is currently no log
tree for the inode's root. For the remaining callers of inode_logged(),
btrfs_del_dir_entries_in_log() and btrfs_del_inode_ref_in_log(), it has
no effect since they already check if a log tree exists through their
calls to join_running_log_trans().
So just add a check to inode_logged() to verify if a log tree exists, and
return false if it does not.
This patch is part of a patch set comprised of the following patches:
btrfs: check if a log tree exists at inode_logged()
btrfs: remove no longer needed checks for NULL log context
btrfs: do not log new dentries when logging that a new name exists
btrfs: always update the logged transaction when logging new names
btrfs: avoid expensive search when dropping inode items from log
btrfs: add helper to truncate inode items when logging inode
btrfs: avoid expensive search when truncating inode items from the log
btrfs: avoid search for logged i_size when logging inode if possible
btrfs: avoid attempt to drop extents when logging inode for the first time
btrfs: do not commit delayed inode when logging a file in full sync mode
This is patch 1/10 and test results are listed in the change log of the
last patch in the set.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There were few lockdep warnings because btrfs_show_devname() was using
device_list_mutex as recorded in the commits:
0ccd05285e ("btrfs: fix a possible umount deadlock")
779bf3fefa ("btrfs: fix lock dep warning, move scratch dev out of device_list_mutex and uuid_mutex")
And finally, commit 88c14590cd ("btrfs: use RCU in btrfs_show_devname
for device list traversal") removed the device_list_mutex from
btrfs_show_devname for performance reasons.
This patch removes a stale comment about the function
btrfs_show_devname and device_list_mutex.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The test case btrfs/238 reports the warning below:
WARNING: CPU: 3 PID: 481 at fs/btrfs/super.c:2509 btrfs_show_devname+0x104/0x1e8 [btrfs]
CPU: 2 PID: 1 Comm: systemd Tainted: G W O 5.14.0-rc1-custom #72
Hardware name: QEMU QEMU Virtual Machine, BIOS 0.0.0 02/06/2015
Call trace:
btrfs_show_devname+0x108/0x1b4 [btrfs]
show_mountinfo+0x234/0x2c4
m_show+0x28/0x34
seq_read_iter+0x12c/0x3c4
vfs_read+0x29c/0x2c8
ksys_read+0x80/0xec
__arm64_sys_read+0x28/0x34
invoke_syscall+0x50/0xf8
do_el0_svc+0x88/0x138
el0_svc+0x2c/0x8c
el0t_64_sync_handler+0x84/0xe4
el0t_64_sync+0x198/0x19c
Reason:
While btrfs_prepare_sprout() moves the fs_devices::devices into
fs_devices::seed_list, the btrfs_show_devname() searches for the devices
and found none, leading to the warning as in above.
Fix:
latest_dev is updated according to the changes to the device list.
That means we could use the latest_dev->name to show the device name in
/proc/self/mounts, the pointer will be always valid as it's assigned
before the device is deleted from the list in remove or replace.
The RCU protection is sufficient as the device structure is freed after
synchronization.
Reported-by: Su Yue <l@damenly.su>
Tested-by: Su Yue <l@damenly.su>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In preparation to fix a bug in btrfs_show_devname().
Convert fs_devices::latest_bdev type from struct block_device to struct
btrfs_device and, rename the member to fs_devices::latest_dev.
So that btrfs_show_devname() can use fs_devices::latest_dev::name.
Tested-by: Su Yue <l@damenly.su>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We will no longer write to a relocating block group. So, we can finish it
now.
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we have written to the zone capacity, the device automatically
deactivates the zone. Sync up block group side (the active BG list and
zone_is_active flag) with it.
We need to do it both on data BGs and metadata BGs. On data side, we add a
hook to btrfs_finish_ordered_io(). On metadata side, we use
end_extent_buffer_writeback().
To reduce excess lookup of a block group, we mark the last extent buffer in
a block group with EXTENT_BUFFER_ZONE_FINISH flag. This cannot be done for
data (ordered_extent), because the address may change due to
REQ_OP_ZONE_APPEND.
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The current extent allocator tries to allocate a new block group when the
existing block groups do not have enough space. On a ZNS device, a new
block group means a new active zone. If the number of active zones has
already reached the max_active_zones, activating a new zone needs to finish
an existing zone, leading to wasting the free space there.
So, instead, it should reuse the existing active block groups as much as
possible when we can't activate any other zones without sacrificing an
already activated block group.
While at it, I converted find_free_extent_update_loop() to check the
found_extent() case early and made the other conditions simpler.
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We are passing too many variables as it is from btrfs_reserve_extent() to
find_free_extent(). The next commit will add min_alloc_size to ffe_ctl, and
that means another pass-through argument. Take this opportunity to move
ffe_ctl one level up and drop the redundant arguments.
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Activate new block group at btrfs_make_block_group(). We do not check the
return value. If failed, we can try again later at the actual extent
allocation phase.
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Activate a block group when trying to allocate an extent from it. We check
read-only case and no space left case before trying to activate a block
group not to consume the number of active zones uselessly.
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Load activeness of underlying zones of a block group. When underlying zones
are active, we add the block group to the fs_info->zone_active_bgs list.
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Add zone_is_active flag to btrfs_block_group. This flag indicates the
underlying zones are all active. Such zone active block groups are tracked
by fs_info->active_bg_list.
btrfs_dev_{set,clear}_active_zone() take responsibility for the underlying
device part. They set/clear the bitmap to indicate zone activeness and
count the number of zones we can activate left.
btrfs_zone_{activate,finish}() take responsibility for the logical part and
the list management. In addition, btrfs_zone_finish() wait for any writes
on it and send REQ_OP_ZONE_FINISH to the zone.
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We will use a block group's physical location to track active zones and
finish fully written zones in the following commits. Since the zone
activation is done in the extent allocation context which already holding
the tree locks, we can't query the chunk tree for the physical locations.
So, copy the location info into a block group and use it for activation.
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The ZNS specification defines a limit on the number of zones that can be in
the implicit open, explicit open or closed conditions. Any zone with such
condition is defined as an active zone and correspond to any zone that is
being written or that has been only partially written. If the maximum
number of active zones is reached, we must either reset or finish some
active zones before being able to chose other zones for storing data.
Load queue_max_active_zones() and track the number of active zones left on
the device.
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If there is no more space left for a new superblock in a superblock zone,
then it is better to ZONE_FINISH the zone and frees up the active zone
count.
Since btrfs_advance_sb_log() can now issue REQ_OP_ZONE_FINISH, we also need
to convert it to return int for the error case.
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
sb_write_pointer() returns the write position of next superblock. For READ,
we need a previous location. When the pointer is at the head, the previous
one is the last one of the other zone. Calculate the last one's position
from zone capacity.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We cannot write beyond zone capacity. So, we should consider a zone as
"full" when the write pointer goes beyond capacity - the size of super
info.
Also, take this opportunity to replace a subtle duplicated code with a loop
and fix a typo in comment.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
With the introduction of zone capacity, the range [capacity, length] is
always zone unusable. Counting this region as a reclaim target will
cause reclaiming too early. Reclaim block groups based on bytes that can
be usable after resetting.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we introduced capacity in a block group, we need to calculate free
space using the capacity instead of the length. Thus, bytes we account
capacity - alloc_pointer as free, and account bytes [capacity, length] as
zone unusable.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_free_excluded_extents() is not neccessary for
btrfs_calc_zone_unusable() and it makes btrfs_calc_zone_unusable()
difficult to reuse. Move it out and call btrfs_free_excluded_extents()
in proper context.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The ZNS specification introduces the concept of a Zone Capacity. A zone
capacity is an additional per-zone attribute that indicates the number of
usable logical blocks within each zone, starting from the first logical
block of each zone. It is always smaller or equal to the zone size.
With the SINGLE profile, we can set a block group's "capacity" as the same
as the underlying zone's Zone Capacity. We will limit the allocation not
to exceed in a following commit.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
With the new infrastructure which has taken subpage into consideration,
now we should be safe to allow defrag to work for subpage case.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now the old infrastructure can all be removed, defrag
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The function defrag_one_cluster() is able to defrag one range well
enough, we only need to do preparation for it, including:
- Clamp and align the defrag range
- Exclude invalid cases
- Proper inode locking
The old infrastructures will not be removed in this patch, as it would
be too noisy to review.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This new helper, defrag_one_cluster(), will defrag one cluster (at most
256K):
- Collect all initial targets
- Kick in readahead when possible
- Call defrag_one_range() on each initial target
With some extra range clamping.
- Update @sectors_defragged parameter
This involves one behavior change, the defragged sectors accounting is
no longer as accurate as old behavior, as the initial targets are not
consistent.
We can have new holes punched inside the initial target, and we will
skip such holes later.
But the defragged sectors accounting doesn't need to be that accurate
anyway, thus I don't want to pass those extra accounting burden into
defrag_one_range().
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
A new helper, defrag_one_range(), is introduced to defrag one range.
This function will mostly prepare the needed pages and extent status for
defrag_one_locked_target().
As we can only have a consistent view of extent map with page and extent
bits locked, we need to re-check the range passed in to get a real
target list for defrag_one_locked_target().
Since defrag_collect_targets() will call defrag_lookup_extent() and lock
extent range, we also need to teach those two functions to skip extent
lock. Thus new parameter, @locked, is introduced to skip extent lock if
the caller has already locked the range.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
A new helper, defrag_one_locked_target(), introduced to do the real part
of defrag.
The caller needs to ensure both page and extents bits are locked, and no
ordered extent exists for the range, and all writeback is finished.
The core defrag part is pretty straight-forward:
- Reserve space
- Set extent bits to defrag
- Update involved pages to be dirty
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Introduce a helper, defrag_collect_targets(), to collect all possible
targets to be defragged.
This function will not consider things like max_sectors_to_defrag, thus
caller should be responsible to ensure we don't exceed the limit.
This function will be the first stage of later defrag rework.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In cluster_pages_for_defrag(), we have complex code block inside one
for() loop.
The code block is to prepare one page for defrag, this will ensure:
- The page is locked and set up properly.
- No ordered extent exists in the page range.
- The page is uptodate.
This behavior is pretty common and will be reused by later defrag
rework.
So factor out the code into its own helper, defrag_prepare_one_page(),
for later usage, and cleanup the code by a little.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When testing subpage defrag support, I always find some strange inode
nbytes error, after a lot of debugging, it turns out that
defrag_lookup_extent() is using PAGE_SIZE as size for
lookup_extent_mapping().
Since lookup_extent_mapping() is calling __lookup_extent_mapping() with
@strict == 1, this means any extent map smaller than one page will be
ignored, prevent subpage defrag to grab a correct extent map.
There are quite some PAGE_SIZE usage in ioctl.c, but most of them are
correct usages, and can be one of the following cases:
- ioctl structure size check
We want ioctl structure to be contained inside one page.
- real page operations
The remaining cases in defrag_lookup_extent() and
check_defrag_in_cache() will be addressed in this patch.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In function cluster_pages_for_defrag() we have a window where we unlock
page, either start the ordered range or read the content from disk.
When we re-lock the page, we need to make sure it still has the correct
page->private for subpage.
Thus add the extra PagePrivate check here to handle subpage cases
properly.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently btrfs_defrag_file() accepts both "struct inode" and "struct
file" as parameter. We can easily grab "struct inode" from "struct
file" using file_inode() helper.
The reason why we need "struct file" is just to re-use its f_ra.
Change this to pass "struct file_ra_state" parameter, so that it's more
clear what we really want. Since we're here, also add some comments on
the function btrfs_defrag_file().
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_chunk_readonly() checks if the given chunk is writeable. It
returns 1 for readonly, and 0 for writeable. So the return argument type
bool shall suffice instead of the current type int.
Also, rename btrfs_chunk_readonly() to btrfs_chunk_writeable() as we
check if the bg is writeable, and helps to keep the logic at the parent
function simpler to understand.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Fix a warning reported by smatch that ret could be returned without
initialized. The dedupe operations are supposed to to return 0 for a 0
length range but the caller does not pass olen == 0. To keep this
behaviour and also fix the warning initialize ret to 0.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Sidong Yang <realwakka@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently we use u16 bitmap to make 4k sectorsize work for 64K page
size.
But this u16 bitmap is not large enough to contain larger page size like
128K, nor is space efficient for 16K page size.
To handle both cases, here we pack all subpage bitmaps into a larger
bitmap, now btrfs_subpage::bitmaps[] will be the ultimate bitmap for
subpage usage.
Each sub-bitmap will has its start bit number recorded in
btrfs_subpage_info::*_start, and its bitmap length will be recorded in
btrfs_subpage_info::bitmap_nr_bits.
All subpage bitmap operations will be converted from using direct u16
operations to bitmap operations, with above *_start calculated.
For 64K page size with 4K sectorsize, this should not cause much
difference.
While for 16K page size, we will only need 1 unsigned long (u32) to
store all the bitmaps, which saves quite some space.
Furthermore, this allows us to support larger page size like 128K and
258K.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>