This commit moves some duplicate code from synchronize_rcu_expedited()
and synchronize_sched_expedited() into rcu_exp_gp_seq_snap(). This
doesn't save lines of code, but does eliminate a "tell me twice" issue.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Currently, synchronize_rcu_expedited() and rcu_sched_expedited() have
significant duplicate code. This commit therefore consolidates some of
this code into rcu_exp_wake(), which is now renamed to rcu_exp_wait_wake()
in recognition of its added responsibilities.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit speeds up the low-contention case, especially for systems
with large rcu_node trees, by attempting to directly acquire the
->exp_mutex. This fastpath checks the leaves and root first in
order to avoid excessive memory contention on the mutex itself.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The current mutex-based funnel-locking approach used by expedited grace
periods is subject to severe unfairness. The problem arises when a
few tasks, making a path from leaves to root, all wake up before other
tasks do. A new task can then follow this path all the way to the root,
which needlessly delays tasks whose grace period is done, but who do
not happen to acquire the lock quickly enough.
This commit avoids this problem by maintaining per-rcu_node wait queues,
along with a per-rcu_node counter that tracks the latest grace period
sought by an earlier task to visit this node. If that grace period
would satisfy the current task, instead of proceeding up the tree,
it waits on the current rcu_node structure using a pair of wait queues
provided for that purpose. This decouples awakening of old tasks from
the arrival of new tasks.
If the wakeups prove to be a bottleneck, additional kthreads can be
brought to bear for that purpose.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The cpu_online() function can return values other than 0 and 1, which
can result in subscript overflow when applied to a two-element array.
This commit allows for this behavior by using "!!" on the return value
from cpu_online() when used as a subscript.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Commit #cdacbe1f91264 ("rcu: Add fastpath bypassing funnel locking")
turns out to be a pessimization at high load because it forces a tree
full of tasks to wait for an expedited grace period that they probably
do not need. This commit therefore removes this optimization.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit brings the synchronize_rcu_expedited() function's header
comment into line with the new implementation.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Although cond_resched_rcu_qs() supplies quiescent states to all flavors
of normal RCU grace periods, it does nothing for expedited RCU-sched
grace periods. This commit therefore adds a check for a need for a
quiescent state from the current CPU by an expedited RCU-sched grace
period, and invokes rcu_sched_qs() to supply that quiescent state if so.
Note that the check is racy in that we might be migrated to some other
CPU just after checking the per-CPU variable. This is OK because the
act of migration will do a context switch, which will supply the needed
quiescent state. The only downside is that we might do an unnecessary
call to rcu_sched_qs(), but the probability is low and the overhead
is small.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Currently, synchronize_sched_expedited_wait() simply sets the ndetected
variable to the rcu_print_task_exp_stall() return value. This means
that if the last rcu_node structure has no stalled tasks, record of
any stalled tasks in previous rcu_node structures is lost, which can
in turn result in failure to dump out the blocking rcu_node structures.
Or could, had the test been correct.
This commit therefore adds the return value of rcu_print_task_exp_stall()
to ndetected and corrects the later test for ndetected.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Currently, sync_sched_exp_handler() will force a reschedule unless
this CPU has already checked in or unless a reschedule has already
been called for. This is clearly wasteful if sync_sched_exp_handler()
interrupted an idle CPU, so this commit immediately reports the
quiescent state in that case.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit consolidates a couple definitions and several calls for
single-shot ftrace-buffer dumping.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
kcov provides code coverage collection for coverage-guided fuzzing
(randomized testing). Coverage-guided fuzzing is a testing technique
that uses coverage feedback to determine new interesting inputs to a
system. A notable user-space example is AFL
(http://lcamtuf.coredump.cx/afl/). However, this technique is not
widely used for kernel testing due to missing compiler and kernel
support.
kcov does not aim to collect as much coverage as possible. It aims to
collect more or less stable coverage that is function of syscall inputs.
To achieve this goal it does not collect coverage in soft/hard
interrupts and instrumentation of some inherently non-deterministic or
non-interesting parts of kernel is disbled (e.g. scheduler, locking).
Currently there is a single coverage collection mode (tracing), but the
API anticipates additional collection modes. Initially I also
implemented a second mode which exposes coverage in a fixed-size hash
table of counters (what Quentin used in his original patch). I've
dropped the second mode for simplicity.
This patch adds the necessary support on kernel side. The complimentary
compiler support was added in gcc revision 231296.
We've used this support to build syzkaller system call fuzzer, which has
found 90 kernel bugs in just 2 months:
https://github.com/google/syzkaller/wiki/Found-Bugs
We've also found 30+ bugs in our internal systems with syzkaller.
Another (yet unexplored) direction where kcov coverage would greatly
help is more traditional "blob mutation". For example, mounting a
random blob as a filesystem, or receiving a random blob over wire.
Why not gcov. Typical fuzzing loop looks as follows: (1) reset
coverage, (2) execute a bit of code, (3) collect coverage, repeat. A
typical coverage can be just a dozen of basic blocks (e.g. an invalid
input). In such context gcov becomes prohibitively expensive as
reset/collect coverage steps depend on total number of basic
blocks/edges in program (in case of kernel it is about 2M). Cost of
kcov depends only on number of executed basic blocks/edges. On top of
that, kernel requires per-thread coverage because there are always
background threads and unrelated processes that also produce coverage.
With inlined gcov instrumentation per-thread coverage is not possible.
kcov exposes kernel PCs and control flow to user-space which is
insecure. But debugfs should not be mapped as user accessible.
Based on a patch by Quentin Casasnovas.
[akpm@linux-foundation.org: make task_struct.kcov_mode have type `enum kcov_mode']
[akpm@linux-foundation.org: unbreak allmodconfig]
[akpm@linux-foundation.org: follow x86 Makefile layout standards]
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: syzkaller <syzkaller@googlegroups.com>
Cc: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Tavis Ormandy <taviso@google.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Kostya Serebryany <kcc@google.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Kees Cook <keescook@google.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: David Drysdale <drysdale@google.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge first patch-bomb from Andrew Morton:
- some misc things
- ofs2 updates
- about half of MM
- checkpatch updates
- autofs4 update
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (120 commits)
autofs4: fix string.h include in auto_dev-ioctl.h
autofs4: use pr_xxx() macros directly for logging
autofs4: change log print macros to not insert newline
autofs4: make autofs log prints consistent
autofs4: fix some white space errors
autofs4: fix invalid ioctl return in autofs4_root_ioctl_unlocked()
autofs4: fix coding style line length in autofs4_wait()
autofs4: fix coding style problem in autofs4_get_set_timeout()
autofs4: coding style fixes
autofs: show pipe inode in mount options
kallsyms: add support for relative offsets in kallsyms address table
kallsyms: don't overload absolute symbol type for percpu symbols
x86: kallsyms: disable absolute percpu symbols on !SMP
checkpatch: fix another left brace warning
checkpatch: improve UNSPECIFIED_INT test for bare signed/unsigned uses
checkpatch: warn on bare unsigned or signed declarations without int
checkpatch: exclude asm volatile from complex macro check
mm: memcontrol: drop unnecessary lru locking from mem_cgroup_migrate()
mm: migrate: consolidate mem_cgroup_migrate() calls
mm/compaction: speed up pageblock_pfn_to_page() when zone is contiguous
...
$ make tags
GEN tags
ctags: Warning: drivers/acpi/processor_idle.c:64: null expansion of name pattern "\1"
ctags: Warning: drivers/xen/events/events_2l.c:41: null expansion of name pattern "\1"
ctags: Warning: kernel/locking/lockdep.c:151: null expansion of name pattern "\1"
ctags: Warning: kernel/rcu/rcutorture.c:133: null expansion of name pattern "\1"
ctags: Warning: kernel/rcu/rcutorture.c:135: null expansion of name pattern "\1"
ctags: Warning: kernel/workqueue.c:323: null expansion of name pattern "\1"
ctags: Warning: net/ipv4/syncookies.c:53: null expansion of name pattern "\1"
ctags: Warning: net/ipv6/syncookies.c:44: null expansion of name pattern "\1"
ctags: Warning: net/rds/page.c:45: null expansion of name pattern "\1"
Which are all the result of the DEFINE_PER_CPU pattern:
scripts/tags.sh:200: '/\<DEFINE_PER_CPU([^,]*, *\([[:alnum:]_]*\)/\1/v/'
scripts/tags.sh:201: '/\<DEFINE_PER_CPU_SHARED_ALIGNED([^,]*, *\([[:alnum:]_]*\)/\1/v/'
The below cures them. All except the workqueue one are within reasonable
distance of the 80 char limit. TJ do you have any preference on how to
fix the wq one, or shall we just not care its too long?
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: David S. Miller <davem@davemloft.net>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull cpu hotplug updates from Thomas Gleixner:
"This is the first part of the ongoing cpu hotplug rework:
- Initial implementation of the state machine
- Runs all online and prepare down callbacks on the plugged cpu and
not on some random processor
- Replaces busy loop waiting with completions
- Adds tracepoints so the states can be followed"
More detailed commentary on this work from an earlier email:
"What's wrong with the current cpu hotplug infrastructure?
- Asymmetry
The hotplug notifier mechanism is asymmetric versus the bringup and
teardown. This is mostly caused by the notifier mechanism.
- Largely undocumented dependencies
While some notifiers use explicitely defined notifier priorities,
we have quite some notifiers which use numerical priorities to
express dependencies without any documentation why.
- Control processor driven
Most of the bringup/teardown of a cpu is driven by a control
processor. While it is understandable, that preperatory steps,
like idle thread creation, memory allocation for and initialization
of essential facilities needs to be done before a cpu can boot,
there is no reason why everything else must run on a control
processor. Before this patch series, bringup looks like this:
Control CPU Booting CPU
do preparatory steps
kick cpu into life
do low level init
sync with booting cpu sync with control cpu
bring the rest up
- All or nothing approach
There is no way to do partial bringups. That's something which is
really desired because we waste e.g. at boot substantial amount of
time just busy waiting that the cpu comes to life. That's stupid
as we could very well do preparatory steps and the initial IPI for
other cpus and then go back and do the necessary low level
synchronization with the freshly booted cpu.
- Minimal debuggability
Due to the notifier based design, it's impossible to switch between
two stages of the bringup/teardown back and forth in order to test
the correctness. So in many hotplug notifiers the cancel
mechanisms are either not existant or completely untested.
- Notifier [un]registering is tedious
To [un]register notifiers we need to protect against hotplug at
every callsite. There is no mechanism that bringup/teardown
callbacks are issued on the online cpus, so every caller needs to
do it itself. That also includes error rollback.
What's the new design?
The base of the new design is a symmetric state machine, where both
the control processor and the booting/dying cpu execute a well
defined set of states. Each state is symmetric in the end, except
for some well defined exceptions, and the bringup/teardown can be
stopped and reversed at almost all states.
So the bringup of a cpu will look like this in the future:
Control CPU Booting CPU
do preparatory steps
kick cpu into life
do low level init
sync with booting cpu sync with control cpu
bring itself up
The synchronization step does not require the control cpu to wait.
That mechanism can be done asynchronously via a worker or some
other mechanism.
The teardown can be made very similar, so that the dying cpu cleans
up and brings itself down. Cleanups which need to be done after
the cpu is gone, can be scheduled asynchronously as well.
There is a long way to this, as we need to refactor the notion when a
cpu is available. Today we set the cpu online right after it comes
out of the low level bringup, which is not really correct.
The proper mechanism is to set it to available, i.e. cpu local
threads, like softirqd, hotplug thread etc. can be scheduled on that
cpu, and once it finished all booting steps, it's set to online, so
general workloads can be scheduled on it. The reverse happens on
teardown. First thing to do is to forbid scheduling of general
workloads, then teardown all the per cpu resources and finally shut it
off completely.
This patch series implements the basic infrastructure for this at the
core level. This includes the following:
- Basic state machine implementation with well defined states, so
ordering and prioritization can be expressed.
- Interfaces to [un]register state callbacks
This invokes the bringup/teardown callback on all online cpus with
the proper protection in place and [un]installs the callbacks in
the state machine array.
For callbacks which have no particular ordering requirement we have
a dynamic state space, so that drivers don't have to register an
explicit hotplug state.
If a callback fails, the code automatically does a rollback to the
previous state.
- Sysfs interface to drive the state machine to a particular step.
This is only partially functional today. Full functionality and
therefor testability will be achieved once we converted all
existing hotplug notifiers over to the new scheme.
- Run all CPU_ONLINE/DOWN_PREPARE notifiers on the booting/dying
processor:
Control CPU Booting CPU
do preparatory steps
kick cpu into life
do low level init
sync with booting cpu sync with control cpu
wait for boot
bring itself up
Signal completion to control cpu
In a previous step of this work we've done a full tree mechanical
conversion of all hotplug notifiers to the new scheme. The balance
is a net removal of about 4000 lines of code.
This is not included in this series, as we decided to take a
different approach. Instead of mechanically converting everything
over, we will do a proper overhaul of the usage sites one by one so
they nicely fit into the symmetric callback scheme.
I decided to do that after I looked at the ugliness of some of the
converted sites and figured out that their hotplug mechanism is
completely buggered anyway. So there is no point to do a
mechanical conversion first as we need to go through the usage
sites one by one again in order to achieve a full symmetric and
testable behaviour"
* 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits)
cpu/hotplug: Document states better
cpu/hotplug: Fix smpboot thread ordering
cpu/hotplug: Remove redundant state check
cpu/hotplug: Plug death reporting race
rcu: Make CPU_DYING_IDLE an explicit call
cpu/hotplug: Make wait for dead cpu completion based
cpu/hotplug: Let upcoming cpu bring itself fully up
arch/hotplug: Call into idle with a proper state
cpu/hotplug: Move online calls to hotplugged cpu
cpu/hotplug: Create hotplug threads
cpu/hotplug: Split out the state walk into functions
cpu/hotplug: Unpark smpboot threads from the state machine
cpu/hotplug: Move scheduler cpu_online notifier to hotplug core
cpu/hotplug: Implement setup/removal interface
cpu/hotplug: Make target state writeable
cpu/hotplug: Add sysfs state interface
cpu/hotplug: Hand in target state to _cpu_up/down
cpu/hotplug: Convert the hotplugged cpu work to a state machine
cpu/hotplug: Convert to a state machine for the control processor
cpu/hotplug: Add tracepoints
...
Make the RCU CPU_DYING_IDLE callback an explicit function call, so it gets
invoked at the proper place.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: Rik van Riel <riel@redhat.com>
Cc: Rafael Wysocki <rafael.j.wysocki@intel.com>
Cc: "Srivatsa S. Bhat" <srivatsa@mit.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Turner <pjt@google.com>
Link: http://lkml.kernel.org/r/20160226182341.870167933@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
As of commit dae6e64d2b ("rcu: Introduce proper blocking to no-CBs kthreads
GP waits") the RCU subsystem started making use of wait queues.
Here we convert all additions of RCU wait queues to use simple wait queues,
since they don't need the extra overhead of the full wait queue features.
Originally this was done for RT kernels[1], since we would get things like...
BUG: sleeping function called from invalid context at kernel/rtmutex.c:659
in_atomic(): 1, irqs_disabled(): 1, pid: 8, name: rcu_preempt
Pid: 8, comm: rcu_preempt Not tainted
Call Trace:
[<ffffffff8106c8d0>] __might_sleep+0xd0/0xf0
[<ffffffff817d77b4>] rt_spin_lock+0x24/0x50
[<ffffffff8106fcf6>] __wake_up+0x36/0x70
[<ffffffff810c4542>] rcu_gp_kthread+0x4d2/0x680
[<ffffffff8105f910>] ? __init_waitqueue_head+0x50/0x50
[<ffffffff810c4070>] ? rcu_gp_fqs+0x80/0x80
[<ffffffff8105eabb>] kthread+0xdb/0xe0
[<ffffffff8106b912>] ? finish_task_switch+0x52/0x100
[<ffffffff817e0754>] kernel_thread_helper+0x4/0x10
[<ffffffff8105e9e0>] ? __init_kthread_worker+0x60/0x60
[<ffffffff817e0750>] ? gs_change+0xb/0xb
...and hence simple wait queues were deployed on RT out of necessity
(as simple wait uses a raw lock), but mainline might as well take
advantage of the more streamline support as well.
[1] This is a carry forward of work from v3.10-rt; the original conversion
was by Thomas on an earlier -rt version, and Sebastian extended it to
additional post-3.10 added RCU waiters; here I've added a commit log and
unified the RCU changes into one, and uprev'd it to match mainline RCU.
Signed-off-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: linux-rt-users@vger.kernel.org
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1455871601-27484-6-git-send-email-wagi@monom.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
rcu_nocb_gp_cleanup() is called while holding rnp->lock. Currently,
this is okay because the wake_up_all() in rcu_nocb_gp_cleanup() will
not enable the IRQs. lockdep is happy.
By switching over using swait this is not true anymore. swake_up_all()
enables the IRQs while processing the waiters. __do_softirq() can now
run and will eventually call rcu_process_callbacks() which wants to
grap nrp->lock.
Let's move the rcu_nocb_gp_cleanup() call outside the lock before we
switch over to swait.
If we would hold the rnp->lock and use swait, lockdep reports
following:
=================================
[ INFO: inconsistent lock state ]
4.2.0-rc5-00025-g9a73ba0 #136 Not tainted
---------------------------------
inconsistent {IN-SOFTIRQ-W} -> {SOFTIRQ-ON-W} usage.
rcu_preempt/8 [HC0[0]:SC0[0]:HE1:SE1] takes:
(rcu_node_1){+.?...}, at: [<ffffffff811387c7>] rcu_gp_kthread+0xb97/0xeb0
{IN-SOFTIRQ-W} state was registered at:
[<ffffffff81109b9f>] __lock_acquire+0xd5f/0x21e0
[<ffffffff8110be0f>] lock_acquire+0xdf/0x2b0
[<ffffffff81841cc9>] _raw_spin_lock_irqsave+0x59/0xa0
[<ffffffff81136991>] rcu_process_callbacks+0x141/0x3c0
[<ffffffff810b1a9d>] __do_softirq+0x14d/0x670
[<ffffffff810b2214>] irq_exit+0x104/0x110
[<ffffffff81844e96>] smp_apic_timer_interrupt+0x46/0x60
[<ffffffff81842e70>] apic_timer_interrupt+0x70/0x80
[<ffffffff810dba66>] rq_attach_root+0xa6/0x100
[<ffffffff810dbc2d>] cpu_attach_domain+0x16d/0x650
[<ffffffff810e4b42>] build_sched_domains+0x942/0xb00
[<ffffffff821777c2>] sched_init_smp+0x509/0x5c1
[<ffffffff821551e3>] kernel_init_freeable+0x172/0x28f
[<ffffffff8182cdce>] kernel_init+0xe/0xe0
[<ffffffff8184231f>] ret_from_fork+0x3f/0x70
irq event stamp: 76
hardirqs last enabled at (75): [<ffffffff81841330>] _raw_spin_unlock_irq+0x30/0x60
hardirqs last disabled at (76): [<ffffffff8184116f>] _raw_spin_lock_irq+0x1f/0x90
softirqs last enabled at (0): [<ffffffff810a8df2>] copy_process.part.26+0x602/0x1cf0
softirqs last disabled at (0): [< (null)>] (null)
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(rcu_node_1);
<Interrupt>
lock(rcu_node_1);
*** DEADLOCK ***
1 lock held by rcu_preempt/8:
#0: (rcu_node_1){+.?...}, at: [<ffffffff811387c7>] rcu_gp_kthread+0xb97/0xeb0
stack backtrace:
CPU: 0 PID: 8 Comm: rcu_preempt Not tainted 4.2.0-rc5-00025-g9a73ba0 #136
Hardware name: Dell Inc. PowerEdge R820/066N7P, BIOS 2.0.20 01/16/2014
0000000000000000 000000006d7e67d8 ffff881fb081fbd8 ffffffff818379e0
0000000000000000 ffff881fb0812a00 ffff881fb081fc38 ffffffff8110813b
0000000000000000 0000000000000001 ffff881f00000001 ffffffff8102fa4f
Call Trace:
[<ffffffff818379e0>] dump_stack+0x4f/0x7b
[<ffffffff8110813b>] print_usage_bug+0x1db/0x1e0
[<ffffffff8102fa4f>] ? save_stack_trace+0x2f/0x50
[<ffffffff811087ad>] mark_lock+0x66d/0x6e0
[<ffffffff81107790>] ? check_usage_forwards+0x150/0x150
[<ffffffff81108898>] mark_held_locks+0x78/0xa0
[<ffffffff81841330>] ? _raw_spin_unlock_irq+0x30/0x60
[<ffffffff81108a28>] trace_hardirqs_on_caller+0x168/0x220
[<ffffffff81108aed>] trace_hardirqs_on+0xd/0x10
[<ffffffff81841330>] _raw_spin_unlock_irq+0x30/0x60
[<ffffffff810fd1c7>] swake_up_all+0xb7/0xe0
[<ffffffff811386e1>] rcu_gp_kthread+0xab1/0xeb0
[<ffffffff811089bf>] ? trace_hardirqs_on_caller+0xff/0x220
[<ffffffff81841341>] ? _raw_spin_unlock_irq+0x41/0x60
[<ffffffff81137c30>] ? rcu_barrier+0x20/0x20
[<ffffffff810d2014>] kthread+0x104/0x120
[<ffffffff81841330>] ? _raw_spin_unlock_irq+0x30/0x60
[<ffffffff810d1f10>] ? kthread_create_on_node+0x260/0x260
[<ffffffff8184231f>] ret_from_fork+0x3f/0x70
[<ffffffff810d1f10>] ? kthread_create_on_node+0x260/0x260
Signed-off-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: linux-rt-users@vger.kernel.org
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1455871601-27484-5-git-send-email-wagi@monom.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This commit exports rcu_gp_is_normal() in order to allow it to be used
by rcutorture and rcuperf.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The Kconfig currently controlling compilation of this code is:
init/Kconfig:config TINY_RCU
init/Kconfig: bool
...meaning that it currently is not being built as a module by anyone.
Lets remove the modular code that is essentially orphaned, so that
when reading the code there is no doubt it is builtin-only.
Since module_init translates to device_initcall in the non-modular
case, the init ordering remains unchanged with this commit. We could
consider moving this to an earlier initcall (subsys?) if desired.
We also delete the MODULE_LICENSE tag etc. since all that information
is already contained at the top of the file in the comments.
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
In patch:
"rcu: Add transitivity to remaining rcu_node ->lock acquisitions"
All locking operations on rcu_node::lock are replaced with the wrappers
because of the need of transitivity, which indicates we should never
write code using LOCK primitives alone(i.e. without a proper barrier
following) on rcu_node::lock outside those wrappers. We could detect
this kind of misuses on rcu_node::lock in the future by adding __private
modifier on rcu_node::lock.
To privatize rcu_node::lock, unlock wrappers are also needed. Replacing
spinlock unlocks with these wrappers not only privatizes rcu_node::lock
but also makes it easier to figure out critical sections of rcu_node.
This patch adds __private modifier to rcu_node::lock and makes every
access to it wrapped by ACCESS_PRIVATE(). Besides, unlock wrappers are
added and raw_spin_unlock(&rnp->lock) and its friends are replaced with
those wrappers.
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The related warning from gcc 6.0:
In file included from kernel/rcu/tree.c:4630:0:
kernel/rcu/tree_plugin.h:810:40: warning: ‘rcu_data_p’ defined but not used [-Wunused-const-variable]
static struct rcu_data __percpu *const rcu_data_p = &rcu_sched_data;
^~~~~~~~~~
Also remove always redundant rcu_data_p in tree.c.
Signed-off-by: Chen Gang <gang.chen.5i5j@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The "Disabled dynamic grace-period expediting" console message is
currently printed unconditionally. This commit causes it to be
output only when it is impossible to switch between normal and
expedited grace periods, which was the original intent.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Commit #e3663b1024d1 ("rcu: Handle gpnum/completed wrap while dyntick
idle") sets rdp->gpwrap on the wrong side of the "if" statement in
dyntick_save_progress_counter(), that is, it sets it when the CPU is
not idle instead of when it is idle. Of course, if the CPU is not idle,
its rdp->gpnum won't be lagging beind the global rsp->gpnum, which means
that rdp->gpwrap will never be set.
This commit therefore moves this code to the proper leg of that "if"
statement. This change means that the "else" cause is just "return 0"
and the "then" clause ends with "return 1", so also move the "return 0"
to follow the "if", dropping the "else" clause.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Commit 4a81e8328d ("Reduce overhead of cond_resched() checks for RCU")
handles the error case where a nohz_full loops indefinitely in the kernel
with the scheduling-clock interrupt disabled. However, this handling
includes IPIing the CPU running the offending loop, which is not what
we want for real-time workloads. And there are starting to be real-time
CPU-bound in-kernel workloads, and these must be handled without IPIing
the CPU, at least not in the common case. Therefore, this situation can
no longer be dismissed as an error case.
This commit therefore splits the handling out, so that the setting of
bits in the per-CPU rcu_sched_qs_mask variable is done relatively early,
but if the problem persists, resched_cpu() is eventually used to IPI the
CPU containing the offending loop. Assuming that in-kernel CPU-bound
loops used by real-time tasks contain frequent calls cond_resched_rcu_qs()
(as in more than once per few tens of milliseconds), the real-time tasks
will never be IPIed.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
The header comment for rcu_report_qs_rsp() was obsolete, dating well
before the advent of RCU grace-period kthreads. This commit therefore
brings this comment back into alignment with current reality.
Reported-by: Lihao Liang <lihao.liang@cs.ox.ac.uk>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
A zero seems to have escaped earlier true/false substitution efforts,
so this commit changes 0 to false for the ->core_needs_qs boolean field.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The return value from rcu_gp_init() is always used as a bool, so
this commit makes it be a bool.
Reported-by: Iftekhar Ahmed <ahmedi@oregonstate.edu>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This patch removes a potential deadlock hazard by moving the
wake_up_process() in rcu_spawn_gp_kthread() out from under rnp->lock.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit replaces a local_irq_save()/local_irq_restore() pair with
a lockdep assertion that interrupts are already disabled. This should
remove the corresponding overhead from the interrupt entry/exit fastpaths.
This change was inspired by the fact that Iftekhar Ahmed's mutation
testing showed that removing rcu_irq_enter()'s call to local_ird_restore()
had no effect, which might indicate that interrupts were always enabled
anyway.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The cpu_needs_another_gp() function is currently of type int, but only
returns zero or one. Bow to reality and make it be of type bool.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Now that the rcu_state structure's ->rda field is compile-time initialized,
there is no need to pass the per-CPU rcu_data structure into rcu_init_one().
This commit therefore eliminates this now-unused parameter.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The rcu_expedited, rcu_normal, and rcu_normal_after_boot kernel boot
parameters are pointless in the case of TINY_RCU because in that case
synchronous grace periods, both expedited and normal, are no-ops.
However, these three symbols contribute several hundred bytes of bloat.
This commit therefore uses CPP directives to avoid compiling this code
in TINY_RCU kernels.
Reported-by: kbuild test robot <fengguang.wu@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Currently, ->gp_state is printed as an integer, which slows debugging.
This commit therefore prints a symbolic name in addition to the integer.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: Updated to fix relational operator called out by Dan Carpenter. ]
[ paulmck: More "const", as suggested by Josh Triplett. ]
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Currently, rcu_torture_writer_state is printed as an integer, which slows
debugging. This commit therefore prints a symbolic name in addition to
the integer.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: More "const", as suggested by Josh Triplett. ]
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
This commit increases debug information in the case where the grace-period
kthread is being prevented from running by dumping that kthread's stack.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: Split into prior commit and this commit, as suggested by
Josh Triplett. ]
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Currently, if the RCU grace-period kthread has not yet been created,
in which case the starvation-check code will print zero for the state,
which maps to TASK_RUNNING. This could clearly be quite confusing, so
this commit prints ~0, which does not map to any legal ->state value.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
We need the scheduler's fastpaths to be, well, fast, and unnecessarily
disabling and re-enabling interrupts is not necessarily consistent with
this goal. Especially given that there are regions of the scheduler that
already have interrupts disabled.
This commit therefore moves the call to rcu_note_context_switch()
to one of the interrupts-disabled regions of the scheduler, and
removes the now-redundant disabling and re-enabling of interrupts from
rcu_note_context_switch() and the functions it calls.
Reported-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: Shift rcu_note_context_switch() to avoid deadlock, as suggested
by Peter Zijlstra. ]
Currently, rcu_prepare_for_idle() checks for tick_nohz_active, even on
individual NOCBs CPUs, unless all CPUs are marked as NOCBs CPUs at build
time. This check is pointless on NOCBs CPUs because they never have any
callbacks posted, given that all of their callbacks are handed off to the
corresponding rcuo kthread. There is a check for individually designated
NOCBs CPUs, but it pointelessly follows the check for tick_nohz_active.
This commit therefore moves the check for individually designated NOCBs
CPUs up with the check for CONFIG_RCU_NOCB_CPU_ALL.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This function no longer has #ifdefs, so this commit removes the
header comment calling them out.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Several releases have come and gone without the warning triggering,
so remove the lock-acquisition loop. Retain the WARN_ON_ONCE()
out of sheer paranoia.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit applies an early-exit approach to rcu_sched_qs(), reducing
the nesting level and saving a line of code.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The Kconfig currently controlling compilation of this code is:
init/Kconfig:config TREE_RCU_TRACE
init/Kconfig: def_bool RCU_TRACE && ( TREE_RCU || PREEMPT_RCU )
...meaning that it currently is not being built as a module by anyone.
Lets remove the modular code that is essentially orphaned, so that
when reading the file there is no doubt it is builtin-only.
Since module_init translates to device_initcall in the non-modular
case, the init ordering remains unchanged with this commit. We could
consider moving this to an earlier initcall if desired.
We don't replace module.h with init.h since the file already has that.
We also delete the moduleparam.h include that is left over from
commit 64db4cfff9 (""Tree RCU": scalable
classic RCU implementation") since it is not needed here either.
We morph some tags like MODULE_AUTHOR into the comments at the top of
the file for documentation purposes.
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Currently, the rcu_node_class[], rcu_fqs_class[], and rcu_exp_class[]
arrays needlessly pollute the global namespace within tree.c. This
commit therefore converts them to static local variables within
rcu_init_one().
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Expedited grace periods can speed up boot, but are undesirable in
aggressive real-time systems. This commit therefore introduces a
kernel parameter rcupdate.rcu_normal_after_boot that disables
expedited grace periods just before init is spawned.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Although expedited grace periods can be quite useful, and although their
OS jitter has been greatly reduced, they can still pose problems for
extreme real-time workloads. This commit therefore adds a rcu_normal
kernel boot parameter (which can also be manipulated via sysfs)
to suppress expedited grace periods, that is, to treat requests for
expedited grace periods as if they were requests for normal grace periods.
If both rcu_expedited and rcu_normal are specified, rcu_normal wins.
This means that if you are relying on expedited grace periods to speed up
boot, you will want to specify rcu_expedited on the kernel command line,
and then specify rcu_normal via sysfs once boot completes.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit adds print statements that check the rcu_node structure to
find which ->expmask bits and which ->exp_tasks structures are blocking
the current expedited grace period.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Currently, if a grace period ends just as the stall-warning timeout
fires, an empty stall warning will be printed. This is not helpful,
so this commit avoids these useless warnings by rechecking completion
after awakening in synchronize_sched_expedited_wait().
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Currently, the piggybacked-work checks carried out by sync_exp_work_done()
atomically increment a small set of variables (the ->expedited_workdone0,
->expedited_workdone1, ->expedited_workdone2, ->expedited_workdone3
fields in the rcu_state structure), which will form a memory-contention
bottleneck given a sufficiently large number of CPUs concurrently invoking
either synchronize_rcu_expedited() or synchronize_sched_expedited().
This commit therefore moves these for fields to the per-CPU rcu_data
structure, eliminating the memory contention. The show_rcuexp() function
also changes to sum up each field in the rcu_data structures.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit saves a couple lines of code and reduces indentation
by inverting the sense of an "if" statement in the function
sync_rcu_exp_select_cpus().
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The memory barrier in rcu_seq_snap() is needed only for grace periods,
so this commit moves it to the grace-period-oriented wrapper
rcu_exp_gp_seq_snap().
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Analogy with the ->qsmaskinitnext field might lead one to believe that
->expmaskinitnext tracks online CPUs. This belief is incorrect: Any CPU
that has ever been online will have its bit set in the ->expmaskinitnext
field. This commit therefore adds a comment to make this clear, at
least to people who read comments.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
If there is only one CPU, then invoking synchronize_sched_expedited()
is by definition a grace period. This commit checks for this condition
and does a short-circuit return in that case.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The rule is that all acquisitions of the rcu_node structure's ->lock
must provide transitivity: The lock is not acquired that frequently,
and sorting out exactly which required it and which did not would be
a maintenance nightmare. This commit therefore supplies the needed
transitivity to the remaining ->lock acquisitions.
Reported-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Providing RCU's memory-ordering guarantees requires that the rcu_node
tree's locking provide transitive memory ordering, which the Linux kernel's
spinlocks currently do not provide unless smp_mb__after_unlock_lock()
is used. Having a separate smp_mb__after_unlock_lock() after each and
every lock acquisition is error-prone, hard to read, and a bit annoying,
so this commit provides wrapper functions that pull in the
smp_mb__after_unlock_lock() invocations.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Earlier versions of synchronize_sched_expedited() can prematurely end
grace periods due to the fact that a CPU marked as cpu_is_offline()
can still be using RCU read-side critical sections during the time that
CPU makes its last pass through the scheduler and into the idle loop
and during the time that a given CPU is in the process of coming online.
This commit therefore eliminates this window by adding additional
interaction with the CPU-hotplug operations.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit redirects synchronize_rcu_expedited()'s wait to
synchronize_sched_expedited_wait(), thus enabling RCU CPU
stall warnings.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit adds task-print ability to the expedited RCU CPU stall
warning messages in preparation for adding stall warnings to
synchornize_rcu_expedited().
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit makes the RCU CPU stall warning message print online/offline
indications immediately after the CPU number. A "O" indicates global
offline, a "." global online, and a "o" indicates RCU believes that the
CPU is offline for the current grace period and "." otherwise, and an
"N" indicates that RCU believes that the CPU will be offline for the
next grace period, and "." otherwise, all right after the CPU number.
So for CPU 10, you would normally see "10-...:" indicating that everything
believes that the CPU is online.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Now that sync_sched_exp_select_cpus() and sync_rcu_exp_select_cpus()
are identical aside from the the argument to smp_call_function_single(),
this commit consolidates them with a functional argument.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit brings sync_sched_exp_select_cpus() into alignment with
sync_rcu_exp_select_cpus(), as a first step towards consolidating them
into one function.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Now that synchronize_sched_expedited() uses IPIs, a hook in
rcu_sched_qs(), and the ->expmask field in the rcu_node combining
tree, it is no longer necessary to exclude CPU hotplug. Any
races with CPU hotplug will be detected when attempting to send
the IPI. This commit therefore removes the code excluding
CPU hotplug operations.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This reverts commit af859beaab (rcu: Silence lockdep false positive
for expedited grace periods). Because synchronize_rcu_expedited()
no longer invokes synchronize_sched_expedited(), ->exp_funnel_mutex
acquisition is no longer nested, so the false positive no longer happens.
This commit therefore removes the extra lockdep data structures, as they
are no longer needed.
This commit switches synchronize_sched_expedited() from stop_one_cpu_nowait()
to smp_call_function_single(), thus moving from an IPI and a pair of
context switches to an IPI and a single pass through the scheduler.
Of course, if the scheduler actually does decide to switch to a different
task, there will still be a pair of context switches, but there would
likely have been a pair of context switches anyway, just a bit later.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The torturing_tasks() function is used only in kernels built with
CONFIG_PROVE_RCU=y, so the second definition can result in unused-function
compiler warnings. This commit adds __maybe_unused to suppress these
warnings.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
The rcutorture module has a list of torture types, and specifying a
type not on this list is supposed to cleanly fail the module load.
Unfortunately, the "fail" happens without the "cleanly". This commit
therefore adds the needed clean-up after an incorrect torture_type.
Reported-by: David Miller <davem@davemloft.net>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: David Miller <davem@davemloft.net>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
1. Rename __rcu_sync_is_idle() to rcu_sync_lockdep_assert() and
change it to use rcu_lockdep_assert().
2. Change rcu_sync_is_idle() to return rsp->gp_state == GP_IDLE
unconditonally, this way we can remove the same check from
rcu_sync_lockdep_assert() and clearly isolate the debugging
code.
Note: rcu_sync_enter()->wait_event(gp_state == GP_PASSED) needs
another CONFIG_PROVE_RCU check, the same as is done in ->sync(); but
this needs some simple preparations in the core RCU code to avoid the
code duplication.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
This commit allows rcu_sync structures to be safely deallocated,
The trick is to add a new ->wait field to the gp_ops array.
This field is a pointer to the rcu_barrier() function corresponding
to the flavor of RCU in question. This allows a new rcu_sync_dtor()
to wait for any outstanding callbacks before freeing the rcu_sync
structure.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
This commit validates that the caller of rcu_sync_is_idle() holds the
corresponding type of RCU read-side lock, but only in kernels built
with CONFIG_PROVE_RCU=y. This validation is carried out via a new
rcu_sync_ops->held() method that is checked within rcu_sync_is_idle().
Note that although this does add code to the fast path, it only does so
in kernels built with CONFIG_PROVE_RCU=y.
Suggested-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
This commit adds the new struct rcu_sync_ops which holds sync/call
methods, and turns the function pointers in rcu_sync_struct into an array
of struct rcu_sync_ops. This simplifies the "init" helpers by collapsing
a switch statement and explicit multiple definitions into a simple
assignment and a helper macro, respectively.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
The rcu_sync infrastructure can be thought of as infrastructure to be
used to implement reader-writer primitives having extremely lightweight
readers during times when there are no writers. The first use is in
the percpu_rwsem used by the VFS subsystem.
This infrastructure is functionally equivalent to
struct rcu_sync_struct {
atomic_t counter;
};
/* Check possibility of fast-path read-side operations. */
static inline bool rcu_sync_is_idle(struct rcu_sync_struct *rss)
{
return atomic_read(&rss->counter) == 0;
}
/* Tell readers to use slowpaths. */
static inline void rcu_sync_enter(struct rcu_sync_struct *rss)
{
atomic_inc(&rss->counter);
synchronize_sched();
}
/* Allow readers to once again use fastpaths. */
static inline void rcu_sync_exit(struct rcu_sync_struct *rss)
{
synchronize_sched();
atomic_dec(&rss->counter);
}
The main difference is that it records the state and only calls
synchronize_sched() if required. At least some of the calls to
synchronize_sched() will be optimized away when rcu_sync_enter() and
rcu_sync_exit() are invoked repeatedly in quick succession.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
This commit moves cond_resched_rcu_qs() into stutter_wait(), saving
a line and also avoiding RCU CPU stall warnings from all torture
loops containing a stutter_wait().
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
This commit corrects the comment for the values of the ->gp_state field,
which previously incorrectly said that these were for the ->gp_flags
field.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Commit commit 4cdfc175c2 ("rcu: Move quiescent-state forcing
into kthread") started the process of folding the old ->fqs_state into
->gp_state, but did not complete it. This situation does not cause
any malfunction, but can result in extremely confusing trace output.
This commit completes this task of eliminating ->fqs_state in favor
of ->gp_state.
The old ->fqs_state was also used to decide when to collect dyntick-idle
snapshots. For this purpose, we add a boolean variable into the kthread,
which is set on the first call to rcu_gp_fqs() for a given grace period
and clear otherwise.
Signed-off-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Currently, __srcu_read_lock() cannot be invoked from restricted
environments because it contains calls to preempt_disable() and
preempt_enable(), both of which can invoke lockdep, which is a bad
idea in some restricted execution modes. This commit therefore moves
the preempt_disable() and preempt_enable() from __srcu_read_lock()
to srcu_read_lock(). It also inserts the preempt_disable() and
preempt_enable() around the call to __srcu_read_lock() in do_exit().
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
This commit makes the RCU CPU stall warning message print online/offline
indications immediately after a hyphen following the CPU number. A "O"
indicates that the global CPU-hotplug system believes that the CPU is
online, a "o" that RCU perceived the CPU to be online at the beginning
of the current expedited grace period, and an "N" that RCU currently
believes that it will perceive the CPU as being online at the beginning
of the next expedited grace period, with "." otherwise for all three
indications. So for CPU 10, you would normally see "10-OoN:" indicating
that everything believes that the CPU is online.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit loosens rcutree.rcu_fanout_leaf range checks
and replaces a panic() with a fallback to compile-time values.
This fallback is accompanied by a WARN_ON(), and both occur when the
rcutree.rcu_fanout_leaf value is too small to accommodate the number of
CPUs. For example, given the current four-level limit for the rcu_node
tree, a system with more than 16 CPUs built with CONFIG_FANOUT=2 must
have rcutree.rcu_fanout_leaf larger than 2.
Reported-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Because preempt_disable() maps to barrier() for non-debug builds,
it forces the compiler to spill and reload registers. Because Tree
RCU and Tiny RCU now only appear in CONFIG_PREEMPT=n builds, these
barrier() instances generate needless extra code for each instance of
rcu_read_lock() and rcu_read_unlock(). This extra code slows down Tree
RCU and bloats Tiny RCU.
This commit therefore removes the preempt_disable() and preempt_enable()
from the non-preemptible implementations of __rcu_read_lock() and
__rcu_read_unlock(), respectively. However, for debug purposes,
preempt_disable() and preempt_enable() are still invoked if
CONFIG_PREEMPT_COUNT=y, because this allows detection of sleeping inside
atomic sections in non-preemptible kernels.
However, Tiny and Tree RCU operates by coalescing all RCU read-side
critical sections on a given CPU that lie between successive quiescent
states. It is therefore necessary to compensate for removing barriers
from __rcu_read_lock() and __rcu_read_unlock() by adding them to a
couple of the RCU functions invoked during quiescent states, namely to
rcu_all_qs() and rcu_note_context_switch(). However, note that the latter
is more paranoia than necessity, at least until link-time optimizations
become more aggressive.
This is based on an earlier patch by Paul E. McKenney, fixing
a bug encountered in kernels built with CONFIG_PREEMPT=n and
CONFIG_PREEMPT_COUNT=y.
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
We have had the call_rcu_func_t typedef for a quite awhile, but we still
use explicit function pointer types in some places. These types can
confuse cscope and can be hard to read. This patch therefore replaces
these types with the call_rcu_func_t typedef.
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
As we now have rcu_callback_t typedefs as the type of rcu callbacks, we
should use it in call_rcu*() and friends as the type of parameters. This
could save us a few lines of code and make it clear which function
requires an rcu callbacks rather than other callbacks as its argument.
Besides, this can also help cscope to generate a better database for
code reading.
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
This commit converts the rcu_data structure's ->cpu_no_qs field
to a union. The bytewise side of this union allows individual access
to indications as to whether this CPU needs to find a quiescent state
for a normal (.norm) and/or expedited (.exp) grace period. The setwise
side of the union allows testing whether or not a quiescent state is
needed at all, for either type of grace period.
For now, only .norm is used. A later commit will introduce the expedited
usage.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit inverts the sense of the rcu_data structure's ->passed_quiesce
field and renames it to ->cpu_no_qs. This will allow a later commit to
use an "aggregate OR" operation to test expedited as well as normal grace
periods without added overhead.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
An upcoming commit needs to invert the sense of the ->passed_quiesce
rcu_data structure field, so this commit is taking this opportunity
to clarify things a bit by renaming ->qs_pending to ->core_needs_qs.
So if !rdp->core_needs_qs, then this CPU need not concern itself with
quiescent states, in particular, it need not acquire its leaf rcu_node
structure's ->lock to check. Otherwise, it needs to report the next
quiescent state.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Currently, synchronize_sched_expedited() uses a single global counter
to track the number of remaining context switches that the current
expedited grace period must wait on. This is problematic on large
systems, where the resulting memory contention can be pathological.
This commit therefore makes synchronize_sched_expedited() instead use
the combining tree in the same manner as synchronize_rcu_expedited(),
keeping memory contention down to a dull roar.
This commit creates a temporary function sync_sched_exp_select_cpus()
that is very similar to sync_rcu_exp_select_cpus(). A later commit
will consolidate these two functions, which becomes possible when
synchronize_sched_expedited() switches from stop_one_cpu_nowait() to
smp_call_function_single().
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The current preemptible-RCU expedited grace-period algorithm invokes
synchronize_sched_expedited() to enqueue all tasks currently running
in a preemptible-RCU read-side critical section, then waits for all the
->blkd_tasks lists to drain. This works, but results in both an IPI and
a double context switch even on CPUs that do not happen to be running
in a preemptible RCU read-side critical section.
This commit implements a new algorithm that causes less OS jitter.
This new algorithm IPIs all online CPUs that are not idle (from an
RCU perspective), but refrains from self-IPIs. If a CPU receiving
this IPI is not in a preemptible RCU read-side critical section (or
is just now exiting one), it pushes quiescence up the rcu_node tree,
otherwise, it sets a flag that will be handled by the upcoming outermost
rcu_read_unlock(), which will then push quiescence up the tree.
The expedited grace period must of course wait on any pre-existing blocked
readers, and newly blocked readers must be queued carefully based on
the state of both the normal and the expedited grace periods. This
new queueing approach also avoids the need to update boost state,
courtesy of the fact that blocked tasks are no longer ever migrated to
the root rcu_node structure.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit replaces sync_rcu_preempt_exp_init1(() and
sync_rcu_preempt_exp_init2() with sync_exp_reset_tree_hotplug()
and sync_exp_reset_tree(), which will also be used by
synchronize_sched_expedited(), and sync_rcu_exp_select_nodes(), which
contains code specific to synchronize_rcu_expedited().
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This is a nearly pure code-movement commit, moving rcu_report_exp_rnp(),
sync_rcu_preempt_exp_done(), and rcu_preempted_readers_exp() so
that later commits can make synchronize_sched_expedited() use them.
The non-code-movement portion of this commit tags rcu_report_exp_rnp()
as __maybe_unused to avoid build errors when CONFIG_PREEMPT=n.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Now that there is an ->expedited_wq waitqueue in each rcu_state structure,
there is no need for the sync_rcu_preempt_exp_wq global variable. This
commit therefore substitutes ->expedited_wq for sync_rcu_preempt_exp_wq.
It also initializes ->expedited_wq only once at boot instead of at the
start of each expedited grace period.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
In kernels built with CONFIG_PREEMPT=y, synchronize_rcu_expedited()
invokes synchronize_sched_expedited() while holding RCU-preempt's
root rcu_node structure's ->exp_funnel_mutex, which is acquired after
the rcu_data structure's ->exp_funnel_mutex. The first thing that
synchronize_sched_expedited() will do is acquire RCU-sched's rcu_data
structure's ->exp_funnel_mutex. There is no danger of an actual deadlock
because the locking order is always from RCU-preempt's expedited mutexes
to those of RCU-sched. Unfortunately, lockdep considers both rcu_data
structures' ->exp_funnel_mutex to be in the same lock class and therefore
reports a deadlock cycle.
This commit silences this false positive by placing RCU-sched's rcu_data
structures' ->exp_funnel_mutex locks into their own lock class.
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
RCU is the only thing that uses smp_mb__after_unlock_lock(), and is
likely the only thing that ever will use it, so this commit makes this
macro private to RCU.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: "linux-arch@vger.kernel.org" <linux-arch@vger.kernel.org>
In a CONFIG_PREEMPT=y kernel, synchronize_rcu_expedited()
acquires the ->exp_funnel_mutex in rcu_preempt_state, then invokes
synchronize_sched_expedited, which acquires the ->exp_funnel_mutex in
rcu_sched_state. There can be no deadlock because rcu_preempt_state
->exp_funnel_mutex acquisition always precedes that of rcu_sched_state.
But lockdep does not know that, so it gives false-positive splats.
This commit therefore associates a separate lock_class_key structure
with the rcu_sched_state structure's ->exp_funnel_mutex, allowing
lockdep to see the lock ordering, avoiding the false positives.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
RCU's rcu_oom_notify() disables CPU hotplug in order to stabilize the
list of online CPUs, which it traverses. However, this is completely
pointless because smp_call_function_single() will quietly fail if invoked
on an offline CPU. Because the count of requests is incremented in the
rcu_oom_notify_cpu() function that is remotely invoked, everything works
nicely even in the face of concurrent CPU-hotplug operations.
Furthermore, in recent kernels, invoking get_online_cpus() from an OOM
notifier can result in deadlock. This commit therefore removes the
call to get_online_cpus() and put_online_cpus() from rcu_oom_notify().
Reported-by: Marcin Ślusarz <marcin.slusarz@gmail.com>
Reported-by: David Rientjes <rientjes@google.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: David Rientjes <rientjes@google.com>
Tested-by: Marcin Ślusarz <marcin.slusarz@gmail.com>
The RCU_LOCKDEP_WARN() in synchronize_rcu_tasks() triggers if the
scheduler is active, which is backwards. This commit therefore
negates the test.
Reported-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit renames rcu_lockdep_assert() to RCU_LOCKDEP_WARN() for
consistency with the WARN() series of macros. This also requires
inverting the sense of the conditional, which this commit also does.
Reported-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Although rcu_is_watching() is marked notrace, it invokes preempt_disable()
and preempt_enable(), both of which can be traced. This defeats the
purpose of the notrace on rcu_is_watching(), so this commit substitutes
preempt_disable_notrace() and preempt_enable_notrace().
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
There have been several requests for a primitive that waits for
grace periods for several RCU flavors concurrently, so this
commit creates it. This is a variadic macro, and you pass in
the call_rcu() functions of the flavors of RCU that you wish to
wait for.
Note that you cannot pass in call_srcu() for two reasons: (1) This
would result in a type mismatch and (2) You need to specify which
srcu_struct you want to use. Handle this by creating a wrapper
function for your SRCU domain, for example:
void call_srcu_mine(struct rcu_head *head, rcu_callback_t func)
{
call_srcu(&ss_mine, head, func);
}
You can then do something like this:
synchronize_rcu_mult(call_srcu_mine, call_rcu, call_rcu_sched);
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tasks are no longer migrated to the root rcu_node, so there is no
longer any need for a boost kthread for the root rcu_node, and there no
longer is such a kthread. This commit therefore fixes the comment in
rcu_boost_kthread()'s header to reflect this new reality.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The get_state_synchronize_rcu() and cond_synchronize_rcu() functions
allow polling for grace-period completion, with an actual wait for a
grace period occurring only when cond_synchronize_rcu() is called too
soon after the corresponding get_state_synchronize_rcu(). However,
these functions work only for vanilla RCU. This commit adds the
get_state_synchronize_sched() and cond_synchronize_sched(), which provide
the same capability for RCU-sched.
Reported-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
In the common case, there will be only one expedited grace period in
the system at a given time, in which case it is not helpful to use
funnel locking. This commit therefore adds a fastpath that bypasses
funnel locking when the root ->exp_funnel_mutex is not held.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The grace-period kthread sleeps waiting to do a force-quiescent-state
scan, and when awakened sets rsp->gp_state to RCU_GP_DONE_FQS.
However, this is confusing because the kthread has not done the
force-quiescent-state, but is instead just starting to do it. This commit
therefore renames RCU_GP_DONE_FQS to RCU_GP_DOING_FQS in order to make
things a bit easier on reviewers.
Reported-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The condition for the wait_event_interruptible_timeout() that waits
to do the next force-quiescent-state scan is a bit ornate:
((gf = READ_ONCE(rsp->gp_flags)) &
RCU_GP_FLAG_FQS) ||
(!READ_ONCE(rnp->qsmask) &&
!rcu_preempt_blocked_readers_cgp(rnp))
This commit therefore pulls this condition out into a helper function
and comments its component conditions.
Reported-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Although synchronize_sched_expedited() historically has no RCU CPU stall
warnings, the availability of the rcupdate.rcu_expedited boot parameter
invalidates the old assumption that synchronize_sched()'s stall warnings
would suffice. This commit therefore adds RCU CPU stall warnings to
synchronize_sched_expedited().
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The strictly rcu_node based funnel-locking scheme works well in many
cases, but systems with CONFIG_RCU_FANOUT_LEAF=64 won't necessarily get
all that much concurrency. This commit therefore extends the funnel
locking into the per-CPU rcu_data structure, providing concurrency equal
to the number of CPUs.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
One of the requirements on RCU grace periods is that if there is a
causal chain of operations that starts after one grace period and
ends before another grace period, then the two grace periods must
be serialized. There has been (and might still be) code that relies
on this, for example, certain types of reference-counting code that
does a call_rcu() within an RCU callback function.
This requirement is why there is an smp_mb() at the end of both
synchronize_sched_expedited() and synchronize_rcu_expedited().
However, this is the only smp_mb() in these functions, so it would
be nicer to consolidate it into rcu_exp_gp_seq_end(). This commit
does just that.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The rcu_seq operations were open-coded in _rcu_barrier(), so this commit
replaces the open-coding with the shiny new rcu_seq operations.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit gets rid of synchronize_rcu_expedited()'s mutex_trylock()
polling loop in favor of the funnel-locking scheme that was abstracted
from synchronize_sched_expedited().
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The type of "s" has been "long" rather than the correct "unsigned long"
for quite some time. This commit fixes this type error.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit abstracts funnel locking from synchronize_sched_expedited()
so that it may be used by synchronize_rcu_expedited().
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Although synchronize_rcu_expedited() uses a sequence-counter scheme, it
is based on a single increment per grace period, which means that tasks
piggybacking off of concurrent grace periods may be forced to wait longer
than necessary. This commit therefore applies the new sequence-count
functions developed for synchronize_sched_expedited() to speed things
up a bit and to consolidate the sequence-counter implementation.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit creates rcu_exp_gp_seq_start() and rcu_exp_gp_seq_end() to
bracket an expedited grace period, rcu_exp_gp_seq_snap() to snapshot the
sequence counter, and rcu_exp_gp_seq_done() to check to see if a full
expedited grace period has elapsed since the snapshot. These will be
applied to synchronize_rcu_expedited(). These are defined in terms of
underlying rcu_seq_start(), rcu_seq_end(), rcu_seq_snap(), rcu_seq_done(),
which will be applied to _rcu_barrier().
One reason that this commit doesn't use the seqcount primitives themselves
is that the smp_wmb() in those primitive is insufficient due to the fact
that expedited grace periods do reads as well as writes. In addition,
the read-side seqcount primitives detect a potentially partial change,
where the expedited primitives instead need a guaranteed full change.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Sequentially stopping the CPUs slows down expedited grace periods by
at least a factor of two, based on rcutorture's grace-period-per-second
rate. This is a conservative measure because rcutorture uses unusually
long RCU read-side critical sections and because rcutorture periodically
quiesces the system in order to test RCU's ability to ramp down to and
up from the idle state. This commit therefore replaces the stop_one_cpu()
with stop_one_cpu_nowait(), using an atomic-counter scheme to determine
when all CPUs have passed through the stopped state.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit gets rid of synchronize_sched_expedited()'s mutex_trylock()
polling loop in favor of a funnel-locking scheme based on the rcu_node
tree. The work-done check is done at each level of the tree, allowing
high-contention situations to be resolved quickly with reasonable levels
of mutex contention.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Now that synchronize_sched_expedited() have a mutex, it can use simpler
work-already-done detection scheme. This commit simplifies this scheme
by using something similar to the sequence-locking counter scheme.
A counter is incremented before and after each grace period, so that
the counter is odd in the midst of the grace period and even otherwise.
So if the counter has advanced to the second even number that is
greater than or equal to the snapshot, the required grace period has
already happened.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The synchronize_sched_expedited() currently invokes try_stop_cpus(),
which schedules the stopper kthreads on each online non-idle CPU,
and waits until all those kthreads are running before letting any
of them stop. This is disastrous for real-time workloads, which
get hit with a preemption that is as long as the longest scheduling
latency on any CPU, including any non-realtime housekeeping CPUs.
This commit therefore switches to using stop_one_cpu() on each CPU
in turn. This avoids inflicting the worst-case scheduling latency
on the worst-case CPU onto all other CPUs, and also simplifies the
code a little bit.
Follow-up commits will simplify the counter-snapshotting algorithm
and convert a number of the counters that are now protected by the
new ->expedited_mutex to non-atomic.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
[ paulmck: Kept stop_one_cpu(), dropped disabling of "guardrails". ]
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The CONFIG_RCU_CPU_STALL_INFO has been default-y for a couple of
releases with no complaints, so it is time to eliminate this Kconfig
option entirely, so that the long-form RCU CPU stall warnings cannot
be disabled. This commit does just that.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The fact that tasks could be migrated from leaf to root rcu_node
structures meant that synchronize_rcu_expedited() had to disable
CPU hotplug. However, tasks now stay put, so this commit removes the
CPU-hotplug disabling from synchronize_rcu_expedited().
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Currently if the rcu_fanout_leaf boot parameter is out of bounds (that
is, less than RCU_FANOUT_LEAF or greater than the number of bits in an
unsigned long), a warning is issued and execution continues with the
out-of-bounds value. This can result in all manner of failures, so this
patch resets rcu_fanout_leaf to RCU_FANOUT_LEAF when an out-of-bounds
condition is detected.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Because gcc does not realize a loop would not be entered ever
(i.e. in case of rcu_num_lvls == 1):
for (i = 1; i < rcu_num_lvls; i++)
rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
some compiler (pre- 5.x?) versions give a bogus warning:
kernel/rcu/tree.c: In function ‘rcu_init_one.isra.55’:
kernel/rcu/tree.c:4108:13: warning: array subscript is above array bounds [-Warray-bounds]
rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
^
Fix that warning by adding an extra item to rcu_state::level[]
array. Once the bogus warning is fixed in gcc and kernel drops
support of older versions, the dummy item may be removed from
the array.
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Suggested-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Although RCU-tasks isn't really designed to support rcu_dereference()
and list manipulation, that is how rcutorture tests it. Which means
that lockdep-RCU complains about the rcu_dereference_check() invocations
because RCU-tasks doesn't have read-side markers. This commit therefore
creates a torturing_tasks() to silence the lockdep-RCU complaints from
rcu_dereference_check() when RCU-tasks is being tortured.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The rcu_torture_cbflood() function correctly checks for flavors of
RCU that lack analogs to call_rcu() and rcu_barrier(), but in that
case it fails to terminate correctly. In fact, it terminates so
incorrectly that segfaults can result. This commit therefore causes
rcu_torture_cbflood() to do the proper wait-for-stop procedure.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Specifying a negative rcutorture.shuffle_interval value will cause a
negative value to be used as a sleep time. This commit therefore
refuses to start shuffling unless the rcutorture.shuffle_interval
value is greater than zero.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Currently, a negative value for rcutorture.nfakewriters= can cause
rcutorture to pass a negative size to the memory allocator, which
is not really a particularly good thing to do. This commit therefore
adds bounds checking to this parameter, so that values that are less
than or equal to zero disable fake writing.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
A negative value for rcutorture.n_barrier_cbs can pass a negative value
to the memory allocator, so this commit instead causes rcu_barrier()
testing to be disabled in this case.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This update makes arithmetic to calculate number of RCU nodes
more straight and easy to read.
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Alexander Gordeev <agordeev@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Although a number of RCU levels may be less than the current
maximum of four, some static data associated with each level
are allocated for all four levels. As result, the extra data
never get accessed and just wast memory. This update limits
count of allocated items to the number of used RCU levels.
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Alexander Gordeev <agordeev@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Members rcu_state::levelcnt[] and rcu_state::levelspread[]
are only used at init. There is no reason to keep them
afterwards.
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Alexander Gordeev <agordeev@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Number of items in rcu_capacity[] array is defined by macro
MAX_RCU_LVLS. However, that array is never accessed beyond
RCU_NUM_LVLS index. Therefore, we can limit the array to
RCU_NUM_LVLS items and eliminate MAX_RCU_LVLS. As result,
in most cases the memory is conserved.
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Alexander Gordeev <agordeev@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Variable rcu_num_lvls is limited by RCU_NUM_LVLS macro.
In turn, rcu_state::levelcnt[] array is never accessed
beyond rcu_num_lvls. Thus, rcu_state::levelcnt[] is safe
to limit to RCU_NUM_LVLS items.
Since rcu_num_lvls could be changed during boot (as result
of rcutree.rcu_fanout_leaf kernel parameter update) one might
assume a new value could overflow the value of RCU_NUM_LVLS.
However, that is not the case, since leaf-level fanout is only
permitted to increase, resulting in rcu_num_lvls possibly to
decrease.
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Alexander Gordeev <agordeev@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Current code suggests that introducing the extra level to
rcu_capacity[] array makes some of the arithmetic easier.
Well, in fact it appears rather confusing and unnecessary.
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Alexander Gordeev <agordeev@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This update simplifies rcu_init_geometry() code flow
and makes calculation of the total number of rcu_node
structures more easy to read.
The update relies on the fact num_rcu_lvl[] is never
accessed beyond rcu_num_lvls index by the rest of the
code. Therefore, there is no need initialize the whole
num_rcu_lvl[].
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Alexander Gordeev <agordeev@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Local variable 'n' mimics 'nr_cpu_ids' while the both are
used within one function. There is no reason for 'n' to
exist whatsoever.
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Alexander Gordeev <agordeev@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Currently a condition when RCU tree is unable to accommodate
the configured number of CPUs is not permitted and causes
a fall back to compile-time values. However, the code has no
means to exceed the RCU tree capacity neither at compile-time
nor in run-time. Therefore, if the condition is met in run-
time then it indicates a serios problem elsewhere and should
be handled with a panic.
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Alexander Gordeev <agordeev@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Type-checking coccinelle spatches are being used to locate type mismatches
between function signatures and return values in this case this produced:
./kernel/rcu/srcu.c:271 WARNING: return of wrong type
int != unsigned long,
srcu_readers_active() returns an int that is the sum of per_cpu unsigned
long but the only user is cleanup_srcu_struct() which is using it as a
boolean (condition) to see if there is any readers rather than actually
using the approximate number of readers. The theoretically possible
unsigned long overflow case does not need to be handled explicitly - if
we had 4G++ readers then something else went wrong a long time ago.
proposal: change the return type to boolean. The function name is left
unchanged as it fits the naming expectation for a boolean.
patch was compile tested for x86_64_defconfig (implies CONFIG_SRCU=y)
patch is against 4.1-rc5 (localversion-next is -next-20150525)
Signed-off-by: Nicholas Mc Guire <hofrat@osadl.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
DEBUG_LOCK_ALLOC=y is not a production setting, but it is
not very unusual either. Many developers routinely
use kernels built with it enabled.
Apart from being selected by hand, it is also auto-selected by
PROVE_LOCKING "Lock debugging: prove locking correctness" and
LOCK_STAT "Lock usage statistics" config options.
LOCK STAT is necessary for "perf lock" to work.
I wouldn't spend too much time optimizing it, but this particular
function has a very large cost in code size: when it is deinlined,
code size decreases by 830,000 bytes:
text data bss dec hex filename
85674192 22294776 20627456 128596424 7aa39c8 vmlinux.before
84837612 22294424 20627456 127759492 79d7484 vmlinux
(with this config: http://busybox.net/~vda/kernel_config)
Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com>
CC: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
CC: Josh Triplett <josh@joshtriplett.org>
CC: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
CC: Lai Jiangshan <laijs@cn.fujitsu.com>
CC: Tejun Heo <tj@kernel.org>
CC: Oleg Nesterov <oleg@redhat.com>
CC: linux-kernel@vger.kernel.org
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The RCU_USER_QS Kconfig parameter is now just a synonym for NO_HZ_FULL,
so this commit eliminates RCU_USER_QS, replacing all uses with NO_HZ_FULL.
Reported-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Frederic Weisbecker <fweisbec@gmail.com>
"monitonic raw". Also some enhancements to make the ring buffer even
faster. But the biggest and most noticeable change is the renaming of
the ftrace* files, structures and variables that have to deal with
trace events.
Over the years I've had several developers tell me about their confusion
with what ftrace is compared to events. Technically, "ftrace" is the
infrastructure to do the function hooks, which include tracing and also
helps with live kernel patching. But the trace events are a separate
entity altogether, and the files that affect the trace events should
not be named "ftrace". These include:
include/trace/ftrace.h -> include/trace/trace_events.h
include/linux/ftrace_event.h -> include/linux/trace_events.h
Also, functions that are specific for trace events have also been renamed:
ftrace_print_*() -> trace_print_*()
(un)register_ftrace_event() -> (un)register_trace_event()
ftrace_event_name() -> trace_event_name()
ftrace_trigger_soft_disabled()-> trace_trigger_soft_disabled()
ftrace_define_fields_##call() -> trace_define_fields_##call()
ftrace_get_offsets_##call() -> trace_get_offsets_##call()
Structures have been renamed:
ftrace_event_file -> trace_event_file
ftrace_event_{call,class} -> trace_event_{call,class}
ftrace_event_buffer -> trace_event_buffer
ftrace_subsystem_dir -> trace_subsystem_dir
ftrace_event_raw_##call -> trace_event_raw_##call
ftrace_event_data_offset_##call-> trace_event_data_offset_##call
ftrace_event_type_funcs_##call -> trace_event_type_funcs_##call
And a few various variables and flags have also been updated.
This has been sitting in linux-next for some time, and I have not heard
a single complaint about this rename breaking anything. Mostly because
these functions, variables and structures are mostly internal to the
tracing system and are seldom (if ever) used by anything external to that.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJViYhVAAoJEEjnJuOKh9ldcJ0IAI+mytwoMAN/CWDE8pXrTrgs
aHlcr1zorSzZ0Lq6lKsWP+V0VGVhP8KWO16vl35HaM5ZB9U+cDzWiGobI8JTHi/3
eeTAPTjQdgrr/L+ZO1ApzS1jYPhN3Xi5L7xublcYMJjKfzU+bcYXg/x8gRt0QbG3
S9QN/kBt0JIIjT7McN64m5JVk2OiU36LxXxwHgCqJvVCPHUrriAdIX7Z5KRpEv13
zxgCN4d7Jiec/FsMW8dkO0vRlVAvudZWLL7oDmdsvNhnLy8nE79UOeHos2c1qifQ
LV4DeQ+2Hlu7w9wxixHuoOgNXDUEiQPJXzPc/CuCahiTL9N/urQSGQDoOVMltR4=
=hkdz
-----END PGP SIGNATURE-----
Merge tag 'trace-v4.2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing updates from Steven Rostedt:
"This patch series contains several clean ups and even a new trace
clock "monitonic raw". Also some enhancements to make the ring buffer
even faster. But the biggest and most noticeable change is the
renaming of the ftrace* files, structures and variables that have to
deal with trace events.
Over the years I've had several developers tell me about their
confusion with what ftrace is compared to events. Technically,
"ftrace" is the infrastructure to do the function hooks, which include
tracing and also helps with live kernel patching. But the trace
events are a separate entity altogether, and the files that affect the
trace events should not be named "ftrace". These include:
include/trace/ftrace.h -> include/trace/trace_events.h
include/linux/ftrace_event.h -> include/linux/trace_events.h
Also, functions that are specific for trace events have also been renamed:
ftrace_print_*() -> trace_print_*()
(un)register_ftrace_event() -> (un)register_trace_event()
ftrace_event_name() -> trace_event_name()
ftrace_trigger_soft_disabled() -> trace_trigger_soft_disabled()
ftrace_define_fields_##call() -> trace_define_fields_##call()
ftrace_get_offsets_##call() -> trace_get_offsets_##call()
Structures have been renamed:
ftrace_event_file -> trace_event_file
ftrace_event_{call,class} -> trace_event_{call,class}
ftrace_event_buffer -> trace_event_buffer
ftrace_subsystem_dir -> trace_subsystem_dir
ftrace_event_raw_##call -> trace_event_raw_##call
ftrace_event_data_offset_##call-> trace_event_data_offset_##call
ftrace_event_type_funcs_##call -> trace_event_type_funcs_##call
And a few various variables and flags have also been updated.
This has been sitting in linux-next for some time, and I have not
heard a single complaint about this rename breaking anything. Mostly
because these functions, variables and structures are mostly internal
to the tracing system and are seldom (if ever) used by anything
external to that"
* tag 'trace-v4.2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (33 commits)
ring_buffer: Allow to exit the ring buffer benchmark immediately
ring-buffer-benchmark: Fix the wrong type
ring-buffer-benchmark: Fix the wrong param in module_param
ring-buffer: Add enum names for the context levels
ring-buffer: Remove useless unused tracing_off_permanent()
ring-buffer: Give NMIs a chance to lock the reader_lock
ring-buffer: Add trace_recursive checks to ring_buffer_write()
ring-buffer: Allways do the trace_recursive checks
ring-buffer: Move recursive check to per_cpu descriptor
ring-buffer: Add unlikelys to make fast path the default
tracing: Rename ftrace_get_offsets_##call() to trace_event_get_offsets_##call()
tracing: Rename ftrace_define_fields_##call() to trace_event_define_fields_##call()
tracing: Rename ftrace_event_type_funcs_##call to trace_event_type_funcs_##call
tracing: Rename ftrace_data_offset_##call to trace_event_data_offset_##call
tracing: Rename ftrace_raw_##call event structures to trace_event_raw_##call
tracing: Rename ftrace_trigger_soft_disabled() to trace_trigger_soft_disabled()
tracing: Rename FTRACE_EVENT_FL_* flags to EVENT_FILE_FL_*
tracing: Rename struct ftrace_subsystem_dir to trace_subsystem_dir
tracing: Rename ftrace_event_name() to trace_event_name()
tracing: Rename FTRACE_MAX_EVENT to TRACE_EVENT_TYPE_MAX
...
Pull timer updates from Thomas Gleixner:
"A rather largish update for everything time and timer related:
- Cache footprint optimizations for both hrtimers and timer wheel
- Lower the NOHZ impact on systems which have NOHZ or timer migration
disabled at runtime.
- Optimize run time overhead of hrtimer interrupt by making the clock
offset updates smarter
- hrtimer cleanups and removal of restrictions to tackle some
problems in sched/perf
- Some more leap second tweaks
- Another round of changes addressing the 2038 problem
- First step to change the internals of clock event devices by
introducing the necessary infrastructure
- Allow constant folding for usecs/msecs_to_jiffies()
- The usual pile of clockevent/clocksource driver updates
The hrtimer changes contain updates to sched, perf and x86 as they
depend on them plus changes all over the tree to cleanup API changes
and redundant code, which got copied all over the place. The y2038
changes touch s390 to remove the last non 2038 safe code related to
boot/persistant clock"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (114 commits)
clocksource: Increase dependencies of timer-stm32 to limit build wreckage
timer: Minimize nohz off overhead
timer: Reduce timer migration overhead if disabled
timer: Stats: Simplify the flags handling
timer: Replace timer base by a cpu index
timer: Use hlist for the timer wheel hash buckets
timer: Remove FIFO "guarantee"
timers: Sanitize catchup_timer_jiffies() usage
hrtimer: Allow hrtimer::function() to free the timer
seqcount: Introduce raw_write_seqcount_barrier()
seqcount: Rename write_seqcount_barrier()
hrtimer: Fix hrtimer_is_queued() hole
hrtimer: Remove HRTIMER_STATE_MIGRATE
selftest: Timers: Avoid signal deadlock in leap-a-day
timekeeping: Copy the shadow-timekeeper over the real timekeeper last
clockevents: Check state instead of mode in suspend/resume path
selftests: timers: Add leap-second timer edge testing to leap-a-day.c
ntp: Do leapsecond adjustment in adjtimex read path
time: Prevent early expiry of hrtimers[CLOCK_REALTIME] at the leap second edge
ntp: Introduce and use SECS_PER_DAY macro instead of 86400
...
Eric reported that the timer_migration sysctl is not really nice
performance wise as it needs to check at every timer insertion whether
the feature is enabled or not. Further the check does not live in the
timer code, so we have an extra function call which checks an extra
cache line to figure out that it is disabled.
We can do better and store that information in the per cpu (hr)timer
bases. I pondered to use a static key, but that's a nightmare to
update from the nohz code and the timer base cache line is hot anyway
when we select a timer base.
The old logic enabled the timer migration unconditionally if
CONFIG_NO_HZ was set even if nohz was disabled on the kernel command
line.
With this modification, we start off with migration disabled. The user
visible sysctl is still set to enabled. If the kernel switches to NOHZ
migration is enabled, if the user did not disable it via the sysctl
prior to the switch. If nohz=off is on the kernel command line,
migration stays disabled no matter what.
Before:
47.76% hog [.] main
14.84% [kernel] [k] _raw_spin_lock_irqsave
9.55% [kernel] [k] _raw_spin_unlock_irqrestore
6.71% [kernel] [k] mod_timer
6.24% [kernel] [k] lock_timer_base.isra.38
3.76% [kernel] [k] detach_if_pending
3.71% [kernel] [k] del_timer
2.50% [kernel] [k] internal_add_timer
1.51% [kernel] [k] get_nohz_timer_target
1.28% [kernel] [k] __internal_add_timer
0.78% [kernel] [k] timerfn
0.48% [kernel] [k] wake_up_nohz_cpu
After:
48.10% hog [.] main
15.25% [kernel] [k] _raw_spin_lock_irqsave
9.76% [kernel] [k] _raw_spin_unlock_irqrestore
6.50% [kernel] [k] mod_timer
6.44% [kernel] [k] lock_timer_base.isra.38
3.87% [kernel] [k] detach_if_pending
3.80% [kernel] [k] del_timer
2.67% [kernel] [k] internal_add_timer
1.33% [kernel] [k] __internal_add_timer
0.73% [kernel] [k] timerfn
0.54% [kernel] [k] wake_up_nohz_cpu
Reported-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Joonwoo Park <joonwoop@codeaurora.org>
Cc: Wenbo Wang <wenbo.wang@memblaze.com>
Link: http://lkml.kernel.org/r/20150526224512.127050787@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>