Range breakpoints will do the wrong thing if the address isn't
aligned. While we're there, add comments about why it's safe for
instruction breakpoints.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/ae25d14d61f2f43b78e0a247e469f3072df7e201.1438312874.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Code on the kprobe blacklist doesn't want unexpected int3
exceptions. It probably doesn't want unexpected debug exceptions
either. Be safe: disallow breakpoints in nokprobes code.
On non-CONFIG_KPROBES kernels, there is no kprobe blacklist. In
that case, disallow kernel breakpoints entirely.
It will be particularly important to keep hw breakpoints out of the
entry and NMI code once we move debug exceptions off the IST stack.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/e14b152af99640448d895e3c2a8c2d5ee19a1325.1438312874.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
AVG_LATENCY(bit 38) is only available on MSR_OFFCORE_RSP0.
So the bit should be removed from RSP1 valid_mask.
Since RSP0 and RSP1 may have different valid_mask, intel_alt_er should
validate the config on the alternate offcore reg before replacing it.
Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1435170215-5017-1-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The x86_lbr_exclusive commit (4807034248 "perf/x86: Mark Intel PT and
LBR/BTS as mutually exclusive") mistakenly moved intel_pmu_needs_lbr_smpl()
to perf_event.h, while another commit (a46a230001 "perf: Simplify the
branch stack check") removed it in favor of needs_branch_stack().
This patch gets rid of intel_pmu_needs_lbr_smpl() for good.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: acme@infradead.org
Cc: adrian.hunter@intel.com
Cc: hpa@zytor.com
Link: http://lkml.kernel.org/r/1435140349-32588-3-git-send-email-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Both intel_pmu_enable_bts() and intel_pmu_disable_bts() are in perf_event.h
header file, no need to have them declared again in the driver.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: acme@infradead.org
Cc: adrian.hunter@intel.com
Cc: hpa@zytor.com
Link: http://lkml.kernel.org/r/1435140349-32588-2-git-send-email-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Haswell and Broadwell have the same uncore CBOX/ARB PMU as Sandy Bridge.
Add the respective model numbers to enable the SNB uncore PMU.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: eranian@google.com
Cc: kan.liang@intel.com
Link: http://lkml.kernel.org/r/1434347862-28490-2-git-send-email-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add a new "ARB" uncore PMU that is used to monitor the uncore queue
arbiter. This is useful to measure uncore queue occupancy and similar
statistics. The registers all have the same format as the
existing CBOX PMU.
Also move the event constraints from the CBOX to ARB. The 0x80+
events are ARB events and cannot be scheduled on a CBOX PMU.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: eranian@google.com
Cc: kan.liang@intel.com
Link: http://lkml.kernel.org/r/1434347862-28490-1-git-send-email-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The DEFINE_PCI_DEVICE_TABLE() macro is deprecated. Use
'struct pci_device_id' instead of DEFINE_PCI_DEVICE_TABLE(),
with the goal of getting rid of this macro completely.
This Coccinelle semantic patch performs this transformation:
@@
identifier a;
declarer name DEFINE_PCI_DEVICE_TABLE;
initializer i;
@@
- DEFINE_PCI_DEVICE_TABLE(a)
+ const struct pci_device_id a[] = i;
Signed-off-by: Vaishali Thakkar <vthakkar1994@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20150717052759.GA6265@vaishali-Ideapad-Z570
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Knights Landing DRAM RAPL supports PKG and DRAM RAPL domains.
DRAM RAPL has a different fixed energy unit (2^-16J) similar to
that of HSW.
Signed-off-by: Dasaratharaman Chandramouli <dasaratharaman.chandramouli@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Stephane Eranian <eranian@google.com>
Acked-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jacob Pan Jun <jacob.jun.pan@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nikhil Rao <nikhil.rao@intel.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/aa63b4a3af3160152fea1a10c807f4200527280c.1432665809.git.dasaratharaman.chandramouli@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The previous change documents that cleanup_return_instances()
can't always detect the dead frames, the stack can grow. But
there is one special case which imho worth fixing:
arch_uretprobe_is_alive() can return true when the stack didn't
actually grow, but the next "call" insn uses the already
invalidated frame.
Test-case:
#include <stdio.h>
#include <setjmp.h>
jmp_buf jmp;
int nr = 1024;
void func_2(void)
{
if (--nr == 0)
return;
longjmp(jmp, 1);
}
void func_1(void)
{
setjmp(jmp);
func_2();
}
int main(void)
{
func_1();
return 0;
}
If you ret-probe func_1() and func_2() prepare_uretprobe() hits
the MAX_URETPROBE_DEPTH limit and "return" from func_2() is not
reported.
When we know that the new call is not chained, we can do the
more strict check. In this case "sp" points to the new ret-addr,
so every frame which uses the same "sp" must be dead. The only
complication is that arch_uretprobe_is_alive() needs to know was
it chained or not, so we add the new RP_CHECK_CHAIN_CALL enum
and change prepare_uretprobe() to pass RP_CHECK_CALL only if
!chained.
Note: arch_uretprobe_is_alive() could also re-read *sp and check
if this word is still trampoline_vaddr. This could obviously
improve the logic, but I would like to avoid another
copy_from_user() especially in the case when we can't avoid the
false "alive == T" positives.
Tested-by: Pratyush Anand <panand@redhat.com>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Acked-by: Anton Arapov <arapov@gmail.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20150721134028.GA4786@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
arch/x86 doesn't care (so far), but as Pratyush Anand pointed
out other architectures might want why arch_uretprobe_is_alive()
was called and use different checks depending on the context.
Add the new argument to distinguish 2 callers.
Tested-by: Pratyush Anand <panand@redhat.com>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Acked-by: Anton Arapov <arapov@gmail.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20150721134026.GA4779@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add the x86 specific version of arch_uretprobe_is_alive()
helper. It returns true if the stack frame mangled by
prepare_uretprobe() is still on stack. So if it returns false,
we know that the probed function has already returned.
We add the new return_instance->stack member and change the
generic code to initialize it in prepare_uretprobe, but it
should be equally useful for other architectures.
TODO: this assumes that the probed application can't use
multiple stacks (say sigaltstack). We will try to improve
this logic later.
Tested-by: Pratyush Anand <panand@redhat.com>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Acked-by: Anton Arapov <arapov@gmail.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20150721134018.GA4766@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull perf fix from Thomas Gleixner:
"A single fix for the intel cqm perf facility to prevent IPIs from
interrupt context"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/x86/intel/cqm: Return cached counter value from IRQ context
Complete the set of dependent features that need disabling at
once: XSAVEC, AVX-512 and all currently known to the kernel
extensions to it, as well as MPX need to be disabled too.
Signed-off-by: Jan Beulich <jbeulich@suse.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/55ACC40D0200007800092E6C@mail.emea.novell.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 fixes from Ingo Molnar:
"Two families of fixes:
- Fix an FPU context related boot crash on newer x86 hardware with
larger context sizes than what most people test. To fix this
without ugly kludges or extensive reverts we had to touch core task
allocator, to allow x86 to determine the task size dynamically, at
boot time.
I've tested it on a number of x86 platforms, and I cross-built it
to a handful of architectures:
(warns) (warns)
testing x86-64: -git: pass ( 0), -tip: pass ( 0)
testing x86-32: -git: pass ( 0), -tip: pass ( 0)
testing arm: -git: pass ( 1359), -tip: pass ( 1359)
testing cris: -git: pass ( 1031), -tip: pass ( 1031)
testing m32r: -git: pass ( 1135), -tip: pass ( 1135)
testing m68k: -git: pass ( 1471), -tip: pass ( 1471)
testing mips: -git: pass ( 1162), -tip: pass ( 1162)
testing mn10300: -git: pass ( 1058), -tip: pass ( 1058)
testing parisc: -git: pass ( 1846), -tip: pass ( 1846)
testing sparc: -git: pass ( 1185), -tip: pass ( 1185)
... so I hope the cross-arch impact 'none', as intended.
(by Dave Hansen)
- Fix various NMI handling related bugs unearthed by the big asm code
rewrite and generally make the NMI code more robust and more
maintainable while at it. These changes are a bit late in the
cycle, I hope they are still acceptable.
(by Andy Lutomirski)"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/fpu, sched: Introduce CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT and use it on x86
x86/fpu, sched: Dynamically allocate 'struct fpu'
x86/entry/64, x86/nmi/64: Add CONFIG_DEBUG_ENTRY NMI testing code
x86/nmi/64: Make the "NMI executing" variable more consistent
x86/nmi/64: Minor asm simplification
x86/nmi/64: Use DF to avoid userspace RSP confusing nested NMI detection
x86/nmi/64: Reorder nested NMI checks
x86/nmi/64: Improve nested NMI comments
x86/nmi/64: Switch stacks on userspace NMI entry
x86/nmi/64: Remove asm code that saves CR2
x86/nmi: Enable nested do_nmi() handling for 64-bit kernels
Don't burden architectures without dynamic task_struct sizing
with the overhead of dynamic sizing.
Also optimize the x86 code a bit by caching task_struct_size.
Acked-and-Tested-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1437128892-9831-3-git-send-email-mingo@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The FPU rewrite removed the dynamic allocations of 'struct fpu'.
But, this potentially wastes massive amounts of memory (2k per
task on systems that do not have AVX-512 for instance).
Instead of having a separate slab, this patch just appends the
space that we need to the 'task_struct' which we dynamically
allocate already. This saves from doing an extra slab
allocation at fork().
The only real downside here is that we have to stick everything
and the end of the task_struct. But, I think the
BUILD_BUG_ON()s I stuck in there should keep that from being too
fragile.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1437128892-9831-2-git-send-email-mingo@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
I found the nested NMI documentation to be difficult to follow.
Improve the comments.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
32-bit kernels handle nested NMIs in C. Enable the exact same
handling on 64-bit kernels as well. This isn't currently
necessary, but it will become necessary once the asm code starts
allowing limited nesting.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Boris reported that the sparse_irq protection around __cpu_up() in the
generic code causes a regression on Xen. Xen allocates interrupts and
some more in the xen_cpu_up() function, so it deadlocks on the
sparse_irq_lock.
There is no simple fix for this and we really should have the
protection for all architectures, but for now the only solution is to
move it to x86 where actual wreckage due to the lack of protection has
been observed.
Reported-and-tested-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Fixes: a899418167 'hotplug: Prevent alloc/free of irq descriptors during cpu up/down'
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: xiao jin <jin.xiao@intel.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Yanmin Zhang <yanmin_zhang@linux.intel.com>
Cc: xen-devel <xen-devel@lists.xenproject.org>
irq_data is protected by irq_desc->lock, so retrieving the irq chip
from irq_data outside the lock is racy vs. an concurrent update. Move
it into the lock held region.
While at it add a comment why the vector walk does not require
vector_lock.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: xiao jin <jin.xiao@intel.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Yanmin Zhang <yanmin_zhang@linux.intel.com>
Link: http://lkml.kernel.org/r/20150705171102.331320612@linutronix.de
It's unsafe to examine fields in the irq descriptor w/o holding the
descriptor lock. Add proper locking.
While at it add a comment why the vector check can run lock less
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: xiao jin <jin.xiao@intel.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Yanmin Zhang <yanmin_zhang@linux.intel.com>
Link: http://lkml.kernel.org/r/20150705171102.236544164@linutronix.de
Jin debugged a nasty cpu hotplug race which results in leaking a irq
vector on the newly hotplugged cpu.
cpu N cpu M
native_cpu_up device_shutdown
do_boot_cpu free_msi_irqs
start_secondary arch_teardown_msi_irqs
smp_callin default_teardown_msi_irqs
setup_vector_irq arch_teardown_msi_irq
__setup_vector_irq native_teardown_msi_irq
lock(vector_lock) destroy_irq
install vectors
unlock(vector_lock)
lock(vector_lock)
---> __clear_irq_vector
unlock(vector_lock)
lock(vector_lock)
set_cpu_online
unlock(vector_lock)
This leaves the irq vector(s) which are torn down on CPU M stale in
the vector array of CPU N, because CPU M does not see CPU N online
yet. There is a similar issue with concurrent newly setup interrupts.
The alloc/free protection of irq descriptors does not prevent the
above race, because it merily prevents interrupt descriptors from
going away or changing concurrently.
Prevent this by moving the call to setup_vector_irq() into the
vector_lock held region which protects set_cpu_online():
cpu N cpu M
native_cpu_up device_shutdown
do_boot_cpu free_msi_irqs
start_secondary arch_teardown_msi_irqs
smp_callin default_teardown_msi_irqs
lock(vector_lock) arch_teardown_msi_irq
setup_vector_irq()
__setup_vector_irq native_teardown_msi_irq
install vectors destroy_irq
set_cpu_online
unlock(vector_lock)
lock(vector_lock)
__clear_irq_vector
unlock(vector_lock)
So cpu M either sees the cpu N online before clearing the vector or
cpu N installs the vectors after cpu M has cleared it.
Reported-by: xiao jin <jin.xiao@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Yanmin Zhang <yanmin_zhang@linux.intel.com>
Link: http://lkml.kernel.org/r/20150705171102.141898931@linutronix.de
When I enable early_printk on a kernel, I cut and paste the
console= input and add to earlyprintk parameter. But I notice
recently that ktest has not been detecting triple faults. The
way it detects it, is by seeing the kernel banner "Linux version
.." with a different kernel version pop up. Then I noticed that
early printk was no longer working on my console, which was why
ktest was not seeing it.
I bisected it down and it was added to 4.0 with this commit:
ea9e9d8029 ("Specify PCI based UART for earlyprintk")
because it converted the simple_strtoul() that converts the baud
number into a kstrtoul(). The problem with this is, I had as my
baud rate, 115200n8 (acceptable for console=ttyS0), but because
of the "n8", the kstrtoul() doesn't parse the baud rate and
returns an error, which sets the baud rate to the default 9600.
This explains the garbage on my screen.
Now, earlyprintk= kernel parameter does not say it accepts that
format. Thus, one answer would simply be me changing my kernel
parameters to remove the "n8" since it isn't parsed anyway. But
I wonder if other people run into this, and it seems strange
that the two consoles for serial accepts different input.
I could also extend this to have earlyprintk do something with
that "n8" or whatever it has and have it match the console
parsing (which, BTW, still uses simple_strtoul(), as I guess it
has to).
This patch just makes my old kernel parameter parsing work like
it use to.
Although, simple_strtoull() is considered obsolete, it is the
only standard string parsing function that parses a number that
is attached to text. Ironically, commit ea9e9d8029 also added
several calls to simple_strtoul()!
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Alan Cox <alan@linux.intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: David Cohen <david.a.cohen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stuart R. Anderson <stuart.r.anderson@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20150706101434.5f6a351b@gandalf.local.home
[ Cleaned it up a bit. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As we alloc pages with GFP_KERNEL in init_espfix_ap() which is
called before we enable local irqs, so the lockdep sub-system
would (correctly) trigger a warning about the potentially
blocking API.
So we allocate them on the boot CPU side when the secondary CPU is
brought up by the boot CPU, and hand them over to the secondary
CPU.
And we use alloc_pages_node() with the secondary CPU's node, to
make sure the espfix stack is NUMA-local to the CPU that is
going to use it.
Signed-off-by: Zhu Guihua <zhugh.fnst@cn.fujitsu.com>
Cc: <bp@alien8.de>
Cc: <luto@amacapital.net>
Cc: <luto@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/c97add2670e9abebb90095369f0cfc172373ac94.1435824469.git.zhugh.fnst@cn.fujitsu.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add a CPU index parameter to init_espfix_ap(), so that the
parameter could be propagated to the function for espfix
page allocation.
Signed-off-by: Zhu Guihua <zhugh.fnst@cn.fujitsu.com>
Cc: <bp@alien8.de>
Cc: <luto@amacapital.net>
Cc: <luto@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/cde3fcf1b3211f3f03feb1a995bce3fee850f0fc.1435824469.git.zhugh.fnst@cn.fujitsu.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently KASAN shadow region page tables created without
respect of physical offset (phys_base). This causes kernel halt
when phys_base is not zero.
So let's initialize KASAN shadow region page tables in
kasan_early_init() using __pa_nodebug() which considers
phys_base.
This patch also separates x86_64_start_kernel() from KASAN low
level details by moving kasan_map_early_shadow(init_level4_pgt)
into kasan_early_init().
Remove the comment before clear_bss() which stopped bringing
much profit to the code readability. Otherwise describing all
the new order dependencies would be too verbose.
Signed-off-by: Alexander Popov <alpopov@ptsecurity.com>
Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Cc: <stable@vger.kernel.org> # 4.0+
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <adech.fo@gmail.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1435828178-10975-3-git-send-email-a.ryabinin@samsung.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently x86_64_start_kernel() has two KASAN related
function calls. The first call maps shadow to early_level4_pgt,
the second maps shadow to init_level4_pgt.
If we move clear_page(init_level4_pgt) earlier, we could hide
KASAN low level detail from generic x86_64 initialization code.
The next patch will do it.
Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Cc: <stable@vger.kernel.org> # 4.0+
Cc: Alexander Popov <alpopov@ptsecurity.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <adech.fo@gmail.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1435828178-10975-2-git-send-email-a.ryabinin@samsung.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If it takes longer than 12us to read the PIT counter lsb/msb,
then the error margin will never fall below 500ppm within 50ms,
and Fast TSC calibration will always fail.
This patch detects when that will happen and fails fast. Note
the failure message is not printed in that case because:
1. it will always happen on that class of hardware
2. the absence of the message is more informative than its
presence
Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Len Brown <lenb@kernel.org>
Cc: Andi Kleen <ak@linux.intel.com>
Link: http://lkml.kernel.org/r/556EB717.9070607@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Pull x86 fixes from Ingo Molnar:
"Two FPU rewrite related fixes. This addresses all known x86
regressions at this stage. Also some other misc fixes"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/fpu: Fix boot crash in the early FPU code
x86/asm/entry/64: Update path names
x86/fpu: Fix FPU related boot regression when CPUID masking BIOS feature is enabled
x86/boot/setup: Clean up the e820_reserve_setup_data() code
x86/kaslr: Fix typo in the KASLR_FLAG documentation
Pull perf updates from Ingo Molnar:
"This tree includes an x86 PMU scheduling fix, but most changes are
late breaking tooling fixes and updates:
User visible fixes:
- Create config.detected into OUTPUT directory, fixing parallel
builds sharing the same source directory (Aaro Kiskinen)
- Allow to specify custom linker command, fixing some MIPS64 builds.
(Aaro Kiskinen)
- Fix to show proper convergence stats in 'perf bench numa' (Srikar
Dronamraju)
User visible changes:
- Validate syscall list passed via -e argument to 'perf trace'.
(Arnaldo Carvalho de Melo)
- Introduce 'perf stat --per-thread' (Jiri Olsa)
- Check access permission for --kallsyms and --vmlinux (Li Zhang)
- Move toggling event logic from 'perf top' and into hists browser,
allowing freeze/unfreeze with event lists with more than one entry
(Namhyung Kim)
- Add missing newlines when dumping PERF_RECORD_FINISHED_ROUND and
showing the Aggregated stats in 'perf report -D' (Adrian Hunter)
Infrastructure fixes:
- Add missing break for PERF_RECORD_ITRACE_START, which caused those
events samples to be parsed as well as PERF_RECORD_LOST_SAMPLES.
ITRACE_START only appears when Intel PT or BTS are present, so..
(Jiri Olsa)
- Call the perf_session destructor when bailing out in the inject,
kmem, report, kvm and mem tools (Taeung Song)
Infrastructure changes:
- Move stuff out of 'perf stat' and into the lib for further use
(Jiri Olsa)
- Reference count the cpu_map and thread_map classes (Jiri Olsa)
- Set evsel->{cpus,threads} from the evlist, if not set, allowing the
generalization of some 'perf stat' functions that previously were
accessing private static evlist variable (Jiri Olsa)
- Delete an unnecessary check before the calling free_event_desc()
(Markus Elfring)
- Allow auxtrace data alignment (Adrian Hunter)
- Allow events with dot (Andi Kleen)
- Fix failure to 'perf probe' events on arm (He Kuang)
- Add testing for Makefile.perf (Jiri Olsa)
- Add test for make install with prefix (Jiri Olsa)
- Fix single target build dependency check (Jiri Olsa)
- Access thread_map entries via accessors, prep patch to hold more
info per entry, for ongoing 'perf stat --per-thread' work (Jiri
Olsa)
- Use __weak definition from compiler.h (Sukadev Bhattiprolu)
- Split perf_pmu__new_alias() (Sukadev Bhattiprolu)"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (54 commits)
perf tools: Allow to specify custom linker command
perf tools: Create config.detected into OUTPUT directory
perf mem: Fill in the missing session freeing after an error occurs
perf kvm: Fill in the missing session freeing after an error occurs
perf report: Fill in the missing session freeing after an error occurs
perf kmem: Fill in the missing session freeing after an error occurs
perf inject: Fill in the missing session freeing after an error occurs
perf tools: Add missing break for PERF_RECORD_ITRACE_START
perf/x86: Fix 'active_events' imbalance
perf symbols: Check access permission when reading symbol files
perf stat: Introduce --per-thread option
perf stat: Introduce print_counters function
perf stat: Using init_stats instead of memset
perf stat: Rename print_interval to process_interval
perf stat: Remove perf_evsel__read_cb function
perf stat: Move perf_stat initialization counter process code
perf stat: Move zero_per_pkg into counter process code
perf stat: Separate counters reading and processing
perf stat: Introduce read_counters function
perf stat: Introduce perf_evsel__read function
...
Jan Kara and Thomas Gleixner reported boot crashes in the FPU
code:
general protection fault: 0000 [#1] SMP
RIP: 0010:[<ffffffff81048a6c>] [<ffffffff81048a6c>] mxcsr_feature_mask_init+0x1c/0x40
2b:* 0f ae 85 00 fe ff ff fxsave -0x200(%rbp)
and bisected it down to the following FPU commit:
91a8c2a5b4 ("x86/fpu: Clean up and fix MXCSR handling")
The reason is that the on-stack FPU registers state variable,
used by the FXSAVE instruction, did not have the required
minimum alignment of 16 bytes, causing the general protection
fault.
This is most likely a GCC bug in older GCC versions, but the
offending commit also added a bogus extra 32-byte alignment
(which GCC ignored too).
So fix this bug by making the variable static again, but also
mark it __initdata this time, because fpu__init_system_mxcsr()
is now an __init function.
Reported-and-bisected-by: Jan Kara <jack@suse.cz>
Reported-bisected-and-tested-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20150704075819.GA9201@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJVkPNDAAoJEOvOhAQsB9HWTNwP/1xtv8s2f7dY1JOV9T3oad7K
FJYOnFRu1CbXqtOGgJQlsY5eUc3liC+UEkqMFmvX008GIoIGi/aq1alzM4ySlu45
c8QttAS9aFFHwsNQUFA8rNN2Lz1xmhKi3ovc/+BBN9stgX0W0fJHX8A7TYtBsVFa
YqfkNP/4XGH+Taz4B7Id6Mv3RJfB+9TWMlHJ4oKl1NhT+fU+Ce2888K7y5llHGIz
Y9yDt7hMUv/7ysOpiHbvSKy3XnitTNx9JbN8CDQV22krpgsU1k0nYloxOVj5K0h0
vxcjpQ1Wmjlc7RO826tciMi3ZD880GK5n8NHuI87d/N/egXRP0Tsy1iy9eGK0R7i
udXR2y4RP5gD7SPuMJCUCrBTxkfp+rxQ775Keo/R9r4v/KzpKX6e0LcEDjiLsk88
5UHUZNdPgXxw85O354QwX05jAucPIs6Eq8PR324F+R+FU8x5EI6GWtFts0K4YI7j
ebsgaQR/aqvRlr859iJBFGBwEu0YWcbkVb6kKdMSjE4x0a3YxhFe6aXXll0g+iIZ
wGR54nRpBUUvh+qqlrSFTc3VA4f1KPdhylcfEmfSH2iNjARvDR61vzkLW1Nt6u0I
aM6ZYcfbGhGHt+pycqe6LAydS3qRyWDA6QTu6+TFZid/Ay6NBEI+Ubbx+eLNf8vr
+trFtqFvEfIMuT1BvOXo
=TR34
-----END PGP SIGNATURE-----
Merge tag 'module-misc-v4.1-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux
Pull init.h/module.h fragility fixes from Paul Gortmaker:
"Fixup various init.h misuses that are fragile wrt code moving to
module.h
What started as a removal of no longer required include <linux/init.h>
due to the earlier __cpuinit and __devinit removal led to the
observation that some module specfic support was living in init.h
itself, thus preventing the full removal from introducing compile
regressions.
This series includes a few final fixups needed prior to the relocation
of the modular init code from <init.h> to <module.h>. These are
things that weren't easily categorized into any of the other previous
series categories already requested for pull.
That said, each fixup branch (including this one) is independent and
there are no ordering constraints. Only the final code relocation
(which is NOT in this pull) requires that all my cleanup branches be
merged first"
* tag 'module-misc-v4.1-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux:
tile: add init.h to usb.c to avoid compile failure
arm: fix implicit #include <linux/init.h> in entry asm.
x86: replace __init_or_module with __init in non-modular vsmp_64.c
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJVkO6nAAoJEOvOhAQsB9HWpHMP/Aknc+lmX2dZeIn96gdkP+UK
1qL24C5oq2sm/9yTZLdoXbyApLaaTbAJHS9O4kolaOU6uOs3JrgtXqL1697PVp1R
qV4f4DOzXmmEHaE2oO21afAri3tXIVQNqA2NQl2TmKfwz0Atu01Vj5RJPu/ZOBPl
dONXcFnE6nO2p7AEFRP/GfDZwkng4xALyZPhwL7tJDAeGaBpqG/n2hCuq+Szn9g8
wjTFACBdad/mRrYsL6YsWZ1e+LKI8vsArQbdPTam+jPaEUlK7yjFReFKCJVzL2JP
xfQoTcCgFztzTUV0JTGR9sqeYA3WH9AkJOFDxNE/eIili4xiTh789WbEpHLVECSX
1LsW025I3DkRWBPT4L+9ZP805ha71kNXDFc5N3XJkzrCYaFvD2BgsUzxi6FXj7aC
9lEVKt6xO04FFG5SwTKnO0f8PEhPemZH3BDnVvjBDWQYLjUcPSNz7bfyHUhif0G5
ulOGVB0ncJJF9iP8PyZs1RA/F8kKxXWnhYMIHzvl0f0vLUA7rAKsACnhBgq8s9ZQ
uM5YjzU91Z/4pe5C2E5MmQIZ84b79ZPsee1lF0GJdjK5W3PDvnCjIdXfQ5M/f3S8
76cssXWNhS78/P+19YqirLeb0u7Zw0jf73m9t9ywRgcByWfY5ZUDm0DFpQnWKkoR
QY/aFO/yHKTO3VHj8Ril
=KDJO
-----END PGP SIGNATURE-----
Merge tag 'module_init-alternate_initcall-v4.1-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux
Pull module_init replacement part two from Paul Gortmaker:
"Replace module_init with appropriate alternate initcall in non
modules.
This series converts non-modular code that is using the module_init()
call to hook itself into the system to instead use one of our
alternate priority initcalls.
Unlike the previous series that used device_initcall and hence was a
runtime no-op, these commits change to one of the alternate initcalls,
because (a) we have them and (b) it seems like the right thing to do.
For example, it would seem logical to use arch_initcall for arch
specific setup code and fs_initcall for filesystem setup code.
This does mean however, that changes in the init ordering will be
taking place, and so there is a small risk that some kind of implicit
init ordering issue may lie uncovered. But I think it is still better
to give these ones sensible priorities than to just assign them all to
device_initcall in order to exactly preserve the old ordering.
Thad said, we have already made similar changes in core kernel code in
commit c96d6660dc ("kernel: audit/fix non-modular users of
module_init in core code") without any regressions reported, so this
type of change isn't without precedent. It has also got the same
local testing and linux-next coverage as all the other pull requests
that I'm sending for this merge window have got.
Once again, there is an unused module_exit function removal that shows
up as an outlier upon casual inspection of the diffstat"
* tag 'module_init-alternate_initcall-v4.1-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux:
x86: perf_event_intel_pt.c: use arch_initcall to hook in enabling
x86: perf_event_intel_bts.c: use arch_initcall to hook in enabling
mm/page_owner.c: use late_initcall to hook in enabling
lib/list_sort: use late_initcall to hook in self tests
arm: use subsys_initcall in non-modular pl320 IPC code
powerpc: don't use module_init for non-modular core hugetlb code
powerpc: use subsys_initcall for Freescale Local Bus
x86: don't use module_init for non-modular core bootflag code
netfilter: don't use module_init/exit in core IPV4 code
fs/notify: don't use module_init for non-modular inotify_user code
mm: replace module_init usages with subsys_initcall in nommu.c
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJVkO5XAAoJEOvOhAQsB9HWe4cQAJcsmSXIDN2O6oxvgH8Wilof
EIEMvT13uwBdsjQdYUY6A6B3iUV9wzEEgoosg/JRgpz5/b1FTDMIO4arUPD3Lcak
5bmyVO2qAT+yaLAWSgn6I8DMplXrKiEuK+TkH/mW3p9TdvElLdG3Vg6UI407hSWv
W0QbVwkNtv8XmzshV9F2YdmflT8j1PgYxIu/tEkVOWn37DNW+Fp2OVBrdTIYp3AJ
X6bYZPEcQDCrWWW/s2GmIDrNgryiebasns+CAgGY21262jAYaRcFOJmR47AsTqW7
DSZXIlLc/gJca++hfxqV15RZ4NRHxrebCypTsPtZUV7ZiYHI726eeUZzxsp/9itu
mvhmi+aQUTTUP3dDhiv05f4syAKEb4zslT6SLwcna6oi09M97HfCeQsHqhcFq/MG
KnS2JJoJQToQtJvMUXMQzp5hyHjNlOclIvCxEiL32EZU54PeJOKasy/mptNGEctk
TxACWvoXBQglRaVN+1wIjjr0BaHJSuJa9CUnIfM4WZdSHiMQMx00XLTkZcTnSM6R
12pE54vVolrXswGPJhy4W/Sf1yPSW1tkWSVBbkKLyCIrlAWJtu68rXhvwhG/nz6E
3g6QrDEQGlk6bzUH4CJCEqXLPRN1bNS0XjdkEFh60Lury3Ns5yHKZXPW5vCQ5csr
FQNUyBs595CWbJNfbn1n
=0BDx
-----END PGP SIGNATURE-----
Merge tag 'module_init-device_initcall-v4.1-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux
Pull module_init replacement part one from Paul Gortmaker:
"Replace module_init with equivalent device_initcall in non modules.
This series of commits converts non-modular code that is using the
module_init() call to hook itself into the system to instead use
device_initcall().
The conversion is a runtime no-op, since module_init actually becomes
__initcall in the non-modular case, and that in turn gets mapped onto
device_initcall. A couple files show a larger negative diffstat,
representing ones that had a module_exit function that we remove here
vs previously relying on the linker to dispose of it.
We make this conversion now, so that we can relocate module_init from
init.h into module.h in the future.
The files changed here are just limited to those that would otherwise
have to add module.h to obviously non-modular code, in order to avoid
a compile fail, as testing has shown"
* tag 'module_init-device_initcall-v4.1-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux:
MIPS: don't use module_init in non-modular cobalt/mtd.c file
drivers/leds: don't use module_init in non-modular leds-cobalt-raq.c
cris: don't use module_init for non-modular core eeprom.c code
tty/metag_da: Avoid module_init/module_exit in non-modular code
drivers/clk: don't use module_init in clk-nomadik.c which is non-modular
xtensa: don't use module_init for non-modular core network.c code
sh: don't use module_init in non-modular psw.c code
mn10300: don't use module_init in non-modular flash.c code
parisc64: don't use module_init for non-modular core perf code
parisc: don't use module_init for non-modular core pdc_cons code
cris: don't use module_init for non-modular core intmem.c code
ia64: don't use module_init in non-modular sim/simscsi.c code
ia64: don't use module_init for non-modular core kernel/mca.c code
arm: don't use module_init in non-modular mach-vexpress/spc.c code
powerpc: don't use module_init in non-modular 83xx suspend code
powerpc: use device_initcall for registering rtc devices
x86: don't use module_init in non-modular devicetree.c code
x86: don't use module_init in non-modular intel_mid_vrtc.c
For 32-bit userspace on a 64-bit kernel, this requires modifying
stub32_clone to actually swap the appropriate arguments to match
CONFIG_CLONE_BACKWARDS, rather than just leaving the C argument for tls
broken.
Patch co-authored by Josh Triplett and Thiago Macieira.
Signed-off-by: Josh Triplett <josh@joshtriplett.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thiago Macieira <thiago.macieira@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Any parameter passed after '--' in the kernel command-line will not be
parsed by the kernel at all, instead it will be passed directly to init
process.
Currently the kernel appends elfcorehdr=<paddr> to the cmdline passed from
kexec load, and if this command-line is used to pass parameters to init
process this means that 'elfcorehdr' will not be parsed as a kernel
parameter at all which will be a problem for vmcore subsystem since it
will know nothing about the location of the ELF structure!
Prepending 'elfcorehdr' instead of appending it fixes this problem since
it ensures that it always comes before '--' and so it's always parsed as a
kernel command-line parameter.
Even with this patch things can still go wrong if 'CONFIG_CMDLINE' was
also used to embedd a command-line to the crash dump kernel and this
command-line contains '--' since the current behavior of the kernel is to
actually append the boot loader command-line to the embedded command-line.
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Cc: Haren Myneni <hbabu@us.ibm.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 1b7b938f18 ("perf/x86/intel: Fix PMI handling for Intel PT") conditionally
increments active_events in x86_add_exclusive() but unconditionally decrements in
x86_del_exclusive().
These extra decrements can lead to the situation where
active_events is zero and thus the PMI handler is 'disabled'
while we have active events on the PMU generating PMIs.
This leads to a truckload of:
Uhhuh. NMI received for unknown reason 21 on CPU 28.
Do you have a strange power saving mode enabled?
Dazed and confused, but trying to continue
messages and generally messes up perf.
Remove the condition on the increment, double increment balanced
by a double decrement is perfectly fine.
Restructure the code a little bit to make the unconditional inc
a bit more natural.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: alexander.shishkin@linux.intel.com
Cc: brgerst@gmail.com
Cc: dvlasenk@redhat.com
Cc: luto@amacapital.net
Cc: oleg@redhat.com
Fixes: 1b7b938f18 ("perf/x86/intel: Fix PMI handling for Intel PT")
Link: http://lkml.kernel.org/r/20150624144750.GJ18673@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Mike Galbraith reported:
" My i7-4790 box is having one hell of a time with this merge
window, dead in the water.
BIOS setting "Limit CPUID Maximum" upsets new fpu code
mightily. "
It turns out that Linux does a double workaround here, as per:
066941bd4e ("x86: unmask CPUID levels on Intel CPUs")
it undoes the BIOS workaround - but as a side effect the CPUID
state is not completely constant during early init anymore,
and the new FPU init code did not take this into account.
So what happened is that the xstate init code did not have full
CPUID available, which broke subsequent attempts to use xstate
features.
Fix this by ordering the early FPU init code to after we've
stabilized the CPUID state.
Reported-bisected-and-tested-by: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20150627082514.GA10894@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
4 drivers / enabling modules:
NFIT:
Instantiates an "nvdimm bus" with the core and registers memory devices
(NVDIMMs) enumerated by the ACPI 6.0 NFIT (NVDIMM Firmware Interface
table). After registering NVDIMMs the NFIT driver then registers
"region" devices. A libnvdimm-region defines an access mode and the
boundaries of persistent memory media. A region may span multiple
NVDIMMs that are interleaved by the hardware memory controller. In
turn, a libnvdimm-region can be carved into a "namespace" device and
bound to the PMEM or BLK driver which will attach a Linux block device
(disk) interface to the memory.
PMEM:
Initially merged in v4.1 this driver for contiguous spans of persistent
memory address ranges is re-worked to drive PMEM-namespaces emitted by
the libnvdimm-core. In this update the PMEM driver, on x86, gains the
ability to assert that writes to persistent memory have been flushed all
the way through the caches and buffers in the platform to persistent
media. See memcpy_to_pmem() and wmb_pmem().
BLK:
This new driver enables access to persistent memory media through "Block
Data Windows" as defined by the NFIT. The primary difference of this
driver to PMEM is that only a small window of persistent memory is
mapped into system address space at any given point in time. Per-NVDIMM
windows are reprogrammed at run time, per-I/O, to access different
portions of the media. BLK-mode, by definition, does not support DAX.
BTT:
This is a library, optionally consumed by either PMEM or BLK, that
converts a byte-accessible namespace into a disk with atomic sector
update semantics (prevents sector tearing on crash or power loss). The
sinister aspect of sector tearing is that most applications do not know
they have a atomic sector dependency. At least today's disk's rarely
ever tear sectors and if they do one almost certainly gets a CRC error
on access. NVDIMMs will always tear and always silently. Until an
application is audited to be robust in the presence of sector-tearing
the usage of BTT is recommended.
Thanks to: Ross Zwisler, Jeff Moyer, Vishal Verma, Christoph Hellwig,
Ingo Molnar, Neil Brown, Boaz Harrosh, Robert Elliott, Matthew Wilcox,
Andy Rudoff, Linda Knippers, Toshi Kani, Nicholas Moulin, Rafael
Wysocki, and Bob Moore.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJVjZGBAAoJEB7SkWpmfYgC4fkP/j+k6HmSRNU/yRYPyo7CAWvj
3P5P1i6R6nMZZbjQrQArAXaIyLlFk4sEQDYsciR6dmslhhFZAkR2eFwVO5rBOyx3
QN0yxEpyjJbroRFUrV/BLaFK4cq2oyJAFFHs0u7/pLHBJ4MDMqfRKAMtlnBxEkTE
LFcqXapSlvWitSbjMdIBWKFEvncaiJ2mdsFqT4aZqclBBTj00eWQvEG9WxleJLdv
+tj7qR/vGcwOb12X5UrbQXgwtMYos7A6IzhHbqwQL8IrOcJ6YB8NopJUpLDd7ZVq
KAzX6ZYMzNueN4uvv6aDfqDRLyVL7qoxM9XIjGF5R8SV9sF2LMspm1FBpfowo1GT
h2QMr0ky1nHVT32yspBCpE9zW/mubRIDtXxEmZZ53DIc4N6Dy9jFaNVmhoWtTAqG
b9pndFnjUzzieCjX5pCvo2M5U6N0AQwsnq76/CasiWyhSa9DNKOg8MVDRg0rbxb0
UvK0v8JwOCIRcfO3qiKcx+02nKPtjCtHSPqGkFKPySRvAdb+3g6YR26CxTb3VmnF
etowLiKU7HHalLvqGFOlDoQG6viWes9Zl+ZeANBOCVa6rL2O7ZnXJtYgXf1wDQee
fzgKB78BcDjXH4jHobbp/WBANQGN/GF34lse8yHa7Ym+28uEihDvSD1wyNLnefmo
7PJBbN5M5qP5tD0aO7SZ
=VtWG
-----END PGP SIGNATURE-----
Merge tag 'libnvdimm-for-4.2' of git://git.kernel.org/pub/scm/linux/kernel/git/djbw/nvdimm
Pull libnvdimm subsystem from Dan Williams:
"The libnvdimm sub-system introduces, in addition to the
libnvdimm-core, 4 drivers / enabling modules:
NFIT:
Instantiates an "nvdimm bus" with the core and registers memory
devices (NVDIMMs) enumerated by the ACPI 6.0 NFIT (NVDIMM Firmware
Interface table).
After registering NVDIMMs the NFIT driver then registers "region"
devices. A libnvdimm-region defines an access mode and the
boundaries of persistent memory media. A region may span multiple
NVDIMMs that are interleaved by the hardware memory controller. In
turn, a libnvdimm-region can be carved into a "namespace" device and
bound to the PMEM or BLK driver which will attach a Linux block
device (disk) interface to the memory.
PMEM:
Initially merged in v4.1 this driver for contiguous spans of
persistent memory address ranges is re-worked to drive
PMEM-namespaces emitted by the libnvdimm-core.
In this update the PMEM driver, on x86, gains the ability to assert
that writes to persistent memory have been flushed all the way
through the caches and buffers in the platform to persistent media.
See memcpy_to_pmem() and wmb_pmem().
BLK:
This new driver enables access to persistent memory media through
"Block Data Windows" as defined by the NFIT. The primary difference
of this driver to PMEM is that only a small window of persistent
memory is mapped into system address space at any given point in
time.
Per-NVDIMM windows are reprogrammed at run time, per-I/O, to access
different portions of the media. BLK-mode, by definition, does not
support DAX.
BTT:
This is a library, optionally consumed by either PMEM or BLK, that
converts a byte-accessible namespace into a disk with atomic sector
update semantics (prevents sector tearing on crash or power loss).
The sinister aspect of sector tearing is that most applications do
not know they have a atomic sector dependency. At least today's
disk's rarely ever tear sectors and if they do one almost certainly
gets a CRC error on access. NVDIMMs will always tear and always
silently. Until an application is audited to be robust in the
presence of sector-tearing the usage of BTT is recommended.
Thanks to: Ross Zwisler, Jeff Moyer, Vishal Verma, Christoph Hellwig,
Ingo Molnar, Neil Brown, Boaz Harrosh, Robert Elliott, Matthew Wilcox,
Andy Rudoff, Linda Knippers, Toshi Kani, Nicholas Moulin, Rafael
Wysocki, and Bob Moore"
* tag 'libnvdimm-for-4.2' of git://git.kernel.org/pub/scm/linux/kernel/git/djbw/nvdimm: (33 commits)
arch, x86: pmem api for ensuring durability of persistent memory updates
libnvdimm: Add sysfs numa_node to NVDIMM devices
libnvdimm: Set numa_node to NVDIMM devices
acpi: Add acpi_map_pxm_to_online_node()
libnvdimm, nfit: handle unarmed dimms, mark namespaces read-only
pmem: flag pmem block devices as non-rotational
libnvdimm: enable iostat
pmem: make_request cleanups
libnvdimm, pmem: fix up max_hw_sectors
libnvdimm, blk: add support for blk integrity
libnvdimm, btt: add support for blk integrity
fs/block_dev.c: skip rw_page if bdev has integrity
libnvdimm: Non-Volatile Devices
tools/testing/nvdimm: libnvdimm unit test infrastructure
libnvdimm, nfit, nd_blk: driver for BLK-mode access persistent memory
nd_btt: atomic sector updates
libnvdimm: infrastructure for btt devices
libnvdimm: write blk label set
libnvdimm: write pmem label set
libnvdimm: blk labels and namespace instantiation
...
Pull drm updates from Dave Airlie:
"This is the main drm pull request for v4.2.
I've one other new driver from freescale on my radar, it's been posted
and reviewed, I'd just like to get someone to give it a last look, so
maybe I'll send it or maybe I'll leave it.
There is no major nouveau changes in here, Ben was working on
something big, and we agreed it was a bit late, there wasn't anything
else he considered urgent to merge.
There might be another msm pull for some bits that are waiting on
arm-soc, I'll see how we time it.
This touches some "of" stuff, acks are in place except for the fixes
to the build in various configs,t hat I just applied.
Summary:
New drivers:
- virtio-gpu:
KMS only pieces of driver for virtio-gpu in qemu.
This is just the first part of this driver, enough to run
unaccelerated userspace on. As qemu merges more we'll start
adding the 3D features for the virgl 3d work.
- amdgpu:
a new driver from AMD to driver their newer GPUs. (VI+)
It contains a new cleaner userspace API, and is a clean
break from radeon moving forward, that AMD are going to
concentrate on. It also contains a set of register headers
auto generated from AMD internal database.
core:
- atomic modesetting API completed, enabled by default now.
- Add support for mode_id blob to atomic ioctl to complete interface.
- bunch of Displayport MST fixes
- lots of misc fixes.
panel:
- new simple panels
- fix some long-standing build issues with bridge drivers
radeon:
- VCE1 support
- add a GPU reset counter for userspace
- lots of fixes.
amdkfd:
- H/W debugger support module
- static user-mode queues
- support killing all the waves when a process terminates
- use standard DECLARE_BITMAP
i915:
- Add Broxton support
- S3, rotation support for Skylake
- RPS booting tuning
- CPT modeset sequence fixes
- ns2501 dither support
- enable cmd parser on haswell
- cdclk handling fixes
- gen8 dynamic pte allocation
- lots of atomic conversion work
exynos:
- Add atomic modesetting support
- Add iommu support
- Consolidate drm driver initialization
- and MIC, DECON and MIPI-DSI support for exynos5433
omapdrm:
- atomic modesetting support (fixes lots of things in rewrite)
tegra:
- DP aux transaction fixes
- iommu support fix
msm:
- adreno a306 support
- various dsi bits
- various 64-bit fixes
- NV12MT support
rcar-du:
- atomic and misc fixes
sti:
- fix HDMI timing complaince
tilcdc:
- use drm component API to access tda998x driver
- fix module unloading
qxl:
- stability fixes"
* 'drm-next' of git://people.freedesktop.org/~airlied/linux: (872 commits)
drm/nouveau: Pause between setting gpu to D3hot and cutting the power
drm/dp/mst: close deadlock in connector destruction.
drm: Always enable atomic API
drm/vgem: Set unique to "vgem"
of: fix a build error to of_graph_get_endpoint_by_regs function
drm/dp/mst: take lock around looking up the branch device on hpd irq
drm/dp/mst: make sure mst_primary mstb is valid in work function
of: add EXPORT_SYMBOL for of_graph_get_endpoint_by_regs
ARM: dts: rename the clock of MIPI DSI 'pll_clk' to 'sclk_mipi'
drm/atomic: Don't set crtc_state->enable manually
drm/exynos: dsi: do not set TE GPIO direction by input
drm/exynos: dsi: add support for MIC driver as a bridge
drm/exynos: dsi: add support for Exynos5433
drm/exynos: dsi: make use of array for clock access
drm/exynos: dsi: make use of driver data for static values
drm/exynos: dsi: add macros for register access
drm/exynos: dsi: rename pll_clk to sclk_clk
drm/exynos: mic: add MIC driver
of: add helper for getting endpoint node of specific identifiers
drm/exynos: add Exynos5433 decon driver
...
ACPI NFIT table has System Physical Address Range Structure entries that
describe a proximity ID of each range when ACPI_NFIT_PROXIMITY_VALID is
set in the flags.
Change acpi_nfit_register_region() to map a proximity ID to its node ID,
and set it to a new numa_node field of nd_region_desc, which is then
conveyed to the nd_region device.
The device core arranges for btt and namespace devices to inherit their
node from their parent region.
Signed-off-by: Toshi Kani <toshi.kani@hp.com>
[djbw: move set_dev_node() from region.c to bus.c]
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
nd_pmem attaches to persistent memory regions and namespaces emitted by
the libnvdimm subsystem, and, same as the original pmem driver, presents
the system-physical-address range as a block device.
The existing e820-type-12 to pmem setup is converted to an nvdimm_bus
that emits an nd_namespace_io device.
Note that the X in 'pmemX' is now derived from the parent region. This
provides some stability to the pmem devices names from boot-to-boot.
The minor numbers are also more predictable by passing 0 to
alloc_disk().
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Boaz Harrosh <boaz@plexistor.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jens Axboe <axboe@fb.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Tested-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
UEFI GetMemoryMap() uses a new attribute bit to mark mirrored memory
address ranges. See UEFI 2.5 spec pages 157-158:
http://www.uefi.org/sites/default/files/resources/UEFI%202_5.pdf
On EFI enabled systems scan the memory map and tell memblock about any
mirrored ranges.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Hanjun Guo <guohanjun@huawei.com>
Cc: Xiexiuqi <xiexiuqi@huawei.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Naoya Horiguchi <nao.horiguchi@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some high end Intel Xeon systems report uncorrectable memory errors as a
recoverable machine check. Linux has included code for some time to
process these and just signal the affected processes (or even recover
completely if the error was in a read only page that can be replaced by
reading from disk).
But we have no recovery path for errors encountered during kernel code
execution. Except for some very specific cases were are unlikely to ever
be able to recover.
Enter memory mirroring. Actually 3rd generation of memory mirroing.
Gen1: All memory is mirrored
Pro: No s/w enabling - h/w just gets good data from other side of the
mirror
Con: Halves effective memory capacity available to OS/applications
Gen2: Partial memory mirror - just mirror memory begind some memory controllers
Pro: Keep more of the capacity
Con: Nightmare to enable. Have to choose between allocating from
mirrored memory for safety vs. NUMA local memory for performance
Gen3: Address range partial memory mirror - some mirror on each memory
controller
Pro: Can tune the amount of mirror and keep NUMA performance
Con: I have to write memory management code to implement
The current plan is just to use mirrored memory for kernel allocations.
This has been broken into two phases:
1) This patch series - find the mirrored memory, use it for boot time
allocations
2) Wade into mm/page_alloc.c and define a ZONE_MIRROR to pick up the
unused mirrored memory from mm/memblock.c and only give it out to
select kernel allocations (this is still being scoped because
page_alloc.c is scary).
This patch (of 3):
Add extra "flags" to memblock to allow selection of memory based on
attribute. No functional changes
Signed-off-by: Tony Luck <tony.luck@intel.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Hanjun Guo <guohanjun@huawei.com>
Cc: Xiexiuqi <xiexiuqi@huawei.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Naoya Horiguchi <nao.horiguchi@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
for silicon that no one owns: these are really new features for
everyone.
* ARM: several features are in progress but missed the 4.2 deadline.
So here is just a smattering of bug fixes, plus enabling the VFIO
integration.
* s390: Some fixes/refactorings/optimizations, plus support for
2GB pages.
* x86: 1) host and guest support for marking kvmclock as a stable
scheduler clock. 2) support for write combining. 3) support for
system management mode, needed for secure boot in guests. 4) a bunch
of cleanups required for 2+3. 5) support for virtualized performance
counters on AMD; 6) legacy PCI device assignment is deprecated and
defaults to "n" in Kconfig; VFIO replaces it. On top of this there are
also bug fixes and eager FPU context loading for FPU-heavy guests.
* Common code: Support for multiple address spaces; for now it is
used only for x86 SMM but the s390 folks also have plans.
There are some x86 conflicts, one with the rc8 pull request and
the rest with Ingo's FPU rework.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJViYzhAAoJEL/70l94x66Dda0H/1IepMbfEy+o849d5G71fNTs
F8Y8qUP2GZuL7T53FyFUGSBw+AX7kimu9ia4gR/PmDK+QYsdosYeEjwlsolZfTBf
sHuzNtPoJhi5o1o/ur4NGameo0WjGK8f1xyzr+U8z74QDQyQv/QYCdK/4isp4BJL
ugHNHkuROX6Zng4i7jc9rfaSRg29I3GBxQUYpMkEnD3eMYMUBWGm6Rs8pHgGAMvL
vqzntgW00WNxehTqcAkmD/Wv+txxhkvIadZnjgaxH49e9JeXeBKTIR5vtb7Hns3s
SuapZUyw+c95DIipXq4EznxxaOrjbebOeFgLCJo8+XMXZum8RZf/ob24KroYad0=
=YsAR
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull first batch of KVM updates from Paolo Bonzini:
"The bulk of the changes here is for x86. And for once it's not for
silicon that no one owns: these are really new features for everyone.
Details:
- ARM:
several features are in progress but missed the 4.2 deadline.
So here is just a smattering of bug fixes, plus enabling the
VFIO integration.
- s390:
Some fixes/refactorings/optimizations, plus support for 2GB
pages.
- x86:
* host and guest support for marking kvmclock as a stable
scheduler clock.
* support for write combining.
* support for system management mode, needed for secure boot in
guests.
* a bunch of cleanups required for the above
* support for virtualized performance counters on AMD
* legacy PCI device assignment is deprecated and defaults to "n"
in Kconfig; VFIO replaces it
On top of this there are also bug fixes and eager FPU context
loading for FPU-heavy guests.
- Common code:
Support for multiple address spaces; for now it is used only for
x86 SMM but the s390 folks also have plans"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (124 commits)
KVM: s390: clear floating interrupt bitmap and parameters
KVM: x86/vPMU: Enable PMU handling for AMD PERFCTRn and EVNTSELn MSRs
KVM: x86/vPMU: Implement AMD vPMU code for KVM
KVM: x86/vPMU: Define kvm_pmu_ops to support vPMU function dispatch
KVM: x86/vPMU: introduce kvm_pmu_msr_idx_to_pmc
KVM: x86/vPMU: reorder PMU functions
KVM: x86/vPMU: whitespace and stylistic adjustments in PMU code
KVM: x86/vPMU: use the new macros to go between PMC, PMU and VCPU
KVM: x86/vPMU: introduce pmu.h header
KVM: x86/vPMU: rename a few PMU functions
KVM: MTRR: do not map huge page for non-consistent range
KVM: MTRR: simplify kvm_mtrr_get_guest_memory_type
KVM: MTRR: introduce mtrr_for_each_mem_type
KVM: MTRR: introduce fixed_mtrr_addr_* functions
KVM: MTRR: sort variable MTRRs
KVM: MTRR: introduce var_mtrr_range
KVM: MTRR: introduce fixed_mtrr_segment table
KVM: MTRR: improve kvm_mtrr_get_guest_memory_type
KVM: MTRR: do not split 64 bits MSR content
KVM: MTRR: clean up mtrr default type
...
- ACPICA update to upstream revision 20150515 including basic
support for ACPI 6 features: new ACPI tables introduced by
ACPI 6 (STAO, XENV, WPBT, NFIT, IORT), changes related to the
other tables (DTRM, FADT, LPIT, MADT), new predefined names
(_BTH, _CR3, _DSD, _LPI, _MTL, _PRR, _RDI, _RST, _TFP, _TSN),
fixes and cleanups (Bob Moore, Lv Zheng).
- ACPI device power management core code update to follow ACPI 6
which reflects the ACPI device power management implementation
in Windows (Rafael J Wysocki).
- Rework of the backlight interface selection logic to reduce the
number of kernel command line options and improve the handling
of DMI quirks that may be involved in that and to make the
code generally more straightforward (Hans de Goede).
- Fixes for the ACPI Embedded Controller (EC) driver related to
the handling of EC transactions (Lv Zheng).
- Fix for a regression related to the ACPI resources management
and resulting from a recent change of ACPI initialization code
ordering (Rafael J Wysocki).
- Fix for a system initialization regression related to ACPI
introduced during the 3.14 cycle and caused by running the
code that switches the platform over to the ACPI mode too
early in the initialization sequence (Rafael J Wysocki).
- Support for the ACPI _CCA device configuration object related
to DMA cache coherence (Suravee Suthikulpanit).
- ACPI/APEI fixes and cleanups (Jiri Kosina, Borislav Petkov).
- ACPI battery driver cleanups (Luis Henriques, Mathias Krause).
- ACPI processor driver cleanups (Hanjun Guo).
- Cleanups and documentation update related to the ACPI device
properties interface based on _DSD (Rafael J Wysocki).
- ACPI device power management fixes (Rafael J Wysocki).
- Assorted cleanups related to ACPI (Dominik Brodowski. Fabian
Frederick, Lorenzo Pieralisi, Mathias Krause, Rafael J Wysocki).
- Fix for a long-standing issue causing General Protection Faults
to be generated occasionally on return to user space after resume
from ACPI-based suspend-to-RAM on 32-bit x86 (Ingo Molnar).
- Fix to make the suspend core code return -EBUSY consistently in
all cases when system suspend is aborted due to wakeup detection
(Ruchi Kandoi).
- Support for automated device wakeup IRQ handling allowing drivers
to make their PM support more starightforward (Tony Lindgren).
- New tracepoints for suspend-to-idle tracing and rework of the
prepare/complete callbacks tracing in the PM core (Todd E Brandt,
Rafael J Wysocki).
- Wakeup sources framework enhancements (Jin Qian).
- New macro for noirq system PM callbacks (Grygorii Strashko).
- Assorted cleanups related to system suspend (Rafael J Wysocki).
- cpuidle core cleanups to make the code more efficient (Rafael J
Wysocki).
- powernv/pseries cpuidle driver update (Shilpasri G Bhat).
- cpufreq core fixes related to CPU online/offline that should
reduce the overhead of these operations quite a bit, unless the
CPU in question is physically going away (Viresh Kumar, Saravana
Kannan).
- Serialization of cpufreq governor callbacks to avoid race
conditions in some cases (Viresh Kumar).
- intel_pstate driver fixes and cleanups (Doug Smythies, Prarit
Bhargava, Joe Konno).
- cpufreq driver (arm_big_little, cpufreq-dt, qoriq) updates (Sudeep
Holla, Felipe Balbi, Tang Yuantian).
- Assorted cleanups in cpufreq drivers and core (Shailendra Verma,
Fabian Frederick, Wang Long).
- New Device Tree bindings for representing Operating Performance
Points (Viresh Kumar).
- Updates for the common clock operations support code in the PM
core (Rajendra Nayak, Geert Uytterhoeven).
- PM domains core code update (Geert Uytterhoeven).
- Intel Knights Landing support for the RAPL (Running Average Power
Limit) power capping driver (Dasaratharaman Chandramouli).
- Fixes related to the floor frequency setting on Atom SoCs in the
RAPL power capping driver (Ajay Thomas).
- Runtime PM framework documentation update (Ben Dooks).
- cpupower tool fix (Herton R Krzesinski).
/
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABCAAGBQJViJdWAAoJEILEb/54YlRx/9gP/3gHoFevNRycvn0VpKqdufCI
Mxy2LBBLlfyW2uD3+NvqvA2WWSo0Cs/LgXa04eAVxPdU7k48s8w+54U23wSouzjW
gfwAmuHxzDR8v0h8X3h6BxNzmkIQHtmDcQlA/cZdHejY/UUw01yxRGNUUZDNbxlm
WXn2nmlBLmGqXTYq0fpBV+3jicUghJqHHsBCqa3VR2yQioHMJG01F4UZMqYTZunN
OIvDUghxByKz6alzdCqlLl1Y0exV6vwWUAzBsl1qHqmHu/bWFSZn3ujNNVrjqHhw
Kl7/8dC2pQkv3Zo3gEVvfQ0onotwWZxGHzPQRdvmxvRnBunQVCi/wynx90yABX/r
PPb/iBNV0mZskbF0zb0GZT3ZZWGA8Z0p3o5JQv2jV4m62qTzx8w50Y5kbn9N1WT+
5bre7AVbVAlGonWszcS9iE+6TOboRz9OD1CCwPFXHItFutlBkau+1hHfFoLM0o9n
LhpGuyszT/EUa1BHkLzuCckFqO2DpbF3N2CKmuTekw0CdgdsvRL2pRByuerk3j7R
WQhlcvBq5YH6j43AuoEZKp8r1iN8oG/iqlrMYQaYWrW9hJaoQOoU8dGJxp/e7gKN
r/qeYjETI+tIsjCbtH5WQzzxDI3gPISAYAtfqs7G34EEo+Lwp6kyRUAF4kDot2V3
ZIyuKMmTu4cdwDETr/O+
=7jTj
-----END PGP SIGNATURE-----
Merge tag 'pm+acpi-4.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management and ACPI updates from Rafael Wysocki:
"The rework of backlight interface selection API from Hans de Goede
stands out from the number of commits and the number of affected
places perspective. The cpufreq core fixes from Viresh Kumar are
quite significant too as far as the number of commits goes and because
they should reduce CPU online/offline overhead quite a bit in the
majority of cases.
From the new featues point of view, the ACPICA update (to upstream
revision 20150515) adding support for new ACPI 6 material to ACPICA is
the one that matters the most as some new significant features will be
based on it going forward. Also included is an update of the ACPI
device power management core to follow ACPI 6 (which in turn reflects
the Windows' device PM implementation), a PM core extension to support
wakeup interrupts in a more generic way and support for the ACPI _CCA
device configuration object.
The rest is mostly fixes and cleanups all over and some documentation
updates, including new DT bindings for Operating Performance Points.
There is one fix for a regression introduced in the 4.1 cycle, but it
adds quite a number of lines of code, it wasn't really ready before
Thursday and you were on vacation, so I refrained from pushing it on
the last minute for 4.1.
Specifics:
- ACPICA update to upstream revision 20150515 including basic support
for ACPI 6 features: new ACPI tables introduced by ACPI 6 (STAO,
XENV, WPBT, NFIT, IORT), changes related to the other tables (DTRM,
FADT, LPIT, MADT), new predefined names (_BTH, _CR3, _DSD, _LPI,
_MTL, _PRR, _RDI, _RST, _TFP, _TSN), fixes and cleanups (Bob Moore,
Lv Zheng).
- ACPI device power management core code update to follow ACPI 6
which reflects the ACPI device power management implementation in
Windows (Rafael J Wysocki).
- rework of the backlight interface selection logic to reduce the
number of kernel command line options and improve the handling of
DMI quirks that may be involved in that and to make the code
generally more straightforward (Hans de Goede).
- fixes for the ACPI Embedded Controller (EC) driver related to the
handling of EC transactions (Lv Zheng).
- fix for a regression related to the ACPI resources management and
resulting from a recent change of ACPI initialization code ordering
(Rafael J Wysocki).
- fix for a system initialization regression related to ACPI
introduced during the 3.14 cycle and caused by running the code
that switches the platform over to the ACPI mode too early in the
initialization sequence (Rafael J Wysocki).
- support for the ACPI _CCA device configuration object related to
DMA cache coherence (Suravee Suthikulpanit).
- ACPI/APEI fixes and cleanups (Jiri Kosina, Borislav Petkov).
- ACPI battery driver cleanups (Luis Henriques, Mathias Krause).
- ACPI processor driver cleanups (Hanjun Guo).
- cleanups and documentation update related to the ACPI device
properties interface based on _DSD (Rafael J Wysocki).
- ACPI device power management fixes (Rafael J Wysocki).
- assorted cleanups related to ACPI (Dominik Brodowski, Fabian
Frederick, Lorenzo Pieralisi, Mathias Krause, Rafael J Wysocki).
- fix for a long-standing issue causing General Protection Faults to
be generated occasionally on return to user space after resume from
ACPI-based suspend-to-RAM on 32-bit x86 (Ingo Molnar).
- fix to make the suspend core code return -EBUSY consistently in all
cases when system suspend is aborted due to wakeup detection (Ruchi
Kandoi).
- support for automated device wakeup IRQ handling allowing drivers
to make their PM support more starightforward (Tony Lindgren).
- new tracepoints for suspend-to-idle tracing and rework of the
prepare/complete callbacks tracing in the PM core (Todd E Brandt,
Rafael J Wysocki).
- wakeup sources framework enhancements (Jin Qian).
- new macro for noirq system PM callbacks (Grygorii Strashko).
- assorted cleanups related to system suspend (Rafael J Wysocki).
- cpuidle core cleanups to make the code more efficient (Rafael J
Wysocki).
- powernv/pseries cpuidle driver update (Shilpasri G Bhat).
- cpufreq core fixes related to CPU online/offline that should reduce
the overhead of these operations quite a bit, unless the CPU in
question is physically going away (Viresh Kumar, Saravana Kannan).
- serialization of cpufreq governor callbacks to avoid race
conditions in some cases (Viresh Kumar).
- intel_pstate driver fixes and cleanups (Doug Smythies, Prarit
Bhargava, Joe Konno).
- cpufreq driver (arm_big_little, cpufreq-dt, qoriq) updates (Sudeep
Holla, Felipe Balbi, Tang Yuantian).
- assorted cleanups in cpufreq drivers and core (Shailendra Verma,
Fabian Frederick, Wang Long).
- new Device Tree bindings for representing Operating Performance
Points (Viresh Kumar).
- updates for the common clock operations support code in the PM core
(Rajendra Nayak, Geert Uytterhoeven).
- PM domains core code update (Geert Uytterhoeven).
- Intel Knights Landing support for the RAPL (Running Average Power
Limit) power capping driver (Dasaratharaman Chandramouli).
- fixes related to the floor frequency setting on Atom SoCs in the
RAPL power capping driver (Ajay Thomas).
- runtime PM framework documentation update (Ben Dooks).
- cpupower tool fix (Herton R Krzesinski)"
* tag 'pm+acpi-4.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (194 commits)
cpuidle: powernv/pseries: Auto-promotion of snooze to deeper idle state
x86: Load __USER_DS into DS/ES after resume
PM / OPP: Add binding for 'opp-suspend'
PM / OPP: Allow multiple OPP tables to be passed via DT
PM / OPP: Add new bindings to address shortcomings of existing bindings
ACPI: Constify ACPI device IDs in documentation
ACPI / enumeration: Document the rules regarding the PRP0001 device ID
ACPI / video: Make acpi_video_unregister_backlight() private
acpi-video-detect: Remove old API
toshiba-acpi: Port to new backlight interface selection API
thinkpad-acpi: Port to new backlight interface selection API
sony-laptop: Port to new backlight interface selection API
samsung-laptop: Port to new backlight interface selection API
msi-wmi: Port to new backlight interface selection API
msi-laptop: Port to new backlight interface selection API
intel-oaktrail: Port to new backlight interface selection API
ideapad-laptop: Port to new backlight interface selection API
fujitsu-laptop: Port to new backlight interface selection API
eeepc-laptop: Port to new backlight interface selection API
dell-wmi: Port to new backlight interface selection API
...
Pull livepatching fixes from Jiri Kosina:
- symbol lookup locking fix, from Miroslav Benes
- error handling improvements in case of failure of the module coming
notifier, from Minfei Huang
- we were too pessimistic when kASLR has been enabled on x86 and were
dropping address hints on the floor unnecessarily in such case. Fix
from Jiri Kosina
- a few other small fixes and cleanups
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/livepatching:
livepatch: add module locking around kallsyms calls
livepatch: annotate klp_init() with __init
livepatch: introduce patch/func-walking helpers
livepatch: make kobject in klp_object statically allocated
livepatch: Prevent patch inconsistencies if the coming module notifier fails
livepatch: match return value to function signature
x86: kaslr: fix build due to missing ALIGN definition
livepatch: x86: make kASLR logic more accurate
x86: introduce kaslr_offset()