The stacktraces always begin as follows:
[<c00117b4>] save_stack_trace_tsk+0x0/0x98
[<c0011870>] save_stack_trace+0x24/0x28
...
This is because the stack trace code includes the stack frames for
itself. This is incorrect behaviour, and also leads to "skip" doing the
wrong thing (which is the number of stack frames to avoid recording.)
Perversely, it does the right thing when passed a non-current thread.
Fix this by ensuring that we have a known constant number of frames
above the main stack trace function, and always skip these.
This was fixed for arch arm by commit 3683f44c42 ("ARM: stacktrace:
avoid listing stacktrace functions in stacktrace")
Link: http://lkml.kernel.org/r/1504078343-28754-1-git-send-email-guptap@codeaurora.org
Signed-off-by: Prakash Gupta <guptap@codeaurora.org>
Cc: Russell King <rmk+kernel@arm.linux.org.uk>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull namespace updates from Eric Biederman:
"Life has been busy and I have not gotten half as much done this round
as I would have liked. I delayed it so that a minor conflict
resolution with the mips tree could spend a little time in linux-next
before I sent this pull request.
This includes two long delayed user namespace changes from Kirill
Tkhai. It also includes a very useful change from Serge Hallyn that
allows the security capability attribute to be used inside of user
namespaces. The practical effect of this is people can now untar
tarballs and install rpms in user namespaces. It had been suggested to
generalize this and encode some of the namespace information
information in the xattr name. Upon close inspection that makes the
things that should be hard easy and the things that should be easy
more expensive.
Then there is my bugfix/cleanup for signal injection that removes the
magic encoding of the siginfo union member from the kernel internal
si_code. The mips folks reported the case where I had used FPE_FIXME
me is impossible so I have remove FPE_FIXME from mips, while at the
same time including a return statement in that case to keep gcc from
complaining about unitialized variables.
I almost finished the work to get make copy_siginfo_to_user a trivial
copy to user. The code is available at:
git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace.git neuter-copy_siginfo_to_user-v3
But I did not have time/energy to get the code posted and reviewed
before the merge window opened.
I was able to see that the security excuse for just copying fields
that we know are initialized doesn't work in practice there are buggy
initializations that don't initialize the proper fields in siginfo. So
we still sometimes copy unitialized data to userspace"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
Introduce v3 namespaced file capabilities
mips/signal: In force_fcr31_sig return in the impossible case
signal: Remove kernel interal si_code magic
fcntl: Don't use ambiguous SIG_POLL si_codes
prctl: Allow local CAP_SYS_ADMIN changing exe_file
security: Use user_namespace::level to avoid redundant iterations in cap_capable()
userns,pidns: Verify the userns for new pid namespaces
signal/testing: Don't look for __SI_FAULT in userspace
signal/mips: Document a conflict with SI_USER with SIGFPE
signal/sparc: Document a conflict with SI_USER with SIGFPE
signal/ia64: Document a conflict with SI_USER with SIGFPE
signal/alpha: Document a conflict with SI_USER for SIGTRAP
Merge more updates from Andrew Morton:
- most of the rest of MM
- a small number of misc things
- lib/ updates
- checkpatch
- autofs updates
- ipc/ updates
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (126 commits)
ipc: optimize semget/shmget/msgget for lots of keys
ipc/sem: play nicer with large nsops allocations
ipc/sem: drop sem_checkid helper
ipc: convert kern_ipc_perm.refcount from atomic_t to refcount_t
ipc: convert sem_undo_list.refcnt from atomic_t to refcount_t
ipc: convert ipc_namespace.count from atomic_t to refcount_t
kcov: support compat processes
sh: defconfig: cleanup from old Kconfig options
mn10300: defconfig: cleanup from old Kconfig options
m32r: defconfig: cleanup from old Kconfig options
drivers/pps: use surrounding "if PPS" to remove numerous dependency checks
drivers/pps: aesthetic tweaks to PPS-related content
cpumask: make cpumask_next() out-of-line
kmod: move #ifdef CONFIG_MODULES wrapper to Makefile
kmod: split off umh headers into its own file
MAINTAINERS: clarify kmod is just a kernel module loader
kmod: split out umh code into its own file
test_kmod: flip INT checks to be consistent
test_kmod: remove paranoid UINT_MAX check on uint range processing
vfat: deduplicate hex2bin()
...
First, number of CPUs can't be negative number.
Second, different signnnedness leads to suboptimal code in the following
cases:
1)
kmalloc(nr_cpu_ids * sizeof(X));
"int" has to be sign extended to size_t.
2)
while (loff_t *pos < nr_cpu_ids)
MOVSXD is 1 byte longed than the same MOV.
Other cases exist as well. Basically compiler is told that nr_cpu_ids
can't be negative which can't be deduced if it is "int".
Code savings on allyesconfig kernel: -3KB
add/remove: 0/0 grow/shrink: 25/264 up/down: 261/-3631 (-3370)
function old new delta
coretemp_cpu_online 450 512 +62
rcu_init_one 1234 1272 +38
pci_device_probe 374 399 +25
...
pgdat_reclaimable_pages 628 556 -72
select_fallback_rq 446 369 -77
task_numa_find_cpu 1923 1807 -116
Link: http://lkml.kernel.org/r/20170819114959.GA30580@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJZsr8cAAoJEFmIoMA60/r8lXYQAKViYIRMJDD4n3NhjMeLOsnJ
vwaBmWlLRjSFIEpag5kMjS1RJE17qAvmkBZnDvSNZ6cT28INkkZnVM2IW96WECVq
64MIvDijVPcvqGuWePCfWdDiSXApiDWwJuw55BOhmvV996wGy0gYgzpPY+1g0Knh
XzH9IOzDL79hZleLfsxX0MLV6FGBVtOsr0jvQ04k4IgEMIxEDTlbw85rnrvzQUtc
0Vj2koaxWIESZsq7G/wiZb2n6ekaFdXO/VlVvvhmTSDLCBaJ63Hb/gfOhwMuVkS6
B3cVprNrCT0dSzWmU4ZXf+wpOyDpBexlemW/OR/6CQUkC6AUS6kQ5si1X44dbGmJ
nBPh414tdlm/6V4h/A3UFPOajSGa/ZWZ/uQZPfvKs1R6WfjUerWVBfUpAzPbgjam
c/mhJ19HYT1J7vFBfhekBMeY2Px3JgSJ9rNsrFl48ynAALaX5GEwdpo4aqBfscKz
4/f9fU4ysumopvCEuKD2SsJvsPKd5gMQGGtvAhXM1TxvAoQ5V4cc99qEetAPXXPf
h2EqWm4ph7YP4a+n/OZBjzluHCmZJn1CntH5+//6wpUk6HnmzsftGELuO9n12cLE
GGkreI3T9ctV1eOkzVVa0l0QTE1X/VLyEyKCtb9obXsDaG4Ud7uKQoZgB19DwyTJ
EG76ridTolUFVV+wzJD9
=9cLP
-----END PGP SIGNATURE-----
Merge tag 'pci-v4.14-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci
Pull PCI updates from Bjorn Helgaas:
- add enhanced Downstream Port Containment support, which prints more
details about Root Port Programmed I/O errors (Dongdong Liu)
- add Layerscape ls1088a and ls2088a support (Hou Zhiqiang)
- add MediaTek MT2712 and MT7622 support (Ryder Lee)
- add MediaTek MT2712 and MT7622 MSI support (Honghui Zhang)
- add Qualcom IPQ8074 support (Varadarajan Narayanan)
- add R-Car r8a7743/5 device tree support (Biju Das)
- add Rockchip per-lane PHY support for better power management (Shawn
Lin)
- fix IRQ mapping for hot-added devices by replacing the
pci_fixup_irqs() boot-time design with a host bridge hook called at
probe-time (Lorenzo Pieralisi, Matthew Minter)
- fix race when enabling two devices that results in upstream bridge
not being enabled correctly (Srinath Mannam)
- fix pciehp power fault infinite loop (Keith Busch)
- fix SHPC bridge MSI hotplug events by enabling bus mastering
(Aleksandr Bezzubikov)
- fix a VFIO issue by correcting PCIe capability sizes (Alex
Williamson)
- fix an INTD issue on Xilinx and possibly other drivers by unifying
INTx IRQ domain support (Paul Burton)
- avoid IOMMU stalls by marking AMD Stoney GPU ATS as broken (Joerg
Roedel)
- allow APM X-Gene device assignment to guests by adding an ACS quirk
(Feng Kan)
- fix driver crashes by disabling Extended Tags on Broadcom HT2100
(Extended Tags support is required for PCIe Receivers but not
Requesters, and we now enable them by default when Requesters support
them) (Sinan Kaya)
- fix MSIs for devices that use phantom RIDs for DMA by assuming MSIs
use the real Requester ID (not a phantom RID) (Robin Murphy)
- prevent assignment of Intel VMD children to guests (which may be
supported eventually, but isn't yet) by not associating an IOMMU with
them (Jon Derrick)
- fix Intel VMD suspend/resume by releasing IRQs on suspend (Scott
Bauer)
- fix a Function-Level Reset issue with Intel 750 NVMe by waiting
longer (up to 60sec instead of 1sec) for device to become ready
(Sinan Kaya)
- fix a Function-Level Reset issue on iProc Stingray by working around
hardware defects in the CRS implementation (Oza Pawandeep)
- fix an issue with Intel NVMe P3700 after an iProc reset by adding a
delay during shutdown (Oza Pawandeep)
- fix a Microsoft Hyper-V lockdep issue by polling instead of blocking
in compose_msi_msg() (Stephen Hemminger)
- fix a wireless LAN driver timeout by clearing DesignWare MSI
interrupt status after it is handled, not before (Faiz Abbas)
- fix DesignWare ATU enable checking (Jisheng Zhang)
- reduce Layerscape dependencies on the bootloader by doing more
initialization in the driver (Hou Zhiqiang)
- improve Intel VMD performance allowing allocation of more IRQ vectors
than present CPUs (Keith Busch)
- improve endpoint framework support for initial DMA mask, different
BAR sizes, configurable page sizes, MSI, test driver, etc (Kishon
Vijay Abraham I, Stan Drozd)
- rework CRS support to add periodic messages while we poll during
enumeration and after Function-Level Reset and prepare for possible
other uses of CRS (Sinan Kaya)
- clean up Root Port AER handling by removing unnecessary code and
moving error handler methods to struct pcie_port_service_driver
(Christoph Hellwig)
- clean up error handling paths in various drivers (Bjorn Andersson,
Fabio Estevam, Gustavo A. R. Silva, Harunobu Kurokawa, Jeffy Chen,
Lorenzo Pieralisi, Sergei Shtylyov)
- clean up SR-IOV resource handling by disabling VF decoding before
updating the corresponding resource structs (Gavin Shan)
- clean up DesignWare-based drivers by unifying quirks to update Class
Code and Interrupt Pin and related handling of write-protected
registers (Hou Zhiqiang)
- clean up by adding empty generic pcibios_align_resource() and
pcibios_fixup_bus() and removing empty arch-specific implementations
(Palmer Dabbelt)
- request exclusive reset control for several drivers to allow cleanup
elsewhere (Philipp Zabel)
- constify various structures (Arvind Yadav, Bhumika Goyal)
- convert from full_name() to %pOF (Rob Herring)
- remove unused variables from iProc, HiSi, Altera, Keystone (Shawn
Lin)
* tag 'pci-v4.14-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci: (170 commits)
PCI: xgene: Clean up whitespace
PCI: xgene: Define XGENE_PCI_EXP_CAP and use generic PCI_EXP_RTCTL offset
PCI: xgene: Fix platform_get_irq() error handling
PCI: xilinx-nwl: Fix platform_get_irq() error handling
PCI: rockchip: Fix platform_get_irq() error handling
PCI: altera: Fix platform_get_irq() error handling
PCI: spear13xx: Fix platform_get_irq() error handling
PCI: artpec6: Fix platform_get_irq() error handling
PCI: armada8k: Fix platform_get_irq() error handling
PCI: dra7xx: Fix platform_get_irq() error handling
PCI: exynos: Fix platform_get_irq() error handling
PCI: iproc: Clean up whitespace
PCI: iproc: Rename PCI_EXP_CAP to IPROC_PCI_EXP_CAP
PCI: iproc: Add 500ms delay during device shutdown
PCI: Fix typos and whitespace errors
PCI: Remove unused "res" variable from pci_resource_io()
PCI: Correct kernel-doc of pci_vpd_srdt_size(), pci_vpd_srdt_tag()
PCI/AER: Reformat AER register definitions
iommu/vt-d: Prevent VMD child devices from being remapping targets
x86/PCI: Use is_vmd() rather than relying on the domain number
...
- Update the ACPICA code in the kernel to upstream revision 20170728
including:
* Alias operator handling update (Bob Moore).
* Deferred resolution of reference package elements (Bob Moore).
* Support for the _DMA method in walk resources (Bob Moore).
* Tables handling update and support for deferred table
verification (Lv Zheng).
* Update of SMMU models for IORT (Robin Murphy).
* Compiler and disassembler updates (Alex James, Erik Schmauss,
Ganapatrao Kulkarni, James Morse).
* Tools updates (Erik Schmauss, Lv Zheng).
* Assorted minor fixes and cleanups (Bob Moore, Kees Cook,
Lv Zheng, Shao Ming).
- Rework the initialization of non-wakeup GPEs with method handlers
in order to address a boot crash on some systems with Thunderbolt
devices connected at boot time where we miss an early hotplug
event due to a delay in GPE enabling (Rafael Wysocki).
- Rework the handling of PCI bridges when setting up ACPI-based
device wakeup in order to avoid disabling wakeup for bridges
prematurely (Rafael Wysocki).
- Consolidate Apple DMI checks throughout the tree, add support for
Apple device properties to the device properties framework and
use these properties for the handling of I2C and SPI devices on
Apple systems (Lukas Wunner).
- Add support for _DMA to the ACPI-based device properties lookup
code and make it possible to use the information from there to
configure DMA regions on ARM64 systems (Lorenzo Pieralisi).
- Fix several issues in the APEI code, add support for exporting
the BERT error region over sysfs and update APEI MAINTAINERS
entry with reviewers information (Borislav Petkov, Dongjiu Geng,
Loc Ho, Punit Agrawal, Tony Luck, Yazen Ghannam).
- Fix a potential initialization ordering issue in the ACPI EC
driver and clean it up somewhat (Lv Zheng).
- Update the ACPI SPCR driver to extend the existing XGENE 8250
workaround in it to a new platform (m400) and to work around
an Xgene UART clock issue (Graeme Gregory).
- Add a new utility function to the ACPI core to support using
ACPI OEM ID / OEM Table ID / Revision for system identification
in blacklisting or similar and switch over the existing code
already using this information to this new interface (Toshi Kani).
- Fix an xpower PMIC issue related to GPADC reads that always return
0 without extra pin manipulations (Hans de Goede).
- Add statements to print debug messages in a couple of places in
the ACPI core for easier diagnostics (Rafael Wysocki).
- Clean up the ACPI processor driver slightly (Colin Ian King,
Hanjun Guo).
- Clean up the ACPI x86 boot code somewhat (Andy Shevchenko).
- Add a quirk for Dell OptiPlex 9020M to the ACPI backlight
driver (Alex Hung).
- Assorted fixes, cleanups and updates related to ACPI (Amitoj Kaur
Chawla, Bhumika Goyal, Frank Rowand, Jean Delvare, Punit Agrawal,
Ronald Tschalär, Sumeet Pawnikar).
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABCAAGBQJZrcE+AAoJEILEb/54YlRxVGAP/RKzkJlYlOIXtMjf4XWg5ZfJ
RKZA68E9DW179KoBoTCVPD6/eD5UoEJ7fsWXFU2Hgp2xL3N1mZMAJHgAE4GoAwCx
uImoYvQgdPna7DawzRIFkvkfceYxNyh+KaV9s7xne4hAwsB7JzP9yf5Ywll53+oF
Le27/r6lDOaWhG7uYcxSabnQsWZQkBF5mj2GPzEpKDIHcLA1Vii0URzm7mAHdZsz
vGjYhxrshKYEVdkLSRn536m1rEfp2fqsRJ5wqNAazZJr6Cs1WIfNVuv/RfduRJpG
/zHIRAmgKV+3jp39cBpjdnexLczb1rGiCV1yZOvwCNM7jy4evL8vbL7VgcUCopaj
fHbF34chNG/hKJd3Zn3RRCTNzCs6bv+txslOMARxji5eyr2Q4KuVnvg5LM4hxOUP
23FvcYkBYWu4QCNLOTnC7y2OqK6WzOvDpfi7hf13Z42iNzeAUbwt1sVF0/OCwL51
Og6blSy2x8FidKp8oaBBboBzHEiKWnXBj/Hw8KEHVcsqZv1ZC6igNRAL3tjxamU8
98/Z2NSZHYPrrrn13tT9ywISYXReXzUF85787+0ofugvDe8/QyBH6UhzzZc/xKVA
t329JEjEFZZSLgxMIIa9bXoQANxkeZEGsxN6FfwvQhyIVdagLF3UvCjZl/q2NScC
9n++s32qfUBRHetGODWc
=6Ke9
-----END PGP SIGNATURE-----
Merge tag 'acpi-4.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull ACPI updates from Rafael Wysocki:
"These include a usual ACPICA code update (this time to upstream
revision 20170728), a fix for a boot crash on some systems with
Thunderbolt devices connected at boot time, a rework of the handling
of PCI bridges when setting up device wakeup, new support for Apple
device properties, support for DMA configurations reported via ACPI on
ARM64, APEI-related updates, ACPI EC driver updates and assorted minor
modifications in several places.
Specifics:
- Update the ACPICA code in the kernel to upstream revision 20170728
including:
* Alias operator handling update (Bob Moore).
* Deferred resolution of reference package elements (Bob Moore).
* Support for the _DMA method in walk resources (Bob Moore).
* Tables handling update and support for deferred table
verification (Lv Zheng).
* Update of SMMU models for IORT (Robin Murphy).
* Compiler and disassembler updates (Alex James, Erik Schmauss,
Ganapatrao Kulkarni, James Morse).
* Tools updates (Erik Schmauss, Lv Zheng).
* Assorted minor fixes and cleanups (Bob Moore, Kees Cook, Lv
Zheng, Shao Ming).
- Rework the initialization of non-wakeup GPEs with method handlers
in order to address a boot crash on some systems with Thunderbolt
devices connected at boot time where we miss an early hotplug event
due to a delay in GPE enabling (Rafael Wysocki).
- Rework the handling of PCI bridges when setting up ACPI-based
device wakeup in order to avoid disabling wakeup for bridges
prematurely (Rafael Wysocki).
- Consolidate Apple DMI checks throughout the tree, add support for
Apple device properties to the device properties framework and use
these properties for the handling of I2C and SPI devices on Apple
systems (Lukas Wunner).
- Add support for _DMA to the ACPI-based device properties lookup
code and make it possible to use the information from there to
configure DMA regions on ARM64 systems (Lorenzo Pieralisi).
- Fix several issues in the APEI code, add support for exporting the
BERT error region over sysfs and update APEI MAINTAINERS entry with
reviewers information (Borislav Petkov, Dongjiu Geng, Loc Ho, Punit
Agrawal, Tony Luck, Yazen Ghannam).
- Fix a potential initialization ordering issue in the ACPI EC driver
and clean it up somewhat (Lv Zheng).
- Update the ACPI SPCR driver to extend the existing XGENE 8250
workaround in it to a new platform (m400) and to work around an
Xgene UART clock issue (Graeme Gregory).
- Add a new utility function to the ACPI core to support using ACPI
OEM ID / OEM Table ID / Revision for system identification in
blacklisting or similar and switch over the existing code already
using this information to this new interface (Toshi Kani).
- Fix an xpower PMIC issue related to GPADC reads that always return
0 without extra pin manipulations (Hans de Goede).
- Add statements to print debug messages in a couple of places in the
ACPI core for easier diagnostics (Rafael Wysocki).
- Clean up the ACPI processor driver slightly (Colin Ian King, Hanjun
Guo).
- Clean up the ACPI x86 boot code somewhat (Andy Shevchenko).
- Add a quirk for Dell OptiPlex 9020M to the ACPI backlight driver
(Alex Hung).
- Assorted fixes, cleanups and updates related to ACPI (Amitoj Kaur
Chawla, Bhumika Goyal, Frank Rowand, Jean Delvare, Punit Agrawal,
Ronald Tschalär, Sumeet Pawnikar)"
* tag 'acpi-4.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (75 commits)
ACPI / APEI: Suppress message if HEST not present
intel_pstate: convert to use acpi_match_platform_list()
ACPI / blacklist: add acpi_match_platform_list()
ACPI, APEI, EINJ: Subtract any matching Register Region from Trigger resources
ACPI: make device_attribute const
ACPI / sysfs: Extend ACPI sysfs to provide access to boot error region
ACPI: APEI: fix the wrong iteration of generic error status block
ACPI / processor: make function acpi_processor_check_duplicates() static
ACPI / EC: Clean up EC GPE mask flag
ACPI: EC: Fix possible issues related to EC initialization order
ACPI / PM: Add debug statements to acpi_pm_notify_handler()
ACPI: Add debug statements to acpi_global_event_handler()
ACPI / scan: Enable GPEs before scanning the namespace
ACPICA: Make it possible to enable runtime GPEs earlier
ACPICA: Dispatch active GPEs at init time
ACPI: SPCR: work around clock issue on xgene UART
ACPI: SPCR: extend XGENE 8250 workaround to m400
ACPI / LPSS: Don't abort ACPI scan on missing mem resource
mailbox: pcc: Drop uninformative output during boot
ACPI/IORT: Add IORT named component memory address limits
...
- VMAP_STACK support, allowing the kernel stacks to be allocated in
the vmalloc space with a guard page for trapping stack overflows. One
of the patches introduces THREAD_ALIGN and changes the generic
alloc_thread_stack_node() to use this instead of THREAD_SIZE (no
functional change for other architectures)
- Contiguous PTE hugetlb support re-enabled (after being reverted a
couple of times). We now have the semantics agreed in the generic mm
layer together with API improvements so that the architecture code can
detect between contiguous and non-contiguous huge PTEs
- Initial support for persistent memory on ARM: DC CVAP instruction
exposed to user space (HWCAP) and the in-kernel pmem API implemented
- raid6 improvements for arm64: faster algorithm for the delta syndrome
and implementation of the recovery routines using Neon
- FP/SIMD refactoring and removal of support for Neon in interrupt
context. This is in preparation for full SVE support
- PTE accessors converted from inline asm to cmpxchg so that we can
use LSE atomics if available (ARMv8.1)
- Perf support for Cortex-A35 and A73
- Non-urgent fixes and cleanups
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAlmuunYACgkQa9axLQDI
XvEH9BAAo8V94GOMkX6HkT+2hjkl7DQ9krjumzmfzLV5AdgHMMzBNozmWKOCzgh0
yaxRcTUju3EyNeKhADr7yLiKDH8fnRPmYEJiVrwfgo7MaPApaCorr7LLIXfPGuxe
DTBHw+oxRMjlmaHeATX4PBWfQxAx+vjjhHqv3Qpmvdm4nYqR+0hZomH2BNsu64fk
AkSeUCxfCEyzSFIKuQM04M4zhSSZHz1tDxWI0b0RcK73qqEOuYZNkn6qxSKP5J4X
b2Y2U8nmxJ5C2fXpDYZaK9shiJ4Vu7X3Ocf/M7hsJzGY5z4dhnmUmxpHROaNiSvo
hCx7POYKyAPovps7zMSqcdsujkqOIQO8RHp4zGXx/pIr1RumjIiCY+RGpUYGibvU
N4Px5hZNneuHaPZZ+sWjOOdNB28xyzeUp2UK9Bb6uHB+/3xssMAD8Fd/b2ZLnS6a
YW3wrZmqA+ckfETsSRibabTs/ayqYHs2SDVwnlDJGtn+4Pw8oQpwGrwokxLQuuw3
uF2sNEPhJz+dcy21q3udYAQE1qOJBlLqTptgP96CHoVqh8X6nYSi5obT7y30ln3n
dhpZGOdi6R8YOouxgXS3Wg07pxn444L/VzDw5ku/5DkdryPOZCSRbk/2t8If6oDM
2VD6PCbTx3hsGc7SZ7FdSwIysD2j446u40OMGdH2iLB5jWBwyOM=
=vd0/
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
- VMAP_STACK support, allowing the kernel stacks to be allocated in the
vmalloc space with a guard page for trapping stack overflows. One of
the patches introduces THREAD_ALIGN and changes the generic
alloc_thread_stack_node() to use this instead of THREAD_SIZE (no
functional change for other architectures)
- Contiguous PTE hugetlb support re-enabled (after being reverted a
couple of times). We now have the semantics agreed in the generic mm
layer together with API improvements so that the architecture code
can detect between contiguous and non-contiguous huge PTEs
- Initial support for persistent memory on ARM: DC CVAP instruction
exposed to user space (HWCAP) and the in-kernel pmem API implemented
- raid6 improvements for arm64: faster algorithm for the delta syndrome
and implementation of the recovery routines using Neon
- FP/SIMD refactoring and removal of support for Neon in interrupt
context. This is in preparation for full SVE support
- PTE accessors converted from inline asm to cmpxchg so that we can use
LSE atomics if available (ARMv8.1)
- Perf support for Cortex-A35 and A73
- Non-urgent fixes and cleanups
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (75 commits)
arm64: cleanup {COMPAT_,}SET_PERSONALITY() macro
arm64: introduce separated bits for mm_context_t flags
arm64: hugetlb: Cleanup setup_hugepagesz
arm64: Re-enable support for contiguous hugepages
arm64: hugetlb: Override set_huge_swap_pte_at() to support contiguous hugepages
arm64: hugetlb: Override huge_pte_clear() to support contiguous hugepages
arm64: hugetlb: Handle swap entries in huge_pte_offset() for contiguous hugepages
arm64: hugetlb: Add break-before-make logic for contiguous entries
arm64: hugetlb: Spring clean huge pte accessors
arm64: hugetlb: Introduce pte_pgprot helper
arm64: hugetlb: set_huge_pte_at Add WARN_ON on !pte_present
arm64: kexec: have own crash_smp_send_stop() for crash dump for nonpanic cores
arm64: dma-mapping: Mark atomic_pool as __ro_after_init
arm64: dma-mapping: Do not pass data to gen_pool_set_algo()
arm64: Remove the !CONFIG_ARM64_HW_AFDBM alternative code paths
arm64: Ignore hardware dirty bit updates in ptep_set_wrprotect()
arm64: Move PTE_RDONLY bit handling out of set_pte_at()
kvm: arm64: Convert kvm_set_s2pte_readonly() from inline asm to cmpxchg()
arm64: Convert pte handling from inline asm to using (cmp)xchg
arm64: neon/efi: Make EFI fpsimd save/restore variables static
...
Pull syscall updates from Ingo Molnar:
"Improve the security of set_fs(): we now check the address limit on a
number of key platforms (x86, arm, arm64) before returning to
user-space - without adding overhead to the typical system call fast
path"
* 'x86-syscall-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
arm64/syscalls: Check address limit on user-mode return
arm/syscalls: Check address limit on user-mode return
x86/syscalls: Check address limit on user-mode return
Pull RCU updates from Ingo Molnad:
"The main RCU related changes in this cycle were:
- Removal of spin_unlock_wait()
- SRCU updates
- RCU torture-test updates
- RCU Documentation updates
- Extend the sys_membarrier() ABI with the MEMBARRIER_CMD_PRIVATE_EXPEDITED variant
- Miscellaneous RCU fixes
- CPU-hotplug fixes"
* 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (63 commits)
arch: Remove spin_unlock_wait() arch-specific definitions
locking: Remove spin_unlock_wait() generic definitions
drivers/ata: Replace spin_unlock_wait() with lock/unlock pair
ipc: Replace spin_unlock_wait() with lock/unlock pair
exit: Replace spin_unlock_wait() with lock/unlock pair
completion: Replace spin_unlock_wait() with lock/unlock pair
doc: Set down RCU's scheduling-clock-interrupt needs
doc: No longer allowed to use rcu_dereference on non-pointers
doc: Add RCU files to docbook-generation files
doc: Update memory-barriers.txt for read-to-write dependencies
doc: Update RCU documentation
membarrier: Provide expedited private command
rcu: Remove exports from rcu_idle_exit() and rcu_idle_enter()
rcu: Add warning to rcu_idle_enter() for irqs enabled
rcu: Make rcu_idle_enter() rely on callers disabling irqs
rcu: Add assertions verifying blocked-tasks list
rcu/tracing: Set disable_rcu_irq_enter on rcu_eqs_exit()
rcu: Add TPS() protection for _rcu_barrier_trace strings
rcu: Use idle versions of swait to make idle-hack clear
swait: Add idle variants which don't contribute to load average
...
There is some work that should be done after setting the personality.
Currently it's done in the macro, which is not the best idea.
In this patch new arch_setup_new_exec() routine is introduced, and all
setup code is moved there, as suggested by Catalin:
https://lkml.org/lkml/2017/8/4/494
Cc: Pratyush Anand <panand@redhat.com>
Signed-off-by: Yury Norov <ynorov@caviumnetworks.com>
[catalin.marinas@arm.com: comments changed or removed]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
With 16KB pages and a kernel Image larger than 16MB, the current
kaslr_early_init() logic for avoiding mappings across swapper table
boundaries fails since increasing the offset by kimg_sz just moves the
problem to the next boundary.
This patch rounds the offset down to (1 << SWAPPER_TABLE_SHIFT) if the
Image crosses a PMD_SIZE boundary.
Fixes: afd0e5a876 ("arm64: kaslr: Fix up the kernel image alignment")
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Neeraj Upadhyay <neeraju@codeaurora.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
In the KASLR setup routine, we ensure that the early virtual mapping
of the kernel image does not cover more than a single table entry at
the level above the swapper block level, so that the assembler routines
involved in setting up this mapping can remain simple.
In this calculation we add the proposed KASLR offset to the values of
the _text and _end markers, and reject it if they would end up falling
in different swapper table sized windows.
However, when taking the addresses of _text and _end, the modulo offset
(the physical displacement modulo 2 MB) is already accounted for, and
so adding it again results in incorrect results. So disregard the modulo
offset from the calculation.
Fixes: 08cdac619c ("arm64: relocatable: deal with physically misaligned ...")
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
There are some tricky dependencies between the different stages of
flushing the FPSIMD register state during exec, and these can race
with context switch in ways that can cause the old task's regs to
leak across. In particular, a context switch during the memset() can
cause some of the task's old FPSIMD registers to reappear.
Disabling preemption for this small window would be no big deal for
performance: preemption is already disabled for similar scenarios
like updating the FPSIMD registers in sigreturn.
So, instead of rearranging things in ways that might swap existing
subtle bugs for new ones, this patch just disables preemption
around the FPSIMD state flushing so that races of this type can't
occur here. This brings fpsimd_flush_thread() into line with other
code paths.
Cc: stable@vger.kernel.org
Fixes: 674c242c93 ("arm64: flush FP/SIMD state correctly after execve()")
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Currently mm->context.flags field uses thread_info flags which is not
the best idea for many reasons. For example, mm_context_t doesn't need
most of thread_info flags. And it would be difficult to add new mm-related
flag if needed because it may easily interfere with TIF ones.
To deal with it, the new MMCF_AARCH32 flag is introduced for
mm_context_t->flags, where MMCF prefix stands for mm_context_t flags.
Also, mm_context_t flag doesn't require atomicity and ordering of the
access, so using set/clear_bit() is replaced with simple masks.
Signed-off-by: Yury Norov <ynorov@caviumnetworks.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Commit 0ee5941 : (x86/panic: replace smp_send_stop() with kdump friendly
version in panic path) introduced crash_smp_send_stop() which is a weak
function and can be overridden by architecture codes to fix the side effect
caused by commit f06e515 : (kernel/panic.c: add "crash_kexec_post_
notifiers" option).
ARM64 architecture uses the weak version function and the problem is that
the weak function simply calls smp_send_stop() which makes other CPUs
offline and takes away the chance to save crash information for nonpanic
CPUs in machine_crash_shutdown() when crash_kexec_post_notifiers kernel
option is enabled.
Calling smp_send_crash_stop() in machine_crash_shutdown() is useless
because all nonpanic CPUs are already offline by smp_send_stop() in this
case and smp_send_crash_stop() only works against online CPUs.
The result is that secondary CPUs registers are not saved by
crash_save_cpu() and the vmcore file misreports these CPUs as being
offline.
crash_smp_send_stop() is implemented to fix this problem by replacing the
existing smp_send_crash_stop() and adding a check for multiple calling to
the function. The function (strong symbol version) saves crash information
for nonpanic CPUs and machine_crash_shutdown() tries to save crash
information for nonpanic CPUs only when crash_kexec_post_notifiers kernel
option is disabled.
* crash_kexec_post_notifiers : false
panic()
__crash_kexec()
machine_crash_shutdown()
crash_smp_send_stop() <= save crash dump for nonpanic cores
* crash_kexec_post_notifiers : true
panic()
crash_smp_send_stop() <= save crash dump for nonpanic cores
__crash_kexec()
machine_crash_shutdown()
crash_smp_send_stop() <= just return.
Signed-off-by: Hoeun Ryu <hoeun.ryu@gmail.com>
Reviewed-by: James Morse <james.morse@arm.com>
Tested-by: James Morse <james.morse@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Currently PTE_RDONLY is treated as a hardware only bit and not handled
by the pte_mkwrite(), pte_wrprotect() or the user PAGE_* definitions.
The set_pte_at() function is responsible for setting this bit based on
the write permission or dirty state. This patch moves the PTE_RDONLY
handling out of set_pte_at into the pte_mkwrite()/pte_wrprotect()
functions. The PAGE_* definitions to need to be updated to explicitly
include PTE_RDONLY when !PTE_WRITE.
The patch also removes the redundant PAGE_COPY(_EXEC) definitions as
they are identical to the corresponding PAGE_READONLY(_EXEC).
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
* 'for-next/perf' of git://git.kernel.org/pub/scm/linux/kernel/git/will/linux:
arm64: perf: add support for Cortex-A35
arm64: perf: add support for Cortex-A73
arm64: perf: Remove redundant entries from CPU-specific event maps
arm64: perf: Connect additional events to pmu counters
arm64: perf: Allow standard PMUv3 events to be extended by the CPU type
perf: xgene: Remove unnecessary managed resources cleanup
arm64: perf: Allow more than one cycle counter to be used
The percpu variables efi_fpsimd_state and efi_fpsimd_state_used,
used by the FPSIMD save/restore routines for EFI calls, are
unintentionally global.
There's no reason for anything outside fpsimd.c to touch these, so
this patch makes them static (as they should have been in the first
place).
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Implement MEMBARRIER_CMD_PRIVATE_EXPEDITED with IPIs using cpumask built
from all runqueues for which current thread's mm is the same as the
thread calling sys_membarrier. It executes faster than the non-expedited
variant (no blocking). It also works on NOHZ_FULL configurations.
Scheduler-wise, it requires a memory barrier before and after context
switching between processes (which have different mm). The memory
barrier before context switch is already present. For the barrier after
context switch:
* Our TSO archs can do RELEASE without being a full barrier. Look at
x86 spin_unlock() being a regular STORE for example. But for those
archs, all atomics imply smp_mb and all of them have atomic ops in
switch_mm() for mm_cpumask(), and on x86 the CR3 load acts as a full
barrier.
* From all weakly ordered machines, only ARM64 and PPC can do RELEASE,
the rest does indeed do smp_mb(), so there the spin_unlock() is a full
barrier and we're good.
* ARM64 has a very heavy barrier in switch_to(), which suffices.
* PPC just removed its barrier from switch_to(), but appears to be
talking about adding something to switch_mm(). So add a
smp_mb__after_unlock_lock() for now, until this is settled on the PPC
side.
Changes since v3:
- Properly document the memory barriers provided by each architecture.
Changes since v2:
- Address comments from Peter Zijlstra,
- Add smp_mb__after_unlock_lock() after finish_lock_switch() in
finish_task_switch() to add the memory barrier we need after storing
to rq->curr. This is much simpler than the previous approach relying
on atomic_dec_and_test() in mmdrop(), which actually added a memory
barrier in the common case of switching between userspace processes.
- Return -EINVAL when MEMBARRIER_CMD_SHARED is used on a nohz_full
kernel, rather than having the whole membarrier system call returning
-ENOSYS. Indeed, CMD_PRIVATE_EXPEDITED is compatible with nohz_full.
Adapt the CMD_QUERY mask accordingly.
Changes since v1:
- move membarrier code under kernel/sched/ because it uses the
scheduler runqueue,
- only add the barrier when we switch from a kernel thread. The case
where we switch from a user-space thread is already handled by
the atomic_dec_and_test() in mmdrop().
- add a comment to mmdrop() documenting the requirement on the implicit
memory barrier.
CC: Peter Zijlstra <peterz@infradead.org>
CC: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
CC: Boqun Feng <boqun.feng@gmail.com>
CC: Andrew Hunter <ahh@google.com>
CC: Maged Michael <maged.michael@gmail.com>
CC: gromer@google.com
CC: Avi Kivity <avi@scylladb.com>
CC: Benjamin Herrenschmidt <benh@kernel.crashing.org>
CC: Paul Mackerras <paulus@samba.org>
CC: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Dave Watson <davejwatson@fb.com>
Both unwind_frame() and dump_backtrace() try to check whether a stack
address is sane to access, with very similar logic. Both will need
updating in order to handle overflow stacks.
Factor out this logic into a helper, so that we can avoid further
duplication when we add overflow stacks.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
This patch enables arm64 to be built with vmap'd task and IRQ stacks.
As vmap'd stacks are mapped at page granularity, stacks must be a multiple of
PAGE_SIZE. This means that a 64K page kernel must use stacks of at least 64K in
size.
To minimize the increase in Image size, IRQ stacks are dynamically allocated at
boot time, rather than embedding the boot CPU's IRQ stack in the kernel image.
This patch was co-authored by Ard Biesheuvel and Mark Rutland.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
We allocate our IRQ stacks using a percpu array. This allows us to generate our
IRQ stack pointers with adr_this_cpu, but bloats the kernel Image with the boot
CPU's IRQ stack. Additionally, these are packed with other percpu variables,
and aren't guaranteed to have guard pages.
When we enable VMAP_STACK we'll want to vmap our IRQ stacks also, in order to
provide guard pages and to permit more stringent alignment requirements. Doing
so will require that we use a percpu pointer to each IRQ stack, rather than
allocating a percpu IRQ stack in the kernel image.
This patch updates our IRQ stack code to use a percpu pointer to the base of
each IRQ stack. This will allow us to change the way the stack is allocated
with minimal changes elsewhere. In some cases we may try to backtrace before
the IRQ stack pointers are initialised, so on_irq_stack() is updated to account
for this.
In testing with cyclictest, there was no measureable difference between using
adr_this_cpu (for irq_stack) and ldr_this_cpu (for irq_stack_ptr) in the IRQ
entry path.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
In subsequent patches, we will detect stack overflow in our exception
entry code, by verifying the SP after it has been decremented to make
space for the exception regs.
This verification code is small, and we can minimize its impact by
placing it directly in the vectors. To avoid redundant modification of
the SP, we also need to move the initial decrement of the SP into the
vectors.
As a preparatory step, this patch introduces kernel_ventry, which
performs this decrement, and updates the entry code accordingly.
Subsequent patches will fold SP verification into kernel_ventry.
There should be no functional change as a result of this patch.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
[Mark: turn into prep patch, expand commit msg]
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Currently we define SEGMENT_ALIGN directly in our vmlinux.lds.S.
This is unfortunate, as the EFI stub currently open-codes the same
number, and in future we'll want to fiddle with this.
This patch moves the definition to our <asm/memory.h>, where it can be
used by both vmlinux.lds.S and the EFI stub code.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Before we add yet another stack to the kernel, it would be nice to
ensure that we consistently organise stack definitions and related
helper functions.
This patch moves the basic IRQ stack defintions to <asm/memory.h> to
live with their task stack counterparts. Helpers used for unwinding are
moved into <asm/stacktrace.h>, where subsequent patches will add helpers
for other stacks. Includes are fixed up accordingly.
This patch is a pure refactoring -- there should be no functional
changes as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
For historical reasons, we leave the top 16 bytes of our task and IRQ
stacks unused, a practice used to ensure that the SP can always be
masked to find the base of the current stack (historically, where
thread_info could be found).
However, this is not necessary, as:
* When an exception is taken from a task stack, we decrement the SP by
S_FRAME_SIZE and stash the exception registers before we compare the
SP against the task stack. In such cases, the SP must be at least
S_FRAME_SIZE below the limit, and can be safely masked to determine
whether the task stack is in use.
* When transitioning to an IRQ stack, we'll place a dummy frame onto the
IRQ stack before enabling asynchronous exceptions, or executing code
we expect to trigger faults. Thus, if an exception is taken from the
IRQ stack, the SP must be at least 16 bytes below the limit.
* We no longer mask the SP to find the thread_info, which is now found
via sp_el0. Note that historically, the offset was critical to ensure
that cpu_switch_to() found the correct stack for new threads that
hadn't yet executed ret_from_fork().
Given that, this initial offset serves no purpose, and can be removed.
This brings us in-line with other architectures (e.g. x86) which do not
rely on this masking.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
[Mark: rebase, kill THREAD_START_SP, commit msg additions]
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Our __die() implementation tries to dump the stack memory, in addition
to a backtrace, which is problematic.
For contemporary 16K stacks, this can be a lot of data, which can take a
long time to dump, and can push other useful context out of the kernel's
printk ringbuffer (and/or a user's scrollback buffer on an attached
console).
Additionally, the code implicitly assumes that the SP is on the task's
stack, and tries to dump everything between the SP and the highest task
stack address. When the SP points at an IRQ stack (or is corrupted),
this makes the kernel attempt to dump vast amounts of VA space. With
vmap'd stacks, this may result in erroneous accesses to peripherals.
This patch removes the memory dump, leaving us to rely on the backtrace,
and other means of dumping stack memory such as kdump.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
The Cortex-A35 uses some implementation defined perf events.
The Cortex-A35 derives from the Cortex-A53 core, using the same event mapings
based on Cortex-A35 TRM r0p2, section C2.3 - Performance monitoring events
(pages C2-562 to C2-565).
Signed-off-by: Julien Thierry <julien.thierry@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The Cortex-A73 uses some implementation defined perf events.
This patch sets up the necessary mapping for Cortex-A73.
Mappings are based on Cortex-A73 TRM r0p2, section 11.9 Events
(pages 11-457 to 11-460).
Signed-off-by: Julien Thierry <julien.thierry@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Now that the event mapping code always looks into the PMUv3 events
before any extended mappings, the extended mappings can be reduced to
only those events that are not discoverable through the PMCEID registers.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Last level caches and node events were almost never connected in current
supported cores.
We connect last level caches to the actual last level within the core and
node events are connected to bus accesses.
Signed-off-by: Julien Thierry <julien.thierry@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The unwind code sets the sp member of struct stackframe to
'frame pointer + 0x10' unconditionally, without regard for whether
doing so produces a legal value. So let's simply remove it now that
we have stopped using it anyway.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
As it turns out, the unwind code is slightly broken, and probably has
been for a while. The problem is in the dumping of the exception stack,
which is intended to dump the contents of the pt_regs struct at each
level in the call stack where an exception was taken and routed to a
routine marked as __exception (which means its stack frame is right
below the pt_regs struct on the stack).
'Right below the pt_regs struct' is ill defined, though: the unwind
code assigns 'frame pointer + 0x10' to the .sp member of the stackframe
struct at each level, and dump_backtrace() happily dereferences that as
the pt_regs pointer when encountering an __exception routine. However,
the actual size of the stack frame created by this routine (which could
be one of many __exception routines we have in the kernel) is not known,
and so frame.sp is pretty useless to figure out where struct pt_regs
really is.
So it seems the only way to ensure that we can find our struct pt_regs
when walking the stack frames is to put it at a known fixed offset of
the stack frame pointer that is passed to such __exception routines.
The simplest way to do that is to put it inside pt_regs itself, which is
the main change implemented by this patch. As a bonus, doing this allows
us to get rid of a fair amount of cruft related to walking from one stack
to the other, which is especially nice since we intend to introduce yet
another stack for overflow handling once we add support for vmapped
stacks. It also fixes an inconsistency where we only add a stack frame
pointing to ELR_EL1 if we are executing from the IRQ stack but not when
we are executing from the task stack.
To consistly identify exceptions regs even in the presence of exceptions
taken from entry code, we must check whether the next frame was created
by entry text, rather than whether the current frame was crated by
exception text.
To avoid backtracing using PCs that fall in the idmap, or are controlled
by userspace, we must explcitly zero the FP and LR in startup paths, and
must ensure that the frame embedded in pt_regs is zeroed upon entry from
EL0. To avoid these NULL entries showin in the backtrace, unwind_frame()
is updated to avoid them.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
[Mark: compare current frame against .entry.text, avoid bogus PCs]
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
vDSO VMA address is saved in mm_context for the purpose of using
restorer from vDSO page to return to userspace after signal handling.
In Checkpoint Restore in Userspace (CRIU) project we place vDSO VMA
on restore back to the place where it was on the dump.
With the exception for x86 (where there is API to map vDSO with
arch_prctl()), we move vDSO inherited from CRIU task to restoree
position by mremap().
CRIU does support arm64 architecture, but kernel doesn't update
context.vdso pointer after mremap(). Which results in translation
fault after signal handling on restored application:
https://github.com/xemul/criu/issues/288
Make vDSO code track the VMA address by supplying .mremap() fops
the same way it's done for x86 and arm32 by:
commit b059a453b1 ("x86/vdso: Add mremap hook to vm_special_mapping")
commit 280e87e98c ("ARM: 8683/1: ARM32: Support mremap() for sigpage/vDSO").
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: linux-arm-kernel@lists.infradead.org
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Pavel Emelyanov <xemul@virtuozzo.com>
Cc: Christopher Covington <cov@codeaurora.org>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Dmitry Safonov <dsafonov@virtuozzo.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Add a clean-to-point-of-persistence cache maintenance helper, and wire
up the basic architectural support for the pmem driver based on it.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
[catalin.marinas@arm.com: move arch_*_pmem() functions to arch/arm64/mm/flush.c]
[catalin.marinas@arm.com: change dmb(sy) to dmb(osh)]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cache clean to PoP is subject to the same access controls as to PoC, so
if we are trapping userspace cache maintenance with SCTLR_EL1.UCI, we
need to be prepared to handle it. To avoid getting into complicated
fights with binutils about ARMv8.2 options, we'll just cheat and use the
raw SYS instruction rather than the 'proper' DC alias.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The ARMv8.2-DCPoP feature introduces persistent memory support to the
architecture, by defining a point of persistence in the memory
hierarchy, and a corresponding cache maintenance operation, DC CVAP.
Expose the support via HWCAP and MRS emulation.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
__inval_cache_range() is already the odd one out among our data cache
maintenance routines as the only remaining range-based one; as we're
going to want an invalidation routine to call from C code for the pmem
API, let's tweak the prototype and name to bring it in line with the
clean operations, and to make its relationship with __dma_inv_area()
neatly mirror that of __clean_dcache_area_poc() and __dma_clean_area().
The loop clearing the early page tables gets mildly massaged in the
process for the sake of consistency.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Rather than continue adding CPU-specific event maps, instead look up by
default in the PMUv3 event map and only fallback to the CPU-specific maps
if either the event isn't described by PMUv3, or it is described but
the PMCEID registers say that it is unsupported by the current CPU.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Currently, when unwinding the call stack, we validate the frame pointer
of each frame against frame.sp, whose value is not clearly defined, and
which makes it more difficult to link stack frames together across
different stacks. It is far better to simply check whether the frame
pointer itself points into a valid stack.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Our IRQ_STACK_PTR() and on_irq_stack() helpers both take a cpu argument,
used to generate a percpu address. In all cases, they are passed
{raw_,}smp_processor_id(), so this parameter is redundant.
Since {raw_,}smp_processor_id() use a percpu variable internally, this
approach means we generate a percpu offset to find the current cpu, then
use this to index an array of percpu offsets, which we then use to find
the current CPU's IRQ stack pointer. Thus, most of the work is
redundant.
Instead, we can consistently use raw_cpu_ptr() to generate the CPU's
irq_stack pointer by simply adding the percpu offset to the irq_stack
address, which is simpler in both respects.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Currently, cpu_switch_to and ret_from_fork both live in .entry.text,
though neither form the critical path for an exception entry.
In subsequent patches, we will require that code in .entry.text is part
of the critical path for exception entry, for which we can assume
certain properties (e.g. the presence of exception regs on the stack).
Neither cpu_switch_to nor ret_from_fork will meet these requirements, so
we must move them out of .entry.text. To ensure that neither are kprobed
after being moved out of .entry.text, we must explicitly blacklist them,
requiring a new NOKPROBE() asm helper.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
In most cases, our exception entry assembly branches to C handlers with
a BL instruction, but in cases where we do not expect to return, we use
B instead.
While this is correct today, it means that backtraces for fatal
exceptions miss the entry assembly (as the LR is stale at the point we
call C code), while non-fatal exceptions have the entry assembly in the
LR. In subsequent patches, we will need the LR to be set in these cases
in order to backtrace reliably.
This patch updates these sites to use a BL, ensuring consistency, and
preparing for backtrace rework. An ASM_BUG() is added after each of
these new BLs, which both catches unexpected returns, and ensures that
the LR value doesn't point to another function label.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Currently:
$ perf stat -e cycles:u -e cycles:k true
Performance counter stats for 'true':
2,24,699 cycles:u
<not counted> cycles:k (0.00%)
0.000788087 seconds time elapsed
We can not count more than one cycle counter in one instance,because we
allow to map cycle counter into PMCCNTR_EL0 only. However, if I did not
miss anything then specification do not prohibit to use PMEVCNTR<n>_EL0
for cycle count as well.
Modify the code so that it still prefers to use PMCCNTR_EL0 for cycle
counter, however allow to use PMEVCNTR<n>_EL0 if PMCCNTR_EL0 is already
in use.
After this patch:
$ perf stat -e cycles:u -e cycles:k true
Performance counter stats for 'true':
2,17,310 cycles:u
7,40,009 cycles:k
0.000764149 seconds time elapsed
Signed-off-by: Pratyush Anand <panand@redhat.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>