Commit Graph

89 Commits

Author SHA1 Message Date
Davidlohr Bueso 381f20fceb security: use READ_ONCE instead of deprecated ACCESS_ONCE
With the new standardized functions, we can replace all ACCESS_ONCE()
calls across relevant security/keyrings/.

ACCESS_ONCE() does not work reliably on non-scalar types. For example
gcc 4.6 and 4.7 might remove the volatile tag for such accesses during
the SRA (scalar replacement of aggregates) step:

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58145

Update the new calls regardless of if it is a scalar type, this is
cleaner than having three alternatives.

Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
2017-06-09 13:29:45 +10:00
Mat Martineau 6563c91fd6 KEYS: Add KEYCTL_RESTRICT_KEYRING
Keyrings recently gained restrict_link capabilities that allow
individual keys to be validated prior to linking.  This functionality
was only available using internal kernel APIs.

With the KEYCTL_RESTRICT_KEYRING command existing keyrings can be
configured to check the content of keys before they are linked, and
then allow or disallow linkage of that key to the keyring.

To restrict a keyring, call:

  keyctl(KEYCTL_RESTRICT_KEYRING, key_serial_t keyring, const char *type,
         const char *restriction)

where 'type' is the name of a registered key type and 'restriction' is a
string describing how key linkage is to be restricted. The restriction
option syntax is specific to each key type.

Signed-off-by: Mat Martineau <mathew.j.martineau@linux.intel.com>
2017-04-04 14:10:12 -07:00
Mat Martineau 2b6aa412ff KEYS: Use structure to capture key restriction function and data
Replace struct key's restrict_link function pointer with a pointer to
the new struct key_restriction. The structure contains pointers to the
restriction function as well as relevant data for evaluating the
restriction.

The garbage collector checks restrict_link->keytype when key types are
unregistered. Restrictions involving a removed key type are converted
to use restrict_link_reject so that restrictions cannot be removed by
unregistering key types.

Signed-off-by: Mat Martineau <mathew.j.martineau@linux.intel.com>
2017-04-04 14:10:10 -07:00
Mat Martineau aaf66c8838 KEYS: Split role of the keyring pointer for keyring restrict functions
The first argument to the restrict_link_func_t functions was a keyring
pointer. These functions are called by the key subsystem with this
argument set to the destination keyring, but restrict_link_by_signature
expects a pointer to the relevant trusted keyring.

Restrict functions may need something other than a single struct key
pointer to allow or reject key linkage, so the data used to make that
decision (such as the trust keyring) is moved to a new, fourth
argument. The first argument is now always the destination keyring.

Signed-off-by: Mat Martineau <mathew.j.martineau@linux.intel.com>
2017-04-03 10:24:56 -07:00
Mat Martineau 469ff8f7d4 KEYS: Use a typedef for restrict_link function pointers
This pointer type needs to be returned from a lookup function, and
without a typedef the syntax gets cumbersome.

Signed-off-by: Mat Martineau <mathew.j.martineau@linux.intel.com>
2017-04-03 10:24:55 -07:00
Elena Reshetova fff292914d security, keys: convert key.usage from atomic_t to refcount_t
refcount_t type and corresponding API should be
used instead of atomic_t when the variable is used as
a reference counter. This allows to avoid accidental
refcounter overflows that might lead to use-after-free
situations.

Signed-off-by: Elena Reshetova <elena.reshetova@intel.com>
Signed-off-by: Hans Liljestrand <ishkamiel@gmail.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: David Windsor <dwindsor@gmail.com>
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
2017-04-03 10:49:05 +10:00
David Howells 77f68bac94 KEYS: Remove KEY_FLAG_TRUSTED and KEY_ALLOC_TRUSTED
Remove KEY_FLAG_TRUSTED and KEY_ALLOC_TRUSTED as they're no longer
meaningful.  Also we can drop the trusted flag from the preparse structure.

Given this, we no longer need to pass the key flags through to
restrict_link().

Further, we can now get rid of keyring_restrict_trusted_only() also.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-04-11 22:44:15 +01:00
David Howells 5ac7eace2d KEYS: Add a facility to restrict new links into a keyring
Add a facility whereby proposed new links to be added to a keyring can be
vetted, permitting them to be rejected if necessary.  This can be used to
block public keys from which the signature cannot be verified or for which
the signature verification fails.  It could also be used to provide
blacklisting.

This affects operations like add_key(), KEYCTL_LINK and KEYCTL_INSTANTIATE.

To this end:

 (1) A function pointer is added to the key struct that, if set, points to
     the vetting function.  This is called as:

	int (*restrict_link)(struct key *keyring,
			     const struct key_type *key_type,
			     unsigned long key_flags,
			     const union key_payload *key_payload),

     where 'keyring' will be the keyring being added to, key_type and
     key_payload will describe the key being added and key_flags[*] can be
     AND'ed with KEY_FLAG_TRUSTED.

     [*] This parameter will be removed in a later patch when
     	 KEY_FLAG_TRUSTED is removed.

     The function should return 0 to allow the link to take place or an
     error (typically -ENOKEY, -ENOPKG or -EKEYREJECTED) to reject the
     link.

     The pointer should not be set directly, but rather should be set
     through keyring_alloc().

     Note that if called during add_key(), preparse is called before this
     method, but a key isn't actually allocated until after this function
     is called.

 (2) KEY_ALLOC_BYPASS_RESTRICTION is added.  This can be passed to
     key_create_or_update() or key_instantiate_and_link() to bypass the
     restriction check.

 (3) KEY_FLAG_TRUSTED_ONLY is removed.  The entire contents of a keyring
     with this restriction emplaced can be considered 'trustworthy' by
     virtue of being in the keyring when that keyring is consulted.

 (4) key_alloc() and keyring_alloc() take an extra argument that will be
     used to set restrict_link in the new key.  This ensures that the
     pointer is set before the key is published, thus preventing a window
     of unrestrictedness.  Normally this argument will be NULL.

 (5) As a temporary affair, keyring_restrict_trusted_only() is added.  It
     should be passed to keyring_alloc() as the extra argument instead of
     setting KEY_FLAG_TRUSTED_ONLY on a keyring.  This will be replaced in
     a later patch with functions that look in the appropriate places for
     authoritative keys.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
2016-04-11 22:37:37 +01:00
David Howells 146aa8b145 KEYS: Merge the type-specific data with the payload data
Merge the type-specific data with the payload data into one four-word chunk
as it seems pointless to keep them separate.

Use user_key_payload() for accessing the payloads of overloaded
user-defined keys.

Signed-off-by: David Howells <dhowells@redhat.com>
cc: linux-cifs@vger.kernel.org
cc: ecryptfs@vger.kernel.org
cc: linux-ext4@vger.kernel.org
cc: linux-f2fs-devel@lists.sourceforge.net
cc: linux-nfs@vger.kernel.org
cc: ceph-devel@vger.kernel.org
cc: linux-ima-devel@lists.sourceforge.net
2015-10-21 15:18:36 +01:00
Colin Ian King ca4da5dd1f KEYS: ensure we free the assoc array edit if edit is valid
__key_link_end is not freeing the associated array edit structure
and this leads to a 512 byte memory leak each time an identical
existing key is added with add_key().

The reason the add_key() system call returns okay is that
key_create_or_update() calls __key_link_begin() before checking to see
whether it can update a key directly rather than adding/replacing - which
it turns out it can.  Thus __key_link() is not called through
__key_instantiate_and_link() and __key_link_end() must cancel the edit.

CVE-2015-1333

Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
2015-07-28 13:08:23 +10:00
David Howells 0b0a84154e KEYS: request_key() should reget expired keys rather than give EKEYEXPIRED
Since the keyring facility can be viewed as a cache (at least in some
applications), the local expiration time on the key should probably be viewed
as a 'needs updating after this time' property rather than an absolute 'anyone
now wanting to use this object is out of luck' property.

Since request_key() is the main interface for the usage of keys, this should
update or replace an expired key rather than issuing EKEYEXPIRED if the local
expiration has been reached (ie. it should refresh the cache).

For absolute conditions where refreshing the cache probably doesn't help, the
key can be negatively instantiated using KEYCTL_REJECT_KEY with EKEYEXPIRED
given as the error to issue.  This will still cause request_key() to return
EKEYEXPIRED as that was explicitly set.

In the future, if the key type has an update op available, we might want to
upcall with the expired key and allow the upcall to update it.  We would pass
a different operation name (the first column in /etc/request-key.conf) to the
request-key program.

request_key() returning EKEYEXPIRED is causing an NFS problem which Chuck
Lever describes thusly:

	After about 10 minutes, my NFSv4 functional tests fail because the
	ownership of the test files goes to "-2". Looking at /proc/keys
	shows that the id_resolv keys that map to my test user ID have
	expired. The ownership problem persists until the expired keys are
	purged from the keyring, and fresh keys are obtained.

	I bisected the problem to 3.13 commit b2a4df200d ("KEYS: Expand
	the capacity of a keyring"). This commit inadvertantly changes the
	API contract of the internal function keyring_search_aux().

	The root cause appears to be that b2a4df200d made "no state check"
	the default behavior. "No state check" means the keyring search
	iterator function skips checking the key's expiry timeout, and
	returns expired keys.  request_key_and_link() depends on getting
	an -EAGAIN result code to know when to perform an upcall to refresh
	an expired key.

This patch can be tested directly by:

	keyctl request2 user debug:fred a @s
	keyctl timeout %user:debug:fred 3
	sleep 4
	keyctl request2 user debug:fred a @s

Without the patch, the last command gives error EKEYEXPIRED, but with the
command it gives a new key.

Reported-by: Carl Hetherington <cth@carlh.net>
Reported-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Chuck Lever <chuck.lever@oracle.com>
2014-12-01 22:52:53 +00:00
David Howells 054f6180d8 KEYS: Simplify KEYRING_SEARCH_{NO,DO}_STATE_CHECK flags
Simplify KEYRING_SEARCH_{NO,DO}_STATE_CHECK flags to be two variations of the
same flag.  They are effectively mutually exclusive and one or the other
should be provided, but not both.

Keyring cycle detection and key possession determination are the only things
that set NO_STATE_CHECK, except that neither flag really does anything there
because neither purpose makes use of the keyring_search_iterator() function,
but rather provides their own.

For cycle detection we definitely want to check inside of expired keyrings,
just so that we don't create a cycle we can't get rid of.  Revoked keyrings
are cleared at revocation time and can't then be reused, so shouldn't be a
problem either way.

For possession determination, we *might* want to validate each keyring before
searching it: do you possess a key that's hidden behind an expired or just
plain inaccessible keyring?  Currently, the answer is yes.  Note that you
cannot, however, possess a key behind a revoked keyring because they are
cleared on revocation.

keyring_search() sets DO_STATE_CHECK, which is correct.

request_key_and_link() currently doesn't specify whether to check the key
state or not - but it should set DO_STATE_CHECK.

key_get_instantiation_authkey() also currently doesn't specify whether to
check the key state or not - but it probably should also set DO_STATE_CHECK.

Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Chuck Lever <chuck.lever@oracle.com>
2014-12-01 22:52:50 +00:00
David Howells 0c903ab64f KEYS: Make the key matching functions return bool
Make the key matching functions pointed to by key_match_data::cmp return bool
rather than int.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
2014-09-16 17:36:08 +01:00
David Howells c06cfb08b8 KEYS: Remove key_type::match in favour of overriding default by match_preparse
A previous patch added a ->match_preparse() method to the key type.  This is
allowed to override the function called by the iteration algorithm.
Therefore, we can just set a default that simply checks for an exact match of
the key description with the original criterion data and allow match_preparse
to override it as needed.

The key_type::match op is then redundant and can be removed, as can the
user_match() function.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
2014-09-16 17:36:06 +01:00
David Howells 462919591a KEYS: Preparse match data
Preparse the match data.  This provides several advantages:

 (1) The preparser can reject invalid criteria up front.

 (2) The preparser can convert the criteria to binary data if necessary (the
     asymmetric key type really wants to do binary comparison of the key IDs).

 (3) The preparser can set the type of search to be performed.  This means
     that it's not then a one-off setting in the key type.

 (4) The preparser can set an appropriate comparator function.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
2014-09-16 17:36:02 +01:00
David Howells 5d19e20b53 KEYS: keyring: Provide key preparsing
Provide key preparsing in the keyring so that we can make preparsing
mandatory.  For keyrings, however, only an empty payload is permitted.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Jeff Layton <jlayton@primarydata.com>
2014-07-22 21:46:51 +01:00
David Howells f5895943d9 KEYS: Move the flags representing required permission to linux/key.h
Move the flags representing required permission to linux/key.h as the perm
parameter of security_key_permission() is in terms of them - and not the
permissions mask flags used in key->perm.

Whilst we're at it:

 (1) Rename them to be KEY_NEED_xxx rather than KEY_xxx to avoid collisions
     with symbols in uapi/linux/input.h.

 (2) Don't use key_perm_t for a mask of required permissions, but rather limit
     it to the permissions mask attached to the key and arguments related
     directly to that.

Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Dmitry Kasatkin <d.kasatkin@samsung.com>
2014-03-14 17:44:49 +00:00
David Howells 979e0d7465 KEYS: Make the keyring cycle detector ignore other keyrings of the same name
This fixes CVE-2014-0102.

The following command sequence produces an oops:

	keyctl new_session
	i=`keyctl newring _ses @s`
	keyctl link @s $i

The problem is that search_nested_keyrings() sees two keyrings that have
matching type and description, so keyring_compare_object() returns true.
s_n_k() then passes the key to the iterator function -
keyring_detect_cycle_iterator() - which *should* check to see whether this is
the keyring of interest, not just one with the same name.

Because assoc_array_find() will return one and only one match, I assumed that
the iterator function would only see an exact match or never be called - but
the iterator isn't only called from assoc_array_find()...

The oops looks something like this:

	kernel BUG at /data/fs/linux-2.6-fscache/security/keys/keyring.c:1003!
	invalid opcode: 0000 [#1] SMP
	...
	RIP: keyring_detect_cycle_iterator+0xe/0x1f
	...
	Call Trace:
	  search_nested_keyrings+0x76/0x2aa
	  __key_link_check_live_key+0x50/0x5f
	  key_link+0x4e/0x85
	  keyctl_keyring_link+0x60/0x81
	  SyS_keyctl+0x65/0xe4
	  tracesys+0xdd/0xe2

The fix is to make keyring_detect_cycle_iterator() check that the key it
has is the key it was actually looking for rather than calling BUG_ON().

A testcase has been included in the keyutils testsuite for this:

	http://git.kernel.org/cgit/linux/kernel/git/dhowells/keyutils.git/commit/?id=891f3365d07f1996778ade0e3428f01878a1790b

Reported-by: Tommi Rantala <tt.rantala@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <james.l.morris@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-03-09 18:57:18 -07:00
David Howells 9c5e45df21 KEYS: Fix searching of nested keyrings
If a keyring contains more than 16 keyrings (the capacity of a single node in
the associative array) then those keyrings are split over multiple nodes
arranged as a tree.

If search_nested_keyrings() is called to search the keyring then it will
attempt to manually walk over just the 0 branch of the associative array tree
where all the keyring links are stored.  This works provided the key is found
before the algorithm steps from one node containing keyrings to a child node
or if there are sufficiently few keyring links that the keyrings are all in
one node.

However, if the algorithm does need to step from a node to a child node, it
doesn't change the node pointer unless a shortcut also gets transited.  This
means that the algorithm will keep scanning the same node over and over again
without terminating and without returning.

To fix this, move the internal-pointer-to-node translation from inside the
shortcut transit handler so that it applies it to node arrival as well.

This can be tested by:

	r=`keyctl newring sandbox @s`
	for ((i=0; i<=16; i++)); do keyctl newring ring$i $r; done
	for ((i=0; i<=16; i++)); do keyctl add user a$i a %:ring$i; done
	for ((i=0; i<=16; i++)); do keyctl search $r user a$i; done
	for ((i=17; i<=20; i++)); do keyctl search $r user a$i; done

The searches should all complete successfully (or with an error for 17-20),
but instead one or more of them will hang.

Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Stephen Gallagher <sgallagh@redhat.com>
2013-12-02 11:24:19 +00:00
David Howells 23fd78d764 KEYS: Fix multiple key add into associative array
If sufficient keys (or keyrings) are added into a keyring such that a node in
the associative array's tree overflows (each node has a capacity N, currently
16) and such that all N+1 keys have the same index key segment for that level
of the tree (the level'th nibble of the index key), then assoc_array_insert()
calls ops->diff_objects() to indicate at which bit position the two index keys
vary.

However, __key_link_begin() passes a NULL object to assoc_array_insert() with
the intention of supplying the correct pointer later before we commit the
change.  This means that keyring_diff_objects() is given a NULL pointer as one
of its arguments which it does not expect.  This results in an oops like the
attached.

With the previous patch to fix the keyring hash function, this can be forced
much more easily by creating a keyring and only adding keyrings to it.  Add any
other sort of key and a different insertion path is taken - all 16+1 objects
must want to cluster in the same node slot.

This can be tested by:

	r=`keyctl newring sandbox @s`
	for ((i=0; i<=16; i++)); do keyctl newring ring$i $r; done

This should work fine, but oopses when the 17th keyring is added.

Since ops->diff_objects() is always called with the first pointer pointing to
the object to be inserted (ie. the NULL pointer), we can fix the problem by
changing the to-be-inserted object pointer to point to the index key passed
into assoc_array_insert() instead.

Whilst we're at it, we also switch the arguments so that they are the same as
for ->compare_object().

BUG: unable to handle kernel NULL pointer dereference at 0000000000000088
IP: [<ffffffff81191ee4>] hash_key_type_and_desc+0x18/0xb0
...
RIP: 0010:[<ffffffff81191ee4>] hash_key_type_and_desc+0x18/0xb0
...
Call Trace:
 [<ffffffff81191f9d>] keyring_diff_objects+0x21/0xd2
 [<ffffffff811f09ef>] assoc_array_insert+0x3b6/0x908
 [<ffffffff811929a7>] __key_link_begin+0x78/0xe5
 [<ffffffff81191a2e>] key_create_or_update+0x17d/0x36a
 [<ffffffff81192e0a>] SyS_add_key+0x123/0x183
 [<ffffffff81400ddb>] tracesys+0xdd/0xe2

Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Stephen Gallagher <sgallagh@redhat.com>
2013-12-02 11:24:18 +00:00
David Howells d54e58b7f0 KEYS: Fix the keyring hash function
The keyring hash function (used by the associative array) is supposed to clear
the bottommost nibble of the index key (where the hash value resides) for
keyrings and make sure it is non-zero for non-keyrings.  This is done to make
keyrings cluster together on one branch of the tree separately to other keys.

Unfortunately, the wrong mask is used, so only the bottom two bits are
examined and cleared and not the whole bottom nibble.  This means that keys
and keyrings can still be successfully searched for under most circumstances
as the hash is consistent in its miscalculation, but if a keyring's
associative array bottom node gets filled up then approx 75% of the keyrings
will not be put into the 0 branch.

The consequence of this is that a key in a keyring linked to by another
keyring, ie.

	keyring A -> keyring B -> key

may not be found if the search starts at keyring A and then descends into
keyring B because search_nested_keyrings() only searches up the 0 branch (as it
"knows" all keyrings must be there and not elsewhere in the tree).

The fix is to use the right mask.

This can be tested with:

	r=`keyctl newring sandbox @s`
	for ((i=0; i<=16; i++)); do keyctl newring ring$i $r; done
	for ((i=0; i<=16; i++)); do keyctl add user a$i a %:ring$i; done
	for ((i=0; i<=16; i++)); do keyctl search $r user a$i; done

This creates a sandbox keyring, then creates 17 keyrings therein (labelled
ring0..ring16).  This causes the root node of the sandbox's associative array
to overflow and for the tree to have extra nodes inserted.

Each keyring then is given a user key (labelled aN for ringN) for us to search
for.

We then search for the user keys we added, starting from the sandbox.  If
working correctly, it should return the same ordered list of key IDs as
for...keyctl add... did.  Without this patch, it reports ENOKEY "Required key
not available" for some of the keys.  Just which keys get this depends as the
kernel pointer to the key type forms part of the hash function.

Reported-by: Nalin Dahyabhai <nalin@redhat.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Stephen Gallagher <sgallagh@redhat.com>
2013-12-02 11:24:18 +00:00
David Howells 62fe318256 KEYS: Fix keyring content gc scanner
Key pointers stored in the keyring are marked in bit 1 to indicate if they
point to a keyring.  We need to strip off this bit before using the pointer
when iterating over the keyring for the purpose of looking for links to garbage
collect.

This means that expirable keyrings aren't correctly expiring because the
checker is seeing their key pointer with 2 added to it.

Since the fix for this involves knowing about the internals of the keyring,
key_gc_keyring() is moved to keyring.c and merged into keyring_gc().

This can be tested by:

	echo 2 >/proc/sys/kernel/keys/gc_delay
	keyctl timeout `keyctl add keyring qwerty "" @s` 2
	cat /proc/keys
	sleep 5; cat /proc/keys

which should see a keyring called "qwerty" appear in the session keyring and
then disappear after it expires, and:

	echo 2 >/proc/sys/kernel/keys/gc_delay
	a=`keyctl get_persistent @s`
	b=`keyctl add keyring 0 "" $a`
	keyctl add user a a $b
	keyctl timeout $b 2
	cat /proc/keys
	sleep 5; cat /proc/keys

which should see a keyring called "0" with a key called "a" in it appear in the
user's persistent keyring (which will be attached to the session keyring) and
then both the "0" keyring and the "a" key should disappear when the "0" keyring
expires.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Simo Sorce <simo@redhat.com>
2013-11-14 14:09:53 +00:00
David Howells 034faeb9ef KEYS: Fix keyring quota misaccounting on key replacement and unlink
If a key is displaced from a keyring by a matching one, then four more bytes
of quota are allocated to the keyring - despite the fact that the keyring does
not change in size.

Further, when a key is unlinked from a keyring, the four bytes of quota
allocated the link isn't recovered and returned to the user's pool.

The first can be tested by repeating:

	keyctl add big_key a fred @s
	cat /proc/key-users

(Don't put it in a shell loop otherwise the garbage collector won't have time
to clear the displaced keys, thus affecting the result).

This was causing the kerberos keyring to run out of room fairly quickly.

The second can be tested by:

	cat /proc/key-users
	a=`keyctl add user a a @s`
	cat /proc/key-users
	keyctl unlink $a
	sleep 1 # Give RCU a chance to delete the key
	cat /proc/key-users

assuming no system activity that otherwise adds/removes keys, the amount of
key data allocated should go up (say 40/20000 -> 47/20000) and then return to
the original value at the end.

Reported-by: Stephen Gallagher <sgallagh@redhat.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2013-10-30 11:15:24 +00:00
David Howells 74792b0001 KEYS: Fix a race between negating a key and reading the error set
key_reject_and_link() marking a key as negative and setting the error with
which it was negated races with keyring searches and other things that read
that error.

The fix is to switch the order in which the assignments are done in
key_reject_and_link() and to use memory barriers.

Kudos to Dave Wysochanski <dwysocha@redhat.com> and Scott Mayhew
<smayhew@redhat.com> for tracking this down.

This may be the cause of:

BUG: unable to handle kernel NULL pointer dereference at 0000000000000070
IP: [<ffffffff81219011>] wait_for_key_construction+0x31/0x80
PGD c6b2c3067 PUD c59879067 PMD 0
Oops: 0000 [#1] SMP
last sysfs file: /sys/devices/system/cpu/cpu3/cache/index2/shared_cpu_map
CPU 0
Modules linked in: ...

Pid: 13359, comm: amqzxma0 Not tainted 2.6.32-358.20.1.el6.x86_64 #1 IBM System x3650 M3 -[7945PSJ]-/00J6159
RIP: 0010:[<ffffffff81219011>] wait_for_key_construction+0x31/0x80
RSP: 0018:ffff880c6ab33758  EFLAGS: 00010246
RAX: ffffffff81219080 RBX: 0000000000000000 RCX: 0000000000000002
RDX: ffffffff81219060 RSI: 0000000000000000 RDI: 0000000000000000
RBP: ffff880c6ab33768 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000001 R11: 0000000000000000 R12: ffff880adfcbce40
R13: ffffffffa03afb84 R14: ffff880adfcbce40 R15: ffff880adfcbce43
FS:  00007f29b8042700(0000) GS:ffff880028200000(0000) knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000070 CR3: 0000000c613dc000 CR4: 00000000000007f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
Process amqzxma0 (pid: 13359, threadinfo ffff880c6ab32000, task ffff880c610deae0)
Stack:
 ffff880adfcbce40 0000000000000000 ffff880c6ab337b8 ffffffff81219695
<d> 0000000000000000 ffff880a000000d0 ffff880c6ab337a8 000000000000000f
<d> ffffffffa03afb93 000000000000000f ffff88186c7882c0 0000000000000014
Call Trace:
 [<ffffffff81219695>] request_key+0x65/0xa0
 [<ffffffffa03a0885>] nfs_idmap_request_key+0xc5/0x170 [nfs]
 [<ffffffffa03a0eb4>] nfs_idmap_lookup_id+0x34/0x80 [nfs]
 [<ffffffffa03a1255>] nfs_map_group_to_gid+0x75/0xa0 [nfs]
 [<ffffffffa039a9ad>] decode_getfattr_attrs+0xbdd/0xfb0 [nfs]
 [<ffffffff81057310>] ? __dequeue_entity+0x30/0x50
 [<ffffffff8100988e>] ? __switch_to+0x26e/0x320
 [<ffffffffa039ae03>] decode_getfattr+0x83/0xe0 [nfs]
 [<ffffffffa039b610>] ? nfs4_xdr_dec_getattr+0x0/0xa0 [nfs]
 [<ffffffffa039b69f>] nfs4_xdr_dec_getattr+0x8f/0xa0 [nfs]
 [<ffffffffa02dada4>] rpcauth_unwrap_resp+0x84/0xb0 [sunrpc]
 [<ffffffffa039b610>] ? nfs4_xdr_dec_getattr+0x0/0xa0 [nfs]
 [<ffffffffa02cf923>] call_decode+0x1b3/0x800 [sunrpc]
 [<ffffffff81096de0>] ? wake_bit_function+0x0/0x50
 [<ffffffffa02cf770>] ? call_decode+0x0/0x800 [sunrpc]
 [<ffffffffa02d99a7>] __rpc_execute+0x77/0x350 [sunrpc]
 [<ffffffff81096c67>] ? bit_waitqueue+0x17/0xd0
 [<ffffffffa02d9ce1>] rpc_execute+0x61/0xa0 [sunrpc]
 [<ffffffffa02d03a5>] rpc_run_task+0x75/0x90 [sunrpc]
 [<ffffffffa02d04c2>] rpc_call_sync+0x42/0x70 [sunrpc]
 [<ffffffffa038ff80>] _nfs4_call_sync+0x30/0x40 [nfs]
 [<ffffffffa038836c>] _nfs4_proc_getattr+0xac/0xc0 [nfs]
 [<ffffffff810aac87>] ? futex_wait+0x227/0x380
 [<ffffffffa038b856>] nfs4_proc_getattr+0x56/0x80 [nfs]
 [<ffffffffa0371403>] __nfs_revalidate_inode+0xe3/0x220 [nfs]
 [<ffffffffa037158e>] nfs_revalidate_mapping+0x4e/0x170 [nfs]
 [<ffffffffa036f147>] nfs_file_read+0x77/0x130 [nfs]
 [<ffffffff811811aa>] do_sync_read+0xfa/0x140
 [<ffffffff81096da0>] ? autoremove_wake_function+0x0/0x40
 [<ffffffff8100bb8e>] ? apic_timer_interrupt+0xe/0x20
 [<ffffffff8100b9ce>] ? common_interrupt+0xe/0x13
 [<ffffffff81228ffb>] ? selinux_file_permission+0xfb/0x150
 [<ffffffff8121bed6>] ? security_file_permission+0x16/0x20
 [<ffffffff81181a95>] vfs_read+0xb5/0x1a0
 [<ffffffff81181bd1>] sys_read+0x51/0x90
 [<ffffffff810dc685>] ? __audit_syscall_exit+0x265/0x290
 [<ffffffff8100b072>] system_call_fastpath+0x16/0x1b

Signed-off-by: David Howells <dhowells@redhat.com>
cc: Dave Wysochanski <dwysocha@redhat.com>
cc: Scott Mayhew <smayhew@redhat.com>
2013-10-30 11:15:24 +00:00
David Howells 008643b86c KEYS: Add a 'trusted' flag and a 'trusted only' flag
Add KEY_FLAG_TRUSTED to indicate that a key either comes from a trusted source
or had a cryptographic signature chain that led back to a trusted key the
kernel already possessed.

Add KEY_FLAGS_TRUSTED_ONLY to indicate that a keyring will only accept links to
keys marked with KEY_FLAGS_TRUSTED.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
2013-09-25 17:17:01 +01:00
David Howells b2a4df200d KEYS: Expand the capacity of a keyring
Expand the capacity of a keyring to be able to hold a lot more keys by using
the previously added associative array implementation.  Currently the maximum
capacity is:

	(PAGE_SIZE - sizeof(header)) / sizeof(struct key *)

which, on a 64-bit system, is a little more 500.  However, since this is being
used for the NFS uid mapper, we need more than that.  The new implementation
gives us effectively unlimited capacity.

With some alterations, the keyutils testsuite runs successfully to completion
after this patch is applied.  The alterations are because (a) keyrings that
are simply added to no longer appear ordered and (b) some of the errors have
changed a bit.

Signed-off-by: David Howells <dhowells@redhat.com>
2013-09-24 10:35:18 +01:00
David Howells e57e8669f2 KEYS: Drop the permissions argument from __keyring_search_one()
Drop the permissions argument from __keyring_search_one() as the only caller
passes 0 here - which causes all checks to be skipped.

Signed-off-by: David Howells <dhowells@redhat.com>
2013-09-24 10:35:17 +01:00
David Howells ccc3e6d9c9 KEYS: Define a __key_get() wrapper to use rather than atomic_inc()
Define a __key_get() wrapper to use rather than atomic_inc() on the key usage
count as this makes it easier to hook in refcount error debugging.

Signed-off-by: David Howells <dhowells@redhat.com>
2013-09-24 10:35:16 +01:00
David Howells 4bdf0bc300 KEYS: Introduce a search context structure
Search functions pass around a bunch of arguments, each of which gets copied
with each call.  Introduce a search context structure to hold these.

Whilst we're at it, create a search flag that indicates whether the search
should be directly to the description or whether it should iterate through all
keys looking for a non-description match.

This will be useful when keyrings use a generic data struct with generic
routines to manage their content as the search terms can just be passed
through to the iterator callback function.

Also, for future use, the data to be supplied to the match function is
separated from the description pointer in the search context.  This makes it
clear which is being supplied.

Signed-off-by: David Howells <dhowells@redhat.com>
2013-09-24 10:35:15 +01:00
David Howells 16feef4340 KEYS: Consolidate the concept of an 'index key' for key access
Consolidate the concept of an 'index key' for accessing keys.  The index key
is the search term needed to find a key directly - basically the key type and
the key description.  We can add to that the description length.

This will be useful when turning a keyring into an associative array rather
than just a pointer block.

Signed-off-by: David Howells <dhowells@redhat.com>
2013-09-24 10:35:15 +01:00
David Howells a5b4bd2874 KEYS: Use bool in make_key_ref() and is_key_possessed()
Make make_key_ref() take a bool possession parameter and make
is_key_possessed() return a bool.

Signed-off-by: David Howells <dhowells@redhat.com>
2013-09-24 10:35:14 +01:00
Linus Torvalds 2a74dbb9a8 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security
Pull security subsystem updates from James Morris:
 "A quiet cycle for the security subsystem with just a few maintenance
  updates."

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security:
  Smack: create a sysfs mount point for smackfs
  Smack: use select not depends in Kconfig
  Yama: remove locking from delete path
  Yama: add RCU to drop read locking
  drivers/char/tpm: remove tasklet and cleanup
  KEYS: Use keyring_alloc() to create special keyrings
  KEYS: Reduce initial permissions on keys
  KEYS: Make the session and process keyrings per-thread
  seccomp: Make syscall skipping and nr changes more consistent
  key: Fix resource leak
  keys: Fix unreachable code
  KEYS: Add payload preparsing opportunity prior to key instantiate or update
2012-12-16 15:40:50 -08:00
Linus Torvalds d25282d1c9 Merge branch 'modules-next' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux
Pull module signing support from Rusty Russell:
 "module signing is the highlight, but it's an all-over David Howells frenzy..."

Hmm "Magrathea: Glacier signing key". Somebody has been reading too much HHGTTG.

* 'modules-next' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux: (37 commits)
  X.509: Fix indefinite length element skip error handling
  X.509: Convert some printk calls to pr_devel
  asymmetric keys: fix printk format warning
  MODSIGN: Fix 32-bit overflow in X.509 certificate validity date checking
  MODSIGN: Make mrproper should remove generated files.
  MODSIGN: Use utf8 strings in signer's name in autogenerated X.509 certs
  MODSIGN: Use the same digest for the autogen key sig as for the module sig
  MODSIGN: Sign modules during the build process
  MODSIGN: Provide a script for generating a key ID from an X.509 cert
  MODSIGN: Implement module signature checking
  MODSIGN: Provide module signing public keys to the kernel
  MODSIGN: Automatically generate module signing keys if missing
  MODSIGN: Provide Kconfig options
  MODSIGN: Provide gitignore and make clean rules for extra files
  MODSIGN: Add FIPS policy
  module: signature checking hook
  X.509: Add a crypto key parser for binary (DER) X.509 certificates
  MPILIB: Provide a function to read raw data into an MPI
  X.509: Add an ASN.1 decoder
  X.509: Add simple ASN.1 grammar compiler
  ...
2012-10-14 13:39:34 -07:00
David Howells cf7f601c06 KEYS: Add payload preparsing opportunity prior to key instantiate or update
Give the key type the opportunity to preparse the payload prior to the
instantiation and update routines being called.  This is done with the
provision of two new key type operations:

	int (*preparse)(struct key_preparsed_payload *prep);
	void (*free_preparse)(struct key_preparsed_payload *prep);

If the first operation is present, then it is called before key creation (in
the add/update case) or before the key semaphore is taken (in the update and
instantiate cases).  The second operation is called to clean up if the first
was called.

preparse() is given the opportunity to fill in the following structure:

	struct key_preparsed_payload {
		char		*description;
		void		*type_data[2];
		void		*payload;
		const void	*data;
		size_t		datalen;
		size_t		quotalen;
	};

Before the preparser is called, the first three fields will have been cleared,
the payload pointer and size will be stored in data and datalen and the default
quota size from the key_type struct will be stored into quotalen.

The preparser may parse the payload in any way it likes and may store data in
the type_data[] and payload fields for use by the instantiate() and update()
ops.

The preparser may also propose a description for the key by attaching it as a
string to the description field.  This can be used by passing a NULL or ""
description to the add_key() system call or the key_create_or_update()
function.  This cannot work with request_key() as that required the description
to tell the upcall about the key to be created.

This, for example permits keys that store PGP public keys to generate their own
name from the user ID and public key fingerprint in the key.

The instantiate() and update() operations are then modified to look like this:

	int (*instantiate)(struct key *key, struct key_preparsed_payload *prep);
	int (*update)(struct key *key, struct key_preparsed_payload *prep);

and the new payload data is passed in *prep, whether or not it was preparsed.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-10-08 13:49:48 +10:30
David Howells 4442d7704c Merge branch 'modsign-keys-devel' into security-next-keys
Signed-off-by: David Howells <dhowells@redhat.com>
2012-10-02 19:30:19 +01:00
David Howells f8aa23a55f KEYS: Use keyring_alloc() to create special keyrings
Use keyring_alloc() to create special keyrings now that it has a permissions
parameter rather than using key_alloc() + key_instantiate_and_link().

Also document and export keyring_alloc() so that modules can use it too.

Signed-off-by: David Howells <dhowells@redhat.com>
2012-10-02 19:24:56 +01:00
David Howells 96b5c8fea6 KEYS: Reduce initial permissions on keys
Reduce the initial permissions on new keys to grant the possessor everything,
view permission only to the user (so the keys can be seen in /proc/keys) and
nothing else.

This gives the creator a chance to adjust the permissions mask before other
processes can access the new key or create a link to it.

To aid with this, keyring_alloc() now takes a permission argument rather than
setting the permissions itself.

The following permissions are now set:

 (1) The user and user-session keyrings grant the user that owns them full
     permissions and grant a possessor everything bar SETATTR.

 (2) The process and thread keyrings grant the possessor full permissions but
     only grant the user VIEW.  This permits the user to see them in
     /proc/keys, but not to do anything with them.

 (3) Anonymous session keyrings grant the possessor full permissions, but only
     grant the user VIEW and READ.  This means that the user can see them in
     /proc/keys and can list them, but nothing else.  Possibly READ shouldn't
     be provided either.

 (4) Named session keyrings grant everything an anonymous session keyring does,
     plus they grant the user LINK permission.  The whole point of named
     session keyrings is that others can also subscribe to them.  Possibly this
     should be a separate permission to LINK.

 (5) The temporary session keyring created by call_sbin_request_key() gets the
     same permissions as an anonymous session keyring.

 (6) Keys created by add_key() get VIEW, SEARCH, LINK and SETATTR for the
     possessor, plus READ and/or WRITE if the key type supports them.  The used
     only gets VIEW now.

 (7) Keys created by request_key() now get the same as those created by
     add_key().

Reported-by: Lennart Poettering <lennart@poettering.net>
Reported-by: Stef Walter <stefw@redhat.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2012-10-02 19:24:56 +01:00
Eric W. Biederman 9a56c2db49 userns: Convert security/keys to the new userns infrastructure
- Replace key_user ->user_ns equality checks with kuid_has_mapping checks.
- Use from_kuid to generate key descriptions
- Use kuid_t and kgid_t and the associated helpers instead of uid_t and gid_t
- Avoid potential problems with file descriptor passing by displaying
  keys in the user namespace of the opener of key status proc files.

Cc: linux-security-module@vger.kernel.org
Cc: keyrings@linux-nfs.org
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2012-09-13 18:28:02 -07:00
David Howells d4f65b5d24 KEYS: Add payload preparsing opportunity prior to key instantiate or update
Give the key type the opportunity to preparse the payload prior to the
instantiation and update routines being called.  This is done with the
provision of two new key type operations:

	int (*preparse)(struct key_preparsed_payload *prep);
	void (*free_preparse)(struct key_preparsed_payload *prep);

If the first operation is present, then it is called before key creation (in
the add/update case) or before the key semaphore is taken (in the update and
instantiate cases).  The second operation is called to clean up if the first
was called.

preparse() is given the opportunity to fill in the following structure:

	struct key_preparsed_payload {
		char		*description;
		void		*type_data[2];
		void		*payload;
		const void	*data;
		size_t		datalen;
		size_t		quotalen;
	};

Before the preparser is called, the first three fields will have been cleared,
the payload pointer and size will be stored in data and datalen and the default
quota size from the key_type struct will be stored into quotalen.

The preparser may parse the payload in any way it likes and may store data in
the type_data[] and payload fields for use by the instantiate() and update()
ops.

The preparser may also propose a description for the key by attaching it as a
string to the description field.  This can be used by passing a NULL or ""
description to the add_key() system call or the key_create_or_update()
function.  This cannot work with request_key() as that required the description
to tell the upcall about the key to be created.

This, for example permits keys that store PGP public keys to generate their own
name from the user ID and public key fingerprint in the key.

The instantiate() and update() operations are then modified to look like this:

	int (*instantiate)(struct key *key, struct key_preparsed_payload *prep);
	int (*update)(struct key *key, struct key_preparsed_payload *prep);

and the new payload data is passed in *prep, whether or not it was preparsed.

Signed-off-by: David Howells <dhowells@redhat.com>
2012-09-13 13:06:29 +01:00
David Howells 423b978802 KEYS: Fix some sparse warnings
Fix some sparse warnings in the keyrings code:

 (1) compat_keyctl_instantiate_key_iov() should be static.

 (2) There were a couple of places where a pointer was being compared against
     integer 0 rather than NULL.

 (3) keyctl_instantiate_key_common() should not take a __user-labelled iovec
     pointer as the caller must have copied the iovec to kernel space.

 (4) __key_link_begin() takes and __key_link_end() releases
     keyring_serialise_link_sem under some circumstances and so this should be
     declared.

     Note that adding __acquires() and __releases() for this doesn't help cure
     the warnings messages - something only commenting out both helps.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
2012-05-25 20:51:42 +10:00
David Howells fd75815f72 KEYS: Add invalidation support
Add support for invalidating a key - which renders it immediately invisible to
further searches and causes the garbage collector to immediately wake up,
remove it from keyrings and then destroy it when it's no longer referenced.

It's better not to do this with keyctl_revoke() as that marks the key to start
returning -EKEYREVOKED to searches when what is actually desired is to have the
key refetched.

To invalidate a key the caller must be granted SEARCH permission by the key.
This may be too strict.  It may be better to also permit invalidation if the
caller has any of READ, WRITE or SETATTR permission.

The primary use for this is to evict keys that are cached in special keyrings,
such as the DNS resolver or an ID mapper.

Signed-off-by: David Howells <dhowells@redhat.com>
2012-05-11 10:56:56 +01:00
David Howells 31d5a79d7f KEYS: Do LRU discard in full keyrings
Do an LRU discard in keyrings that are full rather than returning ENFILE.  To
perform this, a time_t is added to the key struct and updated by the creation
of a link to a key and by a key being found as the result of a search.  At the
completion of a successful search, the keyrings in the path between the root of
the search and the first found link to it also have their last-used times
updated.

Note that discarding a link to a key from a keyring does not necessarily
destroy the key as there may be references held by other places.

An alternate discard method that might suffice is to perform FIFO discard from
the keyring, using the spare 2-byte hole in the keylist header as the index of
the next link to be discarded.

This is useful when using a keyring as a cache for DNS results or foreign
filesystem IDs.


This can be tested by the following.  As root do:

	echo 1000 >/proc/sys/kernel/keys/root_maxkeys

	kr=`keyctl newring foo @s`
	for ((i=0; i<2000; i++)); do keyctl add user a$i a $kr; done

Without this patch ENFILE should be reported when the keyring fills up.  With
this patch, the keyring discards keys in an LRU fashion.  Note that the stored
LRU time has a granularity of 1s.

After doing this, /proc/key-users can be observed and should show that most of
the 2000 keys have been discarded:

	[root@andromeda ~]# cat /proc/key-users
	    0:   517 516/516 513/1000 5249/20000

The "513/1000" here is the number of quota-accounted keys present for this user
out of the maximum permitted.

In /proc/keys, the keyring shows the number of keys it has and the number of
slots it has allocated:

	[root@andromeda ~]# grep foo /proc/keys
	200c64c4 I--Q--     1 perm 3b3f0000     0     0 keyring   foo: 509/509

The maximum is (PAGE_SIZE - header) / key pointer size.  That's typically 509
on a 64-bit system and 1020 on a 32-bit system.

Signed-off-by: David Howells <dhowells@redhat.com>
2012-05-11 10:56:56 +01:00
David Howells 233e4735f2 KEYS: Permit in-place link replacement in keyring list
Make use of the previous patch that makes the garbage collector perform RCU
synchronisation before destroying defunct keys.  Key pointers can now be
replaced in-place without creating a new keyring payload and replacing the
whole thing as the discarded keys will not be destroyed until all currently
held RCU read locks are released.

If the keyring payload space needs to be expanded or contracted, then a
replacement will still need allocating, and the original will still have to be
freed by RCU.

Signed-off-by: David Howells <dhowells@redhat.com>
2012-05-11 10:56:56 +01:00
David Howells efde8b6e16 KEYS: Add missing smp_rmb() primitives to the keyring search code
Add missing smp_rmb() primitives to the keyring search code.

When keyring payloads are appended to without replacement (thus using up spare
slots in the key pointer array), an smp_wmb() is issued between the pointer
assignment and the increment of the key count (nkeys).

There should be corresponding read barriers between the read of nkeys and
dereferences of keys[n] when n is dependent on the value of nkeys.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
2012-01-18 10:41:27 +11:00
David Howells 6d528b0822 KEYS: __key_link() should use the RCU deref wrapper for keyring payloads
__key_link() should use the RCU deref wrapper rcu_dereference_locked_keyring()
for accessing keyring payloads rather than calling rcu_dereference_protected()
directly.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2011-08-23 09:57:34 +10:00
Michal Hocko d8bf4ca9ca rcu: treewide: Do not use rcu_read_lock_held when calling rcu_dereference_check
Since ca5ecddf (rcu: define __rcu address space modifier for sparse)
rcu_dereference_check use rcu_read_lock_held as a part of condition
automatically so callers do not have to do that as well.

Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2011-07-08 22:21:58 +02:00
David Howells 78b7280cce KEYS: Improve /proc/keys
Improve /proc/keys by:

 (1) Don't attempt to summarise the payload of a negated key.  It won't have
     one.  To this end, a helper function - key_is_instantiated() has been
     added that allows the caller to find out whether the key is positively
     instantiated (as opposed to being uninstantiated or negatively
     instantiated).

 (2) Do show keys that are negative, expired or revoked rather than hiding
     them.  This requires an override flag (no_state_check) to be passed to
     search_my_process_keyrings() and keyring_search_aux() to suppress this
     check.

     Without this, keys that are possessed by the caller, but only grant
     permissions to the caller if possessed are skipped as the possession check
     fails.

     Keys that are visible due to user, group or other checks are visible with
     or without this patch.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2011-03-17 11:59:32 +11:00
David Howells fdd1b94581 KEYS: Add a new keyctl op to reject a key with a specified error code
Add a new keyctl op to reject a key with a specified error code.  This works
much the same as negating a key, and so keyctl_negate_key() is made a special
case of keyctl_reject_key().  The difference is that keyctl_negate_key()
selects ENOKEY as the error to be reported.

Typically the key would be rejected with EKEYEXPIRED, EKEYREVOKED or
EKEYREJECTED, but this is not mandatory.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2011-03-08 11:17:18 +11:00
David Howells ceb73c1204 KEYS: Fix __key_link_end() quota fixup on error
Fix __key_link_end()'s attempt to fix up the quota if an error occurs.

There are two erroneous cases: Firstly, we always decrease the quota if
the preallocated replacement keyring needs cleaning up, irrespective of
whether or not we should (we may have replaced a pointer rather than
adding another pointer).

Secondly, we never clean up the quota if we added a pointer without the
keyring storage being extended (we allocate multiple pointers at a time,
even if we're not going to use them all immediately).

We handle this by setting the bottom bit of the preallocation pointer in
__key_link_begin() to indicate that the quota needs fixing up, which is
then passed to __key_link() (which clears the whole thing) and
__key_link_end().

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-26 08:58:20 +10:00
David Howells 973c9f4f49 KEYS: Fix up comments in key management code
Fix up comments in the key management code.  No functional changes.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-21 14:59:30 -08:00